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Estimating Evapotranspiration using Artificial Neural
Network

M. Kumar1; N. S. Raghuwanshi2; R. Singh3; W. W. Wallender4; and W. O. Pruitt5

Abstract: This study investigates the utility of artificial neural networks~ANNs! for estimation of daily grass reference crop evap
transpiration~ETo! and compares the performance of ANNs with the conventional method~Penman–Monteith! used to estimate ETo
Several issues associated with the use of ANNs are examined, including different learning methods, number of processing elem
hidden layer~s!, and the number of hidden layers. Three learning methods, namely, the standard back-propagation with learning
0.2 and 0.8, and backpropagation with momentum were considered. The best ANN architecture for estimation of daily ETo was
for two different data sets~Sets 1 and 2! for Davis, Calif. Using data of Set 1, the networks were trained with daily climatic data~solar
radiation, maximum and minimum temperature, maximum and minimum relative humidity, and wind speed! as input and the Penman
Monteith ~PM! estimated ETo as output. The best ANN architecture was selected on the basis of weighted standard error of
~WSEE! and minimal ANN architecture. The ANN architecture of 6-7-1,~six, seven, and one neuron~s! in the input, hidden, and outpu
layers, respectively! gave the minimum WSEE~less than 0.3 mm/day! for all learning methods. This value was lower than the WS
~0.74 mm/day! between the PM method and lysimeter measured ETo as reported by Jensen et al. in 1990. Similarly, ANNs were
validated, and tested using the lysimeter measured ETo and corresponding climatic data~Set 2!. Again, all learning methods gave les
WSEE~less than 0.60 mm/day! as compared to the PM method~0.97 mm/day!. Based on these results, it can be concluded that the A
can predict ETo better than the conventional method~PM! for Davis.

DOI: 10.1061/~ASCE!0733-9437~2002!128:4~224!
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Introduction

Evapotranspiration~ET! is one of the major components of th
hydrologic cycle and its accurate estimation is of paramount
portance for many studies such as hydrologic water balance,
gation system design and management, crop yield simulation,
water resources planning and management. A common pra
for estimating ET from a well-watered agricultural crop is to fir
estimate reference crop ET, i.e., grass reference ET~ETo! or al-
falfa reference ET~ETr!, from a standard surface and to the
apply an appropriate empirical crop coefficient, which accou
for the difference between the standard surface and crop
Doorenbos and Pruitt~1977! defined reference crop evapotran
piration rate as ‘‘the rate of evapotranspiration from an extens
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surface of 0.08–0.15 m tall, green grass cover of uniform heig
actively growing, completely shading the ground, and not shor
water.’’ In the past 5 decades, several studies have focused o
development of accurate ET estimation methods and improv
the performance of the existing methods due to wide applica
of ET data. The research efforts are still continuing in this dir
tion.

Evapotranspiration can be either measured with a lysimete
water balance approach, or estimated from climatological d
However, it is not always possible to measure ET with a lysime
because it is a time-consuming method and needs precisely
carefully planned experiments. Thus, indirect methods based
climatological data are used for ETo estimation. These meth
vary from empirical relationships to complex methods based
physical processes such as the Penman~1948! combination
method. The combination approach links evaporation dynam
with the flux of net radiation and aerodynamic transport char
teristics of a natural surface. Based on the observations that la
heat transfer in plant stems is influenced not only by these ab
factors, Monteith~1965! introduced a surface conductance ter
that accounted for the response of leaf stomata to its hydrolo
environment. This modified form of the Penman equation
widely known as the Penman–Monteith evapotranspirat
model.

Many scientists have studied the reliability of the Penma
Monteith ~PM! method for estimating ETo~McNaughton and
Jarvis 1984; Allen 1986; Allen et al. 1989; De Souza and Yo
1994; Chiew et al. 1995!. Jensen et al.~1990! analyzed the per-
formance of 20 different methods against lysimeter measured
for 11 stations located in different climatic zones around
world. The PM method ranked as the best method for all clima

s

.
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conditions. However, the ranking of other methods varied,
pending on their local calibration and conditions.

Evapotranspiration is a complex and nonlinear phenome
because it depends on several interacting climatological fac
such as temperature, humidity, wind speed, radiation, ty
and growth stage of the crop, etc. Artificial neural networ
~ANNs! are effective tools to model nonlinear systems.
neural network model is a mathematical construct wh
architecture is essentially analogous to the human br
Basically, the highly interconnected processing elements~PEs!
arranged in layers are similar to the arrangement of neurons in
brain.

