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Preface

This report contains the notes from my lectures on Micro scale meteorology at the Geophysics
Department of the Niels Bohr Institute of Copenhagen University. In the period 1993-2012, |
was responsible for this course at the University. At the start of the course, | decided that the
text books available in meteorology at that time did not include enough of the special flavor of
micro meteorology that characterized the work of the meteorology group at Risg (presently of
the Institute of wind energy of the Danish Technical University). This work was focused on
Boundary layer flows and turbulence and was often aimed at applications like wind energy, wind
loads, dispersion and deposition, air-sea exchange and air-land exchange, as well as flow
response to surface inhomogeneity.

The course, dimensioned to 60 hours, was generally structured in the first year, based on
copies of papers and copies of the overheads used for presentation. But it gradually filled out in
the following years, as with power points and the typed manuscripts constituting this reports.
Most writing was finalized within the first 10 years of the course, meaning most references are
somewhat dated by now, although | have not resisted adding more recent work, if ongoing
projects made it easy. In the course | have tried to present the details of the basic material,
trying to avoid the well known sentence of “It is easily seen—". But | have been less thorough
and pedagogical, when presenting the more illustrative material.

The original report includes pages of course material, directly copied from other people’s
publications, used during the lectures. Therefore this report is an internal report only. In the
present report these copied pages have been removed in respect for the rights of the original
authors.

DTU-Wind Energy, 02 2015

Sgren Ejling Larsen
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Summary

The report contains the authors lecture notes to courses in micro scale meteorology and
atmospheric turbulence. The course has aimed to touch upon both the basic theories and the
special formulation aiming at application. The structure of the course can be seen from the
“Content”. It has a chapter on concepts and statistics, two chapters on the basic fluid dynamics
and turbulence closure. Three chapters on various atmospheric scaling laws, Ekman layer,
surface layer and total boundary layer. It includes one chapter on the roughness and the
surface—atmosphere exchange, one chapter on heterogeneous boundary layers, and one on
atmospheric diffusion and turbulence. It has two chapters on boundary layer climatology
involving radiation, temperature and wind issues, and finally a chapter discussing measurement
and instrumental problems. The report has been loosely edited compared to the original notes.

[Text - The following line contains a section break - do not delete]
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1. Introduction

Characteristics of the atmospheric planetary boundary layer (ABL) , also called the
planetary boundary layer (PBL), are of direct importance for much human activity and
well being, because humans basically live within the PBL. Hence, we basically derive
our wind energy from winds in the PBL, and most of our air pollution is dispersed,
deposited and chemically transformed within the PBL. The importance stems as well
from atmospheric energy and water cycles issues, because the fluxes of momentum,
heat, and water vapour between the atmosphere and the surfaces of the earth all pass
through the PBL, being carried and modified by mixing processes here. Since these
mixing processes mostly owe their efficiency to the mechanisms of boundary layer
turbulence, a proper quantitative description of the turbulence processes becomes
essential for a satisfying description of the fluxes between the surface and the
atmosphere.

Description of the structure of the flow, relevant scalar fields, turbulence and flux
through the atmospheric boundary layers necessitates that almost all types of the
flows, that occur there, must be considered. For these objectives, there are very few
combinations of characteristic boundary layer conditions that are not of significant
importance, at least for some parts of the globe.

6 Lectures in Micro Meteorology



2. Concepts, scales of motion and statistical tools

Additionally to the synoptic weather patterns, the meteorology of the PBL is strongly influenced
by the surface characteristics and turbulence structure. Therefore, we will in this introductory
section shortly summarise qualitative aspects the different processes influencing the PBL
conditions additionally to a more detailed discussion of the statistical methods used in general
and which we shall use throughout the text to describe the characteristics of the PBL. Both with
respect to mean characteristics, variability and fluxes the PBL is dominated by turbulent motion.
Therefore it is appropriate firstly to consider what we should understand with turbulence, a
subject that has filled many pages in the scientific literature.

Here we just notice that motions of systems that can be described by the nonlinear fluid
equations tend to show strongly varying stochastic components, the turbulence, as well as more
smooth and predictable characteristics. Turbulence can occur on many scales of motion and be
described by as either two-dimensional motion or three-dimensional motion.

In the PBL, the wind speed as well as temperature and humidity, and indeed all atmospheric
variables, show this stochastic behaviour on all spatial and temporal scales of variation. In
figures 2.1, this is illustrated by a measured time series of the wind speed observed through
different time windows. The following figures 2.2-26 all illustrate different processes and scales
of variability within the PBL.

While the motion in the PBL can vary on virtually all scales, the processes within the PBL that
create so called PBL turbulence occur moston time scales of the order of and less than one
hour, with associated spatial scales. This PBL turbulence is three dimensional and therefore
can carry most of the vertical fluxes that is essential for the coupling between the atmosphere
and the surface.

On these time scales the main mechanism for producing turbulence is the vertical gradient of
the mean wind. In figure 2.2 we show typical vertical variations of wind speed, humidity, and
temperature between their surface values and values at the top and above the PBL.
Temperature and humidity can both increase and decrease with height, depending on whether
their surface values or values in the free atmosphere are the larger.

However, the wind speed will always increase with height from zero at the ground to its value in
the free atmosphere just above the PBL. The vertical wind shear gives rise to overturning of the
air, producing the turbulence (Tennekes and Lumley, 1982). This provides a formidable
mechanism for carrying the vertical fluxes compared to the molecular transport mechanism that
would have been an alternative. For example, a temperature gradient of 2 K across the lowest
10 meter height with a wind speed at 5 m/s give rise to a heat flux of about 0.5 mK/s (or 600
W/m?). If the flux had to be carried by molecular diffusion only, the result would be 4-10° mK/s

(or 5 mwW/m?) only.

The temperature structure of the PBL strongly influences the turbulence production through its
influence on the density of the air. If the air is warmer and thereby lighter close to the ground, it
will enhance the production; if it is cooler at the ground the production will be reduced. To a
lesser extent the humidity has similar, although smaller effect because also admixture of water
vapour changes the density of the air.

Lectures in Micro Meteorology 7
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Figure. 2.1 Upper figure: Wind speed measured 30 meter above flat homogeneous terrain in
Denmark from Troen and Petersen (1989). The data were obtained from a one-year time series
recorded with 16-Hz resolution. Each graph shows the measured wind speed over the time
period indicated. The number of data points in each graph is 1200; each averaged over 1/1200
of the time period indicated. The vertical axis is wind speed, 0-20 meter/sec. Lower figure:
Similar plot from Jensen and Busch (1982) here based on 1000 points per plot. The lack of fine
structure in the 10 sec plot is due to the onset of viscous dissipation at the highest frequencies
here, see discussion of spectra in the end of this section.
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Figure 2.2. Characteristic height variations
(profiles) of the mean values of the wind speed, U

temperature,'r and humidity, @ from the ground

to the top of the PBL, indicated by h. Also shown
by the arrows on the u-profile is the overturning of
the flow induced by the vertical velocity gradient.
The profiles are shown for the following

characteristic situations:
a) Thermally unstable, e.g. a sunny day.
b) thermally stable, e.g. a clear sky night,
and
c) Thermally neutral, e.g. a high-wind
overcast situation.

The size and magnitude of the turbulent eddies
are indicted by the rotational motion indicated on
the figure. Instead of temperature, T, one will in
meteorology typically use the potential
temperature, 6, see section 3.(larsen,1993)
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n
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Based on the above discussion we can now specify the planetary boundary layer as being the
layer through which the atmospheric variables change between their values in the free
atmosphere and their values at the surface, the transition being mostly controlled by turbulent

motion and mixing.

The structure and character of the turbulence will be different for the different thermal
conditions, as is shown below in figure 2.3, illustrating the turbulence structure for thermally

unstable and stable conditions.

Figure 2.3 Depiction of the turbulence structure for unstable and stable atmospheric boundary

layers. From Wyngaard (1990)
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Above we have discussed the PBL as it was horizontally homogenous, meaning that only the

vertical variation was important. Next we shall illustrate the horizontal structure of a PBL as in
figure 2.4 and its diurnal variation in figure 2.5.

The Boundary Layer Meteorology View

_/a){—/_’zj/

WD

Figure 2.4 Horizontalvariability in a PBL. The PBL is seen as constituted by a number of

overlapping and interacting “internal boundary layers”, reflecting the different surface
characteristics. We shall later discuss this in detail.

The different characteristics of the PBL, depicted above, all operate at different timescales and
spatial scales. The diurnal cycle is of obvious importance for the chance of regimes seen in
figures 2.2 and 2.5. The height of the PBL and the terrain features are seen to impose different
length scales in figures 2.3 and 2.4, and overall will the time and spatial scales of the synoptic
flow be seen in the PBL.

2000 —
Cloud Laye
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_Mi"'%gwe I Capping Inversion /
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Figure 2.5. Diurnal variation of a PBL, from Stull (1991). The figure depicts the rise of the PBL
height with surface heating at sun rise, and the subsequent rise of the night time PBL after sun

set by radiational cooling. Obviously overcast conditions will modify this turn of event, see figure
2.2.

In figures 2.2 and 2.3 the production of turbulence is envisioned as a swirling motion induced
by the shear, and modified by the temperature structure. A whorl constitutes a volume of
localized vorticity, which we shall denote an “eddy”. This picture of turbulence, as a soup of
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intertwining spaghetti-like eddies, has been very useful in the study of turbulence in spite of its
extreme simplicity.
Each eddy can be associated with a size, or spatial scale, and a time or timescale. When

eddies have been produced they will remain coherent for some time, creating their own smaller

scale shear. By the same process as for the mean shear this eddy shear will create smaller

eddies transferring the kinetic energy to smaller and smaller eddies, until it is turned into heat by
the viscocity of the air.

Similarly many other atmospheric processes can be characterised by their time and spatial

scales, describing roughly the time they typically takes and their extent when they occur. In Fig.

2.6 is depicted a number of characteristic processes and their characteristic spatial and
temporal scales, ranging from weather systems, with a timescales of about one week and a
spatial scale of about 1000 km, and down to the smallest turbulence eddies, called dissipation
range, where the fluid eddies have such small scales that they are disrupted by viscosity and

the kinetic energy is turned into heat. The characteristic scales here are about five ms and five

millimetres. Fig. 2.6 is in a way a space-time scale representation of the atmospheric motions

that are presented as time signals in Fig. 2.1.

Blade boundary layer; Blade profile; Wind Turbine; Wind farm; Many wind farms

Time scale (sec).

Figure 2.6. Time and space scales for the processes influencing the flow in the
atmospheric boundary layer (Busch et al., 1979). The three motion categories of
smallest scale, all belong to the category of three dimensional atmospheric turbulence
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that are of key importance for the structure of the atmospheric boundary layer, and will

be described more in the text. For comparison are shown as well characteristic spatial

scales for aspects of the wind power technology
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From Figure 2.6 reflects that there seems to be a rough relation between the spatial and the
time scales of the different motion elements, meaning that large scale motion elements are
associated with large time scales and smaller scales motions are associated smaller time
scales. From the figure is seen that there is proportionality between the time scales and the
spatial scales of a motion type corresponding to about 1 m/s

For the three dimensional atmospheric PBL turbulence, the above rough proportionality is
formulated more precisely by Taylor’'s hypothesis of frozen turbulence, which state that the
turbulence field does change very little, whiles it is blowing past the observer by the mean
speed. Hence, what is observed as a time change over the time 1 corresponds in reality to a
spatial change along the direction of the mean flow of the length £, such that:

(2.0) f{=U-r,
where U is the mean speed.

This simple formulation works remarkably well, and means that for this type of turbulence one is
really measuring the spatial variation (along the mean wind direction) by measuring the time
variation from a stationary meteorology mast.

In view of the above discussion we shall next consider a few of the statistical tools used to
describe the atmospheric boundary layer turbulence.

The coordinate system:
We have two vectors in the system, the position, r[m], and the velocity U(m/s)
(2.1) r=(;,X,,X;) = (xy 2) U= (u,u,,u,)= (u,v,w).

Here the numbered variables are usual when formulating the governing equations in tensor
form. The other variables are often used when the equations are written in their component
forms.

We have as well a number of scalar variables: The independent variable time: t (sec).
Temperature: T [K]. The air density: p [kg/m3]. Water vapour: py, [kg/m3], water vapour mixing

ration:
g = py /p. Concentrations of admixture: C [kg/m3], mixing ratio for C: ¢ = Clp.

We shall consider an atmospheric variable. It can be any of those we have defined, U, T, q, C,
c. For generality, we use the variables s and e. We consider the variables as stochastic

Both variables can be any of the variables above s, e, ui, U,, us, T, g, C, c. The variables s, e
are functions of space and time: s = s (x; t), where i refers to the three coordinate numbers: 1, 2,
3.

The simplest statistical operator is the average or the mean value. We typically operate with
three types of averages: Ensemble averages, time averages and spatial averages. Averages
are typically denoted by an over-bar, or a bracket, like <s>, or by capital letters.

12 Lectures in Micro Meteorology



The coordinate system

X, Z is always verticall!

X u
3 3 T,C, g
z w
t
Fo p
~N
AVD)
X1 x
u, u
(R}
z
v [
H
z 30m
12.5 U+u

10 T T 1

7.5

Velocity [m/s]
Temperature [C] = 5 w
T
0 WMWWMW
28 | | | |
0 100 200 300 400 500 600

Figure 2.7. Commonly used coordinate systems and variables, with a practical example for near
surface turbulent velocity and temperature. Notice that the average vertical and lateral velocity
are both close to zero, but smaller scale velocity turbulence is three dimensional. W is close to
zero, because vertical mean values and slow fluctuations cannot exist close to the ground. V is
close to zero, because the horizontal coordinate system is aligned with the x along the mean
wind.

The Ensemble Average:

We imagine that our variable, s = s (x;, t), is part of an ensemble of representations of the
variable, s.

Hence we write: s; = s; (i, t), where j is the ensemble index.

(2.2) s(x, 1), =%ZN:sj(xi,t)

Ensemble average is easiest to imagine for the case of a wind tunnel simulation, where one can
restart the tunnels over and over again, and this way obtain an ensemble. For an atmospheric
boundary layer one may imagine that the boundary layer is started over and over with similar
start conditions and similar boundary conditions.

Lectures in Micro Meteorology 13



The use of ensemble averages is most convenient when doing mathematics, e.g. taking the
average of model output, where each output can be considered one ensemble. Also, it is the
average we use when averaging equations to yield equations for the average variables.

In practice one will often use time or space averages, either because the signals available are
functions of these parameters as e.g. for measurements of time series from meteorological
towers, or because of the objectives of the study, as for example area averages often being the
goal of hydrological studies. The averaging procedures employed are limited by the signals
available but are also a matter of choice. As an example, we can take the signal in figure 2.1
that would lend itself to time averaging, since it is a time signal, but also to ensemble averaging
using ensembles of data from similar days or hours.

Time average:
Here, we average our variable, s = s (x; t), over a given time interval 2T to obtain:

s(x,t1) —1 _T[s(x t+7)d
Sy = Sy )T
(23) i T 2T . i

Time averages are especially convenient in connection with time series-obviously. Also all
measurements are associated with time (and space!) averaging, because of the finite time and
space resolution of all physical instruments. An example of a practical time averaging procedure
is shown on figure 2.8 below.

v v r v v 1
0 200 400 800 800 1000
Time [sec]

(ay+as,+..a,)/n =10.0

Figure 2.8. Time series of wind speed and the formation of the time average.

Spatial averages:
Here, we average over a spatial interval A. This interval can be a volume, an area and a line
average.
1 A
— IS(X. +x,0dy,

-A

s(x ,t) =
(2.4) T
where the power n reflects the dimensionality of the integral, n=1, 2, or 3.
Spatial averages are much used when working with numerical models, where one kind of
average is the average across a grid-element. From measurements, an area average is typical
what a satellite sees, since it averages over the footprint. A line average would be what can be
detected from airplane measurements and also from some kind of LIDAR or RADAR scattering
instrumentation.
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Ergode theorem:
Assume that s (x; t) is statistically stationary and homogeneous, and then we have

(2.5) llitlo s(x,,t), = ilit]o s(x, 1), = Llﬂ s(x,,t), =s=const.

For such conditions we can therefore in the limit change between the different average values,

since they are all the same, but only when we can consider the variables statistically stationary

and homogeneous and when the series are long enough in both time and the relevant space
dimensions.

Statistically stationary means that all statistics of s is independent of t. Statistically
homogeneous means similarly that all statistics of s is independent of x;.

Note s (x; t) can be homogeneous in some of the dimensions, x; and not in others. For example

in the boundary layer we have learned that the wind speed increases with height. Therefore in
general wind speed is not homogeneous in the vertical but it can well be considered so along
the horizontal axes, see figure 2.2.

Whenever, we use S(X,t) without indications of which kind of averaging that is applied, it
should either be obvious from the context or it will mean ensemble average.

Fluctuations.
For a stochastic variable, s, we define the fluctuation as the difference between the s and its
mean value. The fluctuation is typically indicated by S .

(2.6) s'=5-7%
Funny enough this very simple equation is honoured with a name: The Reynolds Convention.
The mean value of the fluctuation is zero:

2.7) s'=(s-5)=5-5=0.
Since S is a constant and the average of a constant is the same constant.

Frequency distributions, pdf’'s, (Co-) Variances, standard deviations, STD.
Variances and standard deviations are measures of the magnitude of the fluctuations.
The variance of fluctuations is found by averaging the square of the fluctuation:

(2.8) 0<s”=s's"=0’

where o is the so-called standard deviation. Alternatively one can determine the variance as:

—2.

(2.9) s =(s-35)(s-5)=5" -7
The covariance is found from two signals, s and e, as follows.

(2.10) se'=(s—5)(e—¥).

Lectures in Micro Meteorology
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The magnitude of the covariance depends on two features, the magnitude of the two
fluctuations, s” and e”, and how well they correlate with each other. To separate these two
features one often study the normalise co-variance, called the correlation. It is defined by:

0 " 20 40 e 80 1000
Time [sec]
Varians = ([a,— M]?+[a,— M]? +.. [a,— M]?)/n =1.0

Figure 2.9. The same time series as in figure 2.8, but here with the computation of an
estimate of the variance. Also shown is the frequency distribution of the fluctuations, s’,
used to describe the frequency of amplitudes of the fluctuations around the mean value
with the variance..

The covariance is found from two signals, s and e, as follows.

(2.11) s'e’=(s—-5)(e—¢€).

The magnitude of the covariance depends on two features, the magnitude of the two
fluctuations, s” and e”, and how well they correlate with each other. To separate these two
features one often study the normalise co-variance, called the correlation. It is defined by:

(2.12) “1<p, =20

where the bounds on p,, corresponds to the two situations that s and e are either in perfect

, , . . . 2, 2
correlation or in perfect counter-correlation, that is s’ = e’ or s’ = -e'. Notice, S /o, =1.

Commutation rules for Ensemble averaging and mathematical operations:

Recall that the ensemble average, as defined in (2.3), is just a sum:

1 N
_E—Z for N > o0

(2.13) N

This means summation and differencing commutes with averaging!

Differentiation and averaging:
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N de N de

(214) —=—Z—=——Zej =

o dx N =

Similarly for integration:
(215)  [sdxdt = [sdxdt.

However, multiplication and averaging do not commute:

—_ = = ! —_

(2.16) e-s=(e+e')(S+s')=€-S+65'+5e'+se'=6-S+se' 25 €,

since the correlation in general is different from zero.

Covariances involving a velocity component can be interpreted a transport along the direction of
the velocity component. Consider the covariance between the velocity component w and the
concentration, C. The wC obviously describes a transport of concentration C through a plane
perpendicular to the direction of the w-component.

2.17) FluxC=w-C=(W+w')C+C')=WC +WC'+w'C +w'C' =wC +w'C’.

It is seen that the transport across the surface perpendicular to w is composed of a flux given by
the mean speed times the mean concentration plus a flux given by the co-variance between the
two fluctuations. Therefore even if the mean w is zero there can be a flux. This is exactly how it
is if we take w as the vertical velocity. Close to the ground there can be no mean w, since that
would build a positive or negative pressure perturbation close to the ground, which would
counteract the w wind speed. On the other hand it is seen that if C'/<C > <<1 then even a
small<w> can give rise to a flux, e.g. many trace gases like CO,.

That the covariance can describe transport can be seen by breaking it down into positive and
negative fluctuations around the mean value, and by noting that the positive velocity
perturbations correspond to transport along the positive direction of the w-wind direction, while
negative w perturbations correspond to transport along the negative direction of the w-direction,
see figure 2.10. We now use the definition of the ensemble average.

(2.18) W'C'=%ZW}C;= MLZWC +—ZWC + —ZW +MLZW1C
1 4 *-

i

Here the summation is broken down into subsets, corresponding to negative and positive
perturbations on C and w as indicated, N = M1 +M2 + M2 +M2. The first two terms correspond
to transport of C to the right hand side of the figure, either by transporting positive perturbations
of C to the right or transporting negative perturbations of C to the left. Mathematically, these two
terms are seen to contribute positively to the total co-variance. If there is a mean gradient of
C(z) as shown in figure 2.10, these two terms dominate the sum. The two last terms
correspondingly lead to transport of C to the left, and contribute negatively to the co-variance.
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The resulting flux is therefore determined by the balance between the first and the second
group of terms.

w, >0 w_ <0

<C(2)> T~

Figure 2.10. Transport by negative and positive velocity fluctuations. Positive excursions from
the <C(z=0)> will tend to be associated with w>0 and vice versa.

In a broad sense the variance and covariance are used to describe the fluctuation intensities
and relation between different signals. Having considered the variances and co-variances one
can consider higher-order moments, and the distribution functions of the signals to study
different aspects of their behaviour. However, since it will not be much used here, we shall
proceed to the tools used to identify the scales of variation.

Series statistics.

Above we have considered statistic measures for stochastic time and space variables. We have
focused on measures measuring the intensity and correlation of the stochastic series. Now we
shall consider methods that also the memory aspects of the series.

Covariances and correlations.
Assume a time series, s (t). The auto-covariance function is defined as:

(2.19) R, (t,7) =s'(t)s'(t+7).

If s (t) is statistically stationary, the Rs (t,t) = Rs (1), because, by definition, no statistics can
depend on t. For stationary conditions, we can write:

(2.20) R, (r) =R (t,7). = s ()s (t+7)=s'(t —7)s'(t ) =R, (t,-7)=R(-7).

1s

where we used the substitution: t; =t +t.
Note further that:

(2.21) R (0)=s" =0
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The autocorrelation function, ps (1), is obtained by normalising Rs (t) by o2 Itis seen that ps (1)
is an even function in t, and that ps (0) = 1.

clry
F . )

o .. L —KJ

— N

& —

Figure 2.11. Example of autocorrelation functions, showing the definitions of the integral time
scale, and showing that Auto-correlation function can change sign, but that its value for zero lag
is by definition equal to one (Tennekes and Lumley, 1972)

For space series we can similarly define an auto-covariance function:
(2.22) Ry (X, ) =s"(x)s'(x + ),

where subscript i now refers to the three spatial coordinates. Corresponding to stationarity for
time series, we have homogeneity for space series. Recall that for space series we may have
homogeneity along some of the coordinates and not along others, e.g. the vertical axis.

For homogeneous space series the auto-covariance function is a function of the increment, y;
only, and it is an even function in y;. We can also define the autocorrelation function by
normalising with series variance.

Finally, since we know that the atmospheric variables are functions of space and time, we can
define:

(2.23) R, (Xt 7, 7) =s' (X, )s' (X + 7, t+7) =R (,,7),

where the last equality sign assumes that we have both stationarity and homogeneity. Note that
since our basic variables are function of space and time, in the principle, the spatial and
temporal auto-covariance functions remain function of the other coordinates. For example for a
stationary time series of an atmospheric variable, s (x;, t), we have:

(2.24) R, (x,t,7) =s'(x,t)s'(x,t+7) =R (X, 7),

Corresponding to the auto-covariance function we can also have cross-covariance functions,
from the variable s and e. In general we have:
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(2.25) Re (Xt 7, 7) =s'(x,, t)e'(x + x,,t+7) =Ry, (1,,7),

Where, we again have used suitable stationarity and homogeneity criterions as needed.

(2.26) R (X ,t,7) =s'(x,t)e'(x , t+7) =R (X,7),

r !
Again, we can normalise with € S to obtain the cross-correlation function, pes (X; 1).

Note that the cross correlation functions are not necessarily even functions in neither x; nor . In
terms of time correlation, this is a consequence of:

(2.27) e'(t)s'(t+7)=e'(t+17)s'(t)

The correlation functions are measures for the memory of the variables that are correlated and
thereby also a measure of the memory of the processes behind the variables. The correlations
tend towards zero for large lags, meaning that the correlated variables for such lag are
independent of each other, which is another word for that the memory for these lags has
disappeared. For auto-correlation functions, one often uses the integral of the correlation
function as a measure of the memory. The scale is called the integral scale, see figure 2.11.

We shall use the correlation function to study how well determined a given time average can be
expected to be. Consider the definition of the time average:

T

— 1
@28 S(U; = [ s(x. t+o)dr

T

For stationary conditions and for time going to infinity the time average approaches the “true”
average following the Ergode theorem, meaning that:

(2.29) s(x,,t), = s(x) forT -0

where the true mean value cannot be a function of t due to stationarity. Dropping for the
moment the space coordinates, x; we now consider the variance:

(230) &= (s(t), —s)’

Inserting into the time averaging integral we get:
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T T

52 = (%js(tﬂ)dz—é)z _ (%J‘S'(t+r)dr)2

-T -7
(2.31) 1 LT TT
= [ [s'a+t)s't+t)dtdt” =— [ [ R (t'-t")dt'dt"
a1l a1l

From the appendix we obtain, not very easily:
12T 5

2.32 == | @-=2)R(&)dE.

(232)  ot=5 [A5RE)E

Introducing the autocorrelation function ps (t), and changing & tor, this expression can be
written:

227

(2.33) 5 = % I(l—i)ps (r)dz
2T

T

For T, 8t —0 as it should for a stationary time series. For T small, ps (tr) ~ 1 for the whole
integration, the integral becomes the area of the triangle between (0, 1) and (2T, 0), and 61 ~cs.
For T large, the correlation function, ps (T) ~0 for which reason we can integrate all the way to
infinity, and the integral becomes:

2 «© 2 o 2 o
O T O O T
O r—|(1-— )dr =—2 Ndr——|—p (0)dr =~
s {( )P (D)dr=— !ps() - QZTpS()
(2.34) P o2
~—(T./2) -0=——"—o,
T (2T/TS)

where the integral scale, Ts, is given by:
(235) T, =[p(0)dr

It should be noted that the integral scale is defined, in some references, as the integral from
zero to infinity, and is therefore only half the value obtained from (2.44). This ambiguity is
throughout the literature, one just has to be observant.

The result above equals the variance for the series, s, divided by an estimate of the number, N,
of statistically independent estimates of the time average of s that can be made in the time T,
given the integral time scale, T, for the autocorrelation function; N=2T/Ts.

As always similar expressions and statements can be made for the homogeneous spatial
series, s (X;).
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Practical considerations about averaging, stationarity and homogeneity.

Within the idealised mathematical world of ensemble averaging, there are few practical
problems to consider. If one moves to the other types of averaging, for example the time
averaging, one must consider the averaging time from more practical considerations. One
aspect is the statistical uncertainty of the average. Here one can be guided by equations like
(2.33). However there are more qualitative considerations as well. As illustrated on Figure 2.1
and 2.6 geophysical time series fluctuate on all time scales and at least on spatial scales less
than 40000 km, meaning that the proper averaging time is not obvious. When defining an
averaging time, one defines both the average values, fluctuating on time scales larger than the
averaging time, and the fluctuations, fluctuating at timescales smaller that the averaging time,
see e.g. Fig. 2.1. One sort of defines which flow variability to call variation of the mean values,
and which to call variation of the fluctuating values. Since much of the studies in micro scale
meteorology are focused on relations between average values and fluctuations, one wishes to
include all the processes, denoted boundary layer processes in the averaging. Comparing with
Fig. 2.6, we see that this corresponds approximately to and averaging time between 20 minutes
and two hours. Simultaneously, we wish to include as much of the fluctuations, contributing to
the vertical fluxes between the surface and the atmosphere through eg. (2.16) in the fluctuating
part of the signal. In Fig.2.6, also the cumulus clouds are known to involve important vertical
wind speeds. Hence one may be tempted to increase the averaging time. However, the
averaging time could then get too close to the diurnal variation within the signal, and one could
lose the stationarity approximation. Additionally, experience shows that for averaging times
longer than about one hour, the Taylor theory of frozen turbulence becomes less correct for
three dimensional turbulence. A further consideration is that one will prefer averaging times
such that characteristics of both the average flow and the turbulence are not too sensitive to the
accurately chosen time. Here one will often refer to the spectral language, where the
frequencies separating average values and fluctuations for averaging time between 20 min- 1
hour lay within the so called spectral gap in for example Fig. 2.13. This means that small
changes in the averaging time will not change the variance of the fluctuations significantly.
Finally, an averaging time longer than 30 minutes will smooth many transient phenomena of
interest, like wind gusts and frontal passages, which will be smoothed too much by the
averaging.

All considered the normal averaging time for meteorological stations conventionally has settled
between 10 minutes and one hour.

Fourier and spectral analysis.

Above we have considered the correlation analysis as a tool to study both correlations (- and
that means possible relation between different stochastic space or time series) and to study the
memory or inertia in the processes behind the data series.

We have attributed the word time and space scales to different processes. We shall now try to
develop a more precise description of “scales” through the use of Fourier analysis, where the
given series are expanded into sinus and cosines. Since frequency and wavelength for these
functions have a precise meaning, we will be able to discuss the time and spatial scales in a
more precise way. In a loose sense, we write a, say- time series, as a series of sine and cosine
functions of (w;t) with different w;. We obtain the Fourier spectrum of a time series by
correlating the series with cosine or sine functions of frequency, w. The magnitude of the
correlation for each frequency is a measure of the contribution to the amplitude of the time
series from sine and cosine functions of frequency w. The square of these correlations is
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denoted the spectrum and is a function of frequency and measures the contribution from each
frequency to the total variance of. A large spectral value for a given frequency means that this
contribute much to the variance, and vice versa for a small value.

A basic aspect of Fourier analysis is that there exist pairs. To a given function of time and
space there exist one and only one Fourier function of frequency and wave numbers, provided
certain conditions are fulfilled.

To prove this mathematically, one must formulate the conditions on the functions. The Fourier
methods have been proven mathematically for the following types of functions (Lumley and

Panofsky, 1964, Yaglom, 1962): Periodic functions, Functions that can be integrated absolutely.
Statistically stationary/ homogeneous random functions.

As usually, we shall start with stationary time series to avoid too much writing, we shall further
assume that the mean value has been subtracted.

A stationary random function s (t) with zero mean can be expanded into another random
function, Z (o), and back again, by means of the Rieman-Stieltje — Fourier integral.

s(t)= T ' dZ, (w)

(2.36) -

—iot

l1-e
t

zs(w)=i_j (D)t

dZ(» )= Z(» + dw) — Z(») , meaning that if dZ(w ) is differentiable, then dZ(w» ) could be written
as some function Y(o)dw. Note, Z (o) is a complex function.
Since s (t) has a zero mean value it follows that so has Z ().

Z (o) further has &-function characteristics:
(2.37) [dZ" (@) dZ (@)= | 5(0- 0')F (@)do'= j S(w—-o)o'S(v)do,

where the last transformation demands that F (o) is a differentiable function, as can mostly be
assumed in our use. S is a real positive function that is even in . When the two w’s are equal
their product is an absolute square, for which reason their result must be real and positive. S (®)
is called the power spectral density, or shorter: the power spectrum. We have introduced * to
indicate complex conjugation as is normal when multiplying two complex numbers.

Now recall the definition of the auto-covariance:

R (r)=5(t) s(t+7)= j e dZ. (o) j e““dZ_ (o)
(2.38) - -
— J.J. eit(o)'—(u)Hi(ur dzs* (a),)dzs (a)) — I ei(ur Ss (a))d W

Multiplying by e and integrating over t yields:
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(239)  [R()e™dr= [, [S,(@)dwe " dr= [ S, (w) 225(w - @)dw= 275, ().

Itis seenthat S (w) and R (t) is a Fourier transform pair. As R (1) is evenin 1, S () is even in o.
Letting T = 0, we get:
(240)  R(0)=5"=[S,(0)do

Therefore the power spectrum describes the contribution to the variance from the different
frequencies.

Now we turn towards the situation with two different time series:

s(t)= T e“'dZ, (@)

(2.41) N
e(t) = j edZ, ()

As before the two stochastic series have zero mean value. The cross-covariance is found
from:

R, (r)=e(t) s(t+17)= T e 'dZ, () T e dZ (w)
(2.42) - -

= [[eteoior 4z 7 (@) dZ, (@) = [ €S, (@)do,

where we have again used the 3 - function behaviour of the Fourier modes, corresponding to
the equation for the power spectrum:

(2.43) T dZ, (0")dZ, (0)= T o(w-o"Yo'dF, (w)= T o(w-o"YWao'S (w)dw

For the cross spectrum however, we must in general expect Ses (®) to be complex. As for the
power spectrum and the auto-covariance function, the cross-covariance and the cross-spectrum
are Fourier transform pairs. This is seen in a similar way, by multiplication of the equation above
with ™", and integration over first t and then .

