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Abstract: This study investigates the utility of artificial neural netwoke\NNs) for estimation of daily grass reference crop evapo-
transpiration(ETo) and compares the performance of ANNs with the conventional mefRedman—Monteithused to estimate ETo.
Several issues associated with the use of ANNs are examined, including different learning methods, number of processing elements in tt
hidden layefs), and the number of hidden layers. Three learning methods, namely, the standard back-propagation with learning rates of
0.2 and 0.8, and backpropagation with momentum were considered. The best ANN architecture for estimation of daily ETo was obtainec
for two different data set&Sets 1 and Rfor Davis, Calif. Using data of Set 1, the networks were trained with daily climatic @atar

radiation, maximum and minimum temperature, maximum and minimum relative humidity, and wind apeagdut and the Penman—
Monteith (PM) estimated ETo as output. The best ANN architecture was selected on the basis of weighted standard error of estimate
(WSEB and minimal ANN architecture. The ANN architecture of 6-7dix, seven, and one neur@hin the input, hidden, and output

layers, respectivelygave the minimum WSEHess than 0.3 mm/dayfor all learning methods. This value was lower than the WSEE
(0.74 mm/day between the PM method and lysimeter measured ETo as reported by Jensen et al. in 1990. Similarly, ANNs were trained,
validated, and tested using the lysimeter measured ETo and corresponding climati§eteda Again, all learning methods gave less

WSEE (less than 0.60 mm/days compared to the PM meth¢@ 97 mm/day. Based on these results, it can be concluded that the ANN

can predict ETo better than the conventional mettiil) for Davis.
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Introduction surface of 0.08—0.15 m tall, green grass cover of uniform height,
actively growing, completely shading the ground, and not short of
EvapotranspiratiofET) is one of the major components of the water.” In the past 5 decades, several studies have focused on the
hydrologic cycle and its accurate estimation is of paramount im- development of accurate ET estimation methods and improving
portance for many studies such as hydrologic water balance, irri-the performance of the existing methods due to wide application
gation system design and management, crop yield simulation, andof ET data. The research efforts are still continuing in this direc-
water resources planning and management. A common practicetion.
for estimating ET from a well-watered agricultural crop is to first Evapotranspiration can be either measured with a lysimeter or
estimate reference crop ET, i.e., grass referencéEHD) or al- water balance approach, or estimated from climatological data.
falfa reference ET(ETr), from a standard surface and to then However, it is not always possible to measure ET with a lysimeter
apply an appropriate empirical crop coefficient, which accounts pecause it is a time-consuming method and needs precisely and
for the difference between the standard surface and crop ET.carefully planned experiments. Thus, indirect methods based on
Doorenbos and Pruitt1977 defined reference crop evapotrans- ¢limatological data are used for ETo estimation. These methods
piration rate as “the rate of evapotranspiration from an extensive vary from empirical relationships to complex methods based on
physical processes such as the Pennia®48 combination
'Research Scholar, Dept. of Agricultural and Food Engineering, method. The combination approach links evaporation dynamics
Indian Institute of Technology, Kharagpur WB 721 302, India. ~ wjith the flux of net radiation and aerodynamic transport charac-
i ;sslr?sctﬁ?ePorfojri?:i?]rélEgi/ptkr?;rgggﬁfl\stlllga;;lngozocl)r? diEnglneermg, teristics of a natural surface. Based on the observations that latent
SAssociate Professor De[’)t. of Agricultural and F6od Eﬁgineering heat transfer m. plant ste_ms is influenced not only by these abiotic
' " factors, Monteith(1965 introduced a surface conductance term

Indian Institute of Technology, Kharagpur WB 721 302, India. X i
“professor, Dept. of Biological and Agricultural Engineering and that accounted for the response of leaf stomata to its hydrologic

Dept. of Hydrologic Science, Univ. of California, Davis, CA 95616. environment. This modified form of the Penman equation is
SEmeritus Irrigation Engineer, Dept. of Hydrologic Science, Univ. of widely known as the Penman—Monteith evapotranspiration
California, Davis, CA 95616. model.