In the past decade, considerable attention has been focus
the application of ANNs in diverse fields including system mo
eling, fault diagnosis and control, pattern recognition, financ
forecasting, and hydrology. Studies on ANN application in t
area of hydrology include rainfall-runoff modeling~French et al.
1992; Minnes and Hall 1996!; river stage forecasting~Thirumala-
ian and Deo 1998, Campolo et al. 1999!; reservoir operation~Jain
et al. 1999!; land drainage design~Shukla et al. 1996; Yang et a
1996, 1998!; pesticides concentration in soil~Yang et al. 1997;
Goh 1999; Tansel et al. 1999!; aquifer parameter estimatio
~Srinivasa 1998!; and optimization problems~Rogers and Dowla
1994; Wen and Lee 1998!. Some of the studies~Zealand et al.
1999; Yang et al. 1996! have also shown that ANN is more acc
rate than conventional methods. It is evident from the literat
that no study has been carried out to utilize the input–out
mapping capability of ANN in the prediction of ET.

Based on the capabilities that ANNs have to simulate non
earity among the interacting factors in the system, the pre
study describes the utilization of the input–output mapping ca
bilities of the ANN in ETo prediction. Below, the ANN-estimate
ETo values are compared with both the PM estimated and lys
eter measured ETo values. Furthermore, the performance of
ANN training methods is evaluated and the minimal ANN arc
tecture for predicting ETo is determined.

Artificial Neural Networks

An ANN consists of input, hidden, and output layers and ea
layer includes an array of processing elements. A typical ne
network is fully connected, which means that there is a conn
tion between each of the neurons in any given layer with eac
the neurons in the next layer. A processing element is a m
whose components are analogous to the components of a
neuron. The array of input parameters is stored in the input la
and each input variable is represented by a neuron. Each of t
inputs is modified by a weight whose function is analogous to t
of the synaptic junction in a biological neuron. The process
element consists of two parts. The first part simply aggregates
weighted inputs; the second part is essentially a nonlinear fi
usually called the transfer function or activation function. T
activation function squashes or limits the values of the outpu
an artificial neuron to values between two asymptotes. The
moidal function is the most commonly used activation function
is a continuous function that varies gradually between t
asymptotic values, typically 0 and 1 or21 and11.

Artificial Neural Network Learning

Learning is normally accomplished through an adaptive pro
dure or algorithm that incrementally adjusts weights of the c
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nections so as to improve a predefined performance measure
neural network is presented with the data patterns consistin
the input values as well as expected~or output! values. The ob-
jective is to minimize the difference between the predicted out
values and expected output values using an algorithm~e.g., back-
propagation algorithm!. Initially, because of the random weight
assigned randomly to the connections, the difference between
predicted and desired output values can be large. Learning th
fore involves iteratively adjusting the connection weights to mi
mize these differences.

Backpropagation Training Method

Training of an artificial neural network involves two phases.
the first phase or forward pass the input signals propagate f
the network input to the output. In the second phase or rev
pass, the calculated error signals propagate backward throug
network, where they are used to adjust the weights. The calc
tion of the output is carried out, layer by layer, in the forwa
direction. The output of one layer is the input to the next layer.
the reverse pass, the weights of the output neuron layer are
justed first since the target value of each output neuron is av
able to guide the adjustment of the associated weights.
weights in the output and hidden layer neurons can be calcul
using Eqs.~1! and ~2!, respectively~Tsoukalas and Uhrig 1996!,

w~N11!5w~N!2hdf (1)

w~N11!5w~N!1hx(
q51

r

dq (2)

where w5weight; N5number of iteration;x5 input value; h
5 learning rate;f5output; andd is defined as 2«q]f/]I , I being
the sum of the weighted inputs,q5neuron index of the outpu
layer, and«q5error signal.

The above training method is known as the standard ba
propagation training method. Since back-propagation employ
form of gradient descent, it is assumed that the error surface s
is always negative and hence, constantly adjusting weights tow
minimum. However, error surfaces often involve complex, hi
dimensional space that is highly convoluted with hills, valley
and folds. It is very easy for the training process to get trappe
a local minimum.

The problem of the local minima can be avoided by addin
momentum term to the weight change, to permit larger learn
rates. The change of weight is then computed as follows:

Dw~N11!52hdf1mDw~N! (3)

where m5momentum coefficient andDw(N11)5change of
weight duringN to N11 learning cycles. Thus, the new value
weight becomes equal to the previous value of the weight plus
weight change, which includes the momentum term. This train
method is known as back-propagation with momentum.

Materials and Method

Description of Data and Grass Reference Crop
Evapotranspiration Estimation

For the purpose of this study, daily climatic data of minimum a
maximum temperature, minimum and maximum relative hum
ity, wind speed, and solar radiation for Davis California Irrigatio
Management Information System station were collected for
IGATION AND DRAINAGE ENGINEERING / JULY/AUGUST 2002 / 225
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Table 1. Artificial Neural Networks~ANNs! Training and Validation Errors using Data Sets 1a and 1b, Respectively, for Single Hidden
Architectures

Network architecture

Std. back-propagation LR50.2 Std. back-propagation LR50.8 Back-propagation momentum

Training
~Set 1a!

Validation
~Set 1b!

Training
~Set 1a!

Validation
~Set 1b!

Training
~Set 1a!