(2.44) j R, (r)e™ dr= j j S, (w)dwe ™ dr = j S, () 275(w — 0)dw= 27 S, ().

—00 —00

Next we consider the cross-covariance and its relation to cross-spectra. Res(t) is not necessarily
even or odd int. However, we can generate an even and an odd part as:
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(2.45) R, (7) :%(RQS (r)+ R (-7)) + %(Res (r)— R (-7))= E_(z)+ O, (z),

Where E and O are the even and the odd part, respectively. We see that
(246)  E_(0)=es , O, (0)=0.

Inserting E and O in the Fourier Transform above yields:

S, (o) :% j e (E,.(r) + O, (r))dr
(2.47) o
=2i [ (cos(@r)E,, () - isin(w7) O, (r))dr =Co, (@) +iQ, ().
T -0

where we have used that e *=cos (w7) —i sin (o7).

Coes(m) is a real even function of . It is called the Co-spectrum. It integrates to covariance
between e and s. iQ¢s (o) is an odd function imaginary function in o. It integrates to zero. This
can be seen by inserting the Co- and the Quadrature spectrum for the cross-spectrum in the

transform from Ses(®) t0 Res(t), With ©=0.

(2.48) R, (r)=e(t) s(t+7)= ]. e’S, (w)dw = ]C. "’ (Co, (@) +iQ, (w))d o,

Generalisation to spectra for many variables.

Recall that we can consider meteorological variable as function of three spatial r = (X1,X,2,X3)
and one time variable, Faced with this we have options when deciding on spectral or
correlation analysis. This can be exemplified by the following for example from spectral
analysis:

il)= dZ (k;, 1(kix; +ot) dz (k;, i(kix;)
(2.49) e Ikﬁi ok > IE” 08
| or [dZ (x;, @)e or [[ dZ(x;,t,k, k,)e'“*

ki ko

To the different analyses correspond different power spectra, meaning that the variance of s is
expanded into the different spectral descriptions:
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?:jﬂlss(ki,w)dkidw or sﬁ(t)zjyss(t,ki)dki

or s%(x)= [s,(4.m)do or 52 (Xq, 1) = [[ 8,0, t)dk,dk,

(2.50) _ ke |
R, (z.,7) = [[[ [ S, (ki, w)e ™ dkidw or R, (z:,8) =[[[ S, (t.k)e™ dik
ki [0 ki

R, (7,.7) = j S, (zi.@)e” do, or R (%, 2,8) = [[]. S, 0.k, k, )" d

Here the last lines are seen to define a cross-spectrum for the same signal measured at
different point in time and space. However, the description in (2.49) can easily be extended to
cross correlation between different variables. Which combination one should choose depends
on how much one can stretch the arguments about stationarity and/or homogeneity, since these
concepts have to be reasonably valid for the spectral/correlation analysis method to be valid.

Spectra, averages and statistics.
For simplicity, we consider a stationary time series with zero mean value, s(t). Then from the
definition we have:

(2.51) s(t)= T e"'dZ, (w)

The time average is a before defined through:

(252)  s(b), =% } s(t+7)dr

Inserting the Fourier expansion into the averaging yields:

RN 1 T io(t+7)
s(t), :ELLe dZ, (w)dr

(2.53)

1 T iot T ot OOs”‘](a)-l—) iwt
:ije dr [ e dZS(a))z:‘;w—Te dZ, (o)

—0

We see therefore that the time averaging over time T attenuates the frequency content at
frequencies larger than o~1/T.

Since, we here have a series we zero mean value, we can compute the variance of the time
averages around its true mean value, denoted 81 in connection with the correlation functions in
(2.29), by:
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5 =(50,) = M e t67, (0)
(2.54) -

_ ” sm(a)T) sm(afr) e 4Z" (@)dZ, ()= I(S'n(wT)) S, (w)dw

Tsina()c;)T) ¢4z (o )J~

Showing how the time average approaches the “true” mean value for T—ow, provided that the
spectrum behaves well for low frequencies.

The variance between the raw signal, s(t), and its time average is estimated as:

(255)  (s0-s00,) =(] @-2NT),
b ol

eiwtdzS (a)))Z — T (I_M)z S, (o),
2 ol

which shows that while the time average value %T retains contributions of frequencies less

than 1/T, the variance around of the signal around the time average mainly reflect frequencies
larger than 1/T.

Presentation of Spectra.

When plotting spectra one has to content with that they often cover many decades both on the
frequency (wave number) axis and along the intensity axis. To compensate for this one will
therefore try to plot logarithmically to present the wide variety of scales in a representative way.
When doing this it is further normal to multiply the spectrum with the frequency or wave number
scales. Hereby, one can judge the relative weight of the different scales being present. The
derivation below goes for the frequencies (radians per sec, o and Hz, f), but similar relations
hold for the wave number or combined wave number- frequency spectra.

(2.56)  wS(@)d(Inw) = 1S(f)d(n f)=S(w)dw = S(f)df

The basis for these transformations is that the power spectrum is defined such that that it
constitutes the contribution to the variance of the signal from an increment of the independent
variables of the spectrum, i.e. frequencies and wave numbers.

The following figures, 2.13-2.15, show the power spectrum of one years of wind speed,
measured at mid-latitude.

Firstly, the difference in appearance between the Log-Lin and the Log-Log presentation is
obvious. In the Log-Lin presentation the magnitude of the difference frequency bins provides a
good impression of the contribution to the total variability from these bins, as can be seen from
(2.55) above. The log-Log plot on the other hand present details, not clearly present in the Log-
Lin plot. Especially the Log-Log plot shows the high frequency part that is created by boundary
layer three-dimensional turbulence. The dominance of variance from the synoptic and the
diurnal variation is clearly seen in the Log-Lin plot. In figure 2.13 the spectrum is plotted versus
the logarithm of the frequency, because of the many decades of frequency scales of interest in
geophysical time series.
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The strong intensity of the spectrum between the annual and diurnal-intensity frequencies
derives from the motion of the weather systems across Denmark. Therefore, it can be different
in other parts of the world with different climatology as are of course the intensities of the diurnal
and annual cycles. The contribution from the boundary layer turbulence described above is
represented by the small bump from about one hour and out. Around one hour is the famous
gap between what in relation to the boundary layer turbulence can be considered as the “"mean
flow" and the three dimensional turbulence.

There has been some discussion about the existence of this gap, because some convection
clouds actually create eddies with about the time scale of the gap, see figure 2.6, and also since
the spectra so far used to illustrate its existence often have been composite from different time
series used to compute different decades of the total spectrum, like figure 2.15.

From the point of view of both modelling and measurement it is advantageous to use average
values determined at time and spatial corresponding to the spectral gap, because the absence
of spectral intensity here shows that only few independent processes create variability in this
scale region. This in turn means average values become better defined and that it also
becomes simpler to decide if a particular process must be parameterized or explicitly resolved
by a numerical model.
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Figure 2.13: The power spectrum of the one-year time series of wind speed used in figure 2.1
presented versus the logarithm of the frequency (Courtney and Troen, 1990; Troen and
Petersen,1989) The annual frequency is not shown, since only one year of data is used .In the
lower figure the principal time scales are emphasized .
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Figure 2.14: The power spectrum of the one-year time series from figure 2.13, but here the
logarithm of the spectrum is presented versus the logarithm of the frequency.
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Figure 2.15 presents the “famous” Van der Hoven Log-Lin spectrum, where the high frequency
part is seen to be enhanced relative to figure 2.13. This spectrum is a composite; by that
turbulence data from a storm event is glued to spectra from longer time periods. It is famous
and a little bit controversial because it gives people the wrong impression of the strength of the
boundary layer turbulence relative to other parts of the spectrum.
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Figure 2.15. The Van der Hoven wind spectrum from Brookhaven, NY, based on work by van
der Hoven (1957), taken from Lumley and Panofsky(1964).

The spectra presented in Figures 2.13-2.15 can be used to consider the choice of averaging
time in relation to the scales of the different atmospheric processes, also illustrated in Figures
2.1 and 2.6. The existence of a gap in the spectra around a time scale of one hour can be used
to infer that the processes, taking place around that time scale, are probably not very important
for the total variance of the annual wind signal. From Figure 2.6 this means that these
processes, cumulus cloud convection, breeze systems and PBL convection, do not contribute
much to the annual variance at least not at time periods around one hour. From (2.53) is seen
that the variability of one hour mean values are dominated by a system of processes that is
associated with time scales larger than one hour. On the other hand, the signals associated with
the fluctuations around these mean values are associated with other processes with time scales
less than one hour. If the gap in the power spectrum is pronounced, we have not only a time
scale separation between the mean values and the fluctuations, but also a separation of the
processes that have to be considered, when the physics of the two signals is to be understood.
As discussed above the existence of the gap is not as pronounced as one could wish for, based
on these arguments, therefore we will often have part of the same processes directly affecting
both mean values and fluctuations around the mean values.

Boundary Layer processes, eddies, scales and spectra.

An important characteristic of the atmospheric boundary layer is that through it, the wind speed
is reduced from the free wind speed aloft to zero at the bottom.

As concluded earlier we must start by considering a horizontally homogeneous boundary layer,
where turbulence is going to transport momentum and everything else between the surface and
the top of the boundary layer on to the free atmosphere.

Such a transport demands that there are w-fluctuations available. For the power spectra we
have seen this mainly occurs at scales at the high frequency hump of these spectra, where
three-dimensional turbulence occurs.
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As we notice earlier in this note, the main production mechanism is shear production, as is
illustrated on the next few figures, taken from Tennekes and Lumley (1972).

The first of these figures shows that the mean wind profile is unstable, continuously shedding
eddies, Figure 2.16. The mean speed at two levels on each side of a given levels tend to create
a whirling motion. Next figure 2.17 shows how such a motion can extract momentum (and
therefore also other variables) from a mean gradient, by moving fluid elements from one level to
another with other mean characteristics. This whirling motion is associated with a rotating fluid
element, which we call an eddy.

2 U, xy) — U, (0)
Figure 2.16. Development of rotation in
a turbulent shear flow through over-

—/___\__.—-"'—7-7
turning of air in air parcels. /\—J/‘
(Tennekes and Lumley,1972) RNaS //7
-

"'——"/_—\—__
N

Xy

Finally, the third figure, 2.18, shows how an eddy is stretched by the mean profile, thereby
reducing its radius. This stretching also occurs by interaction between different eddies, setting
up velocity gradients across each other. Aside from this stretching the velocity gradients of
overlapping eddies force the eddies to shed smaller eddies corresponding to the processes
associated with the mean gradients.

g

n /Ul {x,)

Figure 2.17. Transfer of momentum from one level to the next by a the whirling motion derived
in figure 2.16 (Tennekes and Lumley, 1972)

The concept is that wind shear is continuously shedding eddies, these eddies interact with the
mean shear and each other to create ever smaller eddies. We talk about an energy cascade to
smaller and smaller scale. As eddies grow smaller, the velocity gradients across them become
strong enough for the molecular friction to smooth out the motion. This smoothing out of motion
removes variance from the wind speed fluctuations. It is called dissipation and denoted by e.
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X

Figure 2.18. Stretching of an eddy by the mean shear (Tennekes and Lumley,1972)

The largest of these shear produced eddies are produced with scales, reflecting the scale, A, of
the vertical shear that creates them. Close to the surface, where the vertical variation of wind
speed is close to logarithmic, A ~ z, the height above the ground.

This eddy production with subsequent cascade down to smaller size and dissipation by viscosity
has been given a poetic formulation L.F. Richardson paraphrasing a poem by Jonathan Swift.

Big whorls have little whorls,
This feed on their velocity;
And little whorls have lesser whorls,
and so on to viscosity.

The original
So, Nat'ralists observe, a flea
Hath smaller fleas that on him prey
And these have smaller fleas to bite ‘em
And so proceed to infinitum.

The swirling motion of eddies gives rise to the turbulent velocity fluctuations, the velocity
variability at different eddy sizes are seen in a spectral analysis as the intensity of the power
spectrum at the associated wave number.

(2.57) u, (r,t)= T e“"dz. (k,t)

-0

(2.58) sij(k,t)=Tdz*i(k,t)dzj(k',t)

Where the subscripts refer to velocity components 1, 2 and 3.
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When eddies are shed from the mean wind profile, the direction of the shear is of course
important, but after a few steps in the eddy-eddy interaction involved in the cascade, the eddies
have lost sense of orientation, and we say that the motion is isotropic, meaning that the flow
statistics is unchanged by rotation in all directions. Since the flow cannot be truly isotropic, it is
only isotropic for smaller scales, where the cascade has been active in several steps. For
isotropic turbulence we can define power spectrum, E(k), being only a function of the length of
the wave number vector, k, not its orientation. Below, E(K) is derived by integrating S;(k)over all
directions of the k-vector, leaving only its length as variable.

@so)  EM=[fJ] si6dk,

1 1 2 2 2 K
(260)  uy =2+ ) =_£E(k)dk (= J[[ 84 () dk,dk, k).
CE(KR) .k,

We can separate the power spectrum into three regions as shown on figure 2.19, the
production range, with k ~1/A, where energy is extracted from the mean profile, a dissipation
range, where the fluid motion is dissipated by viscosity, for k > n ~ 3/ 3)1’4, which for typical
atmospheric flows is about 1 mm. n Is called the Kolmogorov dissipation scale and is a
combination of viscocity and dissipation as seen. In between there is a region, where the
spectrum depends only on the wave number and the dissipation. This region is called the
inertial sub-range. Since the spectrum describes wind variance per wave-number increment, it
has the dimension: m%sec?. Dissipation is destruction of variance by viscosity, hence it has the
dimension of variance per second, or m%s°. Finally, wave number has the dimension of m™.
Dimensional analysis then yields:

(2.62) E(k)=as’k™"

Which is the “famous” Kolmogorov -5/3 law, where o is a universal non-dimensional constant,
called the Kolmogorov constant, being about 0.5.

In Figure 2.19, it is physically realistic to expect isotropy only within the inertial range and the
dissipation range of E(k). To distinguish between such a flow and a truly isotropic flow (meaning
that all scales of the flow is isotropic), we denote the boundary layer turbulence as a locally
isotropic flow.

The pseudo isotropic soup described by E(k) is now advected with the mean wind speed,
hereby defining a coordinate system with the x;-axis along the mean speed, u, the x3 or z axis
vertical with the wind speed denoted w, and the other horizontal axis, X,, with wind speed
component, v, called lateral.
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Figure 2.19. Schematics presentation of the energy spectrum for atmospheric boundary layer
turbulence, defining the production range, with scales reflecting the mean shear, dissipation
range and inertial range. (Tennekes and Lumley,1972)

The component spectra now depend on how we probe, E(k). A typical way is that we use the
wind speed itself, meaning that we see all the components along the mean wind speed from a

stationary sensor. In (2.63) Y indicates the direction of probing specifically Y = 1 in (2.64).

@sd)  8k)=] [ 5,000k,

—00 —00

(2.64) s;(kl)=T T S, (k)dk,dk,

Or, inserting (2.60)

o o kZ
S,(k) =S5} (k)=[ [ S, ()dk,dk, = (1 5k,

—00 —00

[l
S, (k)= 522(k1)=T TSZZ(k)dkzdk j j E(")
I

kzz ) dk,dk;,
R Ark?
(2.65) - 2
S,00) =S4 (k)= [ [ St0rdka = [ [ = (1—k—3)dk d,,

A7k’
E(k)
4 k2

Notice that the cross-spectrum between any two different components is always zero, as it
should be according to the assumption of isotropy, reflected by the spectrum in (2.60)

—00 —00

S, (k) =S (k)= J f §, (K)dk,dk, "I I

—00 —00

k 'kj . .
" ———)dk,dk, =0, i#j

From a stationary sensor, exposed to the wind, we will see a temporal signal variation that

corresponds to spatial variation along the x; axis, following Taylors hypothesis of the turbulence
as given in (2.0).
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A - A
(266) — = u—
At AX,

where U is the mean speed, and A is the signal amplitude variation.

A slightly more general formulation of Taylor’'s hypothesis of frozen turbulence is that the
advection speed, u, is much larger than the speed of change within the turbulence soup passing
by with the wind. This hypothesis is surprisingly accurate for situations with wind larger than
about 2 m/s, for the three dimensional turbulence characterising the atmospheric boundary
layer, as depicted in the power spectra, presented before, meaning for frequencies larger than
0.001 Hz and horizontal wave length smaller than say 10 km. From the equation above, the
relation between the wave-number, k,, wavelength, and the frequency is:

(2.67)  k =27/A=wl/u=2zflu

Probing of the turbulence field, as described by E(k), along the mean wind speed, we can derive
the component spectra. In the inertial sub-range one obtains, using (2.61) and (2.64):

. 4
(2.68) Su, (k) = O‘i‘c"y3 kl_S/a witha, =a, 250(1 )

where the o's are derived from the one universal o of the isotropic spectrum above (2.61).
Also the scalar variables have inertial range forms similar to the velocity component, for
example for temperature:

(2.69) S, (k)= e °Nk™?,

where N is the dissipation rate of temperature variance, with the dimension K* /sec. One can
verify this with same dimensional analysis as for the velocity spectra. There are strong reasons
to believe that the Kolmogorov constant is the same for all scalars (Hill, 1989) with ot being
about 0.8. We shall in the following sections see how & and N can be estimated from the
governing equations.

Overall the one- dimensional power spectra, kS(k), therefore all tend to follow a bell shape, with
the —2/3 law constituting the high frequency part (at least when the dissipation range is not
included). This is illustrated on the following figure 2.20. One could add that it of course is
possible to probe the boundary layer turbulence along other axes than the x;, given by the
mean wind speed, theoretically or using e.g. small airplanes or remote sensing. Doing so we
find that the inertial ranges still holds but that the o coefficients changes, and that details in the
spectra changes as well, but the overall shapes remain the same. Indeed all power spectra tend
to follow a bell shape, although co-spectra have somewhat different form, as seen in Figure
2.21 that includes co-spectra as well.

The spectral range, depicted in Figure 2.20 has been studied experimentally, quite intensively.
Results from such measurements are exemplified in Figure 2.21 as analytical forms of power
spectra and co-spectra for the three wind components and temperature based on
measurements near the ground. The spectra are plotted versus the so called normalised
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frequency, which is seen to correspond to the horizontal wave number multiplied by the height
z, according to the Taylor hypothesis in (2.66). In boundary layer theory use this normalised
frequency collapses spectra from different heights into the form shown on Figure 2.21, see
section 6.

F(K‘l)l K1 F(K1)

Figure 2.20. Principal sketch of the one dimensional power spectrum as function for x;, or
alternative as function of frequency, transformed to wave number using Taylors hypothesis
(2.66), from Kaimal and Finigan, 1994).

The power spectra of Figure 2.21 follows well the form depicted by Figure 2.20, with an inertial
sub-range with a Kolmogorov constant in according with (2.67) and (2.68). The co-spectra,
which for isotropic turbulence should be zero, is seen to have a significant non-zero part,
carrying the fluxes, as described on p 11 and 12 in this section. At higher frequencies, all
spectra approach local isotropy the power spectra approaches the predicted -2/3 —power law,
while the co-spectra approaches zero much faster in according with the theory of approach to
local isotropy.
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Figure 2.21. Power spectra and co-spectra for atmospheric neutral turbulence close to the
ground, plotted versus the normalised frequency n= fz/u ~zk,/2z, see (2.66), (Kaimal et al,
1972). The spectra are normalised with surface layer parameters, which together with the role
of thermal stability are described closer in section 6.

The spectral formulations and the Taylors hypothesis are based on quite simple ideas, mainly of
statistical nature and have been found to be so broadly valid that they are extremely useful in
both experimental and modelling work.

The practical limitations to the use of Taylor's hypothesis show when there is too much variation
in the velocity relative to the mean flow, either due to turbulence or due to large vertical wind
shear. This can influence the very low frequency, large-scale turbulence (Powell and Elderkin,
1974), and small-scale high frequency measurements (Wyngaard and Clifford, 1977; Mizuno
and Panofsky, 1974, Larsen and Hgjstrup, 1982).

The limitation to the validity of the inertial sub-range forms of the spectra is found when the
assumption behind their validity breaks down, in the high-frequency end by the direct influence
of the dissipation and in the low-frequency end through the direct showing of the production
scales and the nearness of the surface (Tillman et al, 1994). The production scales show up in
Figure 2.21 around the top of the bell shape of the power spectra, which for shear produced
turbulence scale with vertical wind gradient, again scaling with the height z, as discussed on p.
24 -25 in this section.

The high-frequency limit due to dissipation is illustrated on Figure 2.22. According to the
discussion in connection with Figure 2.19, the dissipation becomes important for the spectrum,
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strongly reducing the spectral amplitude, when kn = 1, where n is the Kolmogorov dissipation
scale.
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Figure 2.22. Different scaled spectra near the ground shown versus the normalised frequency,
fz/U (Larsen et al., 1980). 1 and 2 shows different power spectra like, u, T, u, v, or w. The
hatched area , 3, represents co-spectra, while curve 4 shows a dissipation spectrum, derived
from a differentiated signal as shown in section 4, (4.57) : The -2/3 slope of 1 and 2 here
become represented by a +1/3 slope, followed by amplitude reduction due to dissipation..

For n <10, the velocity fluctuations gradually looses their 3D turbulence characteristics and
become mainly horizontal fluctuations and the normalised frequency, n, loses its relevance.
Hence it is common now to present spectra as function of either wave number (m™) or
frequency (Hz).

However, the power spectra here still retain a kind of universality as seen in Figure 2.23,
showing the spectra from multiple sources as function of frequency between 10° and 10 Hz.
Noticed that the -5/3 of the inertial subrange, but not because of an inertial subrange here,
describing the spectrum between the diurnal cycle and 10° Hz. The spectra of Figure 2.23 can
be seen also in the one spectrum shown on Figure 2.14. A weaker form for Taylor hypothesis
also governs the fluctuations between the diurnal cycle and 10 Hz in that the coefficients for
the similar wave number spectrum can be found assuming advection by the mean wind of
spatial fluctuations. From the diurnal cycle and down to lower frequencies, the spectrum reflects
the synoptic weather patterns, and no simple relation between wave number and frequency
exists, as was also discussed earlier in this section, in connection with Figures 2.6 and 2.14.
The diurnal cycle, showing clearly in Figure 2.14 is in Figure 2.23 more smeared out by the
many data sets, with different measuring heights. Notice also that Taylors hypothesis has no
relevance for the diurnal cycle, being an exclusively a time phenomenon.
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Figure 2.23. Composite plot of wind speed spectra versus frequency (Larsén et al, 2012), The
“universal” spectral function, fitted to the data, is indicated.

APPENDIX 2A: Correlation function integral.

In this appendix we reduce the integral in (2.30)

T T

2 1 2 1 ' 2
52 = (E_J;S(t+r)dr—s) = (?_jT (t+7)d7)
(2A.1) 1 LT 1 LT
= s'(t+t")s'(t+t")dt'dt” = R.(t'—t") dt'dt”
4T2_UT( )s'(t+t) 4H( )

To continue we define new coordinates, the so-called diamond transformation:

R

r—\/E ,G—W.
(2A.2) and

t,_z'+0' , t,,:z'—a

(The following details are usually referred to in texts as: It is easily seen--)
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The absolute value of the functional determinant for this transformation is:

ot

(2A3) ot,t"y |l or oo

o(r,0) - a" o’

Sl 5l

or Oo

NG

The integral now looks as:

1 TT 1 t'=T t"=T
Of = R (t'—t")dt'dt"=—— R.(v20)dodr
(2A.4) TS T _IT_IT (' -t") o I,I_WI_ s(N20)

The new boundaries on the other hand are complicated, and it is simpler to consider positive
and negative t separately.

For positive values of t, the c-integration is bounded by:
(2A.5) —\V2T —7<0<N2T +7

For negative values of t, the c-integration is bounded by:

(2A.6) —\/E+TSGS\/E—T

o= 2T, r=0 o BT t a0, T 2T
T
far.r
o SET+T
_\J" 2
Jao &* L]
-~
e
e
'IJ
-T a T
o]
(-
\\ af
“
~ 6 oTE—ET+ T
A
=
’/
a0, TE=2T =T T2 T=T G- 2T
T=0

Figure 2A.1. Integration areas of (2.34) with the two sets of independent variables, t, t" and (z,0)

. (Panofsky and Dutton, 1983)).

Hence, we can continue the integration as:
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v=T t'=T
1

2 _ —
of = e t':Tt_J:T R,(v20)dodr=
1 0 2T+ 2T V2T -7
A7) == [ dr [ R(2o)o+[dr [ R(20)do|=
T —2T 2T -7 0 —2T+7
1 Jar V2T -2
=_I I R, (v20)do.
2T
0 —2T+1

The last integral is integrated by parts:

Nea Nea 1 Jar N
2 _ . S _
(2A.8) 52 = 2T2 j dr ﬁjT R.(v20)do = o ! dr 1-F(z); with F(r)—iﬁj;HRs(\/ZO')do:

Proceeding, we now obtain:

§2= =1 Tdfl F(r) = [ F(@O)]” jdr riF(r)
212 !

2T2
(2A.9) ﬁ .
with F(7) = j R, (v20)do.
—2T+7

The first term is seen to be zero in both limits. Hence we can write:

(2A.10)
2 1 i
5T = 2T2 I dr- Ta F(Z’)
Vzr Nag
:_21%2 Idz’-z’{ ‘[ %RS(E)CIO__FRS(ZT_\/ET)@—RS(ZT—\/ET)%}
0 NG

.7{0-R, (2T —2r)-R,(-2T +\/§r)} =Ti2T dr-7-R, (2T —/27);

Once more we substitute: & = 2T-V2 1, with d&= -V2 dr:

(2A.11) j (1——) R(&)de.

Introducing the autocorrelation function ps(t), and changing & to t, this expression can be

written:

ZZT

(2A.12) (r)dr
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3. Basic equations

Our objective is here to establish useful equations for our main atmospheric variables with
suitable simplifications.

Variable: Pressure, p. Density, p.

Composition: here we shall distinguish between the density of dry air and p4 and the density of
water vapour, p,,. .Other trace constituents are not dynamically important, and will considered
as passive tracers in the atmosphere.

Temperature: T, and velocity; u; = uy, Uy, Us.

Complications: We are on a rotating planet, meaning that we seek to interpret the motion in a
rotating (accelerating) coordinate system. Additional there is a variation of p, p, T with height
induced by gravity.

We start considering 7 parameters, because we have two densities, for water vapour and for
dry air.

Equation of state

The ideal gas law:

(3.1) p=pRT.

Since, both R and p depend on the composition, we decompose (3.1) into its partial pressure for
dry air and water vapour.

R R
3.2 =p,+ P, =—2pT+—2pT,
(3.2) P=Ps+p,=1=p T+ 2mp,

d w

where Ry is the universal gas constant and M is the molecular weight for the gas considered.

Notice: p = pg + pw- We use the definition for mixing ratio, q = p./p. We can rearrange (3.2) to:

R M
3.3 = 2 oT (1+(—%-1)q)or:
(3.3) = TG
(3.4) p=pR, T, ;T, =T (1+061q).

Writing the equation as above means, we treat the atmosphere, as it was dry air only, with
respect to p, p and R. As a penalty we have to operate with and artificial temperature, T,
denoted the virtual temperature. Note that typically q << 0.1 kg/kg.

Vertical variation of p and p:
Consider first a hydrostatic balance between the weight of a volume of air and the pressure
force on this volume.
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op
(3.5) —=—r0
oz
where we have balanced the forces due to gravity and due to pressure. Inserting the equation of

state (1.1) and assuming an isotherm atmosphere, we can write, e.g.:

(3.6) d__P9__ P

0z RT H

where H is called the scale height, typically about 10 km. With g ~ 9.81 m/s®, T~ 288 K and R ~
287 J K kg™. Thereby H becomes 8.4 km. The two equations of course allow for solutions also
for more realistic variations of T. Comparing with atmospheric data on the height variation of
pressure and temperature, we find that while the measured pressure depends roughly as the
exponential decay predicted by (3.6), the temperature variation is very different from the
constant assumption used, with different behaviour in the different layers of the atmosphere.

The height variation of pressure and temperature also influences the dynamic stability of the
atmosphere. To see this we shall move an air parcel vertically.

Consider figure 3.1, where we move an air-parcel up- and down in an atmosphere with vertical
structure ruled by the hydrostatic equation between density and pressure changes.

As we move the air parcel, it will change it volume, V and thereby its density in response to the
external pressure found at its new position.

We now assume the motion of the air parcel to be too fast for the parcel to exchange heat with
its surroundings on the way to a new position. This means that the changes of the internal
parameters in the parcel, p, Tand p, are controlled by an adiabatic process. In the following we
shall distinguish between parameters internal to the parcel, denoted by subscript i, and
parameters pertaining to the surrounding atmosphere, without subscript.

For our adiabatic parcel parameters we have:

W
ar,
(3.7) )
Also: p =—1—
A RT.

where C, is the heat capacity, or specific heat, ~1010 (JK'kg™) at constant pressure
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@), p(2), T(2).
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Figure 3.1 Adiabatic vertical motion of an air parcel in a hydrostatic atmosphere.

As the air parcel is moved to a new position it adapts to surrounding pressure with the speed of
sound (that is instantaneously). If the air parcel has moved dz the external pressure has
changed in according with the hydrostatic balance by:

(3.8) dp = - pgdz
The internal pressure has similarly changed, ruled by the adiabatic equation:

(3.9) dp, = p,C,dT..

Assuming now that the air parcel starts out from equilibrium between parcel variables and the
surrounding variables: p; ~p. As discussed above dp; = dp. Combining the equations for the
external and the internal changes, we obtain:

(3.10) 9 I ~001K/m=1K/100m |
dz C

P
where we have defined the dry adiabatic lapse rate, I'

Until now, we have considered only the changes in an air parcel. Now consider an air parcel
moving up and down in three different vertical temperature gradients, being in equilibrium with
the surroundings in position (a), and moving to the points (b) and (c).

We assume the pressure to be the same for all three situations.

The internal parameters of the air parcel will always develop following the dry adiabatic lapse
rate, as seen on the figure.
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T,(z) =T, -Iz .

T,(2)

Figure 3.2 Air parcel moving adiabatically up and down in an atmosphere with different thermal
stratifications.

If the air parcel moves in the T,(z)-atmosphere, it is seen to be in equilibrium also at the new
heights, b and c.

If the air parcel moves in the T,(z)-atmosphere: Starting at level ¢ and arriving at level (b) the air
parcel will be warmer and therefore lighter than the surrounding air. Arriving at level (c) it will
correspondingly be colder and hence heavier than the surroundings. Hence, all motion initiated
will continue.

If the air parcel moves in the T3(z)-atmosphere, starting at level a, and arriving at level (b) the
air parcel will be colder and thereby heavier than the surroundings. Arriving at level (c) it will be
warmer than the surroundings and hence lighter. Hence, an initiated motion will be counteracted
by the buoyancy forces.

Based on this image, we call the T,(z) - temperature stratification for neutral, because it will not
influence initiated motion. The T,(z)-atmosphere is called unstable, because all initiated motion
will be amplified. The T3(z)-atmosphere is called stable, because all initiated motion will be
damped by the temperature stratification. Hence, such stratification stabilises existing situations.

Potential temperature

The potential temperature,0, is defined as the temperature an air parcel acquires, when it is
moved adiabatically to a reference pressure level, po. Since much air motion involves adiabatic
motion, we see that air parcels will retain their potential temperature during most motions,
meaning that potential i for many situations can be considered a conservative aspect of an air
parcel.

From (3.7) we have:

dp,
—1 —nC :
ar, e
(3.11)
) P;
Also:p =——
P RT
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Recalling that p always equalises instantaneously with the surroundings, combination of these
two equations we get:

(3.12) R dp;, dT, R dp

Cp pi Ti Cp p

D
1

©
O

Figure: 3.3. Definition of potential temperature.

We now follow the air parcel down to the reference level:

(3.13) el LA e o
T Ti pp p
or:
¢, R, .p
In(=)=—In(=>),
(T) . ( 0
(3.14) or

o=T (Poy’e:
p

Notice that the only parameter reflecting parcel parameters is 6 = 6; because the air parcel is in
equilibrium with the surroundings before it is moved to level, py, and we assume continuous
pressure equilibration. The equation is called Poisson’s equation. It is seen that every parcel of
air has a unique potential temperature that is conserved for dry adiabatic motion. We say that 6
can be called a conservative quantity, because it does not change, when an air parcel is moved
around, as opposed to the real temperature that changes when the air parcel is moved
adiabatically up-or down, as discussed above.

