$See \ discussions, stats, and \ author \ profiles \ for \ this \ publication \ at: \ https://www.researchgate.net/publication/283436307$

Characterization of Rainfed pigeonpea Growing Regions based on Soil, Climate, Crop and Socio-economic Parameters. Indian J. Dryland Agric. Res. and Dev. 2007

Article ·	June 2007		
CITATION	S	READS	
0		28	
5 autho	rs, including:		
	Ghattamaraju Maruthi Sankar	(a.e.)	Kaushalya Ramachandran
3 .4	Central Research Institute for Dryland Agriculture, India	E.	Central Research Institute for Dryland Agriculture, India
	189 PUBLICATIONS 683 CITATIONS		45 PUBLICATIONS 215 CITATIONS
	SEE PROFILE		SEE PROFILE
Some o	f the authors of this publication are also working on these related projects:		
Project	National Innovation for Climate Resilient Agriculture View project		
Project	Dryland Research View project		

Characterization of Rainfed pigeonpea Growing Regions based on Soil, Climate, Crop and Socio-economic Parameters

G.R.Maruthi Sankar, C.R.Thyagaraj, G.Ravindra Chary, Kaushalya Ramachandran and A.Girija

Central Research Institute for Dryland Agriculture, Hyderabad- 500 059

ABSTRACT : An agro-economic inventory and characterization (Soil resources, rainfall characteristics, pigeonpea productivity and clientele socio-economic parameters) was conducted in 864 farmers fields in 48 blocks in 16 leading rainfed pigeonpea districts across 10 Agro-eco sub regions (4.3, 4.4, 6.1, 6.2, 6.3, 6.4, 7.2, 10.2, 10.3 and 10.4) covering five states in India. An attempt has been made to assess the productivity of rained pigeonpea by integrating the data on soils, climate, crop and socio-economic parameters. Regression analysis indicated a significant influence of rainfall and its distribution on the productivity of pigeonpea. Small farmers' attained highest benefit-cost ratios of 2.57 under wet semi-arid and 2.10 under dry semi-arid situation in alluvial soils. Medium farmers attained a maximum benefit-cost ratio of 2.75 under wet semi-arid climate and 2.68 under dry semi-arid situation in alluvial soils. Large farmers attained a maximum benefit-cost ratio of 2.77 under wet semi-arid and 2.22 under dry semi-arid situations in alluvial soils. In all climatic situations, medium farmers have attained a higher yield, net returns and benefit-cost ratio compared to other categories of farmers. Fatehpur, Banda, Hamirpur, Yavatmal, Amaravati and Chindwara districts were delineated as high productivity efficiency zones for rainfed pigeonpea.

Keywords: Rainfed pigeonpea, soil resources, rainfall, productivity assessment

Among different pulses, pigeonpea is grown in an area of 3.6 million ha (15.5%) and contributes about 2.7 million tons (18.6%) of the production. 94.5 % area of pigeonpea is rainfed. Pigeon pea is grown in 302 districts and is concentrated in the states of Maharashtra (29.1% of the total area under pulses), Uttar Pradesh (13.9%), Karnataka (12.2%), Gujarat (11.4%), Madhya Pradesh (11.4%) and Andhra Pradesh (10%). Together they contribute about 87 % of pigeonpea production with varying levels of productivity ranging between 383 and 1134 kg ha⁻¹. The national average productivity of pigeonpea crop is 747 kg ha⁻¹. A comparison of these levels of productivity with those of the various states indicates much scope for improvement in the productivity levels.

Although the country has made rapid strides in food grain production, yet the production and productivity of pulses has remained static and have indicated a decline during some years in the past five decades. In view of the deficiency in pulse production, the Govt. of India has been importing pulses every year to meet the requirement. The import in 1996-97 was 21,200 tonnes at a cost of Rs.52 crores. If similar situation prolongs, it will further widen the gap between demand and supply of pulses, thus causing either dependence on import at a huge cost or poor dietary standard leading to several health hazards.

The low productivity of pigeonpea is due to aberrant weather conditions and poor soil fertility, poor crop management under biotic and abiotic stresses, and due to various socio-economic constraints. Hence, there is a need to properly evaluate these factors by characterizing the different resources. It is essential to assess land, climate and soil resources and socio-economic factors causing low levels of productivity of the two pulses. An evaluation of socio-economic factors and climatic limitations and integration with soil resources with yields attained by small, medium and large farmers in different targeted districts has been made in the study. Areas which are potential for pigeonpea in different targeted districts have been identified based on the characterization of soil, climate, crop and socio-economic parameters of pigeonpea growing regions in the country.

Materials and Methods

The information on soil, rainfall, productivity and socioeconomic resources have been collected and characterized for assessing the constraints for low productivity of pigeonpea (Maruthi Sankar et al., 2003). An agro-economic survey was conducted in 16 targeted districts which are leading in pigeonpea for area and production under different soil and climatic situations in Uttar Pradesh, Madhya Pradesh, Maharastra, Karnataka and Andhra Pradesh states. Three blocks in each district and 3 villages in each block which are leading in area and production have been identified for field survey. In each village, 6 farmers comprising of 2 large farmers with an area of > 10 acres; 2 medium farmers with an area of 5 to 10 acres ; and 2 small farmers with an area of < 5 acres have been contacted with a detailed questionnaire and information on different socioeconomic parameters, size of holding, yield of chickpea attained, cost of cultivation incurred, problems faced by farmers for cultivation of chickpea have been collected for assessing the reasons for low productivity of chickpea under different agro-ecological sub-regions in the country. A total number of 864 pigeonpea growing farmers were contacted with a questionnaire in the socioeconomic survey in the study.