Note. Discussion open until January 1, 2003. Separate discussions \Many scientists have studied the reliability of the Penman-
must be submitted for individual papers. To extend the closing date by Monteith (PM) method for estimating ETdMcNaughton and
one month, a written request must be filed with the ASCE Managing Jarvis 1984- Allen 1986: Allen et al. 1989 De Souza and Yoder

Editor. The manuscript for this paper was submitted for review and pos- } .
sible publication on March 19, 2001; approved on December 13, 2001, 1994; Chiew et al. 1995 Jensen et al1990 analyzed the per-
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ing, Vol. 128, No. 4, August 1, 2002. ©ASCE, ISSN 0733-9437/2002/4- for 11 stations located in different climatic zones around the
224-233/$8.08-$.50 per page. world. The PM method ranked as the best method for all climatic
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conditions. However, the ranking of other methods varied, de- nections so as to improve a predefined performance measure. The
pending on their local calibration and conditions. neural network is presented with the data patterns consisting of

Evapotranspiration is a complex and nonlinear phenomenonthe input values as well as expect@d outpu} values. The ob-
because it depends on several interacting climatological factors,jective is to minimize the difference between the predicted output
such as temperature, humidity, wind speed, radiation, type,values and expected output values using an algor{ghm, back-
and growth stage of the crop, etc. Artificial neural networks propagation algorithm Initially, because of the random weights
(ANNs) are effective tools to model nonlinear systems. A assigned randomly to the connections, the difference between the
neural network model is a mathematical construct whose predicted and desired output values can be large. Learning there-
architecture is essentially analogous to the human brain. fore involves iteratively adjusting the connection weights to mini-
Basically, the highly interconnected processing eleméREs9 mize these differences.
arranged in layers are similar to the arrangement of neurons in the
brain.

In the past decade, considerable attention has been focused o
the application of ANNSs in diverse fields including system mod- Training of an artificial neural network involves two phases. In
eling, fault diagnosis and control, pattern recognition, financial the first phase or forward pass the input signals propagate from
forecasting, and hydrology. Studies on ANN application in the the network input to the output. In the second phase or reverse

rl?ac:kpropagation Training Method

area of hydrology include rainfall-runoff modelir§rench et al. pass, the calculated error signals propagate backward through the
1992; Minnes and Hall 1996river stage forecastin@rhirumala- network, where they are used to adjust the weights. The calcula-
ian and Deo 1998, Campolo et al. 199&servoir operatiofJain tion of the output is carried out, layer by layer, in the forward

et al. 1999; land drainage desigfShukla et al. 1996; Yang et al.  direction. The output of one layer is the input to the next layer. In

1996, 1998, pesticides concentration in sdiYang et al. 1997; the reverse pass, the weights of the output neuron layer are ad-

Goh 1999; Tansel et al. 1989aquifer parameter estimation justed first since the target value of each output neuron is avail-

(Srinivasa 1998 and optimization problemé&Rogers and Dowla  able to guide the adjustment of the associated weights. The

1994; Wen and Lee 1998Some of the studie§Zealand et al. weights in the output and hidden layer neurons can be calculated

1999; Yang et al. 1996have also shown that ANN is more accu- using Eqgs(1) and(2), respectively(Tsoukalas and Uhrig 1996

rate than conventional methods. It is evident from the literature

that no study has been carried out to utilize the input—output WN+1)=w(N)=md (1)

mapping capability of ANN in the prediction of ET. r

Based on the capabilities that ANNs have to simulate nonlin- W(N+l)=W(N)+’nXZ 3 2

earity among the interacting factors in the system, the present a=1

study describes the utilization of the input—output mapping capa- where w=weight; N=number of iteration;x=input value;n

bilities of the ANN in ETo prediction. Below, the ANN-estimated = |earning rateip = output; and is defined as 2,0¢/al, | being

ETo values are compared with both the PM estimated and lysim-the sum of the weighted inputs=neuron index of the output

eter measured ETo values. Furthermore, the performance of thregayer, ande ,=error signal.

ANN training methods is evaluated and the minimal ANN archi- The above training method is known as the standard back-

tecture for predicting ETo is determined. propagation training method. Since back-propagation employs a
form of gradient descent, it is assumed that the error surface slope
is always negative and hence, constantly adjusting weights toward

Artificial Neural Networks minimum. However, error surfaces often involve complex, high
dimensional space that is highly convoluted with hills, valleys,

An ANN consists of input, hidden, and output layers and each and folds. It is very easy for the training process to get trapped in

layer includes an array of processing elements. A typical neural a local minimum.

network is fully connected, which means that there is a connec-  The problem of the local minima can be avoided by adding a

tion between each of the neurons in any given layer with each of momentum term to the weight change, to permit larger learning

the neurons in the next layer. A processing element is a modelrates. The change of weight is then computed as follows:

whose components are analogous to the components of actual

neuron. The array of input parameters is stored in the input layer AW(N+1)=—mdd+pnAwW(N) (3)

and each input variable is represented by a neuron. Each of these

inputs is modified by a weight whose function is analogous to that Wherﬁt%‘:.molilnfnwinl cloefflt_:lent ar¢v¥(hN+ 1t21: changel of ;
of the synaptic junction in a biological neuron. The processing weight duringiv to earning cycles. thus, the new value o

element consists of two parts. The first part simply aggregates theWelght becomes equal to the previous value of the weight plus the

weighted inputs; the second part is essentially a nonlinear filter, weight c_hange, which includes the r_nome_ntum term. This training
usually called the transfer function or activation function. The method is known as back-propagation with momentum.
activation function squashes or limits the values of the output of

an artificial neuron to values between two asymptotes. The sig- Materials and Method

moidal function is the most commonly used activation function. It

is a continuous function that varies gradually between two

asymptotic values, typically 0 and 1 erl and+1. Description of Data and Grass Reference Crop