Since p and T are functions of height z, so is 8, meaning that 6 is a function of the height from

which we start moving an air parcel “down” to the reference level. Differentiating (3.14) with
respect to z we obtain, using the hydrostatic balance:
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00 aT(pO)/c R(po)/: 1po op _

o o Cp p? oz
(3.15) _0/dT _RTop|_0 ﬂ_ﬁl Py
oz C, poz oz C,pRT

T\ oz

We assume that the reference level in the boundary layer is at the surface, z = 0, where then 6
= T. Throughout the total boundary layer, we therefore have 6 ~ T ~ 300 K. Hence, we see that

(3.16) 66? a +I= 0(2)=T(2)+Tz
oz oz

Returning to the concept of stability, we see that it can be characterised two ways, using the
temperature or using the potential temperature. For each temperature gradient, the
characteristic of the atmosphere is shown in parenthesis.

(3.17) aa_T:_ I" (neutral), or <—TI"(unstable), or >—1I"(stable).
z
or.
(3.18) Z—gz O(neutral), or <0O(unstable) , or >0(stable).
z

For a neutral dry boundary layer the temperature falls with about 1 K/ 100 m. Note further that
for adiabatic motion, the potential temperature of an air parcel is unique.

We next turn to the complications from humidity.
If water vapour is present the equations we have to consider look as follows:

dp, Pi p
3.19 —=pC X — :

and dp =- pgdz

with: T, = T(1+0.61q).
Formally, (3.19) can be written in the same way as the equations for dry conditions, see (3.14):

(3.20) R dp_dT, or alternatively R(@) dp, _dT,

C (Q) P T, Co@p T

However, (3.20) cannot be integrated in a unique way anymore, because the integral now
depends on the path to the reference level, and the variation of humidity along that path. Only if
we assume that g is a constant, can we integrate.
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If q is constant, we can choose to integrate with respectto T or T,. If we do the first, we arrive to

that the atmosphere is neutral if:

(3.21) c:j—T=—F(q), where T'(q)<T.
z

For a typical “moist” atmosphere, one finds that the temperature decreases with about 0.5 K per
100 meter, not the dry adiabatic decrease of 1 K/100m. This moist adiabatic variation included
as well face changes between water and water vapour. If we integrate with respect to T, we
arrive to that we can define a virtual potential temperature similarly to the potential temperature.

(3.22) 0,=6(1+0.61q) =T +I'(q)z

Equations of motion

We shall now derive a suitable set of equations for wind, temperature and other scalars. We
start by deriving Euler’s equation relating partial and substantial derivatives.

Euler’s equation

We consider a volume V that moves through space, meaning that its position can be given as (x
),y (1), z (t)). Assume that we have a field ¢ = ¢(x,y,z,t).

We wish to determine the changes in ¢ within the volume as it moves through space. This
means we consider ¢(x (t), y (1), z (1), t). We change to write the coordinates as (x; (1), t).

We track the change as the volume moves from (x; (1), t) to (x; (t + 8t), t + 6t), where i =1, 2, 3.

(3.23) op=p(X (t+0t),t+t) — (X (t),t).
We use Taylor expansion:

82 2
@ (1) N
ot 2

0 0
(3.24) ¢(xi(t+5t),t+5t)=¢(xi(t),t)+a—‘”(xi(t+5t)—xi(t))+§5t+———+
Xi
We now divide by &t, and let it go to zero:

(3.25)

+
ot

P (t+3t),t+3t) —p(x()t) _ (dp (x(t+5)-x{) dp oY)
- lax st ot ot 2

When letting 8t—0, we notice that:

o(x (t+ot),t+ot) — (X (),t) N

ot

(Xi (t +5t)_ X (t))
ot

where uy, is the velocity of our volume.
Hence, we arrive at Euler's equation relating total derivatives to partial derivatives:

(jj—(p for ot = 0;
(3.26) t

—u, for ot —0;
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d_¢:a_¢+uia_¢:a_¢+ua_¢+va_¢+wa_(p:a_(p
dt ot ox, ot OX oy oz ot

This relation will be used extensively in the following and is shown here in its different forms.

(3.27) +U-Vo;

The continuity equation
We express that in a stationary volume of dry air in space, changes in density can only happen
through transport in and out of the volume.

z

P1Uy E—S —f, P42

ke
Xy

Figure 3.4. Density change in a volume of air, note the copied figure operates in (x,y,z) and
increments in these .

Consider the change of density due to the net flux in the u direction:
(3.28) Ap(x, =X )=—(u,p, —u,p )At

A_p _ (uzpz —Ulpl)

3.29
(3.29) At oX
Letting both At and 6x go to zero yields:
(3.30) op__0lpy)
ot OX
Going to 3D we now get:
0 d(pu, 0 o(u. 0
(331) —p—i—ﬂ:O:—p_{_pQ_i_uiﬂ
ot OX, ot OX. OX.

We can now use Euler’s equation:

(3.32) de %9 ., %

dt ot ox

and write an alternative form of the mass balance, for a volume following the flow:
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ou,
dp, 0

dt P OX.

(3.33)

This equation can be interpreted in terms of hon-compressibility. The equation shows that if:

(3.34) 1dp g
p dt
Then
ou.
(3.35) —=00rVv-u=0.

X,
Note, that the argument is somewhat weak. Because the assumption is not consistent with the
result:

1dp
p dt

ou,
OX.

(3.36) << =0

A more thorough derivation must utilise scale arguments about the possible rate of change for
the two terms (Mahrt, 1986).

The momentum equation

To derive the momentum equation, we start with Newton’s second law for a fluid element:

W _SEI withi=123
dt 4

Where, m = mass, u; = component i of the velocity and F ; lis component i of force, j.

(3.37) m

To proceed we have to identify the different forces F; Jand also to describe the effect of having a
rotating coordinate system, where the rotation considered is the rotation of the Earth. This is
done in the following equation, where we consider a unit volume, and hence denote the mass

by, p:

du, op
ks R L
(3.38) Prar ~ F9% o

| I i v

Where, we have identified different forces (one being a virtual force).
Below we discuss the term one by one:

—2pQeymu, + F;

I: The gravitational force is in the vertical, indicated application of the Kroneker- 3, which is
equal to 1 with the two subscripts being equal and 0, if the subscripts are different.

II: The pressure force. Here we have already seen the vertical pressure force, balancing gravity
in hydrostatic equilibrium.
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IlI; Coriolis force, which is not a force, but appears because we consider the equation in a
moving frame of reference given by the rotating Earth. The term derives from 2Q(nxu), n is a
unit vector parallel to Earth rotation and Q is the angular frequency of rotation.gi is a cyclic
operator , being +1, -1 dependent on the order of i, j and k and O if two of the indices are equal.
Term | includes as well a small component from the rotation.

When describing the motion in its components, we must specify the components of i in our
chosen local coordinate system. Here we will chose different systems during our excursions into
boundary layer flows. However they will all have an x; and X, that are horizontal, x; is vertical,
and we can therefore find the x3 component of n to be equal to sing, where ¢ is the latitude.
Fortunately the expressions for n; and n, will not be important, as we shall see.

Since, n3 will enter the important part of this term we will already now define the so-called the
Coriolis parameter: f. = 2Q sing, which depends on latitude. For mid- latitude, f. ~ 1.45 10%s™
At equator it is zero.

The viscous stress Tj;
Xj attacks a plane L to X
in the direction of X;

X.

Figure 3.5. Specification of viscous or shearing stress, 7;, across a plane perpendicular to x; and
in the direction of x;.

IV: The friction force F on an air parcel is produced by the viscous force or shearing stress, T,
across the fluid element considered in the figure above. The stress is a tensor, 1, where
element i,j attacks a plane perpendicular to x; in the direction of x; , see figure. The stress is
due to the movements and interactions of molecules across the boundaries of the fluid element.
The shearing stress is normally assumed to be proportional to the velocity gradients:
(3.39) 75 :ﬂ(% +%) ]
oXx.  OX
which is a general expression assuming that the shearing stress is linearly proportional to the
shear, when we assume incompressibility. u is denoted the dynamic viscosity. For the simplest
situation with a positive u; gradient in the j-direction and no u; gradient it is easy to describe
what happens, from the molecular viewpoint a positive the shearing stress in the i-direction
results from a net downward transport of u;- momentum by the random motion of the molecules.
Because the u;-momentum increases in the x; direction, the molecules passing downward
through a horizontal plane perpendicular to x; at any instant carry more momentum than those
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going the opposite direction. Thus there is a net transport in the negative x; direction. For similar
reasons also a u; gradient along the x; direction will lead an increase t;;. Notice, the sign of the
shearing stress and the associated momentum transport is opposite. Notice that tj; =t;; ,
meaning that the stress tensor has 6 independent elements.

The shearing stress as given above means that the fluid above the plane act on the fluid below
the plane with the given a force per unit area given by t;. Correspondingly the fluid below the
plane acts on the fluid above the plane with -t;, such that there is no net force on the plane.

Next we turn to the viscous force on a differential volume, given by the parcel in next figure.
Here the force on the upper plane is given by tj (x;1) dx i8Xk, while the force acting on the parcel
from below is given by -tj; (Xj2) 6Xi 6X«.

The viscous stress t;;
X. attacks a differential
8 J parcel .
' The volume of the
/ parcel is 8x; & X; & X,
/
/
OX:
! T;i(Xj1) 8%,
Tij (X2)

Figure 3.6 Components of the viscous force attacking an air parcel.

The total force on the air parcel, acting from t;; on the air parcel is then found to be:

7. (X)) — 7 (X,

( Ij( J1)5 u( 12)) 5Xi§Xj5Xk
X.

J

Fi0X0X;0%, = (rij(le)—rij(sz))éxi5xk =

(3.40) or
8Tij
Fj=— for 6x; -0.
OX;
Inserting the expression for tj; and utilising the incompressible version of the continuity equation,

ou;lox; = 0, we can simplify the expression for the forcing of the viscous forces in the momentum
equation:

or; 0 ou.  ou
' Z,: Vooax, ox, (ﬂ(axj ox. ))
(3.41) 2 2
0 u, o Ou. 0 u,

+——1)=
ox;* o, axj) ”axf

= u(

Where, we have employed ou;/ox; = 0.
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The momentum equation now takes the form:

du, op ou, .
(3.42) pE:_pgé‘is_a_xi_zl)Qgijknjuk +,UW,
or dividing with p :

du, 10p ou;
(343) EZ—gé‘m—;&—ZQSﬁkmuk + Vaxj,

i j
where v is called the kinematic viscosity. For air v~ 1.5 10° m®s™ = 0.15 cm%s.

Mass balance for a scalar

We denote the scalar concentration by C, which we can either think upon as mass per volume
lkgm,

or as mixing ratio [kg-C/kg-Air].

The change of C in a volume following the wind speed can be found from:

d_C= - % + Sources — Sinks. ;
dt OX.

(3.44)

where F¢; is the flux of C along the direction of x;, see figure, where the mass changes due to a
gradient in F¢; across a volume is computed, including an internal net source, Sc[ Cs™].

F-.
FCil SC “

Figure 3.6. Change in concentration of scalar C in a volume with fluxes.

(3.45) O0Cox0x%,0%, = (Feyy — F,)0X,0X 0t + SOX0X,0X S,
' S = Sources — Sinks;

Dividing by the differential volume and &t, one obtains
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€ =Rl o 8¢ 0F) s tor5 50

ot OX dt OX,

To proceed we need to describe the flux, F. Since we follow the flow, the time derivative of the
concentration C must be substantial, and the flux in/out of our volume must be associated with
the molecular motion. Also here we often assume the flux in a point to go from high towards low
concentration.

We can then either say we assume the flux to be linearly proportional to the gradient of the
concentration, or consider it a Taylor expansion of the concentration variation across the point,
and then consider only first order.

(3.46)

oC
where k. is the molecular diffusivity of the substance C in the atmosphere. This type of
assumption about fluxes is used throughout physics, especially for Fluid Mechanics and
molecular gas theory. It is not always true, and we shall in boundary layer descriptions see

several cases where one has been forced to reformulate the theories because the assumption
does not hold.

(3.47) F.,=—k

From molecular gas theory we have:

(3.48) ke ~ a\/z e,

where a is a coefficient, and k¢ is assumed proportional to the standard deviation of the
velocities of the C- molecules in the atmosphere, while I¢ is the mean free path between the
same molecules. Notice, the first term will change with temperature, while the last will change
with pressure. The changes over temperature and pressure ranges of relevance for the
atmospheric boundary layer are however so small that k¢ is considered constant here.

dC oC oc o0, 6 oC 0°C
——=—+U—=—kK —+S =K. —;
dt ot oX, OX, ~ OX OX;

(3.49) +S

From the budget for a scalar, we can derive the equation for the potential temperature:

d0_00 90 _, &0 LE 1 &K
dt ot 'ox, axt pC, pC, X,

]

(3.50)

Where, k7 is the thermal diffusivity, corresponding to ke above. kr is about 2.16:10° m%/s ,
about 1.44 larger than the kinematic viscosity. Additionally, we have in (3.50) introduced two
specific terms in the source, S. The first will be relevant, if water is present in the atmosphere
as both liquid and vapour phases. E is the water vapour production from evaporation of liquid
water within the volume, i.e. from droplets. L is the coefficient of evaporative heat consumption.
C, is the heat capacity at constant pressure of the air. The other source term that can be
important in the atmospheric boundary layer is the divergence of the net-radiation, Q;* in the j-
direction.
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It should be noted that derivation of the equation for the potential temperature is fairly
complicated starting from conservation of enthalpy. We avoid this derivation here, but we note
that the simplicity of the equation demands that it is formulated in terms of potential
temperature. Had we instead derived an equation for the temperature, T, we would have to
include terms explaining how the temperature changed due to changes in pressure for vertical
transport, as considered when deriving expressions for potential temperature above (3.10-3.22).
If only horizontal motion is considered the equations for T and 6 become the same.

In the spirit of keeping track of both liquid and gaseous water, we must keep track on both
phases of the water:

mass of liquid) + (mass of vapour
(3.51) =0 +q= ( quid) + ( p )]

mass of air

As g is a scalar quantity its budget equation can be written:
2

352 dg; _ ogr oy By 74 Su

dt ot oX; oX; Yo,
where Sgr is the net source of total water in the air, for example by water droplets being injected
into the volume, and by evaporation of such droplets. We write:
Sqr = Sq + Squ, separating S in a source term for vapour and for liquid. kg is the molecular
diffusivity of water vapour in the air. Notice, we imagine that there is no diffusion of liquid water
vapour the boundaries of the differential volume.

Hence we can write the equations for the two phases of the water:

d_q_8q+u a _ 2 +S

- _ 9
dt ot 'ox, a¢  p
E

dg, _ o9, %% _Sa E

dt ot ! ox j p P
In general we will neglect these aspects of water and water vapor. Note S, and E will often be
combined. Similar issues arise when a species, C, is not passive but chemically/ or radioactively
active, meaning that there are sources and sinks, in the volume, independent of the turbulence
transport. We shall not go further into this but refer to Lenschow and Delany (1987) and
Kristensen et al (2010) for studies involving chemical reactions, and Fairall and Larsen (1984)
and results involving aerosols.

(3.53)

Summary of equations and averaging considerations.
We have now established the necessary 8 equations to handle our 8 unknowns.

T,uy, Uy, Uz, q,0,pandp
Equation of state:

(3.54) p=pR,T, withT, =T (1+0.61q).

Relation between T and 0:
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(3.55) O0=T+TIz

Continuity equation, in the incompressible mode:

ou,
(3.56) —_o;
OX;
The momentum equation:
2
(3.57) au _ %4‘ u; . =-00,;— 1% -2Q¢&, .U, + V—6 uzi ;
dt ot b ox, p OX e X,
Temperature:
2 0 *
(3.58) d—9:%+|:ujﬁ}:kT 0 f _{ LE }_|: 1 jS|
dt ot OX; OX; pC, pC, X,
Water vapour:
2
(3.59) da_da, |, 99 :kqa—? L E
dt ot ! OX; OX; P

Since we cannot solve these equations directly, we wish to derive equations for the mean
quantities, in keeping with our discussion in section 2.

In the equations above we have used [ ] to indicate the non-linear terms, i.e. terms where we
have products or ratios of two variables. From the discussion of the averaging procedures in
chapter 2, we must expect complications for these terms, while the other terms are linear and
will behave nicely, when we average. To solve the equations for the average variables, we must
expect to have to consider also equations for the fluctuations.

Therefore we now wish to simplify the equations such that the average equations can be
obtained more easily, while the equations for the fluctuations are still useful as well. The method
we use for generating equations for the mean values is to insert the variables, decomposed into
averages and fluctuations, and then average the equations (afterwards we derive equations for
the fluctuation by subtracting the mean equations from the equations for the raw variables.

(3.60) U =0+ ;0=0+0";p=p+p'; p=P +p"1q=0+0";

We neglect the linearity problems associated with the E-terms in temperature and humidity
equations, and the radiation term in the temperature equation. Thereafter, we have two types of
non-linearity, the one is associated with the advection term in all equations, while the other is
associated with the pressure term in the momentum equation. We consider the last of these.

du, 1 op U
(361) E =— gé‘|3 - {;&}—ZQ@W?]]UK +V—F

(3.62) Y, =—5,0-———
P
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We will now study the possibility for linearising Y; for small values of the p’ and p’, without
removing too much information for both average equations and fluctuation equations, because
we know from the start of the section that the vertical stratification of p and p are very important
for the flow characteristics. Also, we shall see if p’, and p’ can really be considered small
enough for linearization.

To the first order in the fluctuations we may write:

1 a_—}— ! 1 4 8_+ ’
Yi:_é‘Sig__ , (pa p) z_é‘sig_f(l_pf) (pa p):
(3.63) pPtp X P Y2 Xi
5 _16(p+p) P 1op+p)
=—-050 o 5
i pp X;

We will now evaluate these terms for i = 1, 2 and i = 3 separately, i.e. the vertical and the
horizontal components separately.
i=3

(3.64)

Now assume the hydrostatic equation is at least approximately valid for the mean values of p
and p, and evaluating the terms to first order only (i.e. removing the last term in (3.64).

Y:_g_iﬁ(ﬁ) o) p 1 0(P)
’ p oz p oz pp o
(3.65) _ 1oy 1o ., p 1)
p 0L p 01 pp oz
1 a(p+p' ' 10 r
_:—(p p)—9(1+pt)— =P _ga+Ly,
p oz p p oz p

As seen, first order terms in the fluctuations are the lowest order terms that remains, because
the average terms cancels-at least approximately due to the hydrostatic balance. Therefore, we
should here keep the whole last term and not neglect p'/p relative to 1.

i=1,2

Here we can safely neglect_p'/p relative to 1.

1 dap+p) _ (1p16(p+p) 1 0p.
+p' X pp X pox’

(3.66) Y, =—3,0 ——
P

For both these equations, we must evaluate the importance of the first order terms,
especially the term containing the fluctuating density, p’/p. Consider the equation of
state:
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3.67 = or Inp=Inp-InT, —-InR,.

( ) P RdTV P p v d

Differentiation yields:

(3.68) dp_dp dT, o P P T
p P T p P T

Where, we have associated differentials with the fluctuations, reflecting that the fluctuations in
the parameters here are small compared to the mean values. Exactly how small they are will
depend on the overall atmospheric conditions. However, the data indicate:

' T !
(3.69) o2)~107; o(2)~4-10°.
p T,
Hence:
] T ! !
(3.70) ptz -~ —QTV,
p T, 6

Where, we have introduced the virtual potential temperature to generalise the result. If we
assume the reference level for the potential temperature to be the surface it is seen that the
mean values for the potential temperature and the virtual potential temperature are very close to
each other since they only differ with I'(q)z, and with z small that term is small compared to
300K. The fluctuations are the same since I'(q) z does not fluctuate statistically.

Note the order of magnitude evaluation of the importance of the pressure and the temperature
terms do not indicate a large difference, hence we can under special circumstances expect the
pressure terms to become important. However, for now we conclude that the temperature term
dominates the density fluctuations, and that the relative density fluctuations generally must be
considered so small that they can be neglected compared to one.
Fori=1, 2 we can therefore write:
vy~ _r1op+p) 1p,

"5 X pox

(3.71)

However, for i =3, it is seen that the leading terms are cancelled by the hydrostatic equation,
and the relative density fluctuations become multiplied by g, and therefore can be strong
enough to influence the equations for the fluctuations. Therefore theY; takes the form (3.65).
Hence, we write the momentum equation on the form:

du. 4 . ! U,
il :%+ uj%:—gcﬂs(l—i —éa—p—ZQgijknjuk +va—uz';

(3.72) dt ot OX; 0, pox X
I I i v Vv Vi

In this equation we have removed one non-linearity from the momentum equation. We now
proceed to insert the Reynolds’s convention for fluctuations and mean values and then take the
mean value of the terms in the equation. We proceed term by term:

term I:
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O +uf) _ oG +U7) _ ot

(3.73) ;
ot ot ot
Term II:
. ,o@@+u)y _ou _ ou oG ,oul  _ ou , ou/
(T; +uj) = U, +1U, +U] + U = U, +U]
OX; OX; OX; OX; OX; OX; OX;
(3.74) - p—
_ou 8ui'u’j ,oup - ou aui'u'j
=0, —+( - U =U; -+ X
OX; OX; OX; OX; OX;
where we have repeatedly used the continuity equation in its various forms:
au, au; au;
(3.75) —=0,>—=0, > —-=0;
OX; OX; OX;
As is seen all the other terms in the momentum equation are linear in the variables. The
procedure then proceeds as for the time derivative above.
Term I
6,
(3.76) 90, (1-—=-)=90;
6,
Term IV
10(p+p’) 1o(p+p 10p
- 1o(p+p) _10(B+p)_ 17
p 0% p 0% p X
Term V:
(3.78) 2Q&;,1;U, =2Q¢&;, 1,0,
Term VI:
fu, AT +u)  du
(3.79) V_— =V 5 =V—_—D
OX; OX; OX;
Therefore we can now write the equation for the mean velocity components:
do,  ou, _ ou, 1 op R LT
(3.80) — =—+ uj—'=—g§i3—t—p—2(25”k771.uk +vV—p——u'uj;
dt ot OX; P OX; oX;"  0X;

i j
With the momentum equations processed, it is easy to summarise all the equations for the
mean variables (C is a scalar concentration, i.e. (3.49)):

B81) U =0 +U, ,i=123;T;0=0+60"; p=p+p'; p=p+p’; q=0+q,C=C+C".

Continuity:
ou.
(3.82) —=0;
OX;
Momentum:
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1,

du 0 0 2u.
S %+ u, %:—gém —é@—ZQgijknjUk +va uz' —iui i
dt ot OX; p OX oX.©  OX,

i i j
Potential temperature:

(3.83)

d6 060 _ 96 |, &6 o — LE 1 Q]
=t U, =K U = ;
dt ot OX; oxj 0 pC, pC, 0OX;

]

(3.84)

Water vapour:

g o 2§ ouq
(3.85) d_q:(a_q+Uj oaq _ qa? a4 L E.

t ot OX; OX; oX; p
Any Scalar:

d€ o€ o€  &C aul |
(3.86) —=—+U - +S;

dt ot lox, o ox
It is seen that we have 9 variables and 7 equations above. The remaining equations are the
equation of state and the relation between T and 6 . Note that we consider E and Q* and S as

externally given variable. Also, we have neglected that strictly C,, varies with the humidity
content of the air.

In general the equations for the average variables have retained the original form for the raw
variables, with one important exception that a number of correlation terms involving the
fluctuations enter into the equations. Their origin is the non-linearity of the advection terms. One
result of this is that we end up with equation with more variables than we started with for the raw
variables. This is called the “closure problem” and is the theme of chapter 4.

The physical meaning of the correlation terms is that they constitute a change in the average
variable due to a divergence of a turbulence flux. Recall that we have seen that a correlation
involving a velocity component can be interpreted as a flux along the line of the velocity
component. As noticed above we have avoided going deeper into the S and E terms, including
breaking them up after Reynolds convention.
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4. Mean flow, turbulence and closures.

In this section we shall, in more details, consider the equations for mean flow, temperature and
humidity, as derived in Section 3, and now loosely appealing to the standard conditions for
atmospheric boundary layer, stationarity and horizontally homogeneity.

This will lead to the so-called closure problem, which in the principle can be solved but only
approximately.

The closure problem naturally leads to the need to understand the turbulence structure, which
leads to a discussion of the equations for the fluctuations.

Our variables can be summarised:

u=0+u’;T;T, =T@1+0.61q);0=0+6";p=p+p’; p=p +p’;q=q+q’;E,Q*;

We have used the Reynolds’s convention. Also we include E, Q*, the net-source of water
vapour from water droplets, and the net-radiation. For simplicity we have neglected the general
scalar variable, C, since q and 6 follow similar relations. For the variables we have, in section
3, derived the following equations for the mean motion and the mean temperature and humidity.
The equation of state, and the T- 0 relation.

(4.1) p=pR, T, withT =T (1+0.61q), 6 =T +I'(q)z.
Continuity:
ou,
4.2 — =0
(4.2) o
Momentum: -
(4.3) & :%""UJ%:_Q%_%@_ZQ%WJ@ +i(V&—m)i;
dt ot oX; P OX oXj  0X;
Potential temperature:
0 o6 _ 06 § —— LE 1 6Qf
(4.4) —+0, :—( r—— —Uud) - -
dr ot oX;  OX;  OX; PC, pC OX;
Water vapour: _
(4.5) dq a +U, q = 0 (k aq —ufq’)+E;

dt ot Jax ox;  tox; ! p

]

In general the equations for the average variables have retained the original form for the raw
variables, with the important exception that a number of correlation terms involving the
fluctuations enter into the equations. Their origin is the non-linearity of the advection terms.

The physical meaning of the correlation terms is that they constitute a change in the average
variable due to a flux divergence of a turbulence flux. For the velocity-velocity correlation we
even retain the name stress and operate with turbulence stress in parallel to shear stress for the
molecular term. Recall that we have seen that a correlation involving a velocity component can
be interpreted as a flux along the line of the velocity component. Also, here we have written the
correlation terms in such a way that they are comparable to the terms derived from the
molecular fluxes of momentum, heat and humidity. From the equations it is apparent also how
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the gradients of both the turbulent and the molecular fluxes result in changes of the mean
variables.

Another aspect of the correlations terms is that our generation of equations for the mean
variables have resulted in many more variables, if we understand every correlation term as a
new variables, and counting only the<u;u;> terms, we obtain additionally 12 new variables: 3
variables for the heat flux and the humidity flux respectively, and 6 variables from the turbulence
stress, where we have reduced the 9 elements in the tensor to 6 independent elements due to
symmetry in the subscript numbers. Since we have got no more equations we have to describe
these new terms such that the mean value equations can be solved.

The simplest method is to prescribe them. This typical means that they, in parts of the boundary
layer, are prescribed to be constant, or behaving in nice predictable ways; some may even be
zero. This is the methodology we use when formulating “similarity” theories, to which we shall
return.

The next simplest method is to define a turbulent diffusion coefficient that relates the turbulent
fluxes to gradients in the mean variables, just as is done for molecular gas theory.

Recall that we for incompressible conditions could write the molecular stress as:

(4.6) T :pv(% +%)
oX;  OX
While for a scalar like temperature and humidity, we found
oC
(4.7) F=- kcé_xi ,
where both v and k¢ could be estimated from:
(4.8) v =K za\/fﬁc ,

with v, and . being characteristic velocity and length scales for the problem, typically the
standard deviation of the speed of the relevant molecules and their mean free path respectively.

The success of this approach from molecular gas theory has inspired to its use for turbulence
flow as well, that is

e ou,  ou,
( ) ivj ( T” ij (6XJ aXi )
oC
4.10 u'C’z_K =
( ) i iC 8X-

1

Following the molecular gas theory, we can now start hunting for a turbulent velocity scale and
a turbulent length scale to estimate the turbulent diffusivities, K; and Kic. The characteristic
turbulent length scale is called a mixing length, and the theories developed to derive the
diffusivities are called mixing length theories.

We can elucidate the characteristic scales from a simple argument. Consider the figure, we
have already used in chapter 2, with an eddy motion in a shear flow.
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Xy

Figure 4.1. Transport of momentum by swirling turbulent motion between levels with low and
high wind speed (Tennekes and Lumley, 1972).

Assume that the eddy motion takes a fluid particle from x, = 0 to X, in a time t. If the fluid
particle does not lose its momentum in the transport it will arrive at x, with a momentum deficit
given by:

AM = p(u, (X,,t) -1, (0,0)) =

(4.11) = p(U, (%,) =, (0)) + p(u;(X,,t) —u; (0,0))

~ p(u,(%;) —u, (0))
The mean velocity gradient can be considered approximately linear. Hence:
ou
(4.12) AM = px, —-
OX,

The volume of fluid, per unit area per unit time that at time t passes in the x, direction, is ux(t).
Hence the instantaneous momentum deficit transported to point X, is given by:

ou
4.13 AM U, = pX,U, —% .
( ) 2 R PX, 28X2

The average transport of momentum deficit per unit area per unit time transported in the X,
direction is then given by:

ou
(4.14) 7,, =AM ‘U, = pX,u, —=.
12 2 R PXU, ox,

Here u, and x, are two random variables (u, = dx,/dt). If the air parcel did not continuously
exchange momentum with its surroundings, u, would remain constant and <x,u> would
continue to increase with time. This is not realistic; instead we expect the correlation between
the speed of the parcel, u,, and its position to decrease to zero as times increases. Hence we
can say that the parcel has delivered all it momentum deficit to the surrounding when the
integral scale of the cross-covariance, <u,Xx, >, has been reached. We could stop here and say
that this cross-covariance can be interpreted at a velocity scale times a length scale. However,
it is possible to elaborate a bit further by following the decay of the correlation between velocity
and position along the path of moving parcel as time increases:

U, ()%, (1) =, () [u, (")t = [u, @®u, )t =

(4.15) t 0 0

= U;IpLuz(r)dr ~ u22T|_,
0

where we have assumed the time to be large enough for the integral to be approximated by the
integral scale. The integral is conducted along the path of the transport of the fluid elements,
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and it is called a Lagrangian path integral that is following the fluid elements. Notice that we
have assumed u,(t) to be stationary and therefore have made the usual substitution: t-t'= t. We
shall return to this type of integrals when discussing plume dispersion. Here we notice that we
can estimate the turbulent diffusivity for momentum as:

(4.16) Kij:@zu_;TL:\/E'(\/E'TL)Q\/E%U

where it is seen that we get a velocity scale that equals the standard deviation of u, while the
mixing length is derived from the Lagrangian time scale and the standard deviation of u, All the
above arguments could be repeated for a scalar gradient, where the mean gradient of the scalar
would shove up in the expression but the K itself would depend only on velocity statistics.

We notice that a diffusivity approximation to the turbulent transport does not always work well,
and that one of the simplest cases where it does not work is the unstable mixed boundary layer,
where the gradients are zero in the middle of the layer, while the fluxes are large. It is seen from
(4.8) that to estimate the turbulence diffusivity, one has to estimate two scales of relevance
for the turbulence diffusion, a velocity scale and a length scale. In numerical modelling
this is not in general simple to specify these two scales. Therefore, one will often use a slightly
different approximation for the turbulent transport. From (4.12), we let:

(4.17) Ju? ~cr[ %],

OX,

where we approximate the turbulence standard deviation to be proportional to the absolute
value of the mean gradient. Based on such arguments, an often used parameterization of the
turbulence transport in (4.9) is
— ou,  Ou, ou, ou; | ou Ou;
(4.18) Uuj (=—7;) =— Kj(—+—") =—cl? (- +—1)|- (- +—
OX;  OX; OX;  OX; oX;  OX

)

and similar for scalar diffusion. Notice that the stress and the momentum transport are defined
to have opposite sign. As seen we now have to estimate only one length scale to close the
equations, because the mean gradients are resolved variables.

As an alternative to parameterise the unknown correlation terms in (4.3-4.5), as sketched
above, one can continue the equation- building for these terms.
The procedure involves subtraction of the mean equations from the basic equations:

(4.19) ot

Hereafter, we write:
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(4.20) ot ) i

a TH — ’___ ,___
S () =) + uE—)

Equations are generated similarly for the time derivatives of heat flux and humidity fluxes and
for the variances of temperature and water vapour mixing ratio.

Hereby, one can generate equations for all the turbulence correlation terms in the mean value
equations. There are two problems: the most important is that the new turbulence equations will
involve 3 order turbulence terms, and a number of other and new turbulence terms, like the
following:

u{u}@’, ui’u}q', u'd'q’;u'e'e'; p'u’l p;

Such terms will again have to be closed, mostly employing length scales and diffusivity
formulations, for example:

_ ue  oue
ui’uge’——K(aue ),
xj OX;
——= NN ouju;
(4.21) p'u'/p=- IA—
OX

with K ~ Ay u’? ~ 3u’.

This means that we must estimate a turbulent diffusivity from a velocity and a time or length

scale. Notice that the second order moments in this expansion should not be parameterised

because they are solved explicitly in the equations that now include both mean values and

second order moments.

Alternatively, one can continue to write equations for third order turbulence correlations,

proceeding as we did for the second order correlations. However, such equation will result in

new unknown fourth order correlations, which will have to be closed, again mostly by a mixing

length diffusivity assumption.