The districts of pigeonpea identified for field survey are in 10 different agro-ecological sub regions and are chosen based on area and production of pigeonpea. The agroeconomic survey has been conducted in 16 districts covering a 864 farmers in 5 states. The agro-ecological sub regions where the targeted districts of pigeonpea are located are AESR 4.3 (Kanpur and Fatehpur), 4.4 (Banda and Hamirpur), 6.1 (Raichur), 6.2 (Bidar, Gulbarga and Latur), 6.3 (Yavatmal, Amravati), 6.4 (Dharwad), 7.2 (Khammam, Ranga Reddy) and 10.2 (Nagpur), 10.3 (Sidhi) and 10.4 (Chhindwara). The soils of targeted districts in which pigeonpea is grown are alluvial soils in Kanpur, Fatehpur, Banda and Hamirpur; medium black soils in Latur, Raichur, Gulbarga, Dharwad and Yavatmal; deep black soils in Chhindwara, Sidhi, Amaravati, Bidar and Nagpur; shallow red soils in Ranga Reddy ; and deep red soils in Khammam district. The districts have shallow red, deep red, medium black, deep black and alluvial soils with varying soil properties. The different climatic situations existing in the targeted districts are dry semi-arid (500 – 750 mm) in Fatehpur, Banda, Hamirpur, Amaravati, Latur, Raichur and Gulbarga ; wet semi-arid (750 - 1000 mm) in Ranga Reddy, Chhindwara, Kanpur, Bidar and Dharwad ; and dry sub-humid (1000 - 1250 mm) in Khammam, Sidhi, Yavatmal and Nagpur.

Regression analysis of changes in area, production and yield of pigeonpea

The changes in area, production and yield of pigeonpea during 1990 to 1999 have been measured with regression models of variables over time (Draper and Smith, 1998). The regression coefficients, coefficient of determination (R²) and prediction error (s) of area, production and yield are given in Table 1. Based on predictability of changes, the changes that have occurred in area of pigeonpea were significant in Hamirpur, Raichur, Bidar, Latur, Yavatmal, Dharwad, Ranga Reddy and Sidhi. Similarly, the changes in production of pigeonpea were significant in Kanpur, Gulbarga and Yavatmal; and the changes in pigeonpea yield were found to be significant in Gulbarga. The predictability of area ranged from 0.03 (Gulbarga) to 0.80 (Latur); production from 0.01 (Khammam and Sidhi) to 0.60 (Kanpur); and yield from 0.01 (Khammam and Ranga Reddy) to 0.49 (Gulbarga). The estimates of error ranged from 0.8 (Banda) to 51.8 (Gulbarga) for area ('000 ha); 2.6 (Khammam) to 53.3 (Gulbarga) for production ('000 tons); and 79 (Ranga Reddy) to 900 (Kanpur) for vield (kg ha⁻¹).

AESR	District	Variable	A, P,	Y inRegro	ession model	R ²	σ
4.3	Kanpur # 1	Area Production6 Yield	16.68 2.65 3756	17.90 33.80 1888	A = 27.101 – 1.174 T P = 56.603 – 4.808 T Y = 2564.300 – 191.570 T	0.15 0.60* 0.20	6.8 9.0 900.0
	Fatehpur # 2	Area Production Yield	14.28 34.57 2421	17.00 35.00 2059	A = 24.901 - 1.066 T P = 31.583 + 0.310 T Y = 1457.000 + 76.514 T	0.17 0.07 0.10	6.3 2.9 625.0
4.4	Banda # 1	Area Production Yield	28.69 48.00 1672	28.00 49.00 1750	A = 28.766 - 0.184 T P = 35.394 + 2.079 T Y = 1227.200 + 84.165 T	0.20 0.25 0.28	0.8 8.4 316.8
	Hamirpur # 1	Area Production Yield	23.00 32.00 1367	15.40 25.40 1649	A = 23.384 - 0.956 T P = 29.069 - 0.354 T Y = 1205.300 + 53.488 T	0.67* 0.02 0.27	1.7 5.3 204.5
6.1	Raichur	Area Production Yield	40.87 9.01 220	13.20 1.70 129	A = 42.628 - 2.530 T $P = 9.420 - 0.294 T$ $Y = 201.810 + 15.013 T$	0.70** 0.08 0.10	9.6 3.2 153.8
6.2	Bidar # 1	Area Production Yield	41.69 20.91 502	47.10 35.70 758	A = 40.874 + 1.171 T P = 18.410 + 2.316 T Y = 462.220 + 34.728 T	0.65* 0.25 0.15	2.0 9.6 193.2
	Gulbarga	Area Production Yield	250.07 93.00 373	285.00 257.00 902	A = 214.170 + 2.725 T P = 21.121 + 15.450 T Y = 163.460 + 52.745 T	0.03 0.46* 0.49*	51.8 53.3 174.2
	Latur	Area Production Yield	69.30 14.10 203	28.90 14.80 512	A = 78.047 - 5.743 T P = 19.513 - 0.475 T Y = 232.870 + 30.509 T	0.80** 0.04 0.23	9.0 7.8 176.9
6.3	Yavatmal	Area Production Yield	88.60 55.00 621	116.60 114.70 984	A = 92.133 + 2.967 T P = 61.713 + 5.361 T Y = 665.560 + 29.949 T	0.49* 0.44* 0.29	9.6 19.4 151.3
	Amravati	Area Production Yield	83.10 50.90 613	86.30 92.00 1066	A = 84.927 + 0.195 T P = 52.553 + 3.645 T Y = 615.070 + 41.145 T	0.04 0.35 0.38	3.2 16.0 169.0
6.4	Dharwad	Area Production Yield	16.51 3.01 182	1.80 1.40 778	A = 23.215 - 1.719 T P = 9.162 - 0.594 T Y = 309.910 + 26.197 T	0.71** 0.28 0.23	3.6 3.2 151.3
7.2	Khammam	Area Production Yield	27.52 14.00 501	26.00 15.00 577	A = 28.055 - 0.287 T $P = 12.779 - 0.091 T$ $Y = 450.500 + 2.150 T$	0.26 0.01 0.01	1.4 2.6 84.6
	Ranga Reddy	Area Production Yield	24.00 11.00 458	37.00 18.00 486	A = 20.571 + 2.143 T P = 7.571 + 1.036 T Y = 387.620 + 2.359 T	0.79** 0.37 0.01	2.6 3.2 79.2