Validation
~Set 1b!

MSE (1024) MSE (1024) MSE (1024) MSE (1024) MSE (1024) MSE (1024)

6-7-105k 2.6 1.5 1.4 8.4 1.5 1.1
6-7-11k 2.3 1.5 1.1 3.8 1.1 1.1
6-7-12k 2.0 1.4 0.8 3.4 1.1 1.2
6-7-13k 1.4 0.9 0.8 4.7 1.0 1.9
6-7-14k 1.8 1.4 1.1 1.8 1.0 1.4
6-7-15k 1.2 0.9 0.9 0.8 1.0 0.9
6-8-105k 2.5 1.6 2.1 1.4 1.6 1.8
6-8-11k 2.2 1.4 1.5 1.1 1.2 1.0
6-8-12k 1.7 1.2 1.3 0.9 1.1 1.2
6-8-13k 1.5 1.1 1.0 0.9 1.0 1.2
6-8-14k 1.2 1.0 0.9 0.9 1.0 0.8
6-8-15k 1.2 1.6 0.9 0.8 0.8 0.8
6-9-105k 2.4 1.6 4.3 2.4 1.2 1.4
6-9-11k 2.1 1.5 2.0 1.3 1.1 0.8
6-9-12k 2.0 1.4 1.1 1.3 1.0 0.9
6-9-13k 1.5 1.2 1.1 0.9 0.9 0.8
6-9-14k 1.2 1.0 1.0 0.9 1.1 1.0
6-9-15k 1.1 1.0 1.0 0.9 0.8 1.5
6-10-105k 2.4 1.7 2.0 1.3 1.3 0.9
6-10-11k 2.2 1.5 1.3 1.7 1.1 0.9
6-10-12k 2.0 1.4 1.1 1.0 1.0 1.5
6-10-13k 1.4 1.1 1.0 0.9 0.9 0.8
6-10-14k 1.2 1.0 1.0 0.9 0.9 0.9
6-10-15k 1.1 1.1 1.0 0.8 0.8 0.8
6-11-105k 2.4 1.7 1.7 1.4 1.4 1.1
6-11-11k 2.1 1.4 1.3 1.3 1.2 1.5
6-11-12k 1.9 1.4 1.2 0.9 0.9 0.9
6-11-13k 1.4 1.1 1.1 1.5 1.0 0.8
6-11-14k 1.4 1.0 0.9 1.2 0.8 0.7
6-11-15k 1.3 1.0 0.9 1.1 0.8 0.8
6-12-105k 2.4 1.6 2.0 1.3 1.5 1.1
6-12-11k 2.2 1.6 1.3 1.1 1.1 1.1
6-12-12k 2.1 1.5 1.1 0.9 1.0 0.9
6-12-13k 1.4 1.1 1.1 1.0 1.0 0.8
6-12-14k 1.2 0.9 1.0 0.9 0.9 0.8
6-12-15k 1.1 1.0 0.9 0.9 0.8 0.9

Note: LR5learning rate.
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period of January 1, 1990 to June 30, 2000~Set 1!. Daily ETo
values were estimated using the PM method because the lysim
measured ETo values were not available for the period. The
estimated ETo values were considered as standard and use
training and testing of different architectures of ANN. The P
method is considered as standard because it ranked first for
humid and arid regions~Jensen et al. 1990!.

To compare the ANN predicted ETo with the PM estimat
ETo, daily lysimeter measured grass evapotranspiration a
with climatic data@minimum and maximum temperature, min
mum and maximum relative humidity, wind speed, and solar
diation# from January 1, 1960 to December 31, 1963~Set 2! were
collected for Davis~Pruitt, personal communication, 2000!. The
lysimeter measured ETo corresponds to frequently mowed,
quently irrigated, ryegrass grown in the 6 m diameter weighting
lysimeter at Davis. The grass height was maintained between
and 0.15 m throughout the observation period.
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Normalization of Data

Prior to exporting the data to the ANN for training, the data we
normalized. This was done to restrict their range within the int
val of 0–1, because the PEs of the middle layer were assign
sigmoidal activation function. The shape of this function plays
important role in ANN learning. The weight changes correspo
ing to a value near 0 or 1 are minimal since PE is ‘‘dull’’ where
closer to 0.5 they respond more~Rao and Rao 1996!. Keeping
these facts in view, the normalization was carried out so that
mean of the data series would be equal to 0.5. The follow
equation was used:

xnorm50.5S x02 x̄

xmax2xmin
D10.5 (4)

where xnorm5normalized value;x05original value; x̄5mean;
xmax5maximum value; andxmin5minimum value.
UGUST 2002
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Table 2. Artificial Neural Networks~ANNs! Training and Validation Errors using Data Sets 1a and 1b, Respectively, for Two Hidden L
Architectures

Network architecture

Std. back-propagation LR50.2 Std. back-propagation LR50.8 Back-propagation momentum

Training
~Set 1a!