As the simplest example, we shall consider the equations for second order correlations, as was

sketched in (4.20) above. Following Stull (1988), we start to simplify the equations. To see the

implications, start with our average momentum equation, from (4.3):

(4.22) an Z%"‘ Uj%:_g@S_%@_ZQgijknjUk ¢ (Va_u—u uj);
dt ot oX; P OX oX.  OX;

i i i

We now write the three component equations, but consider steady horizontal mean flow, that
and further assume that the turbulence cross-co-variance terms depend essentially only on the
vertical coordinate. These conditions constitute a fair approximation for the atmospheric
boundary layer, and most of the examples of atmospheric boundary layer models presented
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here and in the following chapters include these approximations (recall: g is a cyclic operator ,
being +1, -1 dependent on the order of i, j and k and 0 if two of the indices are equal), n; are
the components of Q in the local coordinate system, x;:

do, _ om0t _ g, lop 206 710, + 0 (va——u )

dat ot Jax p OX e ox; X,

U, :

LWL T LT X YOY R S YoV AN VAL BT TIAY

dt ot ‘ox, ‘ox,  pox oX; 0K
(4.23) or _

da — %4_ Ul%+ UZ%:_é@ + .0, i(v%—u{ué).

dt ot ‘ox, Cox,  pox Xy OXq

Correspondingly

u,:

dU2 _ auz —|—U 6u2 —|—U auZ =_l@ _ fClT]_ ( al_ulu()

d ot Tox  Cox,  pox N, X

Where f, = 2Qsin¢, from chapter 3. f. is denoted the Coriolis parameter being about 1.4 10*
sec.;.

Correspondingly we get for the vertical equation:

du  ou _ ou 16p 9, ou

=g = g8, =2 —2Q¢,n 1 y—i_y

ot e, T 90T g T o ey ;)

U

du, ou, _ou, _ ou 1 6p 8, U, —
4.24 = 340240, —=-0-——--20(n,0, —n,0,) + — (v——ulU,);
( ) at ot 1 o, 2 ox, g- 5 ox, (U, —m,0,) 8X3( ox, 3U3)

or:

1 op 8 oo
0——9——a—p—29(n1 1) U
3

It is seen that, for what could be called typical atmospheric boundary layer conditions, the two
horizontal equations provide useful information about the relation between mean flows and
turbulence, and about how the Coriolis force “mixes” the components. The vertical equation is
seen to reflect a forcing that comes from deviations between the atmosphere and the
hydrostatic equation, the height change of the variance of uz and the “mixing in” of the
horizontal components by the Coriolis parameter. The term is seen to depend on how we
arrange the horizontal coordinate system. In a way the vertical equation just tells us the
necessary balance of mean terms to keep the mean vertical velocity equal to zero. Therefore,
we follow Stull to avoid these uncertainties by using ejs, which as seen takes the Coriolis
parameter out of the vertical equation.
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We now proceed with the momentum equation for the raw variables (3.72) , corresponding to
the average equation in (4.22). Following the prescription from above, we have to insert the
Reynolds’s convention for the averages and fluctuations.

(4.25)
du ou  ou g. 1adp o°u.
— =— U, —=-00,(1-ZF)-=—+ .U +v— Or
dt at jan |3( (9\,) Xi C=ij3™j a JZ
1 v _ ' ' ' 201
o(Ui + )+(u, uj,)a(u.+u, ) 5,3(1—@)%6('“ p)+ foa,(U) +1) 0 (u.Jgu)
X, 0, p X X,
we expand (4.25)
oui ou;' — oui — ou;’ ,ou, ,ou, '
+ +Uj +Uj +UJ +Uj —=
o ot OX; OX; OX; OX;
(429 6 1ép 1op ofui oAl
=—gd,1+ ga‘isrv—t—p—— P, fogyaly+ feg U +v—ry U —+v uzi
Hv P 8Xi P aX j an

Next we follow the prescription of (4.20) and subtract the mean value equations as given in
(4.24) and (4.25) to retain the equation for the fluctuations:

ou " = oy’ 0u U’
——+Uj——+U; U =
ot OX; OX; oX;
(4.27) _
6, 1op , Q%ul ouu
:+gé‘|3:_t_+ ngIJSUJ +V_2+—
0, p ox X, X;

Next we use (4.20), but we limit ourselves to estimation of the equations for the turbulence
variances. Hence we multiply (4.27) by 2u’; , to obtain equations for u;’? , and subsequently
average to obtain equations for the <u;>>. Remember Einstein’s summation notation for
repeated indices. Notice that we will in the following often use the notation: e=< u;'u;">for the
total turbulence variance or energy, since 0.5p-e is the turbulent kinetic energy of the flow.

ou? — au’ , ou’?
+Uj +2uU — U —t=
ot Ox, Pox, 7 ox,
(4.28) - R
ue’ v ou U
= — U ' “—+2feg,UU] +2vu] 6u2,+ui, —!
0, p OX; 6xj OX;

The left hand side is obvious, Thereafter, we handle the two last terms on the right hand side,
the last term is obviously zero, while the second last time can be reduced by taking the second
derivative of the variance or:
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— 2

o’ul? ou/ , 0%/

(4.29) V———=2v| — | +2vU—"
6xj 6xj ax,.

Here, we normally argue that <u’;>> is a fairly slowly varying function for stationary and
horizontally homogenous turbulence. Hence we shall neglect this term on the left hand side.
The last term on the right hand side is the one, we wish to reduce, and it can be considered
approximately equal to minus the lead term on the right hand side. This term emphasizes the
small scale turbulence and is related to the dissipation of turbulent wind, &, we discussed in
section 2. See more in appendix 4A.
The last term on the left hand side can be converted, using the incompressibility of (3.35):
Jou U, auu® ou; ouiu”®

(4.30) U = = =

OX. OX. OX. oX.

] ] ] ]

Finally, we can write the pressure wind correlation as
uop’ . 1oup rou’
Ui P _,2up 5P %

pox  p O P X

(4.31)

Hence, we can write (4.28) as:

(4.32)
ou? - ou?
Uj =
ot OX;
— — — — 2
— ou. u'e’ o rou’ ouu? — !
= our My ogs, W0 2 OPU P N ot e —2v O
OX; 6, p X p o%  0X OX;

We can either sum over the repeated subscript i, 1,2,3, as we should according to the
summation rule, and as we already do with subscriptj in (4.30), or we could consider the
equations one by one as u;= u,u,=v,uz=w. We start with the first approach, to obtain and

equation for the total turbulence variance, e=<u; 2>

2

u? - ou? o uo’ pu’, ouu? _'
(4.33) ot OX; OX; 6, p OX X, X,
| ] Il A% V Vi Vi

In (4.33), we have lost the second pressure correlation term, because of incompressibility, and
the fc-correlation term, because summation over i and j and the sign properties of the gij;-
tensor. The last term can now be identified as twice the dissipation of wind variance as
discussed in section 2 and further considered in appendix 4A. In this term, summation over
both i and j is implied:
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2
ou!
(4.34) E=SV| —
OX;

In (4.33) the left hand side represent the change of total velocity variance with time (1), and due
to advection (Il). The right hand side contains terms describing local production and destruction.
In understanding these terms, it is a good idea to imagine the stationary horizontally
homogenous situation as discussed in section2, with mainly vertical mean gradients, and with
<u;’uz’> generally negative.

Term Il is production of variance from the mean shear, as we have discussed in section 2. Note
the dominant mean shear in the boundary layer is vertical.

Term IV is production or destruction of variance from the mean temperature flux, or positive
during day, and negative during night.

Term V describes how pressure transports and re-distribute velocity variance across the
volume.

Term VI represents the variance transport by the turbulence velocity fluctuations.

Term VII equal twice the velocity dissipation as described by (4.34)

We shall now shortly return to the component interpretation of (4.32)

ou? — ou?
+Uj =
ot OX;
. JRE— N —_— 2
—_ou u'e’ o rou’ ou'u’? — !
(4.35) :—2ui'u’.%+ 295, 'gv _%apu ! +2£_—i—#+2fcgi,3ui’u'. -2v u
' ox, 0, OX, pox O i X,
I \% \Y Va VI Via VII

In (4.35) we now consider the three velocity components, one by one, i=1,2,3 corresponding to
u,v,w, and now discuss the individual terms

The left hand side continues to describe the change in u; variance by time and by advection.
Notice in case of stationarity and horizontal homogeneity these terms are small or even zero, if
the concepts are strictly applied. Assume further that the mean wind is along the u component,
and that only vertical mean gradients are significant, then the variance production in Il exist
only for the u=u, component. The production/loss term of IV on the other hand applies to w=us
component only. The v=u, component receive its variance from the transfer terms V, Va, VI
and Vla. Va is denoted the pressure redistribution term, precisely because it acts to transfer
variance between components, aiming to return an isotropic relation between the 3 velocity
components . Vla is generally considered unimportant, being small due to the Coriolis
parameter. The dissipation is active in all components through VII that can with some
approximation be considered twice the dissipation of the individual components.

We have now derived the prognostic equations for the velocity variance in (4.33) and (4.35),
recalling that these were just the simplest of the equations for the second order moments
depicted in (4.20). We still miss the covariance terms. Still (4.33, 4.35) illustrate the terms that
appear, and which will have to be parameterised, if a second order closure for turbulence is
implemented, the terms involving pressure correlations, third order moments and dissipation,
shown as V, Va, VIl and VIl in (4.35).
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Finally, we consider the temperature and humidity turbulence equations, which do not have the
complications of pressure terms, Coriolis terms, and being vector quantities. From (3.50, 3.53)
we write the equations similar to (4.25) for velocity.

do_09 00 _, &9 LE 1 &
dt ot 'ox, ' ax?  pC, pC, ox,

]

(4.36)

a(§+9')+(_ u)a(e+0) ka(.9+9) CL(E+E) 1 4Q+Q))
ot ox;? pC,  pC, &

J ] ]

For humidity the equations are quite similar
2
dq aq bu, 8 oq k. aq2 +E
dt ot oX; OX. P

J
o(q+9) oG+9) _, 0°@+q)  L(E+E)
ot o “ 5

ox.?

i i

(4.37)

e '
+(U; +uj)

Comparing with (4.25), for velocity it is seen that the equation for temperature and humidity can
be handled similarly replacing u; by g or 6, and neglecting the f. and p and the buoyancy
terms, and including the E and Q* terms.

We obtain:
Y — 2 -
2 2 8ur_9r2 2 Y= , P *!
o0 +u;69 =-20'u ;% L 2k, 0 —ZLH_E —2_ 9
ot OX; ox; 00X OX; o) PC, OX;
2 2 ou’ 2 12 2 ="'
(4.38) oq +U; oq =-2q'u’ aq Al -2k 9 +2q_E
ot OX; Tox,  ox o, D

I I 11 VI VII Villa Villa

Clearly equations for all passive scalars would end up similarly, where terms VIl and Vllla
would be similar source terms.

Terms VIl in (4.38) represent the dissipations of the scalars temperature and specific humidity,
often denoted:

2 2
6912 . anZ
(4.39) N=¢g,=x; (87] L Eq = kq[ axj ] ,

]

In the following chapters, we shall discuss the behaviour of the different terms within the
atmospheric boundary layer. However, here we shall consider the closure of numerical models
in the light of the turbulence terms considered above.

Closure considerations:

Consider the modelling as being aimed on establishing some kind of averages of the
meteorological variables u;, T, p as function of space and time within the boundary layer, using
the equations in (4.1) to (4.5).
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To estimate the mean values as given by these equations have to be closed by relating the
unknown higher moments, containing the turbulence correlations, to the lower moments being
resolved . To simplify the discussion we shall mostly focus on the velocity terms. Here we have
illustrated an important method based on the assumption of a characteristic scales, at the very
least a length scale or a time scale, as is illustrated in equations (4.6) and (4.7) or (4.9) and
(4.10). This method is called first order closure, because the second order moments are
estimated from first order terms and estimated parameters, like diffusivity and length scales.
The next step in complications is to generate equation for the second order moments as
illustrated above , and as discussed this method produces a number of new terms involving
third velocity correlation, pressure-velocity correlations and dissipation terms, that now all have
to be related to mean values and second order terms that are resolved directly. Remember,
that we have derived the variance equations, as the simplest examples of the full set of co-
variances: <u’ju’j>, <u’i6’>, < u’iq’>.
The closure will typically be based on length scales, diffusivities and dimensional analysis, as
illustrated in equation (4.21). Typically one will have:

e Down-gradient diffusion with velocity and length scales.

e Return to isotropy, typically used for pressure terms.

e Dissipation is put proportional to turbulence intensity in suitable powers divided by a
suitable length scale.

The process of generating equations for higher order turbulence than the second order can be
continued in the principle by the same method as already outlined in (4.19 and 4.20).

Advantages are:

e The most important and visible features of the flow are described by the mean values
and the low order turbulence moments. Therefore, the solution should become better if
these moments are described by “exact” solutions, while the closure is pushed to higher
order moments.

e The mean values and the low order moments carries the most characteristic features of
the flow, e.g. incompressible boundary layer shear flow. The interaction and processes
controlling the higher order moments can be argued to be independent of the processes
generating the turbulence. They are more result of the interactive processes between
different aspects of the turbulence when it has been generated. Hence, one can use
data from different areas of turbulence flow studies, when trying to parameterise higher
order moments.

Disadvantages are:

e An ever-increasing number of variables and equations. The simple increase in
equations and unknowns for the first the closure types, only for the velocity correlation
is shown in the next equation. The total number of equations and unknowns grow even
faster since terms involving pressure and dissipations have to be involved, also if one is
not considering temperature humidity radiation etc.

(4.40)
dy, UM} o Cations o, .
1.Moment closure.—t: ---------- 8—+__’ Equations :3; New unknowns : 6;
X .
J
u’ ouu’u;
2.Moment closure: — 3 =......- — 17X 4 __-Fquations : 9; New Unknowns :18;
dt OX,
duiuiuy ouuiu Uy .
3.Moment closure: T = _6—+ —; Equations : 27; New unknowns : 54
Xk
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e To go to higher moments does not really introduce novel ideas of closure. It is still based
on these relatively simple ideas already used extensively. The conceptual models behind
most of the closure assumptions however become less and less transparent as the moment
considered increases, simultaneously data become more and more sparse. And, although
the local K-diffusion works well quite often, we know that it does not always work.

We shall not go into detailed listings detailed local model with different types of closure. If you
are interested, please refer to the literature starting with examples and references in Stull
(1988).

Creative closure methods.

Mixed order closures. While the higher order closure is complicated in terms of equations and
closures, it is straightforward conceptually, but cumbersome, and often in- transparent.

In many model systems one tries to limit the number of equations by retaining only some of the
higher order moments, e.g. one can operate use first order closure, with K-diffusivities, but
instead of prescribing these diffusivities one can have let them depend on the turbulence
characteristics, like for a temperature - wind system, one can have K = K( e, <6”°>). The
equations for e and <0’>> then have to be retained in simplified versions, see (4.33) and (4.38),
where e is the total variance that then have to be modelled.

New equations. A successful example is to use the dissipation and the variance to generate
diffusivity:
« < (6s8)’
&

This is called the energy-dissipation closure, and has proven extremely successful both for
atmospheric and laboratory flow, with flow separation, and is extensively used with CFD
(Computational Fluid Dynamics) modelling. A drawback is that one has to develop an equation
for the dissipation that is fairly complicated and a bit artificial. It is shown here. Its derivation is
quite lengthy and cumbersome (Arpaci and Larsen, 1984).

os &—— oy, &g ouie’

(4.42) =—C,—UU;—-+C_,—
ot e lex, Peo X,

(4.41)

82
e

where the parameters c,; are universal parameters, or almost so. Actually they are different from
tunnel flows to atmospheric flows. Length scales can be approximated by:

3/2
e

(4.43) A~—
&

A simple Gaussian closure, uses the Gaussian approximation that relates fourth order
moments to second order moments.

(4.44) XYZW = Xy - ZW+ XZ - YW + XW Yz

This can of course be used iteratively. For a Gaussian process the odd moments are zero.
Hence the method cannot be used for odd moments. They are usually let equal to zero or
determined somehow else, when the Gaussian approximation is introduced. The Gaussian
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approximation is a good approximation, though not extremely good, for the even moments of
the turbulence velocities.

Other Types of closure

Spectral diffusivity: One useful closure is to describe the turbulence diffusivity in terms of wave
numbers. This comes especially useful when the solution of the models is partly or fully
performed in Fourier space and for scalars. Additionally the method addresses the problem that
a simple K-diffusion description does not always work, not even for very well known
phenomenon as vertical diffusion in the unstable atmospheric boundary layer, where the vertical
gradient is close to zero, but the associate fluxes are large, see figure 4.3, or the near field
dispersion from chimneys, as discussed in section 10.

The method can be illustrated by considering the flux as function of wave numbers:

oC . dC_ ouC',

UC'=-Ke—; —= '
_ _ o=

- d£: iKicﬁzKica S ;
dat  ox ox OX,

This is a diffusion equation. We have assumed that Kjc is constant in x;. We now consider the

concentration field as function of wave number, a natural extension of the equation, also from
the point of view of solving the equation, because differentiation becomes multiplication by wave
number in Fourier space.

(4.46) C(x) = [ Ck)e"™dk

Fourier transforming the above we get:

(4.47) %= —KickC(k);
A natural extension of the above then becomes to let Kic become a function of k; or just k.
(4.48) %: kK (K)C(K) ;

The physical concept behind this equation is that the diffusivity should be segregated according
to eddy size as well. The exact formulation depends on where if one keeps some spatial
variables as spatial variables and only Fourier transform in the others. It is seen that the
concept, in a physically reasonable way will repair one of the deficiencies of the simple K-
theory, the unstable boundary layer, since the Kic(k ~1/z;) corresponds to the transport of the
large eddies in the boundary layer and will multiply unto the corresponding gradient across the
total boundary layer, represented as kZZC(kZ, k1,k»), with z= z; after Fourier transform. K(k) is
called the spectral diffusivity.

It was originally introduced for dispersion computations of ozone in the stratosphere, where
Ozone is often distributed with large volumes without concentration gradients followed by sharp
gradients, much like we see at the top of the atmospheric boundary layer Berkowicz and Prahm,
1979). It is worth pointing out that a K(k;) cannot be recovered as simple multiplicative K(x;) by
back transforming (Troen et al,1980) .
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Figure 4.3 Characteristics of the unstable atmospheric boundary layer (Kaimal and Finigan,
1994):

Transilient turbulence theory: This theory formulates, for discreet variables, the idea that the
mixing is performed by eddies of many scales, as such it is well adapted to computer
simulations from its birth. Consider a situation with only vertical mixing. The volume considered
is broken down into N sub-volumes. The mixing is then considered as the concentration is
updated in the next time step, by having contributions from each of the N sub-volumes with a
weight given by the transilient matrix, c;(t, At).

_ N _
(4.49) Ci(t+At) =) c;(t, A)C,(t);
j=1

The formulation ensures that sub-volumes spaced far apart can interact as well by large
eddies, as can sub-volumes closer to each other, through small eddies. provided one has the
transilient matrix well calibrated to the strength of the different eddies. This calibration has been
done in the literature by various authors, see e.g. Stull (1991)

ol

ji

o

Figure 4.4. The transfer between sub-volumes in transilient turbulence transfer.

Notice that the transilient turbulence theory will handle the unstable gradient-less profiles with
ease as well.

Large Eddy Simulation (LES).

In the above we have discussed ensemble average models, and the parameterisations
necessary solve them. These models have been quite successful in describing the turbulence
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moments and in development of the mean flow. It has further been easy to compare with data
that fairly easily can deliver data on such moments, at least to not too high order. They have
not been good in providing a description of how turbulence looks, since the averaging
time/space mostly corresponding to the ensemble average has to be long enough to have all
the turbulence included in the fluctuating part of the signal. Another approach is the volume
average models that have become fairly wide spread worth the computer developments as
research tools.
Consider the “raw momentum equation”:

2

% = %‘F U, =-00; _é@_zggijknjuk + Va_zi;

dt ot X P OX; oX;
where we have neglected temperature effects and used the incompressible continuity equation.
This in the principle is a volume-integrated model, since we have integrated over a volume large
enough to include molecular effects only through their integrated effects on the fluid motion; we
consider say volumes of the order of 1 um3. If we could solve the equation and absorb the data,
we would get the full space-time dependent flow field. This is clearly not possible, but say that
we feel, we could use such space-time dependent solutions for all eddies larger than, say 2
meters. Our experience from the basic equation and from the ensemble average models tells
us that we would have to expect to be able to parameterise not the molecular effect but also the
effects of the eddies smaller than 2 meters on the part of the flow we resolve directly. In spectra
like the below, we will then be able to decide directly which scales to resolve explicitly in the
model, and which scales to parameterise, by making the cut along the k-axis.

(4.50)

F(K1), K1 F(K1)

Figure 4.5. Representations of the power spectrum for wind speed in the atmospheric boundary
layer from Kaimal and Finnigan(1994).

LES is formulated not on basis of ensemble averages but on spatial averages that can be
written generally as:

(4.51) [7(x.0]= [[] G (x =% )n(x,Hydx,

Volume
This formula just says that we obtain the spatial average, [n], by averaging n over a certain
volume, with a weighting function, that can be a simply the volume, but also can be more
complicated to facilitate further computations. If all flow variables vanish at the boundaries, the
spatial averaging commutes with the differential operators:
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Figure 4.6. One Dimensional representation of a simple spatial averaging window..

0
|:&77(Xi’t):| =

@52 |[[] G(x x)—7 77(x, DX =(Gn), o — m 96,04 - x (=

mvﬂle—e (x —x)m(x , t)dx. =—|Vmee(x x)n(x t)dx, =6—Xi[77(xi,t)]

The simplest averaging function is a block average as shown on the figure 4.6.

It is instructive to compare the less formulation of the equations with the ensemble mean
formulation.

Consider the momentum equation for u;. The ensemble mean can be written:

453 R P e e LA S NP YOV | Pl
(459 dt ot X, -9 D X LG RRPWE

du, ou o(Uu, +uu) 1 6p o2u,

2
j i i
Where we have kept the advection terms together and as usual used the incompressible
continuity equation.

If all flow variables vanish on the boundaries, the averaging procedure commutes with the
differential operations in the raw equation and we have a LES formulation that looks similar to
the mean value equation'

(4.54) [ 1= 2]+ 2 uu,]= 080 - £ 2 [p] -206,m, [u] +v-2[u]:
at X, ® P ox Hen L oxz

i i i
The two equations look very much the same, but we somehow must determine and expand the

term [u;uj]. To a start we have:
(4.55) u'=u; —[u] .
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where the fluctuations are defined much similar to the Reynolds equation for ensemble
averages and fluctuations. A difference and complication is that both u; and [u;] now must be
considered random variables. Another difference is that we do know that u;” occurs on a smaller
scale than does u;, as we have seen in the earlier discussions about spectra and scales.

For the simple block integration over width A as shown in the figure, we have the spectral
expansion of the variable, n, compare discussions in section 2 (2.51)-(2.55).

n(x.1) = [[fe"*dz (k. t):
70 = [[['s, (k.

[7(x,1)] :8% T [[[e*@0dz (i, tyx = [[[ %e‘kﬂi dz (k1)

(4.56) 00T = [1] (%)23” (k t)dk ;

o 3 _sinkiA o,
n"=n-[n]=[[fa-= ") "dz (k)

—7 _sinkA, _
7 = [ =), (ks

Because both u; and [u;] must be considered random variables the expansion of [u;u;] becomes
less simple:

(4.57) [uu; 1= [0u;10u; 10+ [u" Lo 10+ [u;"Tu 11+ [ufu]]

Notice that we cannot assume the two middle terms to average to zero, as is the case
for ensemble averaging.

We now define the stress as:
(4.58) =z = [uu; T = [u 10u; 1= [u" [uy 11+ [uy" [u; 11+ [uu 1= [ug 10u; T+ O Qu 10w I;
This leads to the volume averaged momentum equation can be written:
0 0 10 0° 0
@59  —[u]+—[ullu1=-96, -=—[p] -2Q¢;n,[u ] +v—[u]+=7
ot OX; P OX, OX; OX;
This equation is now close to the average equation for ensemble means, and can be solved by
the same means, but the t-term has to be understood and parameterised. This is pretty
cumbersome, but has been done, and the LES modelling is a well-established tool in the effort
to understand boundary layer turbulence. The most useful parameterisations look as we are
used to from the ensemble average models:
olu. ol u. olu. ol u. olu. ol u.
(4.60) Tij _ K( [ l] + I: J})NCKZ ( [ l] + |: J]) ( [ l] + I: J])
OX; OX; OX; OX; OX; OX;

J J L J

Indeed with suitable formulations for the spatial averaging and for the scale A (Lilly, 1966) the
LES system offers a deterministic solution for the Navier- Stokes equations for realistic turbulent
flows (Ladyzhenskaya, 1969), meaning that not only the statistics but also individual structure
development in LES is meaningful..
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The LES computes exactly as the acronym say the temporal and spatial development of the
large eddies, with full spatial and temporal picture, with a spatial resolution given by the spatial
averaging, and the temporal resolution given by the time step. It has been found to work well for
unstable conditions where the large eddies are especially characteristic. It has also been
developed for stable conditions, where the large eddies are smaller and not so characteristic.
Onset of gravity waves has been found a problem here. It has been useful for computation of
turbulence statistics, because it provides the full fields (with the resolutions given by the
models). If one considers our standard pictures of eddies in the boundary layer, one should
therefore imagine that these eddies move as in movie.

. = _— o ]
——-—-_-_HH_)‘_, v < < ]
Ll T
e == —_———
200m H“_H“‘——*—)—/F(\‘-h-—-—-—'/ﬂx;tj,//ﬂ—e
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TaEe ol r-\‘/ L
——— | (& e
- o —_— e
.0/ £ i £ ~ -2 f;"r)‘ “

Figure 4.7. Characteristic boundary layer flows. Note the LES modelling, presents the time
varying Large eddies part of the flow (Wyngaard 1990, Kaimal and Finnigan, 1994).

Appendix 4A: Spectral description of the viscous dissipation

In the derivation of the energy equation in Stull (4.3.1b-d), we derived an expression for the
viscous dissipation, which we initially only had discussed in terms of how it work to smooth out
the turbulent fluid motion, or otherwise formulated, removed variance or energy from the
turbulence.

From (4.29) we have:

- - 3

, aZu.I aZuil 2 aui!

(4A.1) W —-=v——— = 2v| — | .
OX axj 6xj

In the discussion of the two terms we can argue that the first term is the second derivative of
the variance of u;’. Since the variance only varies slowly in space and time in the boundary layer
this term is much smaller that the second term, which is the viscous dissipation. That the two
terms are different can be best illustrated using the three dimensional scalar spectrum,
introduced in the discussion of scales and spectra.

The velocity field can be Fourier expanded (see discussion in section 2)

(4A.2) u; (r,t)= [ e*7dz, (k,t)
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(4A.3) S, (k,t):T dZ”, (k,t)dZ; (K',t)

—0

For the isotropic turbulence approximation we can define the scalar three-dimensional power
spectrum, E(k), being only a function of the length of the wave number vector, k, not its
orientation.

(@A) E(k)= [f]] s.t)dk,
k k =k’
(4A.6) lu.u.zi(u2+u2+u2):o_|gE(k)dk
2 i 2 1 2 3 )

Hence in spectral form, the first right hand side element in (4.49) is:
82 u_! 2 82 ©
—=2v— [EK)dk;
OX; OXj

(4A.7) v

which is just shows that this term is quite small because the variance changes little for
homogeneous turbulence.
To derive the second term we start by:

X;

(4A.8) ;Ui (r,t)= J. ikj eikirdzi(k,t).

From this follows:

v(iui (r, 1)) =V(T ik, " dZ, (k,1)) (T —ik; e™"dzZ" (k1))
OX. : :
(4A.9) ! " "

j i

=vj kS (K)dk = vj K2E(k)dk.

Relative to the variance, the viscous dissipation term is seen to have much less contributions
from the small wave numbers and much larger contributions from the large wave number
regions of the spectrum.

We recall the description of the three wave number regions of E(k), from section 2.

78 Lectures in Micro Meteorology



In &

Figure 4A.1. Schematic energy, or variance, spectrum for the atmospheric boundary layer,
shown with the three characteristic spectral regions (Tennekes and Lumley,1972).

We can separate the power spectrum into three regions as shown on the next figure, the
production range, with k ~1/A, where energy is extracted from the mean profile, a dissipation
range, where the fluid motion is dissipated by viscosity, for k > 1 ~ (v*/ €)*, which for typical
atmospheric flows is about 1 mm. n is called the Kolmogorov dissipation scale and is a
combination of viscosity and dissipation as seen. In between there is a region, where the
spectrum depends only on the wave number and the dissipation. This region is called the
inertial sub-range. Since the spectrum describes wind variance per wave-number increment, it
has the dimension: m*/sec?. Dissipation is destruction of variance by viscosity; hence it has the
dimension of variance per second, or m*/s°. Finally, for the inertial sub-range the spectrum for
the dissipation looks like:

(4A.10) E(k) =k’E(K)=as®°k ™"

To model the enhanced destruction of turbulence in the dissipation range for k>n, the inertial
subrange form of (4.57) is multiplied by an exponential form that generally is represented as
(e.g. Larsen and Hgijstrup,1982)

(4A.11) E(k) = k2E(K) =ae?* k™ -exp(-n(kn)*?),

which is the Kolmogorov dissipation spectrum with n being a constant of order one. A
dissipation spectrum is plotted together with other spectra in Figure 2.22

It is obvious from this description that the dissipation takes mainly place at high wave numbers,
which is in according with the here presented spectral picture. Also the discussion shows that
that the second term in (A.1) is much larger and of completely different nature from the first
term.
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5. The Ekman boundary layers

For convenience we repeat the mean value equations:

du,  ou ou. 17p 0 , ou ——
i :i_’_aji:_gé‘m_t_p 2S2‘9uk 74y +—(V—'—U{U;);
dt ot X, P OX, oX;  OX;
0 § — LE 1 0Q
(5.1) de_ag U,%Zi(kT%—u}e')—_ L Q
dt ot X, 8xj 6xj pC, pC, oX
dq_oq, . ;
—_— - = —u +—
dt ot ’8x ( ‘ ax )

Neglecting molecular terms, radiation term and E-terms, we find for horizontally homogeneous
stationary flow with zero vertical mean velocity.
The three momentum equations.

0=-2L 4 1, - ()
P OX, OXq

0- =P g+ (-um).
P 0OX, OX,

(5.2)

1 op e
-——-20Q usu;.
-9 5 ox, (U, —n,0;) — 8X3 3

The scalar equations X
=—%uw0=—(w)
OX, OX,
For such simple conditions it is seen that the scalar fluxes are constant with height.

At the top of the boundary layer the turbulence terms disappear, by definition, hence we see
that the pressure terms and the Coriolis terms must balance, giving rise to the so called
Geostrophic wind, given by:

(5.3) G:(UlG’UZG):(ug’Vg) c———)=C——7——=7")

where it is indicated that we can use several notations for the same variable. See Figure 5.1.
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Figure 5.1. Schematics of the Geostrophic balance between pressure gradient force and
Coriolis force, denoted PGF and CF.

We start considering only the two horizontal equations, which we can now write:

- 0 ==
0= fo(U, -Uy) ——(uuy)
0X,

0= —f.(U,-Uy) ——(U;Ué).
8

These two equations describe the so-called Ekman spiral wind profile.

Derivation of the spiral:
We have the two equations for the horizontal wind components.

- 0 , =5
0= fo (@ —Uy) ——(uu;)
8
(5.5) 5
0= - fc(Ul_Um)_a(uéus,)-

3

PGF 1000 mbar

ﬁ for example

1002

Figure 5.2. Within the boundary layer the wind is seen as a balance between the pressure, the
Coriolis and the frictional forces, denoted CF and F respectively.

So far, we have not considered the directions of the horizontal axes. We now fix them such that
X, is along the Geostrophic wind. Changing also to the (x,y,z) and (u,v,w) form for the variables,
the equations take the form:
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a P

0= f.v—-——(uw

= 5 (W)
(5.6)

a -
0= -f.(U-G)——(vw).
o ( ) axs( )

For simplicity, we now use a gradient diffusion for the turbulence terms, with constant diffusivity.
In later sessions we shall consider more realistic closure schemes.:

[ . 2_
fcvzg(u’w’):—gKg—u:—Ka—g
(5.7) /A . Z za a_az .
— v v
f@-6G) = (w)=—KkY kY,
el ) az( ) oz oz oz°

Combining to the complex variable, and multiplying the second equation by i, we get:
W =U+1iVv,

o%u

o7°

(5.8) f.v=-—K
. 0%V

—if.(U-G)= —-iIK—

C( ) 622

Adding the two last equations yields, since 1/(-i) = i:

2
(5.9) —Kaa\’;’ i [@=G)+ .V =—if (T +—~V-G) =—if. (W —G)
Z —I
or.:
2
(5.10) KW it w-6)=0,
A

This is a simple second order differential equation with constant coefficients. Hence, the
solution can be written:

W -G = Aexp((L+i)Z) + Bexp(—(1+1)Z);
(5.11) 1
Z=1zlhg;h. =QK/[f.])?;

where we have introduced the Ekman height scale, hg. The numerical value of the Coriolis

parameter is interesting only if one wants to work on the Southern Hemisphere. The boundary
conditions are:

(5.12) W=0 for z=0, W—>G for z-—>wo;

The last of these means that A = 0. The first then means that B = -G. Hence, the solution of W
looks as:

(5.13) W —G =—Ge*(cos(Z) —isin(Z)signf.).