Table 1. Regression models of changes in area, production and yield in pigeonpea

10.2	Nagpur	Area Production Yield	55.60 31.30 563	52.40 38.80 740	A = 55.000 - 0.267 T P = 25.753 + 0.558 T Y = 461.370 + 13.692 T	0.24 0.03 0.05	1.4 10.2 187.7
10.3	Sidhi # 3	Area Production Yield	30.20 21.60 715	33.00 17.60 533	A = 28.328 + 0.583 T P = 17.156 + 0.007 T Y = 594.650 - 9.171 T	0.63* 0.01 0.08	1.2 3.2 90.3
10.4	Chhindwara # 3	Area Production Yield	28.30 53.50 1890	27.60 43.80 1587	A = 27.267 - 0.253 T P = 41.203 - 0.712 T Y = 1505.000 - 12.889 T	0.23 0.05 0.02	1.4 9.0 309.8

* & ** indicate significance at 5 & 1% level A: Area ('000 ha) P: Production ('000 tons)Y =Yield (kg ha⁻¹) T: Years # 1: Data available upto 1996 # 2: Data available upto 1997 # 3: Data available upto 1998

Regression models of pigeonpea yield through rainfall

Regression models of yield through rainfall have been calibrated for assessing the influence of rainfall on yield using pigeonpea yield and rainfall of each season. The mean rainfall ranged from 546 mm at Fatehpur to 1103 mm at Khammam, while mean yield ranged from 284 kg ha⁻¹ in

Raichur to 1801 kg ha⁻¹ in Fatehpur. The estimates of predictability have ranged from 0.01 (Latur, Yavatmal and Banda) to 0.28 (Hamirpur) and are not significant. Based on the regression models, the prediction error has ranged from 146 kg ha⁻¹ in Fatehpur to 557 kg ha⁻¹ in Gulbarga. The estimates of regression coefficients, coefficient of determination (R^2) and prediction error (s) of pigeonpea yield through rainfall are given in Table 2.

Table 2. Regression models of yield of pigeonpea in targeted districts

AESR	District Rai	infall (mm) Yield (kg ha ⁻¹)		Regression model	R ²	σ
4.3	Kanpur	1063	1798	Y = 3624.20 – 1.817 RF	0.12	182.3
	Fatehpur	546	1801	Y = 1154.60 + 1.212 RF	0.08	146.4
4.4	Banda	645	1563	Y = 1532.50 + 0.054 RF	0.01	320.4
	Hamirpur	572	1419	Y = 1675.10 – 0.478 RF	0.28	228.0
6.1	Raichur	665	284	Y = 189.57 + 0.141 RF	0.04	213.2
6.2	Bidar	916	601	Y = 522.66 + 0.085 RF	0.02	353.4
	Gulbarga	734	454	Y = 74.19 + 0.526 RF	0.20	557.0
	Latur	703	401	Y = 466.62 - 0.096 RF	0.01	148.8
6.3	Yavatmal	980	830	Y = 884.32 – 0.054 RF	0.01	222.0
	Amravati	762	841	Y = 696.28 + 0.158 RF	0.02	190.4
6.4	Dharwad	873	454	Y = 194.61 + 0.297 RF	0.10	171.6
7.2	Khammam	1103	462	Y = 289.44 + 0.159 RF	0.21	213.2
	Ranga Reddy	867	397	Y = 428.77 - 0.040 RF	0.02	252.8
10.2	Nagpur	953	537	Y = 649.17 – 0.116 RF	0.02	201.6
10.3	Sidhi	1046	549	Y = 459.94 + 0.085 RF	0.08	306.3
10.4	Chhindwara	847	1441	Y = 1707.40 - 0.307 RF	0.03	171.6

Y: Yield (kg ha-1)

RF: Rainfall (mm)

Relative spread and yield indices of pigeonpea

Using the total cultivable area, area under pigeonpea and yield of pigeonpea in a district, the relative spread and yield indices are given in Table 3. The total cultivable area has ranged from 3,25,499 ha in Ranga Reddy to 15,69,700 ha in Kanpur. The pigeonpea area has ranged between 7800 ha in Dharwad to 24,77,000 ha in Gulbarga. The yield of pigeonpea was highest in Fatehpur (1801 kg ha⁻¹), while it was lowest in Raichur (284

kg ha⁻¹) compared to all India productivity of 797 kg ha⁻¹. The relative spread index ranged from 63% in Kanpur under wet semi-arid alluvial soils (1063 mm of rainfall) to 712% in Gulbarga under dry semi-arid medium black soils (734 mm of rainfall). The relative yield index ranged from 36% under dry semi-arid medium black soils of Raichur (665 mm of rainfall) to 226% under in alluvial soils under dry semi-arid climate at Fatehpur (546 mm of rainfall) and wet semi-arid climate at Kanpur (1063 mm of rainfall).