Validation
~Set 1b!

Training
~Set 1a!

Validation
~Set 1b!

Training
~Set 1a!

Validation
~Set 1b!

MSE (1024) MSE (1024) MSE (1024) MSE (1024) MSE (1024) MSE (1024)

6-4-4-105k 2.4 2.0 2.3 2.2 2.2 1.7
6-4-4-11k 2.3 2.3 2.2 2.0 2.2 1.6
6-4-4-12k 2.1 1.8 2.2 2.1 2.0 1.4
6-4-4-13k 1.9 1.7 1.7 1.6 1.9 1.4
6-4-4-14k 1.8 1.7 2.1 1.8 1.5 1.0
6-4-4-15k 2.2 2.1 1.5 1.2 1.3 0.9
6-5-5-105k 2.3 2.1 2.1 3.6 2.3 2.0
6-5-5-11k 2.3 2.1 2.1 3.5 2.3 2.1
6-5-5-12k 2.2 2.0 2.2 2.2 2.2 2.0
6-5-5-13k 2.2 2.0 1.7 1.6 2.0 2.1
6-5-5-14k 1.2 2.3 1.9 1.7 2.2 2.1
6-5-5-15k 1.5 1.3 2.2 2.1 1.6 1.4
6-6-6-105k 2.2 2.1 2.4 2.1 2.3 2.2
6-6-6-11k 2.2 2.0 2.3 2.0 2.3 2.0
6-6-6-12k 2.2 2.2 2.2 2.2 2.2 1.8
6-6-6-13k 2.1 1.9 1.7 1.6 1.7 1.5
6-6-6-14k 2.2 2.0 1.5 1.3 1.7 1.6
6-6-6-15k 2.2 2.0 1.5 1.4 1.6 1.5
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One of the major advantages of neural nets is their ability
generalize. To reach the best generalization, the data set shou
split into three parts, namely, training set, validation set, and
set~SNNS 1995!. The training data set is used to train a neural
by minimizing the error of this data set during training. The va
dation data set is used to determine the performance of a ne
network on patterns that are not trained during training. The
set is used for checking the overall performance of a trained
validated network. Therefore, the normalized data~Set 1! was
divided into three subsets for the purpose of training, validat
and testing. Data sets 1a, 1b, and 1c were comprised of 1
~January 1, 1990 to December 31, 1994!; 547 ~January 1, 1995 to
June 30, 1996!, and 1,461~July 1, 1996 to June 30, 2000! patterns
for training, validation, and testing, respectively. Similarly, t
normalized data set 2 was also divided into training~Set 2a!,
validation~Set 2b!, and testing~Set 2c! sets. The data sets 2a, 2
and 2c consisted of normalized data from January 1, 1960
December 31, 1960 and January 1, 1962 to June 30, 1962; Ju
1962 to December 31, 1962; and January 1, 1961 to Decem
31, 1961, respectively. Only complete records without any m
ing data on a given day were considered for the analysis. Co
quently, the testing data set had a total of 302 patterns, a
excluding the missing data between January 1, 1961 and De
ber 31, 1961. The training and validation data sets, however
cluded 489 and 133 patterns, respectively.

To obtain the best ANN architecture several possibilities w
considered in this study. For each ANN architecture, the num
of nodes in the input and output layers were fixed at six and o
respectively. The number of nodes in the input layer correspon
to the six basic input parameters for ETo estimation by the
method, whereas the output layer node corresponded to the
ETo. The numbers of nodes in the hidden layer were varied f
7 to 12 for one hidden layer architecture. However, for the t
hidden layers architecture three, four, and five nodes were
sidered in each hidden layer. Each ANN architecture was te
JOURNAL OF IRR
e
t

l
t

6

,
r

-
r
-

-

r
,

-

for 500, 1,000, 2,000, 3,000, 4,000, and 5,000 learning cyc
Furthermore, three learning methods, namely, standard b
propagation with learning rates of 0.2 and 0.8 and ba
propagation momentum with a learning rate of 0.2 and a mom
tum term as 0.95, were used.

The ANNs tested were given names according to their arc
tecture, the learning method, and number of learning cycles.
network architecture is described with a set of numbers separ
by ‘‘ 2’’ signs. ‘‘s’’ denotes the standard back-propagation a
‘‘ b’’ denotes the back-propagation with momentum as the lea
ing method. The learning rate is denoted with the numbers 2
8. The alphanumeric values of 05k, 1k, 2k, 3k, 4k, and 5k rep
sent the number of learning cycles of 500, 1,000, 2,000, 3,0
4,000 and 5,000, respectively. Thus, the ANN 6-7-1b25k had
PEs in its input layer, seven PEs in its hidden layer, and one P
its output layer; the back-propagation momentum learning w
used with a learning rate of 0.2; the network was trained for 5,0
cycles.