Going back to the two components, we get:
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G(l—e?cos(Z)) =G(L—e *'"™ cos(z/h));
Ge ?sin(Z)signf = Ge™*'" sin(z/h )signf..

u

(5.14) B
\'

Since, in this coordinate system, u is along the Geostrophic wind, we can find the angle
between the surface wind and the Geostrophic wind, 0.

dv
(5.15) tan @ = lim " = lim 92— jm (& €0S(2) " sin(Z)signf

0 0 dU 20 g% cos(Z)+e7sin(Z)

dz
The result 6~ 45° is not correct, for neutral homogeneous condition it is closer to 20°. But some
results hold: Looking along the vectors, the surface wind is to the left of the Geostrophic wind,
and further the angle is independent on the size of fc. Under all circumstances, it varies much
with other conditions like stability, baroclinity and other types of heterogeneity. Below, we show
a three dimensional diagram of the turning of Ekman spiral on the Northern Hemisphere.

= signf,;

Horizontal P
cross section L—=7% = >
above the | = -
boundar < = : i p-Ap
Y G} | /
layer L——-/'Vﬂll ! p
|
70 +4
E*Z?F,@‘Ti‘ 7 Horizontal
5%” = —~ cross section
= “close to the
surface

Figure 5.3. Ekman spiral on the Northern Hemisphere (Larsen and Jensen, 1983), showing the
pressure gradient force, P, the frictional force, F, and the Coriolis force, C, from the top of the
boundary layer and down towards the surface.

Next we consider a number of special aspects of the above derivation.

The turbulence diffusivity: Above the Ekman height, hg, was defined from the Coriolis
parameter and the turbulence diffusivity. We know hg typically to be of the order of 500 meter in
the atmosphere, hence we can deduce the magnitude of K.

1
(5.16) he = (2K/|f.])? or K :%| fo|he? z%25-1o4-1.4104 ~15m’s™.

Comparing with the corresponding kinematic molecular diffusivity, v ~ 1.5-10° m® s, it seen
that turbulence diffusion is about a million times more efficient than molecular diffusion for the
same gradient. Therefore, it is often justified to neglect the molecular terms in the equations
compared to the turbulence term. Compare the mean value equations for the boundary layer,
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where neglect of the molecular parts of the flux divergence terms will almost always be justified
by the comparison above. :

% :%4' U %:_96}3 _é@_zggijknjﬁk +i(‘/%_m);
dt ot oX; P OX oX;  OX;
(5.17) d_‘g:ﬁJrUj 00 = 0 (K, 00 _@)__L_E’
dt ot ox;  OX; oX; pC,
G g, M2 0, e

dt ot lax, ox, o

] J
Surface characteristics of the Ekman layer

Above we have seen that the u and v parts of the Ekman layer mean wind speed profiles
converge toward same values for z—0. We shall now consider in more details the behaviour of

the Ekman layer close to the surface. We start with the total stress:
1

(e +7°)%

(5.18) pui=rt

It is seen that the two components of the stress can be considered as vectors, attacking a
horizontal plane along the x and y directions, respectively. This means that we can combine
these two components as vectors. Note further, that we have introduced a scale velocity for the
turbulence, u., denoted the friction velocity.

The stress components are computed as:

(5.19)

We can now find the total surface stress as defined above, from the Ekman profile and the
relations above. We use subscript O to denote values at the surface.

— ——2 3 ou o, 2\
(5.20) uhp = (((uw)’ +(vw), )2 = ((K E)o2 +(K 5)02)2 ,

The wind profiles were differentiated when we determined the angle between the Geostrophic
wind and the surface wind (5.15). Using these results we get

(5.21) u2 = Gh.|f|/V2

This shows the relation between the surface stress, the Geostrophic wind and characteristics of
the Ekman profile, namely, fc and hg.
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When studying the behaviour closest to the surface it is most convenient to rotate the
coordinate system, such the x axis is along the surface mean wind, u, rather than along the
Geostrophic wind. Again we have z, w being vertical and y, v being the horizontal component

perpendicular to x, u.

Figure 5.4. Relation between coordinate systems aligned with the Geostrophic wind and with
the surface wind.

The general formulation for the Ekman spiral was:
0= fo(7-Ve) ——(uw)
(5.22) oz ]
0= — f (T-Ug) - —(v'w'
C ( G) az ( )

In the coordinate system with x along the mean wind, <v> =0, because u is aligned with the
mean wind. Hence, the equation reduces generally to:

0, == .
E(UW): _fCVG’

(5.23) P
E(V’W’): - fc (U_UG);

Integrating from z = 0 to z, we obtain:

(W)z :(W)o - fCVGZ:(W)O +|fCVG|Z;

(524) N N h —rot ' h —r_t ’
(VW) = (VW)o + [ foUg —T(2))dz' = [ fo (Ug —T(2))dz,
0 0

where we have introduced that fc Vg is negative in this coordinate system and that the v-w cross
covariance is close to zero at the surface. This equation is rather general without closure
assumptions etc. In the surface wind system, we would expect that at the surface all the surface
stress was along the mean wind carried by the u-w-cross-co-variance, which would then equal
uz*o, while the v-w-cross-co-variance would be vary close to zero close to the ground. We can
check if this is consistent with the Ekman solution, by turning the coordinate system, as given in
the figure above. We get:
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Ug = U, CoSe + v, sino;

(5.25) V, =V, cosd —u, siné.
sz.
4

where, we denote the wind in the surface system by subscript s and the wind in the Geostrophic
system by subscript g. From the Ekman spiral equations we now get:

Kat!

u'w —Kd—u

s dz

sing) =

_ k9
dz g

cos@ + Kd—\7
dz

s g

= —%(cos B(e* cos(Z) +e*sin(Z)) +sin@((e * cos(Z) —e * sin(2))) =

= ;[f h.G(2(e % c0s(Z)) - —f.h.G /2 =—u? for z— 0.

(5.26) similarly

_ kW
s dz |,

v'w' sin@) =

dv
= — K—
( dz

cos @ — Kd—u
dz

g9 g

= —E—G(cos O(e % cos(Z) —e*sin(Z)) —sind((e * cos(Z) + e * sin(2))) =

:%%f hG(2(e % sin(Z)) — 0 for z — 0.

Where, we have utilized the variable Z = z/hg, and also used the results from above relating the
Ekman height and the diffusivity, K. The sign of the Coriolis parameter is neglected here. It is
seen that in the surface wind also the Ekman solution yields that the total surface stress is
carried by the u-w cross-co-variance, while the v-w-cross co-variance at the ground is zero.

We notice that the earlier introduced surface stress scale, u.,, equals (-<u'w’>),* in this
coordinate system. By first order expansion, the equations for the surface stress can now be
written in terms of height variation for u,. This makes it somewhat easier to evaluate the
importance of the height variation, because we can now consider the relative variation of u.,u., :

(UW), = (UW), +| T Vg| zror i —u?,, == U2, +| . Ve z;
or

[feVelz,
2

*0

— . U U@, o | u(z') dz’
vw') =u? | f. (=& — dz’' = u 1
( )z *oJ. C(u2 uz ) *oj( UG hE

0 *0 *0 0
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In the equation for u., we have gradually introduced approximations from the Ekman spiral, first
through the expression for the total surface stress, second assuming 0 ~ 45°. For z/hg less than
about 20% we see that u. is within 10% of u., and it reduces approximately linearly. In the
same z- interval <v'w’> increases from about zero and up slightly slower than proportionally to
z/hg. We can further see that although the stress may vary across the layer, the surface value
U., Will characterize not only the magnitude but also the changes across the layer, and the
changes will be small relative to u.,.

This layer closest to the surface is called the surface layer. It is characterized by that all fluxes
can be considered constant with height, since we saw in the beginning of this section that the
scalar fluxes were independent of height. Although we have used the simple Ekman spiral
somewhat to derive this conclusion, we can also see that the existence of the surface layer is
more general than the Ekman solution for the whole boundary layer. We shall return quite
intensively to this layer.

In the coordinate system with the surface wind along the x-axis, the Ekman spiral looks as seen
below. Notice, the height of the boundary layer has been approximated by u., /fc.

U=t

Figure 5.5. The Ekman spiral seen in a coordinate system aligned with the surface mean wind.
Notice that the boundary that z is normalized with u ./f. rather than hg,

Ocean current Ekman spiral.

Before leaving the Ekman layers, we shall see how an atmospheric Ekman layer above an
ocean surface drives and ocean Ekman layer below, since this was really the way it was first
derive by Ekman in 1905, confirming observations of drifting ice by Nansen a few years earlier,

In the ocean we can neglect the Geostrophic wind from the equation, which then looks like:
0= f. V- ﬁ( uw’)
(5.28) oz
0= — f.0— i( v'w')
0z
Notice, we keep the same direction of the z-axis. Ocean depths is then for z—-c. The equation

is reformulated with diffusivity, which we for water give the subscript w, K,, .
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0= f.v+K
¢ Y oz?
(5.29) o2y
Y
0= fo-K, 2V,
¢ " 0z?

As for air we define a complex variable, W, and as for the air we derive the equation to be:

W=Uu+iv;

5.30 2 if

(530 oW _Tew -0,
0z K

w

Following the procedure from the atmosphere we have:

W = Aexp((L+1i)Z) + Bexp(—-(L+1)2Z);
(5.31) 1
Z=1lhg, ;hy, =K, /|f]?;

where the water Ekman depth has got a subscript w, like the diffusivity.

Since, W—0 for z—-x, it follows that B=0. We can now write the component equations from W.
W = (A +iA)e”(cosZ +isinZ);

(5.32) U =e”(AcosZ — AsinZ);
V =e”(AcosZ + A sinZ);

The boundary conditions at the water surface derive from continuity of stress at the surface.
We formulate the stress continuity as:

ou ou 1
K,—| =p,K, —| ==p.Gh_f.;
pw WaZO pa aaZO Zpa E'C
(5.33) B -
K Y ok M 2L et
pw W620 pa a620 2pa E'C

where the surface stress values on the atmospheric side was derived earlier. Differentiating on

the ocean side we get.

ou _ou oZ 1 0 , :
—=——=——¢€"(Ac0osZ-AsInZ) =
0z 0L o0z hgoZ A A )

(5.34) E—Z{(Acoz —AsinZ)+(-AsinZ - AcosZ)}

—>hi(A —A) for Z —0,and similar for v
E
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ou K, 1
prw_ = IOW_(A’ - Aﬁ) =_IOaGhE fC’
oz |, e, 2
(5.35) o K 1
Vv
K, =p, ~W(A +A)==pGh T,
pw WaZO pw hEW (Ar A) Zpa E 'C
This solves to:
A=0;
SPGhfe —p,Ghe fe
(5.36) A = _2 _ Pahe G:
KW 1 f h2 pwha
pwhi E c''Ew
Ew R
Pw ha

where we have used expressed Kw in terms of hg and fc.

Hence, we arrive at:

0(2) = 22" Get™ cos(z/h,, ),
Pulley

V(z) = pa—:EGe”“EW sin(z/hy,);

pw Ew

(5.37)

First of all the equation shows that the surface current runs along the Geostrophic wind, not the
surface wind or for that matter the surface stress. It was to explain observations of ice floe
indicating something like that, that Ekman did his derivation. As the depth increase the current
veers toward right. Notice, that we have to derive hg, from other considerations, or for that
matter K,,, just as we in the atmosphere used observations for hg.

We would expect the depth of the Ekman layer to be associated with the strength of the
turbulence mixing. Due to the stress continuity over the surface we have that U., ~U.a(pa/pw)”.
Taking u. as indicator of the turbulence strength we would assume that a similar ratio would
relate hg, and hg, and that hg,, :hE(pa/pW)l/z, which is approximately true. Then we further see
that the surface current relates to the Geostrophic wind through the same ratio, being roughly
1/30. The following figure illustrates the characteristics of the two Ekman spirals. Here one
could also notice that the surface stress in the atmosphere is along the surface wind. The
surface stress at the ocean surface is 45° of the surface current.
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Figure 5.7. Coupled ocean atmosphere Ekman spirals (Stull, 1991)

Appendix 5A. The Baroclinic Boundary Layer and the Thermal Wind.

The picture of the boundary layer can be modified by many kinds of heterogeneity and improved
parameterizations. A simple modification arises when one considers the importance of
horizontal temperature gradients, as will often be present in reality. So far, we have only allowed
for horizontal gradients of pressure to drive the flow. To feed in the information about the
changing horizontal temperature, we use the so-far unused equation for the vertical component.

1p _ oy 0 ==
(5A.1) 0= all®) —jaT—ZQ(ﬂlUZ —?]Zul)—aT u,u,

3 3
Differentiating this with respect to the horizontal coordinates, i = 1,2 we obtain.

0 1 dp _ _ 0 —
5A.2 0=— (—g-=—=-2Q(np0, -n,0,) —— Uu}) = —————,
( ) X (-9 5 ox, (mU, —m,0,) ox, 3Us

Assume now that p varies horizontally due to the horizontal temperature variation.
Differentiating by parts, we get:
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ol _dol 10d_

OX, p OX; OX, OX, p p OX; OX,
Cp9)dp 10 51F _

-p° X pox, pox
_9aot ol 1dp 10p

(5A.3)

Tox ox,pox pox, pox
goT o 1dp 114p

Tox ox,pox Hpox

where, first we have used the hydrostatic equation in the first term and reversed the order of
differentiation in the second term. The horizontal variation of p is assumed dominated by the
temperature variation as usual. Thereafter, we have multiplied and divided by p in the second
term and differentiated by parts, and finally used the hydrostatic balance again, introducing the
scale height of the atmosphere, H. Now expressing the horizontal pressure gradients as the
Geostrophic wind components, we obtain, fori=1, 2:

0 1 g oT

= (fU,)-—fU, = =",

ax3( C ZG) H cT 2G T axl

(A4 0 1 oT
g ar .
o, ) P T T

3 2

We will here neglect the second term, because we at most integrate to the Ekman- hg, being of
the order of 3-5% of the scale height. Hence, we can derive a vertically varying Geostrophic
wind due to a horizontal temperature gradient:

g oT _
(5A.5) Ulg ~ Uleo_ﬁa_xz'xs =UlGO_A2'X3’
g oT
Uy = Uy + fc-ra'xszuzeo +A X,

where the integration constants are the surface Geostrophic wind.

One can now insert these expressions for the Geostrophic winds into the expression for the
Ekman spiral equations.

o%u,
ox;
_ o%u,
0= —fo (U —Uygo + AX) +K ol

3

0= 1:c (Uz _Uzeo - A.Lxs) -K
(5A.6)
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Solutions are show on the next figure, where the arrows show different baroclinic forcing. In the
solutions presented the x; axis is placed along the unperturbed Geostrophic wind.

Figure 5A.1 Behavior of the Ekman spiral for four examples of baroclinic forcing all with the
same magnitude, indicated with the unit-length arrow. The direction of the arrow refers to the
sign of the A; and A, terms in the definition of the thermal wind that is to the signs of the two
horizontal temperature derivatives in the definition of the A-terms. . From the top to the bottom
the sign of the forcing is: (A1, As) = (0,-1), (0, +1), (+1, 0), (-1,0). We note that the modification
of the Geostrophic wind, and thereby also the wind itself, is largest at the top. Comparing with
the definition the resulting change is seen to be qualitative reasonable. For example, in the
lowest figure A; = -1 and A, = 0, meaning that we must expect little or no changes in ul, while
U, and u, will be modified in negative direction (NO Jensen, personal communication).
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All examples have the same strength of baroclinic forcing, but the direction of the arrows shows
the sign of A-terms of the corrections. Vertical arrows, means only A, (A reflect the horizontal
temperature gradient in the x, direction) is different from zero, with sign given by the direction of
the arrow, similarly for horizontal arrows. In the figure we have chosen the magnitude of the
two A-terms to be A~ 0.015 m/s/m, corresponding to a horizontal temperature gradient of about
0,05 °C/km. From the figure, we can conclude that the shape of spiral is indeed sensitive to the
thermal wind. However, we see as well that the angle between the Geostrophic wind and the
surface wind shows little sensitivity to this kind of forcing.

This concludes our discussion of the atmospheric Ekman boundary layer. For a horizontally
homogeneous stationary boundary layer, we have seen that use of constant turbulence
diffusivity allow us to derive the so-called Ekman spiral solution for the variation of the mean
wind with height. We have estimated the diffusivity needed to be in according with data and
found it to be about one million times larger than its molecular brother, the cinematic viscosity.
We have been able to include horizontal variation of the mean temperature and found that this
does modify the form of the Ekman spiral considerably. Indeed, although the Ekman spiral is
found in the data, it is found comparatively rarely, indicating that boundary layers, simple
enough to justify the used simplifications, are somewhat rare. As expected the assumption of a
constant K-value is too simple, as we will see a height dependent K fits better the data. Also
thermal stability can be built in to K. Now however, the equations have to be solved numerically.
Notice, that in our solution of the Ekman spiral, we have not avoided the closure problem. We
have had to specify K from other information than what is in the mean value equations
themselves. We use information about the hg, the Ekman height, which was based on
measurements.

Finally we have identified a surface layer within the 20-100 meters closest to the surface. In this
layer one could with good approximation assume that all fluxes were constant with height.
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6. The atmospheric surface boundary layer.
Monin-Obuchov scaling

In the discussion of the Ekman layer, we have seen that the lowest part of the layer is
characterised by having fluxes that varies little or not at all with height.

This means that for horizontally homogeneous stationary flow, the lowest part of the boundary
can be characterized using the surface fluxes plus maybe a few more variables.

The use of dimensional analysis and normalising variables with characteristic parameters has
and long record within fluid dynamics.

It generally involves some guesswork as to what are the important parameters, some
experimental data to use as guidance and some theory as to how one should go about it, and
finally and very important experimental validation of the derived formulations.

In the earlier chapters, we have seen simple dimensional analysis, when the turbulence
diffusivities were established, as being product of a characteristic velocity parameter and a
characteristic length- scale.

(6.1) K~av/,

where v is the relevant velocity scale, ¢ is a relevant length scale, and o is a dimensionless
numerical constant, which should be of order one, if the most relevant characteristic parameters
have been chosen.

As we found for the turbulence diffusivities, there will often be several different sets of possible
characteristic parameters. The experimental verification is very important.

The aim of the following analysis is to describe as well as possible the mean values, their
vertical gradients, and the turbulence characteristics for a stationary horizontally homogeneous
atmospheric surface boundary layer. Such a surface boundary layer can be said to be the
simplest non-trivial boundary layer one can imagine.

We shall use the equations for mean values and the turbulence variance to map the problem. A
general version of the mean value equations was written on our way to the Ekman spiral.
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The three momentum equations.

0=-2% 4 0, - (o)
p OX OX,
1 0p 0, =
0= _?_p - fc 1+_(_u2u3)-
P OX, OX,
1 0p _ _ 0 ——
6.2 0=-g-———"-2Q(n,u, —n,u0,)——Uuu,.
(6.2) g 5 ox, (m, —n,0;) o, 343
The scalar equations :
a -
0=—-{(-u'
5 (50
a -
0=—-1(-uq");
5 ()

Introducing the geostrophic wind and turning the coordinate system along the surface mean
wind, and changing to X,y,z coordinates we obtain:

The three momentum equations.

0, —— .
E(UW)= - fc Ve

0 == - .
E(VW): - fo(U-Ug);.

(6.3) 0=—g—é@+29nyﬁ—iw’2
p 0z 0z
The scalar equations :
a -
0=—(-wW¢'
p= ( )
a -
0=—(-wq');
pe (—wa’)

We can use the first two of these equations to derive the rate of change of the surface stress
with height, using the result to define the surface layer, as the layer through which the surface
stress did not change too much with height, through the following equation (remember Vg is
negative when f; is positive).
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(UW), = (UW), +| V| z or =0, =—u? +|f Vg |z;

z

or
Y,z v, :
. o 207, ) ( \/EGhE) ( 2hE)
(6.4) — L. U TU(2) [ U(2),dz'
vw') ~u? | fo(—=S— dz’=u® | (@1- -
( )Z *0,([ C(uz*o u2*0 ) *0'([( UG hE

or

—— z
u,, ~u, and(vw'), /u,>~0 forh— <<1.
E

In the last part of (6.4) we have used the results and notation from section 5 about the Ekman
spiral, thr Ekman height, hg, and the friction velocity, u.., and that it close to the surface
changes slowly with height from its surface value, u.,. Other fluxes of importance are <w'6>
and <w'q’> that control the fluxes of heat and humidity through the layer. As we have specified
the layer, we have <v > = 0, hence the Coriolis parameter is unlikely to be important, because it
controls the cross talk between the equations for the two horizontal velocities. From the
equations, it looks, as the Coriolis parameter is important only for the rate of change of the
stress through the surface layer. There is no obvious use of the equation for the mean vertical
velocity, since we have assumed that to be zero.

All considered we find little additional use for the mean value equations for our (strongly)
simplified surface layer flow.

We now proceed to the variance equations derived in our effort to evaluate the different closure

possibilities for the equations in Micro Scale Meteorology 4. We use the notation: e= u';?, as the
total fluctuating turbulence variance.

The general equations look as follows, from section 4.

1oe 1. & _9(ul) ooy 10(uje)  1(u;p)

——t-U ——=—="-UU —
20t 20X 0, oX; 20X, P OX
1607 1_ 007 —— 00 10(u0”?)

(6.5) = + =0, = -0 —-= -g,
2 ot 20X oX; 2 OX,

7 o _ax 18(u'g”?

1097 1. 09°_ g 1 (u;q) .
2 ot 27 ox Yox. 2 ox, a

We now impose the stationarity and horizontal homogeneity demands of our simplified surface
layer, and turn the coordinate system along the mean surface wind.
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1de gWe) sou lowe) 1owp)

2 dt 0, oz 2 ¢ p oz ’
1do? 90 1aWe?)
— = O: — Q'W'_ - 7
(6.6) 2 dt z 2 & &o
7 " f 12
Edq =0= _q’W'a_q_lM —-c
2 dt oz 2 o1 d
B P T, T, D

The budget equations for the turbulence variance as derived in section 4. They are here
simplified to the conditions in a simple stationary horizontally homogeneous surface boundary
layer.

The terms are denoted: B for Buoyancy, P for Production, T, for flux divergence of turbulence
flux of variance, T, for flux divergence of pressure induced transport of variance, and D for
Dissipation.

Also for these equations we note that the Coriolis parameter does not enter, meaning that it is
unimportant for our problem. However, the equations include relations between many profile
quantities and turbulence quantities. We shall now show examples on how the dimensional
analysis can be used to relate the different quantities to each other for simple subsets of the
equations above.

First, we will consider only the velocity profile without temperature effects. If we neglect most of
the terms in the first equation it takes the form:

ou
(6.7a) u?—-¢=0

0z

The dissipation just follows the local energy production in the first term. The equation underlines
also the interaction between u. and the velocity profile. Hence it argues for that u. should be the
velocity scale for the gradient. The profile must obviously also depend on z. Assuming that the
wind profiles depends only on u- and z, we can normalise (6.7a) to obtain:

zou_ze 1

(6.7b)

u 6z u® «’

where K is a dimensionless universal constant called the v Karman constant. It is a universal
constant, because it can only depend on u- and z from our assumption, and no dimensionless
argument can be made from these two variables. k is experimentally found to be around 0.4. It
is seen that a consequence of (6.7b) is that the wind speed varies logarithmically with the

height, z.

Y In(z/z,),
K

(6.7¢) u(z)-u, =
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Where the roughness length is introduced as an integration constant, and as the height where
the wind speed becomes equal to U, . At the surface we normally take U, ~O.

To formulate this derivation in more formal way, one can use the dimensional analysis, denoted
Buckinhams Pi theorem, described by Jensen and Busch (1982) in the appendix.

Finally, we can refer to that the resulting logarithmic behaviour of the wind above the surface is
one of the oldest and best established results from wind tunnels, where it is denoted the “ law of
the wall”. Also for the near surface atmosphere, the logarithmic behaviour of wind profiles is well
known.

Having found a solution to the wind profile, we can now consider how the 3 variance equations
will behave when being normalised by proper parameters.

From the first results above, the constants and parameters in the equations we define the
following characteristic parameters to make the terms non-dimensional. Notice, we obviously
need a humidity scale and a temperature scale, since we include both temperature and humidity
equations.

U =—uw; wé =—-60'w; ub, =—-60w; ug =—-qw;
(6.8) _
9/6;z;

Note that 0, enters only in the Buoyancy term. We have converted the humidity flux and the
temperature flux to a water vapour and a temperature scale, using u.. The minus sign has a
rational explanation for u. (that the momentum transport is downwards), for the other
parameters the reason is just historical, and to make the production terms positive. We can now
make the variance equations non-dimensional, using the parameters above.

lde _,_9We) 50u 1lowe) 1owp) ; oK
2 dt 6, oz 2 oz p oz u’
12 _ An 112
1407 o _gwd0 _1owoT) e, ® kzz
(6.92) 2 dt oz 2 oz u,o:
2 _AF 112
ldq =0= _qu,a_q_EM -&, ® k22
2 dt 01 2 o1 4 u,q’
B P T, T, D

Multiplication of the equations above by the factors at the right hand side makes all terms in the
equations non-dimensional. Note, we have followed traditions by including the non-dimensional
von Karman constant, k in the normalisation group. We write the resulting equations as:
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(6.9b) u6” 2 dt L La(—) L L
L
kz 1dq” z. 1 0 z z
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L
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t p

Below the individual functions are derived and discussed.

The buoyancy term B, z/L, where L is the so-called Monin-Obuchov stability length scale:

kz gw'e)) z
w4

v

(6.10) z
' L

It is seen that L— *oo for neutral condition, meaning for vanishing heat flux. Neutral conditions

then means that z/L = 0. L is negative for unstable conditions and positive for stable conditions.

The production terms, P, are derived as:

z kz , ——au kz ou

)= = (—uw>) =—I

¢m(L) u’ ( az) u, oz

z kz , —— 00 kz 66

6.11 ‘Y= _ow Yy = kv
Z kz —— 0q kz oq

—_)= —|(— W — —_——

(Pq(L) u*qf( q az) a9 o

where we assume that v. Karman's constant is the same for all variables.

The flux divergence for turbulence transport of variance, Ty:
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(6.12) ubs 2 oz 622 u.o; La(E) L
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(L)

The divergence of the pressure transport term, Ty, is done similarly:

kzla(W) L0k (w w'p’)

z
6.13 = 7 = =)
619 F2 a a2 w Loz
o(-)
L
Finally the dissipation terms, D:
kze kze, &
(6.14) (05(—)— 0 ;P (— )_ *0*21 Lq(—)_ﬁ

Optimistically, we have written all the ¢- functions as function of z/L and only z/L. How reliable
is this? In the appendix, the dimension analysis above has been carried out for ¢, (z/L) based
on the momentum equation, where the flux divergence terms have been neglected. Therefore,
we would expect also the similar analysis to hold for ¢,(z/L) and ¢4(z/L), and therefore also for
all the dissipation terms. Additionally, we see that z/L is the only free variable in the momentum
equation, indicating that at least other types dependencies in the ¢- functions must cancel,
when these functions are added as prescribed by the equation or at least be of less importance.
However there are indications that the flux divergence terms do depend also on other
parameters (Elliot, 1972), mainly the boundary layer height, so that the M.O. scaling can be
considered an approximation only, although a fairly good approximation.

This is underlined also from the fact that the v Karman constant, a constant within the
framework of the Monin-Obuchov similarity, empirically seems to show a tendency towards a
week dependency on external parameters, like the surface roughness number, zyu. /v (Larsen,
1993), but the statistics is uncertain. Under all circumstances, we noted above that the results of
a dimensional analysis must be considered like a hint about where to look, rather than a truth
derived from first principle, and experimental validation will always be necessary. An approach
based on the Buckinhams PI theorem for dimensional analysis of the surface layer turbulence is
presented in Jensen & Busch (1982), see appendix 6A. Here is illustrated that it is sometime
successful in explaining the experimental data, sometime not. The later result is usually taken
as indication of that one has somehow guessed wrongly for the important variables.

Not all ¢- functions have been equally well studied. Most comprehensive work has been
conducted on the mean-profile expressions, followed by the dissipation terms. The flux
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divergence terms have been relatively little studied, especially the one involving pressure,
mostly because of the large difficulties in measuring the pressure fluctuations properly.

In a following section, we shall see that the Monin-Obuchov scaled surface layer is but one
scaling region in the atmospheric boundary layer. It can be considered correct in an asymptotic
way when the influence of the other scales have vanished. Until then we shall just consider it an
useful approximation.

The experimental campaigns started in the middle of the 1960, where one got instruments that
could resolve all of the three velocity components, the so-called sonic anemometer
thermometer. The next figure 6.1 shows the set-up of the first of these. The setup on the figure
shows how one could measure the mean temperatures and velocity gradient. The sonics
provided fluxes and turbulence variances. Additionally, fast response hot-wire anemometers
could provide the wind dissipation. Also other instruments were operated as seen on the figure.

As seen the sonics operated at three levels, meaning the assumption of constant flux with
height could be validated.

Further it was possible to estimate many of the ¢- functions at 3 levels, ¢y (z/L), ¢n(z/L),
0.(z/L), and ¢1i(z/L). By plotting these functions versus z/L it was possible to evaluate if the
functions could be considered function of z/L only, or they stratified according to the different
measuring heights. Humidity was not measured. Also variances and spectra were evaluated as
function of z/L.

Basically, the Monin-Obuchov similarity was found to provide good approximations for these
data and data from subsequent experiment. The following two figures show data from such
experiments, this time conducted in Sweden.

KANSAS 68 SURFACE LAYER EXPERIMENT.

_TOWER_SENSORS:

U- Cup anemometer.

32m— o~ U, T,I. d- Wind vane.

: ~ T- Aspirated plat wire thermometer.
- Us,Up,W- Sonic anemometer,
L @8- Fust response thermometer.
L] R- Riso fast response. UV, W,8.
226m— | U, d,T,u,ug, w, 0. 1- Eppley pyrheliometer.
18M — = U, T,
3m— > U, d, us s w, o im anemometer masts
Bm— |~ u, T. ( Bradley).
5.66mM — [ U, d, u,ug,w,e,R.
am— —;: vort o Net radiomet
2m— H> u, T g 3 - et radiometer,

== 1=
Drag- plate. Drag plate. Soil Fiux Plate.

Figure 6.1. Diagram of the experimental set-up during the Kansas 1968 surface layer
experiment (Izumi, 1971). The first comprehensive experimental test of the Monin-Obuchov
similarity hypotheses (Bush et al, 1973, drawing:C. Kaimal personal communication).
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We shall now proceed to discuss details and consequences of some of the M.O. formulations.:

The stability

The stability is described by the parameter combination: z/L, with z/L = 0 denoting neutral. From
the definition of L it is seen that it is a measure of the relative strength of the impacts on the
turbulence from the dynamic part, through u., and from the thermal part through 6.. The fact
that all the stability is described by the ratio between z and L means however that stability is
both a function of the relative strength between the thermal and the dynamic forces in the
atmosphere and of the measuring height, meaning that irrespective of the overall atmospheric
conditions, close to the ground the stability is neutral.

Profile Expressions.
We shall now consider the forms for the mean profile for on(z/L), ¢@o(z/L), 94(z/L). The three
functions all looks pretty similar. The typical form is illustrated on the figure below.

The functional forms of the - functions can be summarised (Panofsky and Dutton, 1989,
Hogstrém, 1990):

z z z z
—>0)=1+5—; —<0)~A-a—)"
(p(l_ ) L (/?(L ) =~ ( aL)

(6.15)

. 1 . 1
¢m.nzz,az15. gog,(pq.nzz,azlo

z/L
i) 4 z/IL
z/L

Figure 6.2. Characteristic behaviour of the profile functions within the Monin-Obuchov surface
layer similarity.