Evapotranspiration Estimation

For the purpose of this study, daily climatic data of minimum and
maximum temperature, minimum and maximum relative humid-
Learning is normally accomplished through an adaptive proce- ity, wind speed, and solar radiation for Davis California Irrigation

dure or algorithm that incrementally adjusts weights of the con- Management Information System station were collected for the

Artificial Neural Network Learning
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Table 1. Artificial Neural Networks(ANNSs) Training and Validation Errors using Data Sets 1a and 1b, Respectively, for Single Hidden Layer
Architectures

Std. back-propagation LR0.2 Std. back-propagation LR0.8 Back-propagation momentum

Training Validation Training Validation Training Validation

(Set 1a (Set 1bh (Set 1a (Set 1bh (Set 1a (Set 1bh
Network architecture MSE (10 4 MSE (10 %) MSE (10 4 MSE (10 %) MSE (10 4 MSE (10 4
6-7-105k 2.6 1.5 1.4 8.4 15 1.1
6-7-11k 2.3 1.5 1.1 3.8 1.1 1.1
6-7-12k 2.0 14 0.8 3.4 1.1 1.2
6-7-13k 14 0.9 0.8 4.7 1.0 1.9
6-7-14k 1.8 14 1.1 1.8 1.0 1.4
6-7-15k 1.2 0.9 0.9 0.8 1.0 0.9
6-8-105k 2.5 1.6 2.1 1.4 1.6 1.8
6-8-11k 2.2 1.4 15 11 1.2 1.0
6-8-12k 1.7 1.2 1.3 0.9 1.1 1.2
6-8-13k 15 11 1.0 0.9 1.0 1.2
6-8-14k 1.2 1.0 0.9 0.9 1.0 0.8
6-8-15k 1.2 1.6 0.9 0.8 0.8 0.8
6-9-105k 2.4 1.6 4.3 2.4 1.2 14
6-9-11k 21 15 2.0 1.3 1.1 0.8
6-9-12k 2.0 14 11 1.3 1.0 0.9
6-9-13k 15 1.2 1.1 0.9 0.9 0.8
6-9-14k 1.2 1.0 1.0 0.9 1.1 1.0
6-9-15k 11 1.0 1.0 0.9 0.8 15
6-10-105k 2.4 1.7 2.0 1.3 1.3 0.9
6-10-11k 2.2 15 1.3 1.7 1.1 0.9
6-10-12k 2.0 14 11 1.0 1.0 1.5
6-10-13k 1.4 1.1 1.0 0.9 0.9 0.8
6-10-14k 1.2 1.0 1.0 0.9 0.9 0.9
6-10-15k 11 11 1.0 0.8 0.8 0.8
6-11-105k 2.4 1.7 1.7 14 1.4 1.1
6-11-11k 21 14 1.3 1.3 1.2 1.5
6-11-12k 1.9 1.4 1.2 0.9 0.9 0.9
6-11-13k 1.4 1.1 1.1 1.5 1.0 0.8
6-11-14k 1.4 1.0 0.9 1.2 0.8 0.7
6-11-15k 1.3 1.0 0.9 11 0.8 0.8
6-12-105k 2.4 1.6 2.0 1.3 1.5 1.1
6-12-11k 2.2 1.6 1.3 11 1.1 1.1
6-12-12k 2.1 1.5 1.1 0.9 1.0 0.9
6-12-13k 1.4 1.1 1.1 1.0 1.0 0.8
6-12-14k 1.2 0.9 1.0 0.9 0.9 0.8
6-12-15k 11 1.0 0.9 0.9 0.8 0.9

Note: LR=learning rate.

period of January 1, 1990 to June 30, 20@®t 1. Daily ETo Normalization of Data

values were estimated using the PM method because the lysimeter ) .

measured ETo values were not available for the period. The PM Prior to exporting the data to the ANN for training, the data were

estimated ETo values were considered as standard and used fdfermalized. This was done to restrict their range within the inter-

training and testing of different architectures of ANN. The pm V@l of 0—1, because the PEs of the middle layer were assigned a

method is considered as standard because it ranked first for botFigmoidal activation function. The shape of this function plays an

humid and arid regiongJensen et al. 1990 important role in ANN learning. The weight changes correspond-
To compare the ANN predicted ETo with the PM estimated ing to a value near 0 or 1 are minimal since PE is “dull” whereas