A total of 162 ~108 networks with single hidden layer and 5
networks with two hidden layers! ANNs were studied. The
Stuttgart Neural Network Simulator version 4.1~SNNSv4.1! dis-
tributed by the University of Stuttgart was used to implement
neural networks. Training and validation data sets~Sets 1a and
1b! were shuffled before training and validation to ensure
randomness during ANNs training and validation. The SNNS p
vides information on mean sum of square error~MSE! during the
training and validation. Using the test input data~Set 1c!, the ETo
prediction performance of each network was evaluated for b
peak~July! and all months. The peak month is the month wh
peak ETo occurred. The minimal network architecture a
weighted standard error of estimate~WSEE! were used as crite-
rion for selecting the best network for each learning meth
WSEE was derived from the standard error of estimate~SEE! and
adjusted SEE~ASEE! ~Jensen et al. 1990!. The SEE was esti-
mated as follows:
IGATION AND DRAINAGE ENGINEERING / JULY/AUGUST 2002 / 227
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~YO2YE!2

n21
G 0.5

(5)

where SEE5standard error of estimate;YO5ETo estimated using
the standard methods~PM and lysimeter ETo represent standa
method for Sets 1c and 2c, respectively!; YE5ETo estimated
using the test method~ANN, ANN, and PM represent the tes
methods for Sets 1c and 2c, respectively!; and n5number of
observations.

Linear regression analyses were made with the stand
method estimated ETo as the dependent variable and the

Table 3. Artificial Neural Network Testing Error Weighted Standa
Error of Estimate~WSEE! using Data Set 1c for Single Layer Arch
tectures

Network
architecture

Std.
back-propagation

LR50.2

Std.
back-propagation

LR50.8
Back-propagation

momentum

Testing
~Set 1c!

Testing
~Set 1c!

Testing
~Set 1c!

WSEE
~mm/day!

WSEE
~mm/day!

WSEE
~mm/day!

6-7-105k 0.41 0.34 0.3
6-7-11k 0.36 0.46 0.29
6-7-12k 0.36 0.29 0.28
6-7-13k 0.35 0.29 0.29
6-7-14k 0.31 0.30 0.30
6-7-15k 0.29 0.29 0.27
6-8-105k 0.39 0.37 0.34
6-8-11k 0.37 0.37 0.28
6-8-12k 0.31 0.29 0.28
6-8-13k 0.30 0.31 0.28
6-8-14k 0.33 0.30 0.27
6-8-15k 0.33 0.30 0.28
6-9-105k 0.40 0.30 0.31
6-9-11k 0.35 0.30 0.34
6-9-12k 0.33 0.29 0.30
6-9-13k 0.31 0.29 0.31
6-9-14k 0.30 0.29 0.31
6-9-15k 0.30 0.29 0.29
6-10-105k 0.39 0.33 0.31
6-10-11k 0.37 0.29 0.33
6-10-12k 0.30 0.29 0.28
6-10-13k 0.30 0.29 0.31
6-10-14k 0.32 0.29 0.28
6-10-15k 0.34 0.29 0.31
6-11-105k 0.38 0.35 0.30
6-11-11k 0.38 0.31 0.30
6-11-12k 0.32 0.28 0.28
6-11-13k 0.29 0.30 0.28
6-11-14k 0.31 0.28 0.28
6-11-15k 0.29 0.30 0.29
6-12-105k 0.38 0.42 0.35
6-12-11k 0.36 0.29 0.29
6-12-12k 0.34 0.35 0.31
6-12-13k 0.31 0.28 0.27
6-12-14k 0.28 0.28 0.28
6-12-15k 0.28 0.30 0.36
228 / JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING / JULY/A
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method estimated ETo as the independent variable. The equ
of regression through the origin is given below

YO5b3YE (6)

The regression coefficientsb were used to adjust the ETo est
mates and SEEs were recalculated for the adjusted va
~ASEE!, i.e., YE in Eq. ~5! was set equal to@b3YE#. Using the
SEE and ASEE values, the WSEE was calculated as follo
~Jensen et al. 1990!:

WSEE50.7@0.67~SEEall!10.33~ASEEall!#

10.3@0.67~SEEpeak!10.33~ASEEpeak!# (7)

where subscripts all and peak5all months and peak months, re
spectively.

The results related to the effect of learning cycle, number
PEs in the hidden layer, number of hidden layers, and learn
methods on ANN performance along with choice of the best AN
architecture are presented in the following section. In additi
ETo estimated with the ANN and PM models are compared w
the lysimeter measured ETo values.

Results and Discussion

Training And Validation of Network

Table 1 presents training and validation errors~MSE! for all
single hidden layer ANN architectures. For all learning metho
MSE during training decreased with the increase in learn
cycles and did not exhibit any trend with the increase in num
of PEs in the hidden layer. The standard back-propagation w
amomentum learning method resulted in slightly lower traini
error as compared to the standard back-propagation method
the same network architecture. The optimal condition for AN
training is defined by the number of learning cycles for giv
ANNs where network freezes to learn further. The number
learning cycles for such a condition was determined using
validation data~Set 1b!. For example, in the case of 6-8-1-b
networks the network performance improved up to 4,000 learn
cycles and remained unchanged for 5,000 learning cycles~Table
1!. Similar trends were noticed with other ANNs. However, t
optimal limit for cycles varied from 3,000 to 5,000.