The expression for the dissipation functions do qualitatively follow the production functions (¢m—
z/L), ¢o(z/L) and @4(z/L), as indeed they must if the flux divergence terms in the equations are
small. However, the exact match is debated, see next figure, where estimates of all functions
are shown for the momentum balance is shown.
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Figure 6.3. Experimentally determined Monin —Obuchov similarity functions from Hégstrém
(1990) as functions of (z-d)/L, where d is the zero level for z, called the displacement height,
see section 7.The terms, P,B, Tp,Tt, and D are defined in Equation 6.9.The top figure shows
unstable values, while the lower figure shows stable values.
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From the ¢- functions above, we can calculate the profile expressions. As example we chose
the profiles of wind and potential temperature.

z kz ou
%(I)— U_E
Z!
u 4 ’ 4 l_¢ (7)
u z u, 1 "L
du = ~p,(—)dz' = | = (= ————)dz;
J iEﬂMB lkg, )
(6.16) similarly
kz 60
= ——=
Pp(— ) 0 o
* 1-g,(2)
‘ ) 7' 0, 1 IREATH
doe = —@,(—)dz'= | =(= - dz’;
i Z!T ? ZO{ & ;)

We use that u(zo) = 0, and 6(zot) = 0o, that is some estimate of the surface temperature, and
¢om(z/L=0) = @n(z/L=0) = 1. This is really how the v. Karman constant has been chosen.
Hence we get:

UVF%ﬂMf%W%HWéwmm

(6.17)
 1-0,()
2y oy (L
v eri( )dz
and
0(2) - 0, = - () =, () 4y, () ith
(6.18) '
: 1-9, (i)

z Zor L '
Vo) () = [ (—— )z
A T
For unstable condition the y - functions are complicated and positive, see e.g. Stull(1991), while
for stable conditions the integration is trivial:
Z

z z
6.19 Ly —p(Ey=-5=
(6.19) ‘//e(L) ‘//(L) L

The values of y for zo/ L and zqr /L are often neglected, and y(0) = 0. We are now able to show
the principal behaviour of the profiles for stable, neutral and unstable conditions. It should be
pointed out that the temperature gradient and the 6. changes sign together.
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The qualitative behaviour of the profiles are shown on the next figure, and it is clear how these

functions do describe the lowest part of the characteristic profiles throughout the boundary layer
as shown earlier

Ln(z)

Ln(z) or
Ln(zgr)

Figure 6.4.Characteristic profiles for the surface boundary layer for stable, neutral and unstable
conditions. .
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Some aspects of the surface layer.

The Richardson number, Ri, is used throughout fluid dynamics to characterise the thermal
stability of a fluid and the influence of thermal properties on the turbulence. There are two
different Richardson numbers, the flux Richardson number, defined from gradients and fluxes,
and the gradient Richardson number, defined from the ratio between the temperature gradient
and the wind speed gradient.

We start our story with the simplified energy equation used earlier:

(6.20)
1de _, 9We) - ou 1owe) 1awp)

2 dt 0, oz 2 a2 p o ’

L on Cuw Qyn - 9EWOD gy Uy (LO0We) 1 OWD) |y )
2 dt oz 6’v az 2 o1 p 01 0z

From this equation we define the Rigyy

g(-w'e,)

(6.21) Riy,,, = %/( u'w —)

Rirux is seen to describe the thermal influence on the turbulence structure. If Rigy >0, the
thermal properties act to dampen the turbulence, and if Rig is larger than about 1, the
turbulence cannot exist. One talks about a critical value for Rigy.

Using a turbulent diffusivity, we can derive a gradient Richardson number.

Kaév 0,

(6.22) Ri., = 9 -We) _9 @  _98 & _qg
6w O ouu 6, duy,
oz 62 oz 0z

Since we are not entirely certain about these diffusivities, we consider the two Ri’s as different.
The gradient Ri can be used to characterise the stability of the surface layer as an alternative to
z/L. Indeed it was used before z/L, because it only demands that one can measure mean value
gradients, which is an easier and older technique than the measurement of the turbulence
fluxes, necessary to derive the Monin —Obuchov length.

The relation between Ri and z/L is found from:
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08, 00, kz 4,

(6.23) Ri - 9 o 9 2.k _z gl
| 6, ouy, 6, du, k., U ., L(p,(z/L))
(87) L))
z or" 'u,” kz

With the forms of the similarity expressions (6.15) given above we see that for unstable
conditions, Ri~z/L. Similarly for the stable conditions, the similarity functions indicate that Ri
approaches a constant for z/L —, corresponding to the so called critical Ri, where the
continuous turbulence dies out ,as described above. This result is still debated, though. Other
researchers claim that Ri does not go to a constant. See illustration in figure 6.6, indicating that
at least for this experiment the Ri goes to a constant.

Ri L1074+ 4.70)
Ris stttetteeeteeeimanen,
1+47C0)°
.25 ( &
T T T T T T T T T T et
-25 2.0 =15 -1@ -0Q8 s 1g9 5 20 235 30 3.5g )
.‘ - )
. T—0.5 Ri
- 050 L’
I. ",
. L |
h . + 0.05, &
L -
+—1.0
- * [ T T T
- I—*o.m - Qo5 0.05 asa
- i “a
| Je -—0,05 g
' A
q T+—1.5 It &% "
/, 11 L
(1-15L)2 —o.a
rRi=o.74§ — .
(-9 82 .
* +—-2.0

Figure 6.6. The dependence of the gradient Richardson number on stability parameter,

£=1z/L ,estimated in Businger et al. (1972).

So far we have used constant turbulence diffusivities to close equations. Now, we will try to
derive behaviour of K that is consistent with the surface layer formulations. We illustrate for
momentum and a passive scalar like humidity.

— ou |

(6.24) uw =-K, —; qw q
oz

W =— —_1
f 4 0z
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Inserting now the similarity scales and expressions we obtain:

u

(6.25) —uf =-K, ¢, (z/L); -qu, =-K, . 0, (z/L);
kz kz

From this we get expression for K, and Kg:

(6.26) Kn=ku,z/¢, (z/L), K,=kuz/g,(z/L)

As seen we have found a velocity scale, u., a numerical coefficient, the v. Karman constant.
The mixing length scale ¢ is seen to be equal to the height z, divided by the similarity functions.
The ¢-functions increase linearly with z/L for stable condition, while they are slightly smaller
than 1 for unstable conditions. This means that for unstable condition the mixing length is larger
than the measuring height, while it for stable conditions is smaller than z. Indeed, for stable
conditions:

(6.27) : :

= =
o(z/L) 1+si

— 0.2L for E—)oo

Typically diffusivities follow the surface layer formulations for small z. For greater heights in the
boundary layer proper, the diffusivities are assumed to become constant or diminish with height.

One example is:

(6.28) K = ku,z/ ¢, (z/L)-exp(-a fV,z/ul);

where o is a coefficient. If we Taylor expand the exponential it is seen that this
expression is seen to be consistent with the formulations for the height variation of u.,
which were derived earlier in (6.4):

| fC VG | z )

6.29 u,, U, (1- ;

*0

Inz

K(z)

Typical height variation of K(z) in the boundary layer.

Figure 6.7 Characteristic behaviour of K(z) through the atmospheric boundary layer from (6.30)

In section 5, we have seen that a typical K consistent with the Ekman layer derivation is of the
order of 15 m%s. The surface layer value is considerably less, taking z = 10 m and u- equal to
0.5 m/s. Hence from (6.26): K~ 2 m?s. On the other hand the surface layer K increases with
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height on to the top of the surface layer, being from 10-100 m above ground. Hence from this
we must expect the surface layer to look quite different from its predicted behaviour in the
section about the Ekman spiral in section 5.

Variances and Spectra.

The variances and the spectra are obviously related, since the variances derive from integration
of the spectra.

The variances can be made non dimensional with appropriate scaling parameters, since we
have introduced scaling parameters for each basic variable, wind, temperature and humidity.
The properly scaled data can be plotted as functions of z/L. The variability of such functions with
z/L is a test of the applicability of Monin-Obuchov similarity function for these variables.
Generally, it is found to work for some of the variances, but not for all, reflecting some limitations
to the surface layer concepts. As an example of a variance estimates, where surface layer
scaling works well, we refer to o, the standard deviation of the vertical velocity, and cg, the
standard deviation of temperature. Following the scaling philosophy presented out above, we
would scale or normalise these two with u, and 6., and expect the scaled variables to be
function of z/L

O, Z O z
6.30 W _f (2)and £ =f (—
(6.30) . W(L) 7 e(L)

* *

It is seen that Monin-Obuchov similarity does indeed work well for many of these. It does not
work well for horizontal velocity components, as we shall see in Section 8.

Similar experience has been found for the spectra. The scaling used is derived from a
combination of the Taylor hypothesis, the Monin-Obuchov similarity, and the Kolmogorov laws
for inertial range turbulence. We consider the inertial spectra for temperature and winds.

leu (kl) = au82/3k172/3;

(6.31) kS. (k)= 1/3 k—2/3.
1S (k) =are e k7

Inserting the similarity functions for dissipations, we obtain.

kS, (k) @ .
ljz(pZ/é = K 213 (k,z) 7
(6.32) e w

kS (k) _ o
92(/)—1/3(/) - k 2/3
* e &0 vk

where we summarise the expressions for the dissipation functions, with v. Karmans constant
denoted k, here, because we here use k; as horizontal wave numbers:
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I(vk 2‘99 .
ue

(6.33) @, (—) = } e (—) =

*

The above shows that if we measure the spectra as function of wave number, the inertial
subranges for several measuring heights would fall on the top if normalised as shown.

If we measure time signals and analyse for frequency spectra then the Taylor's hypothesis is
used to write the k,z variable as a normalised frequency n:

f[Hz]lz kz 1z,
(6.34) N=———=——=—;
u 2r A

Warning! : Before around 1980 n was called f, and f was called n. One has to check in older
papers.

We recall that in Sectionl, the Taylor hypothesis was formulated as:

(6.35) — = u—

which means that o = u k;. We recall as well k;S(k;) =nS(n). The result of these
considerations is that if we normalise the power spectra as indicated by (6.32), and plot the
normalised spectra versus the normalised frequency n, the resulting plots will universal, and
independent of wind speed, measuring height and stability. This scaling has only been derived
for the inertial subrange by the above scaling arguments, but it is generally used also a larger
range and is empirically found to work over a much larger frequency range, if one allows for
additional dependency on the stability, z/L.

As for the variances it is generally found that some of the spectra and some parts of the spectra
can said to follow better these M. -O- similarity formulations, than other parts. Examples are
shown on the following figure, Figure 6.8, which show all the main spectra and co-spectra in the
surface layer, scaled with dissipation expressions for near neutral conditions, as described
above. As additional stability dependency, Figure 6.9 shows the variation of the peak frequency
with stability, showing a tendency for the spectra to move to larger n, or smaller scales,
following (6.34).
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Figure 6.8. Normalised spectra, according to (6.31), for near neutral condition plotted versus the
normalised frequency, n (Kaimal et al, 1972)
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Figure 6.9 Variation of the normalised peak frequency, n, of the spectra in Figure 6.8 with
stability. The absence of curves for unstable u and v-spectra is an indication of that these
spectra do not follow the Monin-Obuchov similarity well for unstable conditions as we shall see
in section 8.

Note that the co-spectra in Figure 6.8 are normalised by the total corresponding fluxes. Hence,
the co-spectra show the contribution to the respective fluxes from the different frequency
intervals.

Aside from the low frequency part of the power spectra for the horizontal velocity components, u
and v, in unstable surface boundary layer (see Figure 8.10), also other spectral characteristics
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obtained within the atmospheric surface layer show deviations from the M.O. similarity
illustrated in Figure 6.8 and 6.9. An example is shown in Figure 6.10. This figure illustrates that
not all signal variability within the near surface layer can be characterised as surface layer
turbulence in the sense discussed in section 2 as that not all variability within the boundary layer
is created from boundary layer processes. In Figure 6.10 the low frequency fluctuations reflect
the low frequency spectra discussed in section 2, notably the meso-scale spectra presented in
Figure 2.23.

Figure 6.10. Stable spectra measured at 46m above terrain from Larsen et al (1990). The right
hand figure shows 10 such spectra of the v-component. Here, the higher frequencies shows the
spectral variation consistent with u, and z/L as discussed here, while the lower frequencies
show no such variation, and are basically independent of the surface layer scaling and reflect
the meso-cale spectra presented in Figure 2.23. The right hand figure shows the average of the
three velocity components, u,v, and w for the 10 runs presented on the former figures. Itis
seen that only the w-spectrum is negligible for the meso- scale frequency range, and indeed
only the w- component spectrum can be explained fully by the surface layer scaling, as
illustrated in Figure 6.8 and 6.9.

Just as we have considered variances and co-variance for variables measured at the one point,
we may also consider correlation between variables at different points of space, various kinds of
cross-variances and cross spectra involving data from different points in space. Especially we
shall study correlation between velocities at different spatial points, which are important for wind
load modelling.

S, (21, @) =Co, (1, ) +1Q, (1, ®)

(6.36) >
Coh, (;, ) =|Su (Zi-a))| 18,(%,@)-S,(X + %, ®)

This first of the equation describes the cross spectrum of a velocity component at point x; and
xi+(;. In the second equation one has simplified by taking the absolute square of the cross
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spectrum and normalised by the similar one point power spectrum established as geometric
mean of the spectra in the two points considered. This is denoted the Coherence.
Consider the correlation expression from (2.49).

R, (2, 9) = [[[ [ S, (i, @) (0 —k)e' ™) disd @
ki o

(6.37) _ J‘J‘J‘ S, (k; )ei(kizi+Uklr)dki
ki

Where we have introduced the 8-function, defined in section 2, to account for Taylor hypothesis
of frozen turbulence, as we have used throughout the spectral description above, with the mean
wind, U, along the x; -axis. The cross spectrum from (6.32) can now be computed from:

_ 1 —iwr _ 1 i(ki zi +Ukr—ior)
(6.38) Su(gi,w)—EIRu(;(i,r)e dr—zjysu(ki)e % dk.dz

Here we use another 8-function
1 i -0)t
(6.39) S(kU —wr) =—je'(k“ "dr
2

Hence we arrive to an expression for the two point cross-correlation spectrum

(6.40) S, (z,, @) =€ [[ s, (3, K, k, e’z k) dk dk,

koks

Which shows a cyclic variation between the Co and the Q part essentially controlled by the
exp(ioy1/U) or the phase delay. From (6.36) we now obtain the coherence as follows, using
horizontal homogeneity in (6.32):

Coh, (7, @) =S, (z, @) 1 S, (@)* =
©4D =| [[s. (3, Ky, ke ter i di, [/ (][ S, (3, K, k, )dk,dk,)?’

kaks koks

Based on this very simplified picture we conclude that displacement along the mean wind
direction will influence the phase not the coherence that will remain equal to unity. Only
displacement perpendicular to the mean wind will reduce the coherence because the numerator
will be smaller than enumerator in (6.37).

The model can be expanded assuming isotropy spectral relations, as given in section 2. This is
done in Kristensen and Jensen (1979), with good results. However, we can already point to
many limitations to the validity for this modelling, as also pointed out by Kristensen and Jensen
(1979) and Kristensen et al (1981): We know that there will be a reduction of correlation also
along the mean wind direction. For many scales, relevant flow fields are not isotropic,
especially in the z-direction where it is not even homogeneous. Therefore, we shall cite some of
the empirical expressions e.g. Davenport (1961), which are based on the simple exponential
model below, with the coefficient a being specified for different displacement and ambient
conditions.
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(6.42) Coh(f) ~exp(—af y/U)

Where the coefficient a is dependent on the separation and direction of the separation ¥,
longitudinal vertical or lateral and also depends on stability, reflecting the increased larger scale
contribution to the spectrum for increased instability. However, the stability effects seem not as
clear as for many of the other parameters studied in this section. Additionally, we must expect to
have to include the measurement height, z, because the turbulence depends on the
measurement height. The frequency is now in Hz.
The following estimates of the a-factor for lateral and vertical displacement, indicated by y and z
respectively, but not including stability effects, are from Panofsky and Dutton (1984), but many
other formulations exist, e.g. Kristensen et al (1981)

Xy

%150 for2L 54

a, ~10+11
YA z

(6.43) a, ~10+11%%
YA

a, ~60 2w
U

The values indicate that the coherence for pure vertical and the pure lateral displacement
behave rather similarly for close to neutral conditions, the limiting value is indicated for a, only
though. The longitudinal coherence reflects eddy decay time relative to advection time.
Additional to displacement direction, we can also consider the three different wind components
of the turbulence, stability has been shortly discussed. Finally should be mentioned that the
expressions in (6.38) are found from 3D surface layer turbulence. Also the low frequency parts
of Figure 6.10 give rise to coherence that has now been parameterised, and behave quite
differently from the boundary layer turbulence normally considered in these notes (Vincent et al,
2012)

We now leave the discussion of the atmospheric surface boundary layer. The next figure shows
the boundary layer, as we understand it now. We have especially studied the surface layer, and
the scaling expressions that apply within this layer. When we say that they apply within the

surface layer, it raises the question of what we expect to be describable within the surface layer.
The short answer is local variables, meaning variables that can be defined within this layer only.

We have seen the variables, representing fluctuations, can be considered local, vertical
gradients and horizontal gradients likewise. Mean values cannot be considered local, in the
sense that they can be determined from within the surface layer only. To determine wind speed
and temperature we have to integrate the gradients from a surface value and up, forcing us to
introduce z, and zor, both parameters, laying outside the turbulence boundary layer. With these
limitations we have found the formulations to work reasonably well within the surface boundary
layer of the atmosphere. Some the expressions that can be derived do not work, and often it is
argued that influence from nearby layers is penetrating into the surface layer. Recall that the
idea of distinct layers is really in contradiction with another idea, the ideas of the boundary layer
being immersed into a soup of eddies of all sizes and orientations.
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Figure 6.11. Schematic drawing of the atmospheric boundary layer with sub-layers. The surface
boundary layer is seen between hg and hs. Between the surface boundary layer and the
surface we have a viscous interfacial layer, where also the molecular diffusivities are important,
because the turbulence is inhibited by the nearness of the ground. Above the surface layer is
the boundary layer proper, where also the turning of the wind and the structure at the
exchanges with the free atmosphere are important. In the following section we shall consider
the Viscous interfacial layer.

Appendix 6A. Dimensional analysis. The Buckingham PI-theorem.

In the main text, we have simplified the momentum equation to be valid for the statistical
stationary and horizontally homogenous surface boundary layer. Defining suitable characteristic
scales we could argue for the functional form of relevant dimensionless meteorological
quantities. Here, we shall introduce a more formal method of dimensional analysis leading to
similar expressions, the so called Buckingham Pi theorem, which we have summarized from
Jensen and Busch (1982).

Assume that a physical system is described by a number of physical quantities Q1, Q2, Q3, ----,
Qn., through the equation:

(6A.1) F(Ql’QZ’___!Qn):O

Equation (6A.1) is dimensionally homogeneous, meaning that that it is independent of the
dimensional units chosen. The n physical quantities Qi, are assumed to involve r independent
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physical units, like time, length, mass etc. Now the Pi theorem states that (6A.1) is equivalent to
another function:

(6A.2) f(z,7,,——— 7, ,)=0.

Here ny, s, m3,---, T, are independent dimensionless power products of the Q quantities. Note
that that letting the function equal to zero, is to be understood such that the function value
remains constant for all allowable values of the parameters. Therefore, the solution of (6A.2)
means finding constrains between the parameters to allow f (-) to remain constant.

The Pi theorem allow one to find the minimum number of dimensionless parameters needed for
a complete description of the physical problem, described by (6A.1). Normally the Pi theorem
cannot provide information about the functional form of the solution to (6.A.1). It must be
determined by other means, mainly through measurements.

As example we apply the Pi theorem to the simplest possible version the surface layer
formulation, then neutral wind relations in (6.7a), where we again assume that the wind profile
must depend on the friction velocity and the height. However, we neglect the dissipation from
(6.7a), because it assumes additionally that the there is local balance between production and
dissipation of kinetic energy. Hence, we can write (6A.1) as:

ou
(6A.3) F(—,u,,z)=0.

0z
Here we have 3 Q quantities, 2 dimensions (time and length). Hence we need only one
dimensionless parameter in the f-function, we obtain:

Z ou
(6A.4) f(——)=0

u, oz
This in turn in implies the validity of (6.7b), neglecting the dissipation, and leading to the
logarithmic profile.

z ou 1
(6A.5) zou _ 1
u, oz k
Note that just in main text of this section, the important assumption is the number of parameters
that describe the physical problem. In this spirit we now continue by including the effect of
buoyancy effects
ou —
(6A.6) FE&E U zwe, Do
674 T,
Now we have three basic dimensions, length, time and temperature and five Q-quantities,
meaning that we need two n-quantities, e.g.:
zZ ou . Z Jg—0 1

6A.7 T, = VT, =——
(6A.D) Yu ozt U, L

Where we have reintroduced the Monin-Obuchov stability length L., from the main text of this
section. Hence the f-function looks as follows
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Z 00 2z
6A.8 f(——,—) =0,
(6A.8) (u* = L)

This implies that:

kzou o (z) _

u oz "L

Where the v.karman constant, k has been introduced from (6A.5) and also introduced the
stability function for the wind profile, we found in the main text of the section.

The dimensional analysis has been found very useful in meteorology, using dimensional
argument for relations between quantities. However, it does not always work properly, often

because one neglects parameters in the analysis that should have been involved.

(6A.9)
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7. Near surface viscous layers, roughness lengths:
Zo and zqr, Interfacial exchange.

Behaviour of profiles and flow close to the ground.

The behaviour of the velocity profile very close to the ground is illustrated below.

Ln(=z)

Ln(3) 1T

Ln(zy,) T

U(z)

Figure 7.1. The logarithmic and the actual wind profile near the ground. §'is the lower height
where the logarithmic profile applies, z, is the roughness length. The x- points show actual
profile values.

The profile on the figure is a standard:

_ u, z
(7.1) u(z) = In(—);

k 'z,

d is the lower height of validity for the logarithmic profile. Note that z, is below 8, so z, is the
extrapolated height where the logarithmic wind profile attains the true value of the wind at the
ground, namely zero. As a rule of thumb, 8 ~ 10zo,. Below 5 the wind is influenced by the
individual roughness elements as well molecular viscosity.

If the surface is flat viscosity dominates we can estimate 6 from the flux divergence terms in the
average momentum equation, e.g. from (3.83), where the two last terms read:

o, ouui o, U ——
> -———=—(W—-u'w"),
axj OX. 07 o012

]

(7.2) 1%

where we, as usual, have assumed gradients only in the z-direction. We have earlier argued
that the molecular term could be discarded due to the much larger turbulence term. However,
close to the ground the profile gradient becomes large enough for the molecular term to
dominate. Inserting the surface layer expressions and inserting & as the height where the
molecular an turbulence terms are equal, the equation above reads:
o, ouU —— 0 u, 14
(7.3) —(v=—-uW)=—(v——+U) >S5~ —
oz oz oz ko ku,
Since v~0.15 cm?s™, and ux is typically > 10 cm/s, § is seen to be around 0.1 mm, so the above
considerations are valid only when roughness elements are below that height.
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To see what happens in the more general situation, we take the non-averaged momentum
equation for the u-component, e.g. (3.72), using incompressibility to rewrite the advection term.
ou oud; 1¢op  Ou
(7.4) ke R R
o4 ox. poX OX;

]

Introducing explicitly the components, u, v and w, and rearranging slightly, we obtain:

ép—va—u)+i(uv—va—u)+£(uw _Vﬁ_u =0
P OX

(7:9) o ol oy oy oz oz

Notice, we still do not average.

We now integrate the equation from the true surface z = n(x, y, t). The time, t, is included
because many surfaces move in time, with water surface wave fields as the most important
example. The integration will be carried out from z = n to z = h, where h is well into the turbulent
surface layer with M.O. similarity, logarithmic profiles etc., see figure 7.2.

2T e —— .
X

Figure 7.2. The actual surface, n(x, (y), t), the scale height ¢, and a height within the turbulent
surface layer, h.

The integration looks as follows:

h h h

ou 0 1 ou 0 ou ou
76) |—dz+|—@U*+ =p-v—)dz+ [=—(uv-v—=)dz +(uw —v—)"
<>£at iax( S {ay( vy e (aw -,

We use Leibniz’ rule to move the differentiation outside the integration to facilitate interpretation:
ot " og on oh  tog on
—(gdz = [Z=dz —p(n) =L + p(h) — = [ == dz — g(n) =L,
~ j ¢ j = o)+ o) j = o)

Where we have used that h is a constant height.

Hence (7.6) takes the form:
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(7.7)
h

" ou o, ,
;[Edz-l-;[&(u + ;p v—)dz+_[5(uv vg)dz+(uw —v—)

h h
=£IUdZ+|:U7 8_77}4_2.[([]2 n ép—va—u)dz+([u2J+ ép_ aU 877
ot Tot] oxy D OX D T ax

+%i(uv—v%u)dz +([uv] - VE)U 2;7 + (uw _Va_)h —([uw] _VZ_) _

The terms in square brackets are for later use. Next we consider the no-slip conditions between
the air and the surface, n(x,y,t), meaning that an air particle at the surface remains there. The
speed of a surface particle can be written:

d 0 0 on
(7.8) W":d_?:a_?+”"a_z+v Y =0;

Multiplying this equation with u, it is seen we can eliminate the terms within the square bracket
in the integrated momentum equation. The equation now takes the form:

h
% udz+—j(u + —p—va—u)d2+(éD—VZ—i)naan
(7.9)
0 ou ou ou
+—j(uv—v5)d —VE) E+(uw —va—)h V=), =0

We now takes the mean value and assume, as usual, stationarity and horizontal homogeneity
for mean quantities, in the turbulent surface layer, where all integrals get the most of their
contributions, collecting all terms without integration first:

" - _
EJ'UdZJF(ga_U)U +V(6_u_6_u8_77_6_u6_77)+(uw _Va_u)h
oty L OX 0z OX oX oy oy 0z

(7.10)

ou
+a;[(uv v—)dz +—J.(u + —p—v&)dz =0
or:

(7.11) —wu), =u? = (ga_) +V(6_u _a_ua_n_a_ua_n)’

p ox’’ 0z OXx Ox 0oy oy
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The two last integrals above will be close to zero in the turbulent surface layer, where they get
most of their contributions. The first is for the lateral velocity, when the coordinate system is
aligned with the mean wind in the u-direction. The second term is simply the balance between
advection and pressure forces in the mean wind direction. As usual, when we are in the
turbulent surface layer we can neglect molecular terms.

The result can then be formulated as, that the turbulent momentum flux in the turbulent surface
layer, in the near surface layer is taken over by a mixture of pressure forces on terrain features,
called form drag and included in the first term, and molecular transport. For the molecular terms
the first are usually considered the most important. The two last are normally neglected except
in wave growth theories where they are considered important.

Next we study how the scalar variables are transported towards the surface through the viscous
interfacial layer.

We have a similar profile expression in the turbulent surface layer:

— o Z
7.12 0-60 =—In(—);
(7.12) b= (ZOT)

We have a similar figure for temperature as figure 7.1 for wind speed:
Ln(z)

Ln(A) X

X Diffusive Layer

(0- 0,)/ 0.

Figure7.3. The temperature profile close to the ground. 4 is the lower height of validity for the
logarithmic profile, shown as a straight line.zr is the “roughness length for temperature.

Corresponding to the momentum equation starting from (3.58) and neglecting the humidity term:
00 ou@ 329

—~+ ~v,— =0

ot oX, OX’

] ]

(7.13)

The equation is similar to the momentum equation for the u component, which we used to study
the surface stress. The only and important difference is the absence of the pressure term.
Hence we can find the result directly, without redoing the derivation, we just did. (We also here
use n(x,y,t) as the actual surface).

00 _20on_20n

7.14 W), =v. (=2 —
(7:14) =V T o oy oy

),
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This means that close to the surface heat and all other passive scalars must be transported by
the molecular transport only, as opposed to surface stress that could use pressure as well in the
form of form drag.

Hence, for many surfaces scalar transport is fundamentally different from the momentum
transport close to the surface.

Roughness Formulations and Parameters

The purist attitude is that the z, parameters are simply integration parameters, when Monin-
Obuchov profiles are integrated. It is a height where the variable attains its surface value (zero
for wind speed). From another point of view it is a characteristic of the surface, being
responsible for the atmospheres friction and general coupling and exchange with the surface.

Determination of z, is then a field were knowledge about the roughness of specific surfaces has
been determined mostly experimentally but also with some theory. Below we cite such formulas
for specific surfaces.

Surfaces with characteristic surface elements
The roughness is derived from the density and shape of the roughness elements:

(7.15) z,05-h-S/A A>>S

Here h is the height of the individual roughness elements. S is the crosswind area of a
roughness element, and A is the average surface area for each roughness element (Lettau,
1969).

Dense vegetation, canopies, cereal fields etc.
One of the simplest formulas here is:

1 2
(7.16) z,=—(h—-d);d=—h;
3 3
Where h again is the height of the canopy, d is the so-called displacement height.
The displacement height is generally introduced over denser vegetation, as illustrated below.

Here some of the canopy height contributes to a change in surface level, rather than to
roughness.

“
o

b s o

Fig. 8.7  Flow over forest canopy showing wind spasd, M, a5 a function of

I'}eigm, z. The thick canopy layer acts ike a surface displaced &

istance, d, above the ¥ug suiface. z,= raughness length,

Figure 7.4 lllustration of roughness elements having both a roughness length and a
displacement height, here for a forest canopy (Stull, 1991)
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Theoretical one can estimate the displacement height as the level where the frictional forces
attacks the surface. Experimentally one has to fit two parameters from a logarithmic expression
instead of just one, z,.

z—-d)
Z0

)

The equation shows consensus about how to introduce d into the logarithmic profile equation.

(7.17) u(z) = %In(

As seen from the forest picture, Fig 7.4, above the exact profile becomes quite different from the
turbulent surface layer profile. This is illustrated also on the next figure showing the profile from
just above and down through a cereal canopy.

G (cmss)

Figure 7.5. Wind profiles above and through a cereal canopy, not being logarithmic, but rather
by an exponential variation around the crop height.

Roughness of water surfaces.

Over the ocean the roughness elements are associated with the wind driven surface waves.
Observing that the waves were generated by the wind force on the surface, proportional to u.?,
and restrained by gravity, Charnock(1984) proposed a simple relation for z:

2

(7.18) 2=  +a

u, g
The first term is later introduced for low wind situations, with few waves and wave roughness
elements, where molecular viscocity becomes responsible for the momentum transport close to
the surface, see equation (7.3). The coefficient, B, is usually taken as about 0.1.
The coefficient o is found to be very small and quite variable between 102 and 3-107?,
dependent on site and situation. Many more complicated expressions, but the scatter of the
data, around both (7.18) and the more complex expressions, makes experimental evaluation
difficult, see appendix 7A . The fact that the numerical coefficient is so small is normally taken
as indication of that all parameters have not been include. (Hansen and Larsen,1997).
The water roughness is usually quite small, mostly less than a few tens of a millimetre. Indeed
water is one of the least rough surfaces in nature. As seen it also changes with wind speed, a
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thing that actually happens for many other surfaces, like a blowing sand surface, a vegetated
surfaces, where the air does not just exchange momentum but also energy with the surface, by
moving part of the surface around, waves for the water, sand particles for sandy surfaces and
leaves and branches for vegetation. See also Appendix 7A.

Seasonal and other changes of roughness.
Many surfaces show changes of roughness with season because the roughness of vegetated
surfaces change with the seasonal changes of the vegetation or due to aspects like snow and
ice cover in the winter.
Below we show a figure of the seasonal change of the roughness for typical Danish fields.

10°
- LEGENDA ]
Il Mast 2
- Mast 3 —
''''' Mast 4 .
w07
E _
h? B -
02 L |
1073 1 1 : |
Wi =P SuU A
SEASON
0.3
0.25 A —+—Landscape 1998
= = / —=—Landscape 1999
E 02 .
) Spr?ng barley |
9? 0.15 \ A e Spring barley Il
E] \\/ W Winter barley
é 0.1 S Wheat
/ /2<‘ —%—Grass
0 —r T S —+— Beets
1 2 3 4 5 6 7 8 9 10 11 12 Model with hedges

Figure7.6. Seasonal variation of
3 the roughness length, zO0,

- measured for three agricultural
fields, 2, 3 and 4 in Western
Denmark (Sempreviva et al,
1989)

Figure 7.7. The figure
shows the seasonal
roughness variation as
measured from several
small masts and one tall
mast in the same area. Also
the modeled area
roughness is reported. The
seasonal variation of all
data and models is clearly
seen.(Hasager et al., 2003)

The measured roughness in figure 7.6 and 7.7 are obtained from small masts each placed in a
field with a characteristic crop. The measured landscape roughness in Figure 7.7 is obtained
from a tall mast. The importance of hedges for the landscape roughness is emphasized.

Additionally, many types of vegetation show z, to be a function of wind speed, a little like water
because vegetation is moved by the wind, and therefore energy is supplied to the vegetated
surface just as for the wavy surface of water or wind farm, see below. Also stability influences
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Zo, being smaller for stable conditions, due to inhibited interaction between the atmosphere and
the surface for strong stability, see Zillitinkevich et al. ( 2009).

Roughness of a large wind farms

> Geostrophic wind, U(H)=G

A
In(z) T

"Outer™ friction velocity, 1w G H

"Onter” rounghness, o0 A

‘r:ﬁerE

Fig. 7.8. Derivation of roughness of a very large wind farm (Frandsen, 1992).