ETo, daily lysimeter measured grass evapotranspiration alongCl0Ser to 0.5 they respond mof&ao and Rao 1996 Keeping

with climatic data[minimum and maximum temperature, mini- these facts in view, the normalization was carried out so that the

mum and maximum relative humidity, wind speed, and solar ra- Mean of the data series would be equal to 0.5. The following

diation] from January 1, 1960 to December 31, 1968t 2 were equation was used:

collected for Davis(Pruitt, personal communication, 2000’he Xo—X

lysimeter measured ETo corresponds to frequently mowed, fre- Xnorm=0-5(x — +0.5 4)
max min

quently irrigated, ryegrass grown inet6 m diameter weighting
lysimeter at Davis. The grass height was maintained between 0.10where X,,,w~=normalized value;x,= original value; x=mean;
and 0.15 m throughout the observation period. Xmax=maximum value; and,;,=minimum value.
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Table 2. Artificial Neural Networks(ANNSs) Training and Validation Errors using Data Sets 1a and 1b, Respectively, for Two Hidden Layer
Architectures

Std. back-propagation LR0.2 Std. back-propagation LR0.8 Back-propagation momentum

Training Validation Training Validation Training Validation

(Set 1a (Set 1bh (Set 1a (Set 1bh (Set 1a (Set 1bh
Network architecture MSE (10 4 MSE (10 %) MSE (10 4 MSE (10 %) MSE (10 4 MSE (10 4
6-4-4-105k 2.4 2.0 2.3 2.2 2.2 1.7
6-4-4-11k 2.3 2.3 2.2 2.0 2.2 1.6
6-4-4-12k 21 1.8 2.2 21 2.0 1.4
6-4-4-13k 1.9 1.7 1.7 16 1.9 1.4
6-4-4-14k 1.8 1.7 21 1.8 1.5 1.0
6-4-4-15k 2.2 21 15 1.2 1.3 0.9
6-5-5-105k 2.3 21 2.1 3.6 2.3 2.0
6-5-5-11k 2.3 21 21 35 2.3 21
6-5-5-12k 2.2 2.0 2.2 2.2 2.2 2.0
6-5-5-13k 2.2 2.0 1.7 1.6 2.0 21
6-5-5-14k 1.2 2.3 1.9 1.7 2.2 21
6-5-5-15k 1.5 1.3 2.2 2.1 1.6 1.4
6-6-6-105k 2.2 21 24 21 2.3 2.2
6-6-6-11k 2.2 2.0 2.3 2.0 2.3 2.0
6-6-6-12k 2.2 2.2 2.2 2.2 2.2 1.8
6-6-6-13k 21 1.9 1.7 1.6 1.7 1.5
6-6-6-14k 2.2 2.0 15 1.3 1.7 1.6
6-6-6-15k 2.2 2.0 1.5 1.4 1.6 15

One of the major advantages of neural nets is their ability to for 500, 1,000, 2,000, 3,000, 4,000, and 5,000 learning cycles.
generalize. To reach the best generalization, the data set should bEurthermore, three learning methods, namely, standard back-
split into three parts, namely, training set, validation set, and test propagation with learning rates of 0.2 and 0.8 and back-
set(SNNS 1995. The training data set is used to train a neural net propagation momentum with a learning rate of 0.2 and a momen-
by minimizing the error of this data set during training. The vali- tum term as 0.95, were used.
dation data set is used to determine the performance of a neural The ANNSs tested were given names according to their archi-
network on patterns that are not trained during training. The testtecture, the learning method, and number of learning cycles. The
set is used for checking the overall performance of a trained andnetwork architecture is described with a set of numbers separated
validated network. Therefore, the normalized déset ) was by “—" signs. “s" denotes the standard back-propagation and
divided into three subsets for the purpose of training, validation “b” denotes the back-propagation with momentum as the learn-
and testing. Data sets 1a, 1b, and 1c were comprised of 1826ing method. The learning rate is denoted with the numbers 2 and
(January 1, 1990 to December 31, 13%®47 (January 1, 1995 to 8. The alphanumeric values of 05k, 1k, 2k, 3k, 4k, and 5k repre-
June 30, 1996 and 1,461 July 1, 1996 to June 30, 20DpPatterns sent the number of learning cycles of 500, 1,000, 2,000, 3,000,
for training, validation, and testing, respectively. Similarly, the 4,000 and 5,000, respectively. Thus, the ANN 6-7-1b25k had six
normalized data set 2 was also divided into trainii®gt 23, PEs in its input layer, seven PEs in its hidden layer, and one PE in
validation(Set 21, and testingSet 29 sets. The data sets 2a, 2b, its output layer; the back-propagation momentum learning was
and 2c consisted of normalized data from January 1, 1960 toused with a learning rate of 0.2; the network was trained for 5,000
December 31, 1960 and January 1, 1962 to June 30, 1962; July 1¢ycles.