Table 2 presents training and validation errors~MSE! for
all two hidden layer network architectures. For the same num
of PEs in hidden layer~s!, both training and validation error
were higher for two hidden layer architectures than for a sin
hidden layer architectures, when trained with the same num
of learning cycles~Tables 1 and 2!. Therefore, networks with
two hidden layers~54 cases! were not considered for furthe
analysis.

Selection of Best Artificial Neural Network
Combination

Using data set 1c, ETo was determined for all 108 single hid
layer networks~3 training methods36 learning cycles36 cases
of PEs in the hidden layer! and was compared with the PM est
mated ETo values to obtain the most promising network for e
learning method for estimation of ETo. A single network for ea
learning method was selected based on the minimal network
chitecture and WSEE.

Using Eq. ~7!, WSEEs were estimated for all 108 networ
and are presented in Table 3. The back-propagation with lear
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Table 4. Statistical Summary of Artificial Neural Network~ANN! Predicted Grass Reference Crop Envirotranspiration~ETo! for Test Period
~Data Set 1c!

Statistical parameter

ANN learning scheme

Std Back-Propagation, LR50.2 Std Back-Propagation LR50.8 Back-Propagation Momentum

ALL MONTHS PEAK MONTHS ALL MONTHS PEAK MONTHS ALL MONTHS PEAK MONTHS

SEEa 0.27 0.34 0.26 0.39 0.26 0.33
~mm/day! ~0.77! ~0.70! ~0.77! ~0.70! ~0.77! ~0.70!
bb 0.99 0.99 1.00 0.99 0.98 0.98

~0.98! ~1.04! ~0.98! ~1.04! ~0.98! ~1.04!
rc 0.99 0.97 0.99 0.95 0.99 0.97

~0.92! ~0.80! ~0.92! ~0.80! ~0.92! ~0.80!
ASEEd 0.27 0.34 0.26 0.39 0.25 0.31
~mm/day! ~0.75! ~0.66! ~0.75! ~0.66! ~0.75! ~0.66!

WSEEe 0.29 0.29 0.27
~mm/day! ~0.74! ~0.74! ~0.74!

Note: Number in parenthesis is based on comparison between the PM and lysimeter ETo~Jensen et al. 1990!.
aStandard error of estimate for ANN estimated ETo~mm/day! not adjusted by regression.
bRegression coefficient~slope! for regression through the origin between the PM and ANN ETo estimates.
cCorrelation coefficient for regression through the origin between the PM and ANN ETo estimates.
dStandard error of estimate for ANN estimated ETo~mm/day! adjusted by regression.
eWeighted standard error of estimate.
ras
sti

ne

ation
net-
Fig. 1. Comparison between Penmann–Monteith estimated g
reference crop evapotranspiration and artificial neural network e
mated grass reference crop evapotranspiration~a! 6-7-1s25k,~b! 6-7-
1s85k, and~c! 6-7-1b25k for 1 year period from July 1, 1999 to Ju
30, 2000.
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s
- Fig. 2. Scatter plot between grass reference crop evapotranspir

estimated using Penmann–Monteith and selected artificial neural
work: ~a! 6-7-1b25k,~b! 6-7-1s25k, and~c! 6-7-1s85k for complete
test period~July 1, 1996 to June 30, 2000!.
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Table 5. Artificial Neural Networks Training and Validation Errors using Data Sets 2a and 2b, Respectively, for Single Hidden Layer Ar
tures

Network architecture

Std. back-propagation LR50.2 Std. back-propagation LR50.8 Back-propagation momentum

Training
~Set 1a!

Validation
~Set 1b!

Training
~Set 1a!

Validation
~Set 1b!

Training
~Set 1a!

Validation
~Set 1b!

MSE (1024) MSE (1024) MSE (1024) MSE (1024) MSE (1024) MSE (1024)

6-7-105k 9.1 4.9 9.6 11.6 8.2 4.1
6-7-11k 7.8 4.2 8.2 3.1 8.0 3.2
6-7-12k 7.8 3.9 8.3 3.4 7.5 2.9
6-7-13k 7.7 4.1 8.2 3.0 7.2 4.7
6-7-14k 7.2 2.9 7.1 8.0 7.2 3.4
6-7-15k 7.1 3.2 8.2 3.1 6.7 2.9
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rate of 0.2 and back-propagation with momentum resulted in
maximum and minimum variation in WSEE values, respective
for different ANN architectures. The WSEE values between AN
estimated ETo and PM ETo were lower than that reported
Jensen et al.~1990! between PM ETo and lysimeter measur
ETo ~0.74 mm/day!. The ANN architecture 6-7-1 with 5,000
cycles gave the minimum WSEE of 0.29, 0.29, and 0.27 mm/
for the standard back-propagation with learning rates 0.2 and
and back-propagation with momentum learning methods, res
tively. This network also resulted in the minimal ANN archite
ture. Thus, these three ANN architectures were selected as
best ones. However, the ANN architecture with the ba
propagation momentum was found to be the best among the
lected networks because of the minimum WSEE and higher c
sistency.