As the Figure 7.8 indicates, Frandsen (1992) finds an expression by matching an outer
logarithmic profile that reflects the roughness of the wind farm at the wind turbine hub height, h,
to an inner profile that reflects the background roughness:

u@@ =£|n(i) 7>h
u, Kz
(7.19) y v ) o ,
V@ 12y z<n
u, Kz

Where subscript “wf’ denotes "wind farm”.
The relation between the two friction velocities are derived from the areal thrust of the wind farm
as:

(7.20) pul = pu’+pcU(h)?,

The thrust coefficient for the wind farm (per unit area) is found by dividing the thrust of the
individual wind turbines, T, with the surface area for each turbine.

t=T/xX, :%pCTU 2(h)%;zD2 1 xx, = pcU?(h)

720 G . X X
—C = 1S =—,8, ==
8s,S, D D

Here C+ is the thrust coefficient for the individual wind turbines, and D the diameter of the area,
swept by the blades, when the turbine works. C+ is zero for non-working turbines, it then
growths fast with wind speed to about one, and gradually decrease as 7(m/s) /U(h) to about 0.2
for 15 m/s, for characteristic wind turbines (Frandsen, 2007). Here, we neglect the contributions
from the stationary structure of the wind turbine.
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Matching the wind speeds of (7.19) in the hub height, and solving (7.20) and (7.21) for zo,; One
obtains:

(7.22) Zoys =N-eXp(— £

~h- exp(_L) ,
C

\/ct+(z</(ln(h/zo)2) Je

where the approximation holds, if the background roughness is small compared to Zg .
Characteristic values can therefore be found from (7.22). Assuming h=100m and s= 7, we find
that, for increasing wind speed z,, Starts being equal to z,, to increase fast with wind speed to
about 1.1 m for U (h) =7 m/s, thereafter to decrease to about 0.2 m for U(h)= 15 m/s. Notice,
we are talking about a fully working wind farm. If the turbines do not work, the roughness
predicted by (7.22) goes back to the background roughness.

At present experimental evidence is obviously difficult both because the height of the turbine
structures actually exceeds the surface boundary layer, and also because the very large wind
farm is not yet constructed.

Consensus tables and figures summarising the roughness of landscapes.

The experimental and theoretical knowledge accumulated is often collected into figures and
tables.

We show some below, where some are derived from the assessment of roughness from terrain
inspection, which is an essential part of evaluating the wind power resource for a given location.
One should recall the purist view, that the roughness length is a constant of integration for a
logarithmic wind profile. However, as discussed above, it can also be related to the physics of
the processes in the interfacial layer.

However, roughness length scales for larger features, like buildings, forests and wind farms that
are obviously penetrating through the whole turbulent surface layer, where the logarithmic
profile is supposed to exist, as well as for whole terrain types still raises interpretation questions.
Indeed, for such terrain forms, the roughness seem to be stability dependent, reflecting that the
roughness elements now reach into the turbulent surface boundary a layer (Zilitinkevich et
al,2006) . In spite of these complications, the roughness length is obviously a relevant feature
also here, at least in a qualitative sense, since the terrains in question can be said to exert a
friction with the atmosphere. Here, it is mostly be used in connection with numerical models that
need an expression for the surface drag, also for these types of terrain.

Aside from the inclusion of very large terrain features, relative to an interfacial layer, you will
notice that many roughness aspects of a terrain are only partially, if at all, included, as indeed
the roughness length is a measure of the friction between the atmosphere and the ground.
However, it is also a practical parameter, which must be deductible without too much monitoring
and complication Here we list a few of the complications:

Figures 7.7 and 7.8 illustrate the dependency of roughness length on type of surface vegetation,
and its changes. Some of these changes are natural, but for agricultural fields, farmer’s
decisions on growing and harvesting periods are also important.

We have seen that the roughness of water and wind farms depends strongly on the wind (for
the wind farm, if it operates), so it does for sand (if it is dry) and to some extent for all vegetation
that can be moved by the wind.
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All landscapes can become snow covered and all low and flat landscapes covered with water.
These aspects have a strong season and location dependency, but will also depend on random
factors like the weather.

T
it

Figure 7.9 Terrain with roughness corresponding to roughness class 0, water areas with z, =
210" m. The class comprises seas, fiords and lakes. (Troen and Petersen, 1980)

Figure 7.10 Terrain with roughness corresponding to roughness classl, open areas with a few
wind breaks, zq =0.03 m The terrain appears to be very open and flat or gently undulating.
Single farms and stands of trees and bushes (Troen and Petersen, 1980)

Lectures in Micro Meteorology 127



Figure 7.11. Terrain with roughness corresponding to roughness class2, farm lands with wind
breaks, the mean separation of which exceeds 1000 m, and some scattered build up areas, z,
~0.10 m. The terrain is characterised by large open areas between many wind breaks, giving
the landscape and open appearance. The terrain may be flat or gently undulating. There are
many trees and buildings. (Troen and Petersen, 1980)

== ——
i > TS - ———— C T

T

Figure 7.12 Example of terrain with roughness corresponding to roughness class 3, urban
districts, forests, and farm lands with many wind breaks,, zo #0.40 m. The farm land is
characterised by many closely spaced wind breaks, the average distance being a few hundred
metres. Forest and urban areas also belong to this class. (Troen and Petersen, 1980)
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Terrain surface characteristics

Roughness class
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Figure 7.13. Schematics of terrain types, roughness classes, and z, — values. (Troen and

Petersen, 1980).
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Figure 7.14. Schematics of terrain types, and z, — values. Note some roughness variation for

similar terrain is indicated.( Stull,1991).
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Scalar Roughness, zgr, Zoq €tc.

There are two differences between the study of scalars and velocity in the viscous interfacial
layer. It is simpler because we know that fluxes have to be carried as molecular transport. It is
more complicated experimentally, because the scalar roughness is the height, where the profile
attains the surface value of the scalar, meaning the way one determines the surface value now
becomes important for the value of the roughness. For velocity it is simpler because we know
that the surface value of the velocity is zero or close to zero.

We shall now reconsider the figure 7.1, we used above, this time for the temperature profile.

Ln(z)

Ln(A) %

X Diffusive Layer

Ln(zyy) ——

(0- 0,)/ 0.

Figure7.15. Temperature profile close to the ground. 4 is the lower height of validity for the
logarithmic profile, shown as a straight line in the logarithmic plot. The x-points show actual
profile values.

We consider the height A to be both in the turbulent layer and in the diffusive layer. We can
then establish an equation for the flux-gradient relationship in both layers.

— o A H A

B, — Oy =—-In(=—) = ———In(->);
(7.23) Kz, ku, "z
~H=v,0, -6,)/A;

Equating the temperature gradients in the two equations we get:

A A z ku,
(7.24) In(—) =In(—) +In(-%) = A,

Lot 0 Lo Vo
where we, somewhat artificially, have introduced z,. We can now formulate an expression for
ZotlZ0.

K
(7.25) Iy =< A_In(2y =kx.
Zyr Vo Z,
. K
(7.26) L _ g% with kX, =~ A—In(2)
Zy Ve Zy

We have no simple way of solving for A. Instead we try different and reasonable formulations for
A, and see that they result in the same kind of differences between z, and zqr.

1) A »vlu,. This is the smooth surface transition we derived in the beginning of this section. It is

the height where the strength of turbulence flux equals that of the molecular diffusivity.
For this assumption we find the following expression for X+:
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X, =Y~ Lin Xy =pr+ LinRe,) ;
v, k k

(7.27) ¢ 0
: v u,z
with Pr=—; Re, = —2;
2 1%

where we have used the definition of Pr = Prandl Number, and Req = the roughness Reynolds
Number.
The Prandtl Number is a special case of the Smidt Number for a general scalar, Sc = v/vg,
where vy is the Brownian diffusivity of this particular scalar in air.
Inserting the expression for X+, the expression for the ratio between zyr and zq becomes.
Z _ _ _
(7.28) O = % =¢ " .Re,!
Z0
We now consider another assumption for A.
2) A = azg, thatis A is proportional to zy Inserting into the expression for X1, we get:

u,z
(7.29) kX; =ka— "2~ In(a) = ka PrRe, ~In(a).
Vo
(7.30) Zi — e—er :(le—kozPrRe0
Zy

Although the resulting equations are different, they both yield that zor /zg diminishes with
growing Pr Number and with growing Roughness Reynolds Number. To see the actual
differences, we will have to go to data, such as is shown on the next figure, which shows result
from Brutsaert (1982) on X-.

Typically, we have conditions with Reynolds Number between 0.5 and 200. The lowest curve on
the figure corresponds to Pr = 1.20, while Pr for the lower atmosphere is about 0.7. Hence, we
have to go a bit below the lowest curve. If we choose Xt ~ 5, then we find that the ratio:
Z _ _
(731) ot = e kX =e 2;
ZO

which is known as the e-law.

These considerations apply not well for surfaces made from fibrous materials, because for such
surfaces the zqr and z, will also depend on different surface properties, an aspect that is not
included in the analysis above, but also here their ratio is found often to be about €. This law
seems also to apply approximately for many of the other scalar roughness.

For other scalars than temperature, we change Pr to Sc, the Smidt number, and for some the
Brownian diffusivity is very different from the viscocity, giving rise to Sc being very different from
the above value around one. Consider molecules and aerosols as spheres, the Brownian
diffusivity can be derived from Einsteins formula (Chapman and Cowling, 1970):

KT

Vy =

3zvpd
Here, k is the Bolzmann constant, and we have used subscript d to indicate any particle, with
diameter d, molecular or larger. For a typical molecule in air, we have d= 10" m, with v ~v4
Aerosols typically with d= 10°°-10"°m with v, 10- 10" cm%s and Sc ranging from 10-10’.
For such small diffusivities particles have obvious difficulties ever reaching the surface, which is
consistent with that zy4 being close to zero in (7.28 and 7.30). Indeed one has found the

(7.32)
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modelled surface flux to be too small, which has led to modifications of the models of the near
surface layer to involve other processes than Brownian transport, to allow sufficient particle flux
through the layer to describe experimentally found particle flux to the surface. Additionally also
the aerosol dynamics is expanded to include impaction, gravity and slip between the air and the
aerosols (Liss and Slinn, 1983, Fairall and Larsen, 1984). However, here we shall not go further

into this subject.
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Figure 7.16. The figure shows experimental data on In(zo/zo7)/k = X1 in (7.22) versus the

roughness Reynolds number Req = u«z,/vfor different Prandtl and Smidt numbers. Note that

the reasoning above, applied to heat flux, apply to all scalars, for which reason the Schmidt
numbers are cited as well. The figure is taken from Brutsaert (1982). The solid curves

correspond to X+= 7.3Re,"* Sc**2
the relevant diffusivity; v/v4 for the Smidt number and /v, for the Prandtl number.

Ln(=)
h
Boundary Layer Proper
h, —-0.1h
Surface Boundary Layer
5 ~10 =z,
Viscous interfacial layer
zor ~0.1 z5 | o - .
surface

Figure 7.17. Schematics of the different sub-layers within the atmospheric boundary layer.

. The Smidt number is the ratio between the viscocity, v, and

We are now about leave the considerations about the viscous atmospheric interfacial layer. As
seen in the last figure, we have been able to update the figure Micro Scale 6 about the different

layers with new information. In the next section we shall revisit the total boundary layer,
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especially the part that is above the turbulence surface layer. This is the part, for which, we
derived the Ekman spiral in section 5.

Deeper into the interfacial layers.

Before leaving the interfacial layers, we shall take a short discussion of their general
characteristics. They are the layers, where the atmosphere handshakes to the non-atmospheric
layer below, through at least one boundary condition. In the discussions above, we have used
the surface values of wind speed, temperature and humidity as examples.

We have seen that only for wind speed over solid land were the boundary condition so simple,
Uo = 0 that there was an effective decoupling between the atmosphere and the soil below with
respect to speed. For all other atmospheric variables, there is no such decoupling, because
their near surface value in the air will have relation to their near surface value in the medium
constituting the surface.

In general the surface condition either must be measured or determined by modelling systems
determining the variables below or at the surface. These systems will then as upper boundary
conditions have the lower boundary values for the atmospheric system. Hence, the two systems
have become coupled, as they are in the physical world, of-course.

Examples:

For wind speed over water or other moving surfaces, the wind speed is not zero at the bottom,
and the surface stress influences the conditions within and on the surface, which will again
influence the surface stress. For forecasting of conditions above and in the ocean the exchange
across the interface is so important for the outcome of the forecast that coupled models now
dominates the fields, see also appendix A .

The temperature of a surface is typically forced by the radiation balance at the surface,
incoming solar radiation and outgoing longer wave radiations, and the heat fluxes (sensible plus
latent) to the atmosphere and down in the ground, see section 11.

The humidity at the surface will be a complicated function of the water budget within the soil and
the water flux above the soil. Only over free water surfaces humidity becomes simple, because
the water vapour pressure at the water surface will be the saturated water vapour pressure at
the temperature of the water surface. Just as the heat balance at the surface will be influenced
by evaporation and water vapour fluxes, also the water vapour budget will be strongly
influenced by the heat budget.

From a modelling point of view, both surface values and surface fluxes of many variables are
neither very relevant nor well defined. They are not well defined because many surfaces are not
well defined on closer inspection, like e.g. vegetated surfaces. They are not relevant, because
the relevant flux at the surface takes place between a reservoir in the air and a reservoir below
the surface. Examples here are trace gas exchange across the water interface, which is
parameterised on the difference between the water concentration and the air concentration,
both specified well away from the interface. Also gas fluxes between vegetation and the
atmosphere will often be controlled by the concentration difference within the vegetation and in
the atmosphere, coupled through a stomata resistance. For both cases the exact values at the
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surface become irrelevant, because the atmosphere and the layer below is coupled now
through the boundary flux only.

Resistance modelling
A useful concept for such considerations is the resistance-models that allow us to handle such
surface flux considerations. In the next figure, we have an upper and a lower layer, where the

concentration of a substance is controlled by a differential equation

DC DC
7.33 —=F(C,-),and —=G(C,-
(7.33) Dt (C,-),an Dt (C,")

The solution of these equations involve among others the boundary values and fluxes

Ln(z)
h

Boundary Layer Proper;
DC/Dt = F(C, )

h, ~0.1h
Surface Boundary Layer; F,

A~10 z,
Viscous interfacial layer ; F;

7{”' ""‘Ol Z‘] N . —

surfa;c Below surface interfacial layer; F

DC/Dt = G(C, -)

Figure 7.18. lllustration of exchange between to volumes, one above and one below the
surface,

The fluxes between the two layers are determined under the assumption of stationarity and
horizontal homogeneity, meaning that the vertical flux is constant through the layers. Hence we
have:

(7.34) F=F=F,=F,=F,_,

where F,. is the flux across the interface.

For Fs we find, for example using K-theory, which we developed for surface layer turbulence:

oC ku,z oC ku, z, 1
(7.35) F=-K—=-—"* "« 5(ChS—C5)Er—(ChS—C5);

: oz @.(zIL) &z ¢.(z/L)h, -

where we have defined a resistance for fluxes through the turbulence surface layer, r,, subscript

a stands for aerodynamic. Similarly we get for the flux through the viscous interfacial layer:

oC D 1
7.36 F,=-D—=-—(C, -C,,)=—(C, -C
( ) Vi az 5( ) O+) rd( 5 O+)

As of now we have presented no model about the fluxes at the interface and below the surface,
they may be trough stomata or roots or involving chemical bindings or similar strange pathways.
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Whatever they are, we assume that the processes carrying the fluxes allow us to cast them in
the resistance frame, hence:

1 1
(7.37) F+— = r_(CO+ - CO—) ) Fbs = r_ (CO— - Cd )
+— bs

The solution of this system is easily seen to be:
(7.38) rE=(r,+rs+r_+rn)F =(C, —Cy);

This system shows analogy with Ohm’ s law, with the flux as a current and the concentration
differences as voltages. The total resistance of a flux path is seen to equal the sum of
resistances, similarly a parallel pathway for the fluxes, can be computed with a parallel
resistance that will combine with the total like parallel resistances in electric network. Finally, the
fact that all the fluxes are equal means that the concentration gradients will be large, where the
resistance is large, and vice versa. A limitation to the resistance concept is need for stationarity
for the system to work that is for the flux to be constant through all layers. Hence, when the
transport time along a flux path way become too long, one must change to differential equations
in the different layers and the modelling becomes more complex.

The last figure shows the system of layers usually employed when estimating fluxes across the
air —sea-surface, using a resistance formulation:

F, H~ 1000 m
@ Atmospheric boundary layer
~100m
F2
@ Atmospheric surface layer
Figure 7.19. Schematics F, ~0.1 mm
of a full resistance model T e T TR T TR LR LRI ALY
Atrmospheric laminar layer
for the atmosphere — @ mp:'wghms ayer
ocean exchange. All the : E, -
fluxes shown on the
figure are to be modelled @ - Ocenn laminar layer
. 5
by the d0m|nant ...........................................
~ 0.01 mm
processes at each layer.. : @ Ocean wave layer
F and roughness layer
[
~10ecm
F,; Ocean mixed layer
@ Fy ' D ~ 10-100 m

Figure 5.1. Characteristic regimes of and associated fluxes
in the atmospheric and oceanic boundary layers (modified
from Larsen et al, 1994).
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Discussion.

In this section we have discussed the characteristic of the surface boundary conditions for the
atmospheric boundary layers. We have seen that they typically are specified in terms of
roughness parameters and surface values.

Velocity has the simplest surface value and roughness characteristics, in that the wind speed is
zero at the ground due to the no-slip condition. We have seen that in general the surface
characteristics involve the momentum transport to the surface by Brownian diffusion and
through flow separation around roughness elements. Hence, there is a minimum roughness, as
given by the molecular term in (7.19). Aside from this, at the simplest the roughness can be
described as a landscape parameter, as is presented by some of the characteristic landscape
drawings and the schematic summary of landscape and roughness.

In the next approximation, the roughness may be expected to depend on wind speed, strongest
for water surfaces, but also for dry sand and vegetation. Characteristic seasonal changes must
be expected as well, reflecting seasonal differences in the vegetation (leaves and growth of
agricultural crops) and ice and snow cover (of obvious importance, but not discussed in the
section). Indeed, the roughness changes will often be seasonal, but obviously in a detailed
analysis they are associated with physical changes of the surface characteristics that in average
(but not always and not only) follows the changing season. Indeed, as we pointed out, when
roughness elements reach into the turbulent boundary layer, the roughness may even depend
on stability, because the eddies encountered are now modified by stability.

Close to the surface the transport of scalars can utilise only the molecular diffusion, as opposed
to momentum transport. We have accounted for this through a roughness Reynolds number
dependency. The scalar roughness is shown to be velocity dependent as well, both through the
wind roughness and in their relation to this roughness, involving the roughness Reynolds
number. They furthermore has an uncertainty related to that the surface value of the scalars is
not forced to zero by the no-slip condition, as for velocity, but must be determined
independently from measurements or modelling.

Additionally, it should be pointed out that it often is not possible to write a functional dependency
between z, and the scalar roughness, because they can dependent on different features of the
surface and involve additional processes in the flow. In spite of these uncertainties the scalar
roughness for many substances is often found, following a roughness Reynolds number
relation, giving about a tenth of the wind roughness, when this roughness involves the flow
separation around roughness elements.

If modelling of the surface fluxes and values are chosen, one must consider also the conditions
in- and below the surface as presented in this section through the resistance modelling, and in
section 11 about the energy balance at the surface.
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Appendix 7A. Characterization of a water surface.

The marine ABL has quite distinct features compared to the land ABL, reflecting the special
characteristics of the water both dynamically and thermally. Therefore, we shall shortly
summarize these characteristics in this appendix.

The water is semi transparent meaning that the radiational heating and cooling is distributed
downwards. Additionally the water is very efficient in redistributing heat vertically. The surface
waves and circulation systems, like the Langmuir Cells, combined with turbulence give rise to
extensive mixing. Additionally, when heated from above, the surface water evaporates, and it
will start sinking; now being heavier, because it retains the salt from the evaporated water. If the
surface water cools, it also becomes heavier due to the cooling and sinks. All this give rise to an
intense mixing in typically the upper 10 meter of the ocean. In the heat exchange with the
atmosphere the water therefore constitute a very large heat reservoir that only can change its
temperature slowly, and additionally has its own heating and cooling from the ocean currents.
Indeed when an air mass moves over an ocean for enough time, it ends up at the temperature
of the ocean surface. For these reasons the homogeneous marine ABL is always close to
neutral. The diurnal radiation cycle shows very little influence on the water surface temperature,
although it can be measured, but typical amplitudes are less than a few tenths of a degree
(Pena et al, 2008). The annual radiation cycle on the other hand has significant influence on the
sea temperature, because they involve enough heat and time to change both the temperature
and the depth of the mixed layer. However, stable and unstable conditions happens over the
ocean as well on shorter timescale, , but they are mostly transitional, associated with air masses
moving across water surface with a different temperature, either coming from a nearby land or
associated with moving weather systems. We shall return to these phenomena when coming to
the inhomogenous and instationary ABLS in section 9.

The sea is also an obvious source of water vapor, indeed over the ocean, qo, the surface value
of the water vapour mixing ration, is derived from the saturated pressure at the surface
temperature. The ocean is also a source of liquid water in the form of sea spray converting to
marine aerosols. In winter time the spray is the source of icing on ships and offshore structures.
The roughness elements over water mostly take the form of small steep waves of a wave length
of around 5 cm, although momentum can be transferred also by larger scale breaking waves.
The ocean surface is depicted in Figure Al. Since the roughness is associated with the waves
and the waves are generated by the wind and modified by gravity, Charnock (1955) proposed
that the roughness should depend on u. and g. A slightly updated version of the roughness for
water looks as follow:

2
z, = o.11ui*+ a(c/u,,-) ug; (7A.1)
Which we have taken from (7.19), now with an estimate of the coefficient § , and the Charnock
coefficient,a,, now being a function of the phase speed of the dominant wave c, and the friction
velocity, u., since the roughness elements will be mowing with the phase speed of the dominant
waves in the direction of the wind. The term, c/ u., is denoted the wave age, because c
increases with the duration of the acting wind.. The Charnock coefficient,a, is varying between
0.01 and 0.07, being smallest for mid-ocean mature waves with large phase speed. A “typical”
value for regional seas is 0.015, o can be a function of other parameters as well: e.g. bottom
topography, swells, both modifying the waves and their direction of propagation, and very high
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wind (e.g. hurricanes) results in foam covered waters that reduces B further (Makin, 1997). As
seen in o (Al) may also depend on other variable, here denoted by “-“.  Other variables may
be a suitable expression for the wave height or wave steepness , either overall or in certain

frequency bands, a characteristic wave length for the waves, etc. We shall return to this later.

Figure 7A.1. The wind
profile close to the water surface,
with the wave induced vorticity
and the small scale roughness
element riding on the larger scale
waves, with a phase speed c. Also
the rotor movement of a water
wave is shown.

Roughness z;

Phase speed c

A short summary of the surface waves is now useful; The surface wave amplitudes n(x, t) is a
semi periodic statistical function of space and time. Similar to turbulence, one can consider
wave spectra of either wave numbers or frequencies, connected through the dispersion relation.

n(x.t) ~acos(k-x—at)
dispersion relation :

o’ = gk(1+ yk? / g) tanh(kd) (7TA.2)
phase speed :

C_2£~25_J§5
" kk ok VKK

The"~"requireskd >>1and yk®/ g <<1

The wave amplitude depends on the time or the fetch that has been available for the wind
action on the water surface.

Young waves have small wave lengths, large steepness, and small phase speeds. The waves
are generally produced with propagation along the wind direction + 5°.

Older waves are characterized by larger wave length and lower frequencies, with larger phase
speeds, larger amplitudes and lower steepness.

Some waves propagate from afar, generated by other wind fields. They are typically of even
longer wavelength and lower frequencies .They are denoted swells. Waves can be diffracted by
bottom topography.

Figure A2 illustrates typical wave amplitude spectra as function of frequency. The red one
pertains to coastal areas, while the black broken curve reflects more mid-ocean conditions.
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As difference frequency regions of the spectra can propagate in different directions and with
different phase velocity, one often uses the characteristics at the peak, e.g. ® ,c¢ and S(o )
p p P

to characterize the whole spectrum, since the spectrum is fairly narrow with a sharp peak.
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Figure 7A.2. Two characteristic spectral functions, The Pierson —Moscwitch (PM) and the
JONSWAP form. The PM form is generally used over the open sea, while the JONSWAP form
is used in coastal areas. (IEC6140-3, 2009)

The peak frequency is found to vary with fetch as (Frank et al, 2000). Alternative to fetch one
can use time since start of production with t=x/U, .

1/3
c,/u, :2—7[ X9 (7TA.3)
3-5\ U,

Based on the above coefficient we can now show the Charnock coefficient,a, versus the wave
age in Figure A3. It should be emphasized though that many wave fields are so irregular that
the scatter around functionality depicted in the figure can be fairly large. As seen even with the
selected data in the figure the scatter is large. Much of the scatter is related to occurrence of
swell that per definition are not local and hence could not be expected to be scaled with local
variables, as is implied by Figure A3.

The type of behavior, depicted in Figure A3, is generally used for coastal regions with short
fetches for offshore winds. The scatter implies that the uncertainty is high, and also other

expressions exist, as mentioned in connection with (A1). An example is shown in the next
formula, being due to Taylor and Yelland (2001), who as well discusses many other

formulations:
B
Lo A(h] (7A.4)

Where Hs, the significant wave height is defined as the standard deviation of the waves
multiplied 4. Lp is the wave length of the dominant waves, meaning for the waves at the spectral
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peak. Hence their ratio can be taken as the wave steepness. For the coefficients we have A =
7, B= 4.5. Equation (A4) can be used for virtually all wave conditions, open sea and coastal
areas, high winds and low winds, with a scatter similar to the one seen in Figure (A3). One
reason that so many forms exist is that the different forms can be transformed to each other
because surface waves are such simple variables that many characteristic are related, and all
the different forms have been fitted to much the same data sets. The form in (A4) for example
will reflect much the same dependence of fetch or duration as do the form in Figure (A3),
because Hs, Lp will depend on wind speed, and fetc, reflecting the variation of the wave
spectrum , as also seen in (A3).
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Figure 7A.3. The Charnock’s coefficient, here denote A., is shown versus reciprocal wave age,
u#c. Typical wave ages in nature is between 5 and 30, (Franck et al. 2000). The data for u#/c>
0.5 reflects water tunnel situations, where the wave field is just being formed by the wind, and
they are very steep and rough with ¢ being small Here the roughness increases the more the
wave spectrum-and the wave field- builds up with those young waves. For u#c< 0.5 and
decreasing, the phase speed of the waves increases until the phase speed is of the order of the
wind speed, at what time the waves can only extract litle momentum from the wind. The
roughness therefore decreases u#/c in this region.

Finally we should mention that in experimental efforts to determine the surface condition over
the sea, one often operates with the so-called drag coefficient, defined from as

2 2
u K
CDlOn:[ - ] = — ~a+bU,, , (7A.5)
Uion |n(ﬂ)
Z,

Couon is the drag coefficient referred to a wind at the height of 10 m corresponding to n meaning
neutral conditions, where one for standardization refers the measured the wind speedto z =10
m and neutral conditions , using the Monin-Obuchov formulations. In (A5) the second term
constitutes the definition, the third term applies the logarithmic wind profile with k being the v
Karman constant, and show the relation to z,. The fourth terms is a typical expression used,
with a ~0.5-10" and b~ 0.07, when the wind speed is measured in m/s. Cpg, is purely empirical
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but has the advantage of directly relating the surface stress to the wind speed, without involving
Zo. Experimentally it is direct to estimate from estimates of u- and U(z). As seen from (A5) it is
possible to derive z, from Cpig, (Geerrnaert,1990).

In spite of the functions shown in Figure A3,and from (A4) the roughness of the sea surface
remains one of the smallest, one can encounter in nature. This means that high wind speeds
will be less efficient in forcing the stability towards neutral over water than over land, although
also over water frequency of neutral stability increases with wind speed. Still high wind can be
encountered associated with strongly stable flows over water, again reflecting an inhomogenous
situation where warm air is advected over cold water, and the friction almost disappear. Again
we shall return to this issue, when discussing inhomogenous boundary layers. Just as winter
snow can modify the roughness of a land surface strongly, the winter will some part of the
world cover the water with ice, and the roughness now will depend on the characteristics of the
ice surface, ranging from extremely low for smooth solid ice, to quite rough for pack ice.

The small z, also means that the turbulence typically is lower over the water than over land,
reflected also in a lower ABL height over water than over land. Additionally small z, means that
the zor and zqq are close to z, for low wind speeds, with a small roughness Reynolds number-
see (7.26, 7.26) and start deviating only for rough pack ice or larger wind speeds, with rough
sea.

8. Scaling in the atmospheric boundary layer.

Asymptotic Scaling
We start with the figure from last section about the regions in the atmospheric boundary layer.
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Ln(z)

h
Boundary Layer Proper
hs~0.1h
Surface Boundary Layer
hsl =10 Zy
Viscous interfacial layer
Zotr =0.1 2z, it
surface

Figure 8.1. The sub-layers of the atmospheric boundary layer, and their approximate heights of
separation.

We consider the two Layers, the surface boundary layer and the boundary layer proper, above.
The coordinate system is aligned with the mean surface wind, and we start considering neutral
conditions only.

z,<<z<h,<<h

1 .,z
=—In(—);
k (zo)

(8.1) v
u,
Yo
u

For an upper part of the atmospheric boundary layer we have, the velocity defect profile,
estimating the deviation between the Geostrophic wind and the actual wind, from the top of the
boundary layer and down to a height where the roughness becomes an important parameter:

z,<<z<h;
_ 1 ov'w'
(8.2) U—-u,=—— ,
f. oz
_ 1 00—
-V, = ——Uu'w;
’ f. oz

As to the interval of validity, we have learned that the logarithmic law is valid for z about 10z,

and up to hg. For (8.2) we just know it to be valid for z = h down to again a height much larger
than z,, but not as close to zg as the surface layer formulation, because the formulation does

not contain zq.

The last equations, we can write as:
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z,<<z<h;

U-u, u, ovw o vw z
T 2 ;= F ()
u, fo 0z u®, o(z/h) u?, h
(8.3) V-Vy o u ouw 9 uw s
u, fo oz u’, o(z/h) u?, h”
with h ="
fC

It is seen that we can formally write the equations as function of z/h only.
Based on the above, we argue that it seems that we can write the wind profile as:
z, << z<h;

o —u,
— = F(%),
u.,
(8.4) V-V
—= G(&);
u*
i u
with £=z/h=2z/-—=
fC
and
Z,<<z<h,<<h
(8.5) ULy =) withp=2/2,.
u, k z,
Yo
u

Hence, we have assumed that we have two height intervals, one upper where the proper height
variable is &, and one lower, where it is 1. We now assume that there is an interval for z for
Zo<<z<<h, where both expressions are valid. This is formulated that both expressions yield the
same normalised wind speed gradient in this height interval.
From the upper layer equation we have:

a_, ok 95 _Uu ok

oz "o 6z hoE

(8.6) _
zou  zoF 5a_F

or ——= =—— =
u, oz h o0& o0&

For the lower layer:

G_U_ui_ﬁ_n_u*ﬂ
oz om oz z,0m

(8.7) _
Z Ou z of of
or;.——= — =

wa zon on

Hence we have:
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(8.8) —— =np— = {— for z,<<z<<h

This is also formulated as that the two branches of the velocity profile are matched
asymptotically for &0 and n—o simultaneously. From (8.8) we can argue that these two
functions can only be equal to each other if they are constant, since they do depend on two
different variables, &, and 1. Choosing this constant as the v. Karman constant, we get:

(8.9) ni :1:> f(n):llnn+bwith n=1zlz,;for z,<<z<<h
on Kk k
oF 1 1 .

(8.10) 55 :E = F(@¢)= E(In§+A), with& =z/h,; for z,<<z<<h

where A and b are two constants of integration.

We have now determined the two functions, f (n) and F (§ ) in their overlapping interval of
validity. That is, recalling the definition of the functions:

(8.11) i=f(77): 1Ini; for z,<<z<h, <<h
u, k z,

and
U—Ug B B 1 z _

(8.12) =F(&) = k(IthrA),for z,<<z<<h
u

E

Here we have chosen the integration constant, b = 0, in according with our knowledge about the
logarithmic profile. The integration constant A is determined from data to approximately 2.

An interesting possibility is to subtract the two equations to yield:

u 1 h
(8.13) 2 = Z(In—-A);
. k™ z,
In the principle it is only valid in the matching interval, where u can be written with both
expressions, but the difference have no height variation, and it is seen to constitute a statement
on the relation between the surface stress and the Geostrophic wind including the boundary

layer height and the surface roughness.

Correspondingly, one finds for the v-component:

=0; for z,<<z<h <<h

Sl<

(8.14)

<

-V

L =G(¢); for z,<<z<<h

Again, we take the difference, and get:

Vv
(8.15) 2 -G (5) ~ const. = —E,
u h k

*
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where we see that G in the considered height interval must be a constant since vg/u* does not
vary with height. The B value found from data is around 5. As usual the v.Karman constant is
introduced for later convenience.

The above relations between the surface stress and the Geostrophic wind is called “Resistance
Laws” drawing on an analogy between current and voltage, with the surface stress being the

one, the Geostrophic wind the other and the expression then taking the role of resistance.

The two components of the Resistance Law Equations can be combined:

G*=u;+Vv;; h= u...
fC
1
(8.16) k_G = ((|n£ — A)Z + BZ)E;

u, 0

Vg h :
a = arctan(—) = arctan(-B /(In— - A));

U, 0

Letting B~5, A~0, u.~20 cm/s, zo~10 cm and fe~10" we get tana~0.5 and a~27°. It is seen that
(04

increases with z, and that overall we find a somewhat more realistic o than from the simple
Ekman solution.