1962 to December 31, 1962; and January 1, 1961 to December A total of 162 (108 networks with single hidden layer and 54
31, 1961, respectively. Only complete records without any miss- networks with two hidden layersANNs were studied. The
ing data on a given day were considered for the analysis. Conse-Stuttgart Neural Network Simulator version 43NNSv4.) dis-
quently, the testing data set had a total of 302 patterns, aftertributed by the University of Stuttgart was used to implement the
excluding the missing data between January 1, 1961 and Decem+neural networks. Training and validation data s@sts 1a and
ber 31, 1961. The training and validation data sets, however, in- 1b) were shuffled before training and validation to ensure the
cluded 489 and 133 patterns, respectively. randomness during ANNS training and validation. The SNNS pro-

To obtain the best ANN architecture several possibilities were vides information on mean sum of square efiMSE) during the
considered in this study. For each ANN architecture, the number training and validation. Using the test input dé&et 19, the ETo
of nodes in the input and output layers were fixed at six and one, prediction performance of each network was evaluated for both
respectively. The number of nodes in the input layer correspondedpeak (July) and all months. The peak month is the month when
to the six basic input parameters for ETo estimation by the PM peak ETo occurred. The minimal network architecture and
method, whereas the output layer node corresponded to the PMweighted standard error of estimai&/SEE) were used as crite-
ETo. The numbers of nodes in the hidden layer were varied from rion for selecting the best network for each learning method.
7 to 12 for one hidden layer architecture. However, for the two WSEE was derived from the standard error of estint&€E) and
hidden layers architecture three, four, and five nodes were con-adjusted SEEASEE) (Jensen et al. 1990The SEE was esti-
sidered in each hidden layer. Each ANN architecture was testedmated as follows:
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Table 3. Artificial Neural Network Testing Error Weighted Standard method estimated ETo as the independent variable. The equation

Error of Estimatg WSEB using Data Set 1c for Single Layer Archi-

tectures
Std. Std.
back-propagation back-propagation Back-propagation

LR=0.2 LR=0.8 momentum

Testing Testing Testing

(Set 19 (Set 19 (Set 10
Network WSEE WSEE WSEE
architecture (mm/day (mm/day (mm/day
6-7-105k 0.41 0.34 0.3
6-7-11k 0.36 0.46 0.29
6-7-12k 0.36 0.29 0.28
6-7-13k 0.35 0.29 0.29
6-7-14k 0.31 0.30 0.30
6-7-15k 0.29 0.29 0.27
6-8-105k 0.39 0.37 0.34
6-8-11k 0.37 0.37 0.28
6-8-12k 0.31 0.29 0.28
6-8-13k 0.30 0.31 0.28
6-8-14k 0.33 0.30 0.27
6-8-15k 0.33 0.30 0.28
6-9-105k 0.40 0.30 0.31
6-9-11k 0.35 0.30 0.34
6-9-12k 0.33 0.29 0.30
6-9-13k 0.31 0.29 0.31
6-9-14k 0.30 0.29 0.31
6-9-15k 0.30 0.29 0.29
6-10-105k 0.39 0.33 0.31
6-10-11k 0.37 0.29 0.33
6-10-12k 0.30 0.29 0.28
6-10-13k 0.30 0.29 0.31
6-10-14k 0.32 0.29 0.28
6-10-15k 0.34 0.29 0.31
6-11-105k 0.38 0.35 0.30
6-11-11k 0.38 0.31 0.30
6-11-12k 0.32 0.28 0.28
6-11-13k 0.29 0.30 0.28
6-11-14k 0.31 0.28 0.28
6-11-15k 0.29 0.30 0.29
6-12-105k 0.38 0.42 0.35
6-12-11k 0.36 0.29 0.29
6-12-12k 0.34 0.35 0.31
6-12-13k 0.31 0.28 0.27
6-12-14k 0.28 0.28 0.28
6-12-15k 0.28 0.30 0.36

n 0.5
2 (Yo—Yp)?
SEE= ®)

where SEE=standard error of estimat¥,=ETo estimated using
the standard method®M and lysimeter ETo represent standard
method for Sets 1c and 2c, respectiyelYg=ETo estimated
using the test methodANN, ANN, and PM represent the test
methods for Sets 1c and 2c, respectiyelgnd n=number of

observations.

of regression through the origin is given below
YO: b>< YE (6)

The regression coefficients were used to adjust the ETo esti-
mates and SEEs were recalculated for the adjusted values
(ASEB), i.e., Yg in Eq. (5) was set equal tpb X Y¢]. Using the
SEE and ASEE values, the WSEE was calculated as follows
(Jensen et al. 1990

WSEE=0.710.64SEE,,) + 0.33 ASEE,) ]

+0.30.6TSEE 0+ 0.33ASEE,ed]  (7)

where subscripts all and pealall months and peak months, re-
spectively.