Statistical summary of ETo estimation performance of ea
learning method is presented in Table 4 for data set 1c. It ma
noted that the statistics for all month and peak month were de
mined considering complete data set 1c and peak month da~a
subset of 1c for the month of July!. Furthermore, statistics give
in parenthesis are based on comparison between PM ETo
lysimeter ETo~Jensen et al. 1990!. All the chosen networks gav
SEE, ASEE, and WSEE values less than the reported value
the PM method by Jensen et al.~1990! ~Table 4!. Furthermore,
the regression coefficientb and correlation coefficientr were
close to unity. These results indicate that if the networks w
trained against the lysimeter measured ETo then their pe
mance would have been probably better than the PM met
forDavis. Most likely the nonlinearity in the interacting factors
not fully captured by the PM method.

Comparisons between the PM ETo and ANN estimated E
using the Standard back-propagation with momentum~6-7-
1b25k!, standard back-propagation with learning rates of 0.2~6-
7-1-s25k! and 0.8~6-7-1-s85k!, respectively, for a 1 year period
~July 1, 1999 to June 30, 2000! for Davis are presented in Fig. 1
The ANN estimated ETo values agreed with the PM ETo val
and followed the same trend. In all cases, the deviation in E
values was less than 1 mm/day~Fig. 1!. Fig. 2 is a scatterplot
between ETo estimated using the PM method and selected A
architectures for the complete test period~July 1, 1996 to June
2000!. The ANN estimated ETo values lie on both sides of the
line almost symmetrically. This was true for all three ANNs. A
ANNs resulted in a highR2 value, slope close to unity, and inte
cept close to zero. In all cases, the intercept and slope were
significantly different than zero and unity, respectively, at 5
significance level using thet-test. Therefore, any one of the ne
works can be used for predicting ETo.
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Comparison with Lysimeter Measured Grass
Reference Crop Evapotranspiration

All three ANNs were again trained and validated with th
lysimeter measured ETo~Sets 2a and 2b! for six different training
cycles ~500, 1,000, 2,000, 3,000, 4,000, and 5,000!. Training
and validation errors~MSE! are presented in Table 5. The trainin
error showed a decreasing trend with increasing learn
cycles. Using test data set 2c, the ETo estimation performa
of the PM and ANN was evaluated against the lysimeter E
WSEE values for the test period are presented in Table 6
all three ANN architectures. The WSEE varied from 0.56 mm/d
for 1,000 cycles to 0.76 mm/day for 4,000 cycles in the ca
of the back-propagation momentum learning method. The WS
for the standard back-propagation with 0.8 as the learn
rate was nearly stable for all cycles, whereas it fell rapidly
to 2,000 cycles and became almost stable thereafter in the ca
standard back-propagation with learning rate of 0.2. The AN
architecture of 6-7-1 trained for 5,000, 5,000, and 1,000 cyc
was selected for the back-propagation with learning rates of
and 0.8, and back-propagation with momentum learning meth
respectively.

Grass reference crop evapotranspiration estimated u
the selected ANNs was compared with both the PM estima
and lysimeter measured ETo for the test period~data set 2c!
and summary statistics is presented in Table 7. The S
and ASEE values for both all month and peak month were low
for the ANN models than for the PM method. For all ANNs, th

Table 6. Artificial Neural Networks Testing Error Weighted Standa
Error of Estimate~WSEE! in Predicting Lysimeter Grass Referenc
Crop Evapotranspiration~Data Set 2c!

Network
architecture

Std.
back-propagation

LR50.2

Std.
back-propagation

LR50.8
Back-propagation

momentum

Testing
~Set 2c!

Testing
~Set 2c!

Testing
~Set 2c!

WSEE
~mm/day!

WSEE
~mm/day!

WSEE
~mm/day!

6-7-105k 0.72 0.59 0.60
6-7-11k 0.67 0.58 0.56
6-7-12k 0.59 0.58 0.64
6-7-13k 0.59 0.55 0.71
6-7-14k 0.56 0.56 0.76
6-7-15k 0.56 0.56 0.60
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Table 7. Summary Statistics of Artificial Neural Network~ANN! Predicted Grass Reference Crop Evapotranspiration~ETo! and Penmann–
Monteith ~PM! Estimated ETo with Respect to Lysimeter ETo for Test Period~Data Set 2c!