AESR	District Soil		Rainfall	Total	Pigeonpea	Yield	Relative	Relative
		type	(mm)	cultivable	area (ha)	(kg ha ⁻¹)	spread	Yield
				area (ha)				Index
4.3	Kanpur	Alluvial	1063	1569700	24370	1798	63	226
	Fatehpur	Alluvial	546	386400	22450	1801	237	226
4.4	Hamirpur	Alluvial	572	549300	20250	1419	150	178
	Banda	Alluvial	645	591700	28040	1563	193	196
6.1	Raichur	Medium black	665	644000	20400	284	129	36
6.2	Latur	Medium black	703	715000	63800	401	364	50
	Gulbarga	Medium black	734	1420000	247700	454	712	57
	Bidar	Deep black	916	464000	48300	601	425	75
6.3	Yavatmal	Medium black	980	980000	120800	830	503	104
	Amravati	Deep black	762	1024000	85200	841	340	106
6.4	Dharwad	Medium black	873	464000	7800	454	69	57
7.2	Ranga Reddy	Shallow red	867	325499	35406	397	444	50
	Khammam	Deep red	1103	471380	26392	462	228	58
10.2	Nagpur	Deep black	953	592000	53300	537	367	67
10.3	Sidhi	Deep black	1046	377053	32600	549	353	69
10.4	Chhindwara	Deep black	847	495929	25200	1441	207	181
	All India			142021000	3480000	797		

Grouping of pigeonpea targeted districts

A grouping of pigeonpea districts is made based on relative spread and yield indices given in Table 4. Based on the grouping, it was found that Fatehpur (AESR 4.3), Banda and Hamirpur (AESR 4.4), Yavatmal and Amravati (AESR 6.3) and Chhindwara (AESR 10.4) have a high spread and high yield index. Latur, Gulbarga and Bidar (AESR 6.2), Khammam and Ranga Reddy (AESR 7.2), Nagpur (AESR 10.2) and Sidhi (AESR 10.3) have a high spread and medium yield index. Dharwad (AESR 6.4) has medium spread and medium yield index; Kanpur (AESR 4.3) has medium spread and high yield index ; and Raichur (6.1) has high spread and low yield index.

Relative	Relative yield index						
spread index	High (> 90 %)	Medium (45 – 90 %)	Low (< 45 %)				
High	 4.3 – Fatehpur 4.4 – Banda, Hamirpur 6.3 – Yavatmal, Amravati 	6.2 – Latur, Gulbarga, Bidar 7.2 – Khammam, Ranga Reddy 10.2 - Nagpur	6.1 – Raichur				
Medium	10.4 – Chhindwara 4.3 – Kanpur	10.3 – Sidhi 6.4 – Dharwad					
(45 - 90%)							

Table 4. Grouping of pigeonpea districts based on relative spread and yield indices

Information on soil parameters

Information on different soil parameters has been collected for each of the 48 blocks. The block wise details of soil parameters and length of growing period in different districts of pigeonpea are given in Table 5.

Soil type

Five soil types were found in different blocks viz., Alluvial soils in different blocks of Kanpur and Fatehpur under AESR 4.3; Banda and Hamirpur under AESR 4.4 in Uttar Pradesh; Medium black soils in different blocks of Raichur (AESR 6.1), Gulbarga (AESR 6.2) and Dharwad (AESR 6.4) in Karnataka; and Latur (AESR 6.2) and Yavatmal (AESR 6.4) in Maharashtra; Deep black soils in different blocks of Bidar (AESR 6.2) district in Karnataka; Amravati (AESR 6.3) and Nagpur (AESR 10.2) in Maharastra; Sidhi (AESR 10.3) and Chhindwara (10.4) in Madhya Pradesh; Shallow red soils in different blocks of Ranga Reddy (AESR 7.2) in Andhra Pradesh; and Deep red soils in different blocks of Khammam (AESR 7.2) in Andhra Pradesh.

Soil depth

The soils with varying depth found in different blocks viz., extremely shallow soils were found in Pusad block of Yavatmal in Maharastra while very shallow soils existed in Chhindwara in Madhya Pradesh; Yavatmal block of Yavatmal district and Narkhed block of Nagpur in Maharashtra; and Tandur block of Ranga Reddy in Andhra Pradesh; and shallow soils were found in Dharwad in Karnataka; Sidhi in Madhya Pradesh; Bhadrachalam block of Khammam district, Basheerbad and Peddemul blocks of in Ranga Reddy.

Slightly deep soils were found in all the three blocks of Raichur and Gulbarga Karnataka, and Latur and

Amravati in Maharashtra; while moderately deep soils were found in all the three blocks of Bidar in Karnataka; and Khammam block of Khammam in Andhra Pradesh; and deep soils were found in all the three blocks of Kanpur, Fatehpur, Banda and Hamirpur in Uttar Pradesh; Wani block of Yavatmal, Saoner and Hingana of Nagpur in Maharashtra; Madhira block of Khammam in Madhya Pradesh.