The results related to the effect of learning cycle, number of
PEs in the hidden layer, number of hidden layers, and learning
methods on ANN performance along with choice of the best ANN
architecture are presented in the following section. In addition,
ETo estimated with the ANN and PM models are compared with
the lysimeter measured ETo values.

Results and Discussion

Training And Validation of Network

Table 1 presents training and validation err¢dMSE) for all
single hidden layer ANN architectures. For all learning methods,
MSE during training decreased with the increase in learning
cycles and did not exhibit any trend with the increase in number
of PEs in the hidden layer. The standard back-propagation with
amomentum learning method resulted in slightly lower training
error as compared to the standard back-propagation method for
the same network architecture. The optimal condition for ANN
training is defined by the number of learning cycles for given
ANNs where network freezes to learn further. The number of
learning cycles for such a condition was determined using the
validation data(Set 1h. For example, in the case of 6-8-1-b2
networks the network performance improved up to 4,000 learning
cycles and remained unchanged for 5,000 learning cydlaisle
1). Similar trends were noticed with other ANNs. However, the
optimal limit for cycles varied from 3,000 to 5,000.

Table 2 presents training and validation errdMSE) for
all two hidden layer network architectures. For the same number
of PEs in hidden layés), both training and validation errors
were higher for two hidden layer architectures than for a single
hidden layer architectures, when trained with the same number
of learning cycles(Tables 1 and 2 Therefore, networks with
two hidden layers(54 caseps were not considered for further
analysis.

Selection of Best Artificial Neural Network
Combination

Using data set 1c, ETo was determined for all 108 single hidden
layer networks(3 training methodg 6 learning cyclex 6 cases

of PEs in the hidden laygand was compared with the PM esti-
mated ETo values to obtain the most promising network for each
learning method for estimation of ETo. A single network for each
learning method was selected based on the minimal network ar-
chitecture and WSEE.

Linear regression analyses were made with the standard Using Eq.(7), WSEEs were estimated for all 108 networks
method estimated ETo as the dependent variable and the tesand are presented in Table 3. The back-propagation with learning
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Table 4. Statistical Summary of Artificial Neural NetworddANN) Predicted Grass Reference Crop Envirotranspiratiéro) for Test Period
(Data Set 1¢

ANN learning scheme

Std Back-Propagation, LR0.2 Std Back-Propagation LR0.8 Back-Propagation Momentum
Statistical parameter ~ ALL MONTHS PEAK MONTHS ALL MONTHS PEAK MONTHS ALL MONTHS PEAK MONTHS
SEE 0.27 0.34 0.26 0.39 0.26 0.33
(mm/day 0.79 (0.70 0.77 (0.70 0.77 (0.70
bP 0.99 0.99 1.00 0.99 0.98 0.98
(0.98 (1.09 (0.98 (1.09 (0.98 (1.09
r¢ 0.99 0.97 0.99 0.95 0.99 0.97
(0.92 (0.80 (0.92 (0.80 (0.92 (0.80
ASEE 0.27 0.34 0.26 0.39 0.25 0.31
(mm/day (0.75 (0.66 (0.79 (0.66 (0.75 (0.66
WSEE 0.29 0.29 0.27
(mm/day (0.74 (0.74 (0.74

Note: Number in parenthesis is based on comparison between the PM and lysimetde&den et al. 1990
aStandard error of estimate for ANN estimated Efiem/day not adjusted by regression.

bRegression coefficier(slopa for regression through the origin between the PM and ANN ETo estimates.
Correlation coefficient for regression through the origin between the PM and ANN ETo estimates.
dStandard error of estimate for ANN estimated Hfiem/day adjusted by regression.

AWeighted standard error of estimate.
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Fig. 1. Comparison between Penmann—Monteith estimated grass
reference crop evapotranspiration and artificial neural network esti- Fig. 2. Scatter plot between grass reference crop evapotranspiration

mated grass reference crop evapotranspirdps-7-1s25k(b) 6-7- estimated using Penmann—Monteith and selected artificial neural net-
1s85k, andc) 6-7-1b25k for 1 year period from July 1, 1999 to June work: (a) 6-7-1b25k,(b) 6-7-1s25k, andc) 6-7-1s85k for complete
30, 2000. test period(July 1, 1996 to June 30, 2000
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Table 5. Atrtificial Neural Networks Training and Validation Errors using Data Sets 2a and 2b, Respectively, for Single Hidden Layer Architec-
tures

Std. back-propagation LR0.2 Std. back-propagation LR0.8 Back-propagation momentum