For non-neutral cases and extension appears straight forward, using the Monin-Obuchov length
scale, L, combined with the boundary layer height, h, to create a stability parameters: pu = h/L,
such that: A= A(w) ; B = B(n). This means also that o will change with stability, in according with
known evidence.

Figure 8.2 illustrates the variation of A and B with u. As apparent from the figure the scatter
becomes very large, when such an approach is applied. Typical values and variations of these
functions are as illustrated, which show as well that there is an enormous scatter on the
estimates.

This reflects probably, that for non-neutral conditions these functions involve a simplification that
is too limiting to describe the reality reflected in the data. Indeed, it seems that a reason for
much of the scatter is to be found from baroclinity, see section 5, emphasizing the fact that on a
boundary layer scale truly horizontally homogeneous conditions are rare, at least over land.
Also, the formulation of the resistance laws involves some arbitrariness, of which the height of
the boundary layer is one of the more uncertain. The neutral boundary layer is typically taken as
proportional to u«fc, with some arguments about the constant of proportionality, which is
normally taken as 0.3, but coefficients between 0.1 and 1.0 has been chosen in the literature.
Such choices will of course influence the quality of the fit, especially when several data sets are
been used in the model evaluation.

For non-neutral boundary layers the ufc scaling is not sufficient, and several other models for
the boundary layer height is proposed, as we shall see later. Indeed, many of these models
have that the boundary layer height is not determined by simple scaling at all, but has to be
described by its rate equation.
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Figure 8.2. The stability variation of the resistance law coefficient A and B versus u =h/L from
Melgarejo and Deardorff (1974).

To this should be added the experimental uncertainty associated with the experimental
determination of the surface flux and the roughness parameter. As we shall see later in section
9, surface parameters determined have to be determined as averages over 10-100km?. A
parameter determination that is obviously both difficult and not well defined.

The fairly complicated structure of the Resistance Law (8.16 ) has induced many to try to

develop simpler expression, without sacrificing the not very impressive accuracy of (8.16).
Here we can mention . From Jensen (1978) we get:

(8.17) u, /G = 0.5/In(Ro) with the Rosby number,Ro=G/ z, f..
For strongly unstable situations, Wyngaard et al. (1974) finds:
(8.18) u,/G~k/In(-L/z,).

Similarly to resistance laws for wind speed they have been defined as well for scalars, such
that.

o(h)-6, _ .q(h)—q,
9— =H(u), ——

E3 *

(8.19) =Q(u);

Also, here the scatter between model and data is tremendous. To the uncertainties mentioned
above, uncertainty on determination of 6, and qo should be added, see section 7.
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The resistance laws, derived above, were obtained by subtraction of the surface layer profiles
form the general velocity defect profiles in the asymptotic matching region, where both profile
expressions were supposed to be valid simultaneously. The velocity defect profiles allow us as
well to derive estimates of the profile expressions throughout the boundary layer as function of
&= z/h. Several authors have fitted profile data from tall masts to the velocity defect curve. Here
we cite data of v.UIlden and Holtslag (1980), based on data from several 200-meter towers
combined with extensive pressure maps analysis, providing the Geostrophic wind.

We repeat the velocity defect expression:

Z,<<z<h;
u-u o v'w'
9
= _— :F y
" a 9]
(8.20) V-V o uw
= = G(¢);
u, o0& u”,

with §=z/h:z/l:*

C
We know that F(&) and G(&) have to be consistent with the expressions derived above for &— 0
in the overlapping region with the surface layer expressions. Also we have that F(&) and G(§)—
0 for £&—1, where the velocity becomes the Geostrophic wind. Additional integral constrains on
F and G can be derived, noting that:

VW =0, u'w'= —u?

s

for £ - 0.
vw'=0,uw'=0 for & —1.
Integrating (8.20) with respect to & from 0 to 1, and using (8.21) we obtain:

(8.22) JF@nde =0, [6(&)de =1,

(8.21)

V.Ulden and Holtslag obtain the following curves and expressions:

0-3!:

alf

Figure 8.3 The two non-dimensional velocity defect profile. The functions y, , y, correspond to
the functions G and F in the discussion above. The point symbols correspond to different data
(v. Ulden and Holtslag, 1980).
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The curves in Figure 8.3 are described through the following functions:

U 1 2
= F(O) =y, ()= E(lnf + A+ aﬁ)(l—g)

é:)Z’

c

(8.23)

5 G(§)=%(B+b§)(1—

*

The coefficients are fitted with ¢ = 0.3, a 15,2 and b ~ -8 (based on A=1.9 and B =4,7). The
second order term is obviously made to force the functions to zero at the height of the boundary
layer. Note, the above figure and equations show estimates of the F and G functions for the
entire interval of validity, not just the overlapping interval with the surface layer profile

As noted above, the boundary layer height is only one third of the scale height, when the
boundary layer height is understood as the height, where the velocity defect becomes zero.
The Geostrophic wind components are as derived in the resistance law. A simpler expression
is obtained from Larsen, et al (1982), forcing the profiles towards the drag law formulation at &
~1. Introducing the resistance laws formulations for ug and v, from (8.13) and (8.15) we obtain:

u z YA Zz z
U=—(n=-AZ+a(1-(2)),
0= Al rar - ()
(8.24)
u, , Z
_:_B*_y.;
VR

which as seen converts to the drag law if z = h. This is of course not consistent with that the
Geostrophic limit should be reached for z = 0.3h as in Figure 8.3, which is uncertain anyhow.
With A=2, B=5, a = 10, equation (8.24) predicts that u increases more with height that in the
logarithmic layer, above the surface layer, corresponding to (8.23), while v essentially increases
linearly within the boundary layer. The power y (being around one) can be used to regulate the
behaviour of the equation for z approaching h. Choosing A and B from Figure 8.2, and letting a
depend on L (the Monin-Obuchov stability length), from section 6, we can estimate the profiles
through the boundary layer also for non-neutral conditions. In the original Larsen et al (1982)
a=0 and y = 1 were used, and it should be emphasized that the behaviour of the profiles within
the general boundary layer is presently far from being resolved. However, the results presented
in Figure 8.3, as given by (8.23), with a faster increase than logarithmic of u(z) is also found by
Gryning et al.(2007), who using a different theoretical approach and data from several tall land
masts, also determines the wind profiles over a wide range of thermal stabilities, see Figure
8.3a.
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Figure 8.3a. Wind profiles in the boundary layer, from Gryning et al (2007). Data compared with
models. The model of Gryning et al is an extension of the surface boundary layer wind profile,
as discussed in section 6. The profile is derived from:

du u 1 1 1 1

—= ;== + +

dz x0 ( Ly Ly Lis

u,=u,l-z/h)*; Ly =2/p(z/L)
where the surface length scale z is extended with length scales pertaining to the Surface Boun-
dary Layer, the Middle Boundary Layer and the Upper Boundary Layer, and u. change with
height through the boundary layer. The derivation of expressions for the three length scales can
be found in Gryning et al (2007). Specifically for Lsg. one can compare with (6.23) in section 6.
Thus, the wind profile throughout the entire neutral boundary layer is slightly more complicated
and uncertain than for the surface boundary layer.
Another important difference may be that, while a large fraction of the wind situations in the
surface layer can be characterised by the neutral wind profile, the neutral boundary layer profile
characterises comparatively fewer situations at the top of the boundary layer. Thermal
structures of both the boundary layer and the air above are expected becomes more important
at these greater heights. Recall for example that the buoyancy term in the Monin-Obuchov
formulation is given as z/L, and hence increases linearly with height.

With this in mind we shall now summarise the scaling formulations pertaining to the whole
boundary layer and include specifically the thermal structures.

Summary of scaling laws for the boundary layer.

We now try to summarise the total family of scaling laws that are in use within the atmospheric
boundary layer.
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We notice that we have seen three length scales in our discussions, so far: The Monin-Obuchov
stability length scale, L, and the boundary layer height, h or as it is often denoted for unstable
conditions, z;, and finally the measuring height, z that is the vertical characteristic height in the
boundary layer..

Also, when we have discussed eddy sizes within the boundary layer, we have noticed that the
largest eddies scale with the boundary layer height. Further, we have noticed that at each
measuring height eddies are produced with scales of the order of the measuring height. For
unstable conditions the large eddy structure is particular clear.

Sim 7

?
i
i
N
A

Figure 8.4. Structure of the unstable atmospheric boundary layer. The boundary layer size
eddies are particularly clear for these conditions (Wyngaard, 1990).

Below we repeat as well the structure of the stable boundary layer, which as seen is quite
different from the unstable boundary layer, with the boundary layer eddies being much less
obvious, but still with an identifiable boundary layer height.
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Figure 8.5 Structure of the stable atmospheric boundary layer. The boundary layer size eddies
are here suppressed by the buoyancy. Turbulent mixing is relatively smaller than for unstable
conditions (Wyngaard, 1990).

Finally, we have discussed quite intensively the structure of the neutral boundary layer, with its
Ekman spiral, resistance laws and its boundary layer height.

In Section 6, we discussed the surface layer and the Monin-Obuchov scaling as well as the
general scaling methodology. Especially we used the equations for turbulence variance to
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identify relevant scales. Here, we repeat the variance equations for the wind and the
temperature.
For simplicity, we will neglect the humidity and other passive scalars in the present discussion

1de__9WO) _—ou 10We) 1owp)

2 dt 0, oz 2 oz p oz
(8.25) kz 1 de yA Z Z O yA Z 0 yA yA
Uf 2 dt L ¢m(L) L 7 (th(L) L 7 @Tp(L) ¢5(L)
o(-) o()
L L
12 - ) rnr2
107 o g0 _lowe?)
2 dt oz 2 01
(8,26) kz 1do"? z z 0 z z
— = 0: e e —— —_ — —),
u,ﬁf > dt @a(L) L a(i) @Ta(L) ¢59(L)
L

Based on these equations we derived the following important scales for the turbulence surface
boundary layer:

(8,27) uw=-uw; ub =-6'w; ub, =-0w,;g/6;z;L;

We now ask which additional parameters, we should include describing not only the surface
boundary layer, but the whole boundary layer between the top at height, h, and to the bottom of
the surface boundary layer. As in Section 6, the wish is to describe local variables within the
boundary layer by means of the chosen scaling parameters. By local variables, we mean
variables that can be derived solely within the boundaries of the layer, such as horizontal and
vertical gradients of mean values and fluctuations, and the fluctuations themselves. An
example of variables that cannot be derived with the boundaries of the layers is the mean
values like <u>, <6> and similar quantities that all take knowledge about the conditions at the
surface or above the top of the boundary layer or both.

From our earlier discussions, we see that we at least have to add the following additional
parameters:

The Coriolis parameter, the boundary layer height and parameters describing the fluxes through
the top of the boundary layer from the atmosphere aloft.

(8.28) fo, h,uw'| ,v'w/' )

2 !
h ’9 w |h
Additionally, we would expect the need to specify external parameters outside the boundary
layer, such as the surface values zy, zo7, Ug and 6, with addition of the similar values at the

top, G and 6,(z), since we know that the background temperature gradient above the boundary
can be important.

As in Section 6, the usefulness of the scaling formulations diminishes if the number of relevant
scales to a problem is too large. The solution becomes too complicated and, general.

Hence, there has been an effort to identify sub-sections of the boundary layer, where simpler
and therefore more useful scaling laws apply.

Since, we have three length scales for the boundary layer, it customary to organise the scaling
laws using pairs of ratios between the scales, z/h and z/L, or h/L and z/h. Below is shown a
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schematics based on z/L and z/h, because it is the simplest, and allow us to build directly on the
surface boundary layer scaling laws, we start the discussion here.
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Figure 8.6. Scaling regions for the stable and unstable boundary layers from Olesen et al.
(1984).The lines and points indicated in the surface layer part of the diagram refer to data sets
from the Kansas and Minnesota experiments used to formulate and evaluate much of the
scaling laws, discussed here (Olesen et al, 1984).

As seen the boundary layers are separated into stable and unstable boundary layers, with
neutral in between.

For z/h less than about 0.1h we find surface layers, where the main scaling parameters are:
u., 0. g. and z/L. For stable condition we have seen that as z/L increases, z dependency tend
to disappear from many of the scaling laws. Therefore the regime is called z-less. As example,
we consider the velocity gradient for stable conditions:

(% = kou _, 52
L , o1 L

(8.29) _
ou u, u,

2 ke
From the equations we see that the velocity gradient becomes independent of z (z-less) for
large z/L. This then goes for all the other variables, since all the ¢ -functions, we know, has a
similar form for stable conditions, and ends up being proportional to z/L for large L.

1+5%) 552 for L 5
L’ L

For the z-less regimes and further up into the “poorly understood region” one often tries a local
scaling system, where the approach is to use local fluxes as scaling parameters, rather than
surface fluxes as done as part of the Monin-Obuchov similarity system. The argument is that the
surface fluxes cannot be relevant since z-less means that the vertical flow gradients do not feel
the distance to surface, hence the local fluxes become more relevant. Local flux means that the
fluxes have to be estimated in the same height as the mean gradients. This local flux works as
follows, as is illustrated on for the gradients of temperature and wind speed:

(8.30) —u'w/| =u?| ; 6, /u,
z

z
With these fluxes we can now normalise the gradients, either using the boundary layer height,
h, or a local Monin-Obuchov length scale,A defined through the local fluxes in (8.30). Examples

— _QVW!

z z
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of the scaling employed are shown in the next equation. As seen we can employ A and h
several ways in a scaling formulation.

kz ou kh 80 yA
8.31 ———f =f (2);
(8.31) i ( ) 9 = g(h)

Which of the scaling approaches one tries depends on if one is closest to the top of the
boundary layer or one is closer the heights, where Monin-Obuchov applies. To make the system
useful one has for both formulations to specify how the local fluxes vary with height. From
measurements, one finds the following approximations:

weo!

U — (1 _)al . z _ (1_5)0(2

U, W'@é h
where al= 3/4 and a2 =1 seem to give the best fit. Formally it is seen that with (8.32) the
surface scaling and the local scaling formulations used in (8.31) can be related to each other.
Although expressions like the above will work for some parameters throughout the stable
boundary layer, the region above the surface layer is still less well understood. The region is
characterised by very small vertical fluxes, with turbulence appearing as intermittent bursts,
rather than an ongoing continuous process. Additionally the signal fluctuations are often of
internal gravity wave type rather than turbulence type.

(8.32)

The characteristics of variances and spectra in the stable boundary layer can to a large extent
be smoothly extrapolated from the surface layer, where the peak frequency for the power
spectra move to larger normalised frequencies for increasing z/L, as indicated by Figure 6.9,
and the formulas for the variances in (6.31) remain largely valid.

Before we move onto the unstable side of the diagram, we shall make some general

considerations about the height of the boundary layer. As we have discussed for the neutral

boundary layer a best estimate of its height seem to be:

1u,

(8.33) h==
3 1,

For not too stable boundary layers the following regression formulation offers a fair

approximation:

(8.34) h~C(u,L/ )",

where L is the Monin-Obuchov stability length scale, and C is found between 0.7 and 0.4. This
boundary layer height is seen to be very close to a geometric mean between the neutral height
and the Monin—Obuchov stability length scale. It is seen that heights less than 100 metres is
quite realistic.

There is however a principal aspect. For the horizontally homogeneous stationary boundary
layer that grows into a likewise thermally neutral free atmosphere, there are not many scales to
choose from, when one constructs a boundary layer height. Basically the boundary layer height
is the upper limit for impact of the friction against the ground and for the associated turbulence
generation. Here u./fc appears as relevant parameters, and the coefficient in front is also of the
order of one. The only other velocity available for the expression would be the Geostrophic
wind, which obviously yield much too high a boundary layer height.
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If the thermal forcing is important, which it is by definition for stable and unstable boundary
layer, then the growth of the boundary layer will obviously be influenced both by the thermal
properties of the boundary layer and of the layers aloft. The thermal properties of the boundary
layer will obviously depend on the diurnal cycle as in Figure 8.7, which was shown before.

For such boundary layers, it is more correct to imagine that the height is determined by its own
rate equation, describing local changes as well as advection.

dh ¢oh oh
d ot ox
where the three vertical velocity scales reflect rise in boundary layer height due to local surface
fluxes, ws, due to local fluxes through the top of the boundary layer from entrainment (mixing
across the boundary layer height) processes, we, and due to large scale processes such as
subsidence, wg. Such formulations are often used for determination of h.

For the unstable boundary layer there is an especially simple formulation describing the
increase of the boundary layer height as a function of the incoming solar heating of ground. We
shall derive this equation later. For now we will assume that the structure of the boundary layer
below the boundary layer height can be derived from scaling laws, including among other
parameters the boundary layer height, even when the boundary cannot be considered
stationary anymore, because the boundary layer height is determined from a rate of change
equation.

(8.35) =W, +W, +W,,

Frae S1rmaaphons o
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Figure 8.7. Diurnal variation of the boundary layer from Stull(1991).

We now cross over to the unstable side of the diagram remaining in Figure 8.6, starting in the
surface layer.

We see two layers, a shear dominated layer and convective matching layer, also called the
layer of free convection. The definition of these relates to the turbulence wind variance
equation, as we derived earlier. It is shown below in both before and after scaling according to
the Monin-Obuchov similarity.
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1de _, gWeO) _psou 1o(we) _1owp)
2 dt 0, oz 2 oz p oz
(8.36) kz 1 de yA Z Z O yA Z 0 yA yA
Udet L ¢m(L) L 7 (th(L) L 7 @Tp(L) ¢5(L)
a(f) G(I

The two production terms, the buoyancy production, becoming z/L, and the shear production,
becoming omn(z/L).

om(z/L) start out as 1 at neutral and then gradually decreases with —z/L. Therefore we can say
that when - z/L increases to more than 1; the turbulence production becomes dominated by
buoyancy production.

The most clear cut example of such a layer, driven by heat flux only, is the well mixed unstable
layer above the surface layer. As seen in Figure 8.4 for the unstable boundary layer, there is no
shear in any of the mean variables within this layer. Since shear is unimportant, so is the shear
production of turbulence, and the heat flux will have a dominating importance. The actual
height, z is important, and the boundary layer height will be the dominating height scale limiting
the size for the dominating eddies. The scales of importance are then:

(8.37) Q0=Wo,z,h=z,,%

We note that our main variables will still have dimensions of velocity and temperature; hence we
generate a velocity scale and a temperature scale from the above set.

(8.38) w, =(z,Q %)“3 =U,(-7, /kL )" O = Q/w,,

Where the relation between w- and u- simply comes from the definition of L. w- is seen to be
much larger than u-. Typical values for u- is 0.1 — 1.0 m/s, while w- is of the order of 1-5 m/s.
In the mixed layer scaling variables scaled by w- and 0y, - will be function of z/z,. The next
figures show a few examples of such behaviour.
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Figure 8.8. Typical variation of the sensible heat flux through the unstable boundary layer.
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Figure 8.9. Variation of the level of turbulence fluctuations of w and é through the unstable
boundary layer. The different symbols refer to different experiments.

The evaluation of the mixed layer scaling laws proceed the same way as for the Monin-
Obuchov similarity, namely that data are plotted according to the predicted scaling law, and the
validity of the law is evaluated by the quality of the fit between data and model.

Note in Figure 8.8 that the heat flux generally decreases throughout the mixed layer. It also
changes sign at the top. The sign change at the top means that the heat flux goes from aloft into
the boundary layer there. This is consistent with Figure 8.4 showing the unstable boundary
layer, where the temperature aloft is larger than the temperature in the boundary layer. The
turbulent transport between the boundary layer and the atmosphere aloft is called entrainment.
The height variation of the heat flux shows that the mixed layer is not stationary. Recall that we
found that for a truly stationary boundary layer the vertical fluxes of all scalars were constant
with height. For temperature we have:

do _ ow'o’

dt 0z
The fact that the heat decreases with height means that the data have been obtained when the
temperature within the unstable boundary layer increases. Indeed, this is also the period when
this boundary layer is best defined, as we shall see below.

(8.39)

However, first we notice that below the mixed layer we find a matching layer or a free
convection layer. This layer is characterised by that it, like the mixed layer is driven by the heat
flux, and by convective eddy motion. Unlike the mixed layer it is however not limited by z,
because we are down in the surface layer, where z<<z,. Alternatively, this region can be
considered a matching region between the surface layer Monin-Obuchov scaling and the mixed
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layer scaling, in that it is a region were they should both be true. Examples on the scaling laws
applying in the free convection regime are shown in Jensen & Busch (1982). The matching
approach is explained in detail in Panofsky (1978)

The structure of the unstable boundary layer can be seen also from the point of view of spectra
and eddies.

In Section 6, the power spectra of turbulence in the surface layer are described, using a
combination of data, and Kolmogorov hypotheses and Monin-Obuchov hypotheses. Here it is
shown that turbulence spectra by and large are well described by the above set of hypotheses,
but that the unstable horizontal components would not adapt to this terminology. The reason is
that the low frequencies of the spectra for unstable conditions are more described by the mixed
layer scaling than by the surface layer scaling, even in the surface layer. The low frequency part
of the spectra can be seen as footprint of the large boundary layer size eddies in Figure 8.4.
This is illustrated in the next figure, where the unstable v-spectrum is described as a supposition
of a high frequency, small scale part that scales according to the formulations in section 6, and
a low frequency part that scales with the mixed layer scaling.
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Figure 8.10: The unstable Spectrum of the horizontal lateral component composed by a higher
frequency component scaling by the neutral Monin-Obuchov similarity function from section 6
and a lower frequency component scaling with the mixed layer scaling (Hgjstrup, 1982).

In Figure 8.10 the low frequency part of the spectrum scales with w+, while the higher frequency
part scales with surface layer scaling. Hence the total spectrum can be formulated a sum of the
two:
2 2
nSu,v,w (n) = A_I,V,W (ni )W* + Bu,v,w (n)u* 1
(8.40) . fz fz
withw, = (z,Qg/T)"* ,n. =—- n=—.
u
Where the normalized frequency for the mixed layer, n; is defined for the mixed layer the same
way as n is defined in the surface layer. The two forms A(n;) and B(n) represents spectral forms
defined in the surface layer, as given in section 6, and the mixed layer respectively. In Figure
6.9, we saw that peak frequency the unstable horizontal spectra could not be described as
functions of z/L only, we now see that the reason is the low frequency part, and thereby the
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peak, is function of two variable z/L and z,/L (through equations 8.37 and 8.38). As our
measuring height moves up in the unstable boundary layer the A(n;) of the spectrum of (8.38)
gradually dominates the B(n) part. On the other hand the A(n;) part does not disappear when we
move closer to the ground. The forms of (8.40) have been extended to neutral conditions by
Hgjstrup et al (1990), see also Mann(1998) for overall discussion of the neutral velocity spectra.

To the spectral functions in (8.40) corresponds similar variances of the turbulent velocity
components as seen in Figure 8.11, where the velocity variances are plotted versus z/z, and
scaled with w- . Notice the difference for the w-variance plotted against a linear height scale in
Figure 8 .9 and the plot of Figure 8.11, where the height scale is logarithmic.

We see that the simple schematics presented in Figure 8.6 for some variables is countered by a
behavior as seen in Figure 8.10, where the scaling that applies depends on the origin of the
eddies encountered rather on the measuring height.

The behavior of the scalar spectra and variances, like temperature and humidity are not as well
established as for the velocity components.
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Figure 8.11. Data on model and data for variances of the three velocity components, scaled with
w- and plotted versus height with z,/L as parameter (Hgjstrup, 1982).

As a last comment to the diagram in Figure 8.6, we notice that it includes as well a “ Near
Neutral Upper Layer”. This layer is characterised by that -z/L<1 all the way to the top of the
boundary layer. Hence both shear and buoyancy is important for the turbulence production and
both z, and L are important length scales characterising the flow. Indeed this is a layer where
all the parameters we listed above must be expected to be important. As a consequence the
number of parameters is too large for scaling laws to be of help in understanding this part of
boundary layer.

Top-Down/ Bottom-Up Scaling

Here, we mention a scaling approach, rather than a scaling regime. It is the so-called Top-
Down/Bottom-Up approach used for unstable situations. The approach is illustrated below for
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temperature. We recall that a problem with unstable boundary layers is that K-theory does not
work in the middle of the layer becomes the vertical gradients of the variables is very small, due
to its “well-mixed” characteristics.

A way around this problem is to break the profile down into a sum of two profiles, as indicated,
one profile starting above the boundary layer and decreasing down to the ground, an other
starting at the surface and decreasing all the way to above the boundary layer. The real profile
can then be generated as a weighted sum of the two.

\ 4

Figure 8.12. Breaking up the temperature gradient into a” top-down” and a” bottom-up” profile.

The two profiles each follow their own scaling laws. The bottom up scales with the surface heat
flux, it varies as 1-z/z,, while the top-down profiles scales with the heat flux at the top that is
heat entrained from above the boundary layer, and it varies with z/z,. An advantage with the
approach is that one can include details about the structure of the surface layer at the ground
and of the entrainment layer at the boundary layer top. The fluxes through the top of the
boundary layer, here of substance C will often be described using the entrainment velocity, we,
and a mean gradient.

(8.41) Flux(C)|, = w, AE‘h

Simple description of the growth of the unstable atmospheric boundary layer.

The growth of an unstable boundary layer is depicted on Figure 8.13. The stable night time
profile is described by the lapse rate vy, with the surface temperature 6,.(Remember all air
temperatures are potential temperatures.) As the sun heats up the ground, the air temperature
starts to increase and at a given time is 04. at that time the boundary layer height is h. We
assume the whole boundary layer to be well mixed, i.e. at any time with constant potential
temperature. From the figure is seen that we have:

(8.42) 0=6,+yh

The relation between the change in boundary layer temperature and the flux divergence is give
by:
do 1

8.43 — ==
(8:43) d h

(W/0!|O _ Wrer

) =weo'| @+2A)/h,

160 Lectures in Micro Meteorology



where A is normally found to be about 0.2, but of course can vary with many things, and be
modelled more or less complicated. The A factor is an extremely simple form of the entrainment
formulation mentioned above.

Inserting the first equation in the second we get:

dh 1 dh?
8.44 h—==—=wa'| 1+2A)/y,
(8.44) dtZdtwlo(+)7
Denoting:
t
(8.45) Q) = j wo'| @+ 2A)dt,
0
we can write:
1
(8.46) h(t) = (2%J2
Y

If the heat flux is constant with time h(t) is seen to increase with the square root of t.

e
1O
4

Figure 8.13. Schematics of the growth of an unstable boundary layer driven by the heat flux at
the surface and at the top.

The equation gives a reasonable description of the growth of the unstable boundary layer as
long as the heat flux is increasing or constant with time. After the heat flux decreases and turns
negative in the end of the day the boundary layer structure changes, and the above equation
does not describe the situation anymore, compare Figure 8.7 that shows how a so called
residual layers is slowly forming, consisting of decaying eddies.

Indeed what happens at a somewhat more detailed level of description is that the heat flux into
the boundary layer creates turbulence and the turbulence is responsible for the growth of the
boundary layer, through turbulence diffusion. A more detailed model demands that the
turbulence variance equations are included in the process description. Such models have been
developed and also give a more comprehensive description of the development of the unstable
boundary layer, at the prise of complexity.
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An example is presented below (Gryning and Batchvarova, 1990).

h? Cu? {dh } w'e’,
(8.47) + _ ——W, =
(1+2A)h—2BxL  y(g/8)[(L+ Ah—BxL][ | dt y

Where A, B and C are empirical constants, with A being the one already used in (8.43), about
0.2, and B and C about 2.5 and 8 respectively. In spite of its larger complexity it is seen that
(8.47) does not contain new parameters relative to the ones already encountered. It is seen that
for the growth of a pure mixed layer, u. =0, (8.47) reduces to (8.44). It should finally be noted
that neither (8.44 nor 8.47) allow for a description of the boundary layer height and the
boundary layer structure, when the surface heat flux starts decreasing in the mid-afternoon, and
the unstable boundary layer gradually loses its characteristics and starts given room for the
night time stable boundary layer.

New developments for boundary layer scaling.

In (8.44 and 8.47) knowledge about the lapse rate,y is essential for describing the rise of the
boundary layer h. One could therefore think that the thermal stratification of the atmosphere
above the could be important for the boundary layer height under all circumstances, especially
since it is known that that the atmosphere above the boundary layer is generally stable
stratified, and because it seems reasonable that this stratification must influence how easily the
turbulent boundary layer can grow into the atmosphere aloft not only for an unstable boundary
layer, which we have discussed above.

The parameterisation is often formulated in terms of the so called Brunt-Vaisala frequency, N
(radians/sec).

(8.48) N = g%)“z.

0 oz
The scale N can be combined with a velocity, for example u- to yield a length scale. The new
scale is seen to be independent of the thermal stability and will modify the profiles predicted in
this section also for neutral. From N one can generate a length scale as u«/ N, which is seen to
have the same form as the boundary layer height, h, in (8.3) and onwards. How these two
scales interact and influence the flow is not yet settled completely. Therefore, we shall here not
continue to elaborate this new scale, but more point out its possible influence and refer to Esau
and Zilitinkevich (2006). However the correction is unlikely to be large for the normal conditions,
and a final form for the correction is not yet well established.

Example of measurement program in the full boundary layer.

In Chapter 6 about the Monin-Obuchov similarity and the surface layer scaling, we showed the
set-up of the Kansas 1968 experiment to illustrate the considerations necessary for setting up
such a surface layer experiments. Additionally, the experiment has been crucial for the
formulation and the validation of this scaling. Similarly, we show in Figure 8.14, the set-up for
the Minnesota 1973 experiment that was conducted by the same core-group, also here
supplemented by other groups of scientists. The Minnesota 1973 experiment was also crucial
for formulation and validation of many of the scaling laws, pertaining to the full boundary layer,
as discussed in this chapter, just like the Kansas experiment was for the surface layer
expressions in Chapter 6.
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Figure 8.14. The experimental configuration for the Minnesota 1973 experiment ( Itzumi and
Changhey, 1976) for the whole boundary layer. The lower right hand side set-up corresponds to
the Kansas experiment, also denoted CRL in the instrument description. The MRU
configuration are all attached to the tether sonde balloon, and described as MRU sensors. The
experiment has been central for our description of the unstable and the neutral boundary layer
as given in this section. It was less useful for our understanding of the neutral conditions,
because the tether sonde had problems for higher wind speeds. (Bush et al, 1979. Drawing : C
Kaimal personal communication)

Discussion:

We have illustrated how scaling laws have been established for many aspects of the
atmospheric boundary layer throughout the boundary and for many diverse boundary layer
flows. Relative to Figure 8.1. we have now established laws and formulations for the whole
boundary layer.

Occasionally we have been forced to accept that scaling laws could not be utilised for certain
phenomena or only for these phenomena within limited parameter intervals. Also we have been
forced to relax some of the basic assumptions behind the derivation of the scaling laws or of the
consistency between the different applications of the same scaling formulation.

Below is a short summary.
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The demand to stationarity and horizontal homogeneity was relaxed from the start,
where horizontal pressure gradients had to be accepted for having a simple Barotropic
Ekman spiral.

Inclusion of a Baroclinic Ekman spiral meant that also horizontal inhomogeneous
temperature fields would have to be accepted as a normal part of the atmospheric
boundary layer. In section 5 is seen that even very modest horizontal temperature
gradients lead to significant deviations from the Barotropic Ekman profile.

The mixed layer scaling for the unstable boundary layer is very useful, but typically the
boundary layer height and the mean temperature field will now be non-stationary and
governed by their own rate equation. However, this non-stationary boundary layer
height can be used in connection with mixed layer scaling, and the heat flux typically
follows a mixed layer scaling with height, having a gradient reflecting the change in
mean temperature.

Also strongly stable layers are similarly non-stationary, as the radiational cooling

gradually decreases the surface temperature.

For unstable conditions power spectra and variances of velocity follows a mixture of
surface layer (Monin-Obuchov ) and mixed layer scaling, even well within height
intervals, where surface layer formulations govern most of the motion. The reason is
that the effect of certain larger eddies can be felt in the surface layer, even when they
originate in the mixed layer.

Application of many scaling laws is based on the assumption that some parameters are
much less important than other parameters, and therefore can be neglected. In practise
one will often meet situations, where “much less important” has to be replaced by
“slightly less important”, for which reason the less important parameters will show up in
the results as well, albeit with less importance.

The necessity to include considerations about horizontal inhomogeneity and
instationarity is much more important for the description of the flows in the total
boundary layer than for flows in the surface layer, as we have seen or remarked
repeatedly in this section. After the next section about inhomogeneous boundary
layers, we will be able to discuss this statement in more details.
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9. Horizontally heterogeneous boundary layers.

So far we have assumed that the boundary layers could be considered horizontally
homogeneous, by and large. We shall now leave that assumption and discuss how to handle
heterogeneity, a field that is still far from fully | developed.

Considering the natural landscape in the figure 9.1, we obviously have to structure the type of
inhomogeneities one can meet, an