Soil texture

Six soil textures viz., silt loam, silt clay, clay loam, clay, loamy and sandy loam were found in different blocks of targeted districts of pigeonpea and are as follows:

Clay texture in Khammam and Ranga Reddy in Andhra Pradesh ; Latur district, Yavatmal and Wani blocks of Yavatmal district and Hingana block of Nagpur in Maharastra ; and clay loam texture in Raichur, Bidar, Dharwad and Gulbarga in Karnataka ; Amravati in Maharastra.

Silt loam texture in Malasa block of Kanpur, Bahra block of Fatehpur, Bharokhar block of Banda and Muskara block of Hamirpur in Uttar Pradesh ; and silt clay texture in Amaraudh and Ghatampur blocks of Kanpur; Malaw and Amoli blocks of Fatehpur; Tindawari and Jaspura blocks of Banda; and Khurara and Summerpur blocks of Hamirpur in Uttar Pradesh ; and

Loamy texture was found in Pusad block of Yavatmal and Narkhed and Saoner blocks of Nagpur in Maharashtra; and sandy loam texture in Sidhi and Chhindwara in Madhya Pradesh.

Soil reaction (pH)

The soil reaction as measured by pH value was found to be suitable with a range of 6.5 to 8.5 in all the blocks of pigeonpea except Pusad block of Yavatmal, Hingana block of Nagpur in Maharashtra where the reaction was alkaline; and Sidhi and Chirangi blocks of Chhindwara in Madhya Pradesh where it was acidic.

Soil nitrogen

Low soil N (150 to 250 kg ha⁻¹) in all the three blocks of Kanpur, Fatehpur, Banda and Hamirpur in Uttar Pradesh; Khammam and Ranga Reddy in Andhra Pradesh ; Udgir block of Latur, Amravati and Chandur bazaar blocks of Amravati in Maharashtra ; Sidhi in Madhya Pradesh ; and medium soil N (250 to 400 kg ha⁻¹) in all the three blocks in Raichur, Bidar, Gulbarga and Dharwad in Karnataka ; Yavatmal, Nagpur, Latur and Chakur blocks of Latur, and Anjangaon block of Amravati in Maharastra; and Chhindwara in Madhya Pradesh.

Soil phosphorus

Very low soil P (< 5 kg ha⁻¹) was found in Latur and Chakur blocks of Latur in Maharashtra; while Low soil P (5 to 10 kg ha⁻¹) was found in all the three blocks of Kanpur, Fathepur, Banda and Hamirpur in Uttar Pradesh; Amravati, Yavatmal and Nagpur district and Udgir block of Latur in Maharashtra; Khammam and Ranga Reddy in Andhra Pradesh ; and medium soil P (10 to 20 kg ha⁻¹) in all the three blocks of Raichur, Bidar, Gulbarga and Dharwad in Karnataka ; Chhindwara and Sidhi in Madhya Pradesh.

Soil potassium

Medium soil K (250 to 400 kg ha⁻¹) in all the three blocks

of Kanpur, Fatehpur, Banda and Hamirpur in Uttar Pradesh ; Amravati, Yavatmal and Nagpur districts and Chakur block of Latur in Maharastra ; Khammam in Andhra Pradesh ; while High soil K (400 to 600 kg ha⁻¹) in all the three blocks of Ranga Reddy in Andhra Pradesh ; Raichur, Bidar, Gulbarga and Dharwad in Karnataka ; Chhindwara and Sidhi in Madhya Pradesh ; and Very high soil K (more than 600 kg ha⁻¹) was found in Latur and Udgir blocks of Latur in Maharastra.

Length of growing period

Five lengths of growing period (LGP) viz., 90 to 120 days, 90 to 150 days, 120 to 150 days, 150 to 180 days and 180 to 210 days were prevailing in different blocks viz., 90 to 120 days in all the three blocks of Raichur district and Hubli and Kalghatghi blocks of Dharwad in Karnataka; Sidhi and Chirangi blocks of Sidhi district, Pandhurna block of Chhindwara; 90 to 150 days in Deosar block of Sidhi, Saunsar block of Chhindwara in Madhya Pradesh; 120 to 150 days in all the three blocks of Kanpur, Fatehpur, Banda and Hamirpur in Uttar Pradesh; Bidar and Gulbarga in Karnataka; Latur and Amravati and Pusad block of Yavatmal in Maharashtra; and Ranga Reddy in Andhra Pradesh; 150 to 180 days in all the three blocks of Khammam in Andhra Pradesh; Nagpur, Yavatmal and Wani blocks of Yavatmal in Maharashtra; and Parasia block of Chhindwara in Madhya Pradesh; and 180 to 210 days in Dharwad block of Dharwad district in Karnataka.

Block	Soil type	Texture	Soil	Soil	Available	soil N, l	P, K (kg ha ⁻¹)	LGP
			depth	reaction	N	р	V	(days)
	7 17 (1		(CIII)	(pn)	IN	r	Ν	
AESK : 4.3 - 1	Canpur, Fatehpur							
Malasa	Alluvial	Silty loam	> 100	6.5-8.5	150-200	5-10	250-400	120-150
Amaraudha	Alluvial	Silty clay	> 100	6.5-8.5	150-200	5-10	250-400	120-150
Ghatampur	Alluvial	Silty clay	> 100	6.5-8.5	150-200	5-10	250-400	120-150
Malaw	Alluvial	Silty clay	> 100	6.5-8.5	150-200	5-10	250-400	120-150
Amoli	Alluvial	Silty clay	> 100	6.5-8.5	150-200	5-10	250-400	120-150
Bahua	Alluvial	Silty loam	> 100	6.5-8.5	150-200	5-10	250-400	120-150
AESR : 4.4 – I	Banda, Hamirpur							
Bharokhar	Alluvial	Silty loam	> 100	6.5-8.5	150-200	5-10	250-400	120-150
Tindawari	Alluvial	Silty clay	> 100	6.5-8.5	150-200	5-10	250-400	120-150
Jaspura	Alluvial	Silty clay	> 100	6.5-8.5	150-200	5-10	250-400	120-150
Muskara	Alluvial	Silty loam	> 100	6.5-8.5	150-200	5-10	250-400	120-150