Training Validation Training Validation Training Validation

(Set 1a (Set 1bh (Set 1a (Set 1bh (Set 1a (Set 1bh
Network architecture MSE (10 4 MSE (10 %) MSE (10 4 MSE (10 %) MSE (10 4 MSE (10 4
6-7-105k 9.1 4.9 9.6 11.6 8.2 4.1
6-7-11k 7.8 4.2 8.2 3.1 8.0 3.2
6-7-12k 7.8 3.9 8.3 3.4 75 2.9
6-7-13k 7.7 4.1 8.2 3.0 7.2 4.7
6-7-14k 7.2 2.9 7.1 8.0 7.2 34
6-7-15k 7.1 3.2 8.2 31 6.7 2.9

rate of 0.2 and back-propagation with momentum resulted in the Comparison with Lysimeter Measured Grass
maximum and minimum variation in WSEE values, respectively, Reference Crop Evapotranspiration

for different ANN architectures. The WSEE values between ANN
estimated ETo and PM ETo were lower than that reported by
Jensen et al(1990 between PM ETo and lysimeter measured
ETo (0.74 mm/day. The ANN architecture 6-7-1 with 5,000

All three ANNs were again trained and validated with the
lysimeter measured ETi&ets 2a and 2tor six different training
cycles (500, 1,000, 2,000, 3,000, 4,000, and 5,000raining

> and validation erroréMSE) are presented in Table 5. The training
cycles gave the minimum WSEE of 0.29, 0.29, and 0.27 mm/day error showed a decreasing trend with increasing learning

for the standard back-propagation with learning rates 0.2 and 0'8’cycles. Using test data set 2¢, the ETo estimation performance

and back-propagation with momentum learning methods, respec- . .
tively. This network also resulted in the minimal ANN architec- of the PM and ANN was evaluated against the lysimeter ETo.

ture. Thus, these three ANN architectures were selected as theWSEE values for_the test period are pre_sented in Table 6 for
. ; all three ANN architectures. The WSEE varied from 0.56 mm/day
best ones. However, the ANN architecture with the back-

propagation momentum was found to be the best among the se-for 1,000 cycles to 0.76 mmiday for 4,000 cycles in the case
lected networks because of the minimum WSEE and higher con-Of the back-propagation momentum learning method. The WSEE

i for the standard back-propagation with 0.8 as the learning
sistency.

o N rate was nearly stable for all cycles, whereas it fell rapidly up
Statistical summary of ETo estimation performance of each .
. : X to 2,000 cycles and became almost stable thereafter in the case of
learning method is presented in Table 4 for data set 1c. It may be - . .
T standard back-propagation with learning rate of 0.2. The ANN

noted that the statistics for all month and peak month were deter- - -

. A architecture of 6-7-1 trained for 5,000, 5,000, and 1,000 cycles
mined considering complete data set 1c and peak month(data . K .

I ) was selected for the back-propagation with learning rates of 0.2

subset of 1c for the month of JulyFurthermore, statistics given . . .
. . . nd 0.8, and back-propagation with momentum learning method,
in parenthesis are based on comparison between PM ETo an L espectivel
lysimeter ETo(Jensen et al. 1990All the chosen networks gave P -

SEE, ASEE, and WSEE values less than the reported values fortheGsr:fész:tggfirs&Zew;rsogorﬁvzpr)gctjr?i?ﬁ ILa;L%nthgngAafs(iimL:astg]cig
the PM method by Jensen et &.990 (Table 4. Furthermore, P

: . . - and lysimeter measured ETo for the test periddta set 2c
the regression coefficierth and correlation coefficient were R ;
. i : and summary statistics is presented in Table 7. The SEE
close to unity. These results indicate that if the networks were
. - - - and ASEE values for both all month and peak month were lower
trained against the lysimeter measured ETo then their perfor-

mance would have been probably better than the PM methodfor the ANN models than for the PM method. For all ANNSs, the
forDavis. Most likely the nonlinearity in the interacting factors is

not fully captured by the PM method.
Comparisons between the PM ETo and ANN estimated ETo Table 6. Artificial Neural Networks Testing Error Weighted Standard

using the Standard back-propagation with moment(@q7- Error of Estimate(WSEB in Predicting Lysimeter Grass Reference
1b25K, standard back-propagation with learning rates of (6:2 Crop EvapotranspiratiofData Set 2¢
7-1-s25K and 0.8(6-7-1-s85k, respectively, foa 1 year period Std. Std.
(July 1, 1999 to June 30, 20pfbr Davis are presented in Fig. 1. back-propagation back-propagation Back-propagation
The ANN estimated ETo values agreed with the PM ETo values LR=0.2 LR=0.8 momentum
and followed the same trend. In_aII cases, thg deviation in ETo Testing Testing Testing
values was less than 1 mm/délyig. 1). Fig. 2 is a scatterplot (Set 29 (Set 28 (Set 23
between ETo estimated using the PM method and selected ANNNetwork WSEE WSEE WSEE
architectures for the complete test peri@aily 1, 1996 to June  architecture (mm/day (mm/day (mm/day
2000. The ANN estimated ETo values lie on both sides of the 1:1 " . 072 0.59 0.60
line almost symmetrically. This was true for all three ANNs. All
ANNSs resulted in a highR? value, slope close to unity, and inter- 6-7-11k 0.67 0.58 0.56