Statistical parameter

ANN learning scheme

Std Back-Propagation, LR50.2 Std Back-Propagation LR50.8 Back-Propagation Momentum Penman–Monteith

ALL
MONTHS

PEAK
MONTHS

ALL
MONTHS

PEAK
MONTHS

ALL
MONTHS

PEAK
MONTHS

ALL
MONTHS

PEAK
MONTHS

SEEa ~mm/day! 0.57 0.54 0.56 0.57 0.57 0.55 1.03 0.90

bb 1.00 1.03 0.99 1.02 0.99 1.00 1.04 1.09

rc 0.97 0.95 0.97 0.95 0.97 0.95 0.91 0.83

ASEEd ~mm/day! 0.57 0.51 0.56 0.56 0.56 0.55 1.00 0.73

WSEE ~mm/day! 0.56 0.56 0.56 0.97
aStandard error of estimate for ANN/PM estimated ETo~mm/day! not adjusted by regression.
bRegression coefficient~slope! for regression through the origin between the lysimeter ETo and ANN/PM ETo estimates.
cCorrelation coefficient for regression through the origin between the lysimeter ETo and ANN/PM ETo estimates.
dStandard error of estimate for ANN/PM estimated ETo~mm/day! adjusted by regression through the origin.
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Fig. 3. Comparison between lysimeter measured grass refer

crop evapotranspiration and estimated grass reference crop e
transpiration by artificial neural network and Penmann–Monteith
test period~January 1, 1961 to December 31, 1961, data set 2c!
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slope was close to unity, and correlation values were higher t
for the PM method~Table 7!. Furthermore, all ANNs yielded
WSEE values lower than the PM method~0.97 mm/day! for the
test period.

The relations between lysimeter measured and estimated
using the 6-7-1s25k, 6-7-1s85k, and 6-7-1b21k ANN, and P
method are shown in Fig. 3. Both the PM and ANN estima
ETo followed the trend of lysimeter ETo. However, the AN
estimated ETo is closer to the measured ETo than the PM met
All three ANNs showed a similar ETo trend and agreement w
the measured ETo. The ANN and PM estimated ETo values lie
both sides of the 1:1 line~Fig. 4! almost symmetrically. This was
true for all the three selected ANN architectures@Figs. 4~a–
c!#.However, the spread was greater in the case of the PM@Fig.
4~d!# than the ANN. Further for all ANNs, the slope was close

e
o-

Fig. 4. Scatter plot between lysimeter grass reference crop eva
transpiration and estimated grass reference crop evapotranspir
using Penmann–Monteith~PM! and artificial neural network:~a! 6-7-
1b21k, ~b! 6-7-1s25k, ~c! 6-7-1s85k, and~d! PM for test period
~January 1, 1961 to December 31, 1961, data set 2c!
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unity, the intercept was close to zero, andR2 values were higher-
than for the PM method~Fig. 4!. These results clearly indicateth
the ANN models estimate ETo values better than the PM met
for the Davis data.

Conclusions

The results revealed that the single hidden layer ANNs are s
cient to account for the nonlinear relationship between clima
variables and corresponding ETo. Improvement in performa
ceases for higher learning cycles and PEs in the hidden la
Several network architectures performed similarly within t
same learning method. Based on the performance criteria, a
work architecture of 6-7-1 trained with 5,000 learning cycles w
the best for all three learning methods. All three methods g
WSEE values less than 0.30 mm/day and were lower than th
obtained between the PM and measured lysimeter ETo~0.74 mm/
day, Jensen et al. 1990!. Thus, the results suggest that given t
lysimeter measured ETo as a target, ANN predicted ETo could
better than the PM method.

The selected ANNs were trained, validated, and tested aga
the lysimeter measured ETo. All ANNs yielded lower WSEE th
the PM method. The results of the present study show that a l
ANN model can be trained to predict lysimeter ETo values be
than the standard PM method. However, the PM method
global model and thus can be applied to predict ETo even
areas for which it is not trained. Although the ANN models e
hibit a tendency to obtain a generalized architecture, their ap
cation to other areas needs to be studied. The results are o
nificant practical use because the ANNs can be used to interp
missing ETo data, particularly within the training data range
stations where sufficient lysimeter data for training/validation a
testing exist.

Notation

The following symbols are used in this paper:
I 5 sum of weighted input;

N 5 no. of iteration;
q 5 neuron index in output layer;

R2 5 coefficient of determination;
r 5 correlation coefficient;

w 5 weight of link between neurons of two layer;
x 5 input value stored in neuron of input layer;
x̄ 5 mean of input bufferx;

xmax 5 maximum value of input bufferx;
xmin 5 minimum value of input bufferx;

xnorm 5 normalized value of input bufferx;
x0 5 original value;
YE 5 grass reference crop evapotranspiration estimated

using test method;
YO 5 grass reference crop evapotranspiration estimated

using standard methods;
Dw 5 change in weight;

« 5 error back-propagating;
h 5 learning rate;
m 5 momentum coefficient; and
f 5 normalized output.
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