Table 5. Block-wise details of soil parameters and length of growing period. (LPG) OF pigeonpea

Kurara Summerpur	Alluvial Alluvial	Silty clay Silty clay	> 100 > 100	6.5-8.5 6.5-8.5	150-200 150-200	5-10 5-10	250-400 250-400	120-150 120-150
$\mathbf{AFSR} \cdot 61 = \mathbf{R}9^{T}$	ichur	5 5						
Raichur	Medium black	Clay loam	50-75	6 5-8 5	250-400	10-20	400-600	90-120
Devadurg	Medium black	Clay loam	50-75	6.5-8.5	250-400	10-20	400-600	90-120
Manvi	Medium black	Clay loam	50-75	6.5-8.5	250-400	10-20	400-600	90-120
		City Iouin	50 75	0.5 0.5	250 100	10 20	100 000	90 120
AESK: 0.2 - BIC	lar, Guibarga, Latur	Clay loam	75 100	6585	250 400	10.20	400,600	120 150
DIIdIKI Dagaya kalwan	Deep black	Clay loam	75-100	0.3-0.5	250-400	10-20	400-000	120-150
Basava-Kaiyan	Deep black		/J-100 75 100	0.3-8.3	250-400	10-20	400-600	120-150
Aurad	Deep black	Clay Ioam	/5-100	0.3-8.3	250-400	10-20	400-600	120-150
Gulbarga	Medium black	Clay loam	50-75	6.5-8.5	250-400	10-20	400-600	120-150
Jawargi	Medium black	Clay loam	50-75	6.5-8.5	250-400	10-20	400-600	120-150
Aland	Medium black	Clay loam	50-75	6.5-8.5	250-400	10-20	400-600	120-150
Latur	Medium black	Clay	50-75	6.5-8.5	250-400	< 5	> 600	120-150
Chakur	Medium black	Clay	50-75	6.5-8.5	250-400	< 5	250-400	120-150
Udgir	Medium black	Clay	50-75	6.5-8.5	150-200	5-10	> 600	120-150
AESR : 6.3 – An	nravati, Yavatmal							
Amravati	Deep black	Clay loam	50-75	6.5-8.5	150-200	5-10	250-400	120-150
Chandur-bazar	Deep black	Clay loam	50-75	6.5-8.5	150-200	5-10	250-400	120-150
Anjangaon	Deep black	Clay loam	50-75	6.5-8.5	250-400	5-10	250-400	120-150
Yavatmal	Medium black	Clay	10-25	6.5-8.5	250-400	5-10	250-400	150-180
Wani	Medium black	Clay	> 100	6.5-8.5	250-400	5-10	250-400	150-180
Pusad	Medium black	Loamy	10-25	> 8.5	250-400	5-10	250-400	120-150
AESR : 6.4 – Dh	arwad	5						
Dharwad	Medium black	Clav loam	25-50	6.5-8.5	250-400	10-20	400-600	180-210
Hubli	Medium black	Clay loam	25-50	6.5-8.5	250-400	10-20	400-600	90-120
Kalghatghi	Medium black	Clay loam	25-50	6.5-8.5	250-400	10-20	400-600	90-120
AESR : 7.2 – Kh	ammam. Ranga Red	dv						
Badrachalam	Deep red	Clav	25-50	6.5-8.5	150-200	5-10	250-400	150-180
Khammam	Deen red	Clay	75-100	6.5-8.5	150-200	5-10	250-400	150-180
Madhira	Deep red	Clay	> 100	6 5-8 5	150-200	5-10	250-400	150-180
Tandur	Shallow red	Clay	10-25	6 5-8 5	150-200	5-10	400-600	120-150
Basheerahad	Shallow red	Clay	25-50	6 5-8 5	150-200	5-10	400-600	120-150
Peddemul	Shallow red	Clay	25-50	6.5-8.5	150-200	5-10	400-600	120-150
$AESR \cdot 10.2 - N$	agnur	Clay	25-50	0.5-0.5	150-200	5-10	+00-000	120-130
Narkhed	Deen black	Loamy	10-25	6 5-8 5	250-400	5-10	250-400	150-180
Saoner	Deep black	Loamy	> 10 ⁻²⁵	6.5-8.5	250-400	5-10	250-400	150-180
Hingna	Deep black	Clay	> 100	\.S-0.5 \.S.5	250-400	5-10	250-400	150-180
	dhi	Clay	> 100	/ 0.5	230-400	5-10	250-400	150-100
Sidhi	Deen black	Sandy loam	25-50	< 65	150-200	10-20	400-600	90-120
Chirangi	Deep black	Sandy loam	25-50	< 6.5	150-200	10-20	400-600	00 120
Deosar	Deep black	Sandy loam	25-50	< 6.5	150-200	10-20	400-000	90-120 00_150
	bindware	Sanuy IUaili	25-50	< 0.5	150-200	10-20	-000-000	20-130
AEOK : 10.4 - C	Deen black	Sandy loom	10.25	65 8 5	250 400	10.20	100 600	00 150
Dandhuma	Deep black	Sandy loom	10-25	0.5-0.5	250 400	10-20	400-000	90-130
r allullullia	Deep black	Sandy Ioam	10-23	< 0.3	250 400	10-20	400-000	90-120 150 190
r di asia	Deep black	Sanuy Ioam	10-23	< 0.3	230-400	10-20	+00-000	130-180