’ : 6-7-12k 0.59 0.58 0.64

cept close to zero. In all cases, the intercept and slope were not
significantly different than zero and unity, respectively, at 5% 2';'iji 8'22 8'22 8';(13
significance level using thetest. Therefore, any one of the net- - "~ : ' :

works can be used for predicting ETo. 6-7-15k 0.56 0.56 0.60
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Table 7. Summary Statistics of Artificial Neural Networf@NN) Predicted Grass Reference Crop Evapotranspirdfiofo) and Penmann—
Monteith (PM) Estimated ETo with Respect to Lysimeter ETo for Test Pe(ddta Set 2¢

ANN learning scheme

Std Back-Propagation, LR0.2  Std Back-Propagation LR0.8 Back-Propagation Momentum Penman—Monteith

ALL PEAK ALL PEAK ALL PEAK ALL PEAK
Statistical parameter MONTHS MONTHS MONTHS MONTHS MONTHS MONTHS  MONTHS MONTHS
SEE (mm/day 0.57 0.54 0.56 0.57 0.57 0.55 1.03 0.90
bP 1.00 1.03 0.99 1.02 0.99 1.00 1.04 1.09
r¢ 0.97 0.95 0.97 0.95 0.97 0.95 0.91 0.83
ASEE! (mm/day 0.57 0.51 0.56 0.56 0.56 0.55 1.00 0.73
WSEE (mm/day 0.56 0.56 0.56 0.97

aStandard error of estimate for ANN/PM estimated Efiom/day not adjusted by regression.

PRegression coefficier(slopa for regression through the origin between the lysimeter ETo and ANN/PM ETo estimates.
Correlation coefficient for regression through the origin between the lysimeter ETo and ANN/PM ETo estimates.
dStandard error of estimate for ANN/PM estimated Hifom/day adjusted by regression through the origin.

slope was close to unity, and correlation values were higher than
for the PM method(Table 7. Furthermore, all ANNs yielded
WSEE values lower than the PM meth@ 97 mm/day for the

test period.

The relations between lysimeter measured and estimated ETo
using the 6-7-1s25k, 6-7-1s85k, and 6-7-1b21k ANN, and PM
method are shown in Fig. 3. Both the PM and ANN estimated
ETo followed the trend of lysimeter ETo. However, the ANN
estimated ETo is closer to the measured ETo than the PM method.
All three ANNs showed a similar ETo trend and agreement with
the measured ETo. The ANN and PM estimated ETo values lie on
o AT both sides of the 1:1 ling=ig. 4) almost symmetrically. This was

: ‘ ; : true for all the three selected ANN architecturgsgs. 4a—
Jan 61  Mar 61  May 61  Ju 61  Sep61 Nov61  Dec_61 c)].However, the spread was greater in the case of the/ IRyl
14 4(d)] than the ANN. Further for all ANNSs, the slope was close to
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Fig. 4. Scatter plot between lysimeter grass reference crop evapo-
Fig. 3. Comparison between lysimeter measured grass referencetranspiration and estimated grass reference crop evapotranspiration
crop evapotranspiration and estimated grass reference crop evapodsing Penmann—Monteii®M) and artificial neural networka) 6-7-
transpiration by artificial neural network and Penmann—Monteith for 1b21k, (b) 6-7-1s25k,(c) 6-7-1s85k, and(d) PM for test period
test period(January 1, 1961 to December 31, 1961, data set 2c (January 1, 1961 to December 31, 1961, data sgt 2c
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unity, the intercept was close to zero, @Rtlvalues were higher-
than for the PM methodFig. 4). These results clearly indicatethat
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The following symbols are used in this paper:

sum of weighted input;

= no. of iteration;

neuron index in output layer;

coefficient of determination;

correlation coefficient;

weight of link between neurons of two layer;

input value stored in neuron of input layer;

mean of input buffe;

maximum value of input buffex;

minimum value of input buffek,;

normalized value of input buffex;

original value;

grass reference crop evapotranspiration estimated
using test method,;

grass reference crop evapotranspiration estimated
using standard methods;

change in weight;

error back-propagating;

learning rate;

momentum coefficient; and

= normalized output.
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