AESR	District	Block	Minimum	Maximum	Mean	CV (%)
4.3	Kanpur Fatehpur	Kanpur Fatehpur	572.8 307.6	1556.3 796.2	774 546	29.8 22.5
4.4	Banda Hamirpur	Banda Hamirpur	343.3 182.8	1525.6 1009.0	662 574	53.8 43.8
6.1	Raichur Devadurg Manvi	Raichur	471.4 299.1 248.6	958.6 959.2 965.3	711 726 557	26.7 35.6 53.4
6.2	Latur Chakur Udgir Gulbarga Jawargi Aland Bidar	Latur Gulbarga Bhalki	340.9 405.3 359.3 465.8 541.1 501.9 502.4	1069.0 994.4 1289.8 868.2 945.7 1078.7 1352.2	701 619 715 625 743 718 868	35.0 30.1 39.2 22.3 21.8 27.8 36.9
	Basava Kalyan Aurad		439.6 583.9	900.8 1223.8	696 890	24.1 26.6
6.3	Amravati Chandur-bazar Anjagaon Yavatmal Wani Pusad	Amravati Yavatmal	645.9 446.2 301.2 493.5 886.1 481.0	1238.2 1016.3 728.7 1327.1 1149.1 1900.9	941 670 598 980 1009 1113	27.1 33.2 30.1 29.6 10.7 45.4
6.4	Dharwad Hubli Kalghatghi	Dharwad	738.7 492.1 891.5	1238.6 1596.1 1405.5	923 815 1082	20.0 50.7 18.0
7.2	Khammam Khammam Madhira Ranga Reddy Peddemul Tandur	Badrachalam Basheerbad	977.0 784.4 662.0 493.5 517.1 505.6	1617.0 1245.8 1699.0 1423.2 1153.7 1370.3	1190 964 1077 827 817 869	21.1 16.9 32.9 37.4 19.8 27.8
10.2	Nagpur Saoner Hingna	Narkhed	714.4 680.8 643.2	1186.7 1231.0 1765.0	955 988 1120	16.7 21.9 33.4
10.3	Sidhi Deosar Sidhi	Chirangi	565.9 508.2 728.4	1757.8 1630.4 1747.7	929 968 1188	46.9 40.0 24.6
10.4	Chhindwara Pandhurna Parasia	Saunsar	456.5 673.8 730.6	835.1 1040.7 1430.5	669 812 1057	21.7 15.5 24.0

Rainfall and its distribution in different blocks

The block-wise annual rainfall has been analyzed for the period 1990 to 2000 and examined for the distribution parameters like minimum, maximum, mean and coefficient of variation of rainfall in each block (Table 6). The mean rainfall has ranged from 546 mm (with a coefficient of variation of 22.5%) in Fatehpur to 1188 mm (with a coefficient of variation of 24.6%) in Sidhi block (Sidhi). Out of 40 blocks, 30 blocks (75 %) were found to have a coefficient of variation of rainfall ranging from 20 to 50 %, while 7 blocks (17.5 %) were found to have less than 20 % coefficient of variation and 3 blocks (7.5 %) have more than 50 % coefficient of variation (Table 7).

AESR	District	Climate	Coeffiient of variation (%)				
		_	< 20	20 - 50	> 50		
4.3	Kanpur	Wet semi - arid		Kanpur			
	Fatehpur	Dry semi - arid		Fatehpur			
4.4	Banda	Dry semi – arid			Banda		
	Hamirpur	Dry semi – arid		Hamirpur			
6.1	Raichur	Dry semi – arid		Raichur, Devadurg	Manvi		
6.2	Latur	Dry semi – arid		Latur, Chakur, Udgir			
	Gulbarga	Dry semi – arid		Gulbarga, Jawargi, Aland			
	Bidar	Dry semi – arid		Basava Kalyan			
		Wet semi – arid		Balki, Aurad			
6.3	Amravati	Dry semi – arid		Chandur-bazar, Anjangaon			
		Wet semi – arid		Amravati			
	Yavatmal	Wet semi – arid		Yavatmal			
		Dry sub – humid	Wani	Pusad			
6.4	Dharwad	Wet semi – arid	Dharwad		Hubli		
		Dry sub – humid	Kalghatghi				
7.2	Khammam	Wet semi – arid	Khammam				
		Dry sub – humid		Bhadrachalam, Madhira			
	Ranga Reddy	Wet semi - arid	Peddemul	Basheerabad, Tandur			
10.2	Nagpur	Wet semi – arid	Narkhed	Saoner			
		Dry sub – humid		Hingna			
10.3	Sidhi	Wet semi – arid		Chirangi, Deosar			
		Dry sub – humid		Sidhi			
10.4	Chhindwara	Dry semi – arid		Saunsar			
		Wet semi – arid	Pandhurna				
		Dry sub - humid		Parasia			
		Total	7 (17.5)	30 (75.0)	3 (7.5)		

Table 7. Classification of different blocks of pigeonpea based on rainfall variation

Grouping of blocks based on yield

The grouping of blocks based on yield is given in Table 8. Based on the grouping of blocks for pigeonpea yield, it was found that farmers have attained yield > m + s in 5 (10.4%) blocks viz., Raichur (Raichur)), Pusad

(Yavatmal), Pandhurna (Chhindwara), Sidhi and Deosar (Sidhi); Yield < m - s in 3 (6.3%) blocks viz., Yavatmal (Yavatmal), Chirangi (Sidhi), Bahua (Fatehpur) and Saunsar (Chhindwara); and yields lying between m + sand m - s in all the remaining 40 (83.3%) blocks.

AESR	District	μ	σ	Grouping of blocks		
				> μ + σ	$\mu - \sigma \tau o \mu + \sigma$	$<\mu-\sigma$
4.3	Kanpur	1504	42		Ghatampur, Amaraudha, Malasa	
	Fatehpur	1521	55		Bahua, Malaw, Amoli	
4.4	Banda	1349	92		Bharokhar, Tindawari, Jaspura	
	Hamirpur	1352	96		Kurara, Summerpur, Muskara	
6.1	Raichur	658	105	Raichur	Devadurg, Manvi	
6.2	Latur	733	131		Latur, Udgir, Chakur	
	Gulbarga	926	110		Gulbarga, Jawargi, Aland	
	Bidar	824	37		B-Kalyan, Aurad, Bhalki	
6.3	Amravati	951	74		Amravati, C-Bazar, Anjangaon	
	Yavatmal	934	102	Pusad	WaniYavatmal	
6.4	Dharwad	250	75		Dharwad, Hubli, Kalghatghi	
7.2	Khammam	881	96		Madhira, Khammam. Bhadrachalam	
	Ranga Reddy	311	113		Tandur, Peddemul. Basheerbad	
10.2	Nagpur	790	190		Narkhed, Saoner, Hingana	
10.3	Sidhi	991	58	Sidhi, Deosar		Chirangi
10.4	Chhindwara	761	62	Pandhurna	Parasia	Saunsar
	Total			5 (10.4)	40 (83.3)	3 (6.3)

Table 8. Grouping of Pigeonpea growing blocks based on mean and standard deviation of yield

Values in parentheses indicate % of blocks falling in the group

Soil, climate and farmer category wise estimates of mean of different variables

The farmer category wise mean pigeonpea yield, net returns and benefit-cost ratio attained and cost of cultivation incurred under each climate and soil are given in Table 9. Small farmers attained the highest benefitcost ratio of 2.57 under wet semi-arid, followed by 2.10 under dry semi-arid situations in alluvial soils. Similarly, medium farmers attained benefit-cost ratio of 2.75 and

References

- Anonymous, 2002. Annual Report of 2001-02 of Indian Institute of Pulses Research, Kanpur.
- Draper, N.R. and H. Smith, 1998. Applied Regression Analysis. Second edition, Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, New York.
- Snedecor, G.W. and W.G. Cochron, 1967. Statistical Methods. The Iowa State University press, Ames, Iowa, USA.

2.68 and large farmers attained 2.77 and 2.22 under these situations respectively. Medium farmers attained a maximum benefit-cost ratio of 1.93 under dry sub-humid climate in deep black soils and 1.15 in deep red soils compared to small and large farmers. In all the climatic situations under medium and deep black soils, large farmers have attained a higher yield and net returns, while medium farmers have attained a higher yield and net returns in alluvial soils.

 σ : Standard deviation (kg ha⁻¹)

 μ : Mean (kg ha⁻¹)

Maruthi Sankar, G.R., I.P.S., Yadav, G.P.,Gupta, P.S. Dharmaraj, V.N. Autkar and K.S. Ghajbiye, K.S. 2003. Final Report of RPPS-9 Project on "Agroeconomic characterization, constraint analysis, delineation of efficient eco-zones using soil type and rainfall data in chickpea and pigeonpea based cropping system" submitted to NATP AED (Rainfed), CRIDA, Hyderabad. www.IndianJournals.com Members Copy, Not for Commercial Sale

Downloaded From IP - 14.139.94.1 on dated 23-Oct-2015

2.222.77 0.42 0.67 0.841.760.51 0.51 BC 14860 -4950 14960 3805 4619 8173 -756 6020 NR Large 6532 8374 4743 8912 4719 9732 6772 6395 \mathcal{C} 1503 1500 316 838 288 964 974 799 \succ Table 9. Soil, climate and farmer category wise mean yield and other variables in pigeonpea growing districts 2.75 0.66 2.680.471.93 0.37 0.31 0.21 BC 17148 16432 -4132 2673 -728 3345 7480 5061 ZK Medium 6236 10770 8688 4607 4180 6123 6157 8731 CC 1646 1024 790 250 685 885 320 1551 0.340.18 0.19 2.102.57 1.670.49BC 0.87 1106613149 -1106-4695 2734 1903 4255 6698 NR Small 10746 5365 8418 4407 6046 5308 4181 8851 CC 1362 1169 780 206 804 794 757 297 sub humid semi arid Climate Wet Wet Wet Wet Dry Dry Dry Dry Soil type Medium Alluvial Shallow black Deep black red

0.92

6940

7911

1040

1.15

7235

6991

851

1.09

6779

6295

752

Dry

Deep

red

sub humid

68

View publication stats

Y : Yield (kg/ha) CC : Cost of cultivation (Rs ha⁻¹) NR : Net returns (Rs ha⁻¹) BC : Benefit-cost ratio