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With the escalating persuasion of economic and nutritional importance of rice grain protein and nutri-
tional components of rice bran (RB), NIRS can be an effective tool for high throughput screening in rice
breeding programme. Optimization of NIRS is prerequisite for accurate prediction of grain quality param-
eters. In the present study, 173 brown rice (BR) and 86 RB samples with a wide range of values were used
to compare the calibration models generated by different chemometrics for grain protein (GPC) and amy-
lose content (AC) of BR and proximate compositions (protein, crude oil, moisture, ash and fiber content)
of RB. Various modified partial least square (mPLSs) models corresponding with the best mathematical
treatments were identified for all components. Another set of 29 genotypes derived from the breeding
programme were employed for the external validation of these calibration models. High accuracy of all
these calibration and prediction models was ensured through pair t-test and correlation regression anal-
ysis between reference and predicted values.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Rice (Oryza sativa L.) is one of the main food crops of the world
and is the major staple food of India and other Asian countries. Rice
production in India has remarkably increased in the recent past
and reached to approximately one-third of the total rice produc-
tion of the world. But rice grain quality remains an important
concern for rice breeders, producers and consumers. Protein
digestibility corrected amino acid score (PDCAAS) which indicates
the presence of essential amino acids and overall protein quality,
was comparatively higher in rice (0.55) than the other important
cereals such as wheat (0.40). Therefore, storage protein in rice
grain is being considered as the potential substitute of powdered
milk for its low hyper susceptibility for babies (Chrastil, 1992).
Bio-fortification of rice with protein through conventional breed-
ing is a significant approach toward value addition of rice. But it
had negative correlation with yield and affected some of the eating
and cooking quality parameters (Vasal, 2002). Grain protein and
amylose contents are two important quality parameters that
greatly affect the physicochemical as well as cooking quality of rice
(Champagne et al., 1997). Therefore, amylose content must be
considered in selection of elite lines for improved GPC. Apparent
amylose content (AC), possibly the most important chemical
characteristic, has been predicted accurately by NIR spectroscopy
using milled rice flour (Bao, Cai, & Corke, 2001; Bean et al., 1990;
Delwiche, Bean, Miller, Webb, & Williams, 1995; Shu, Wu, Xia,
Gao, & McClung, 1999a) milled whole grain (Delwiche et al.,
1995; Windham et al., 1997) and brown rice flour samples (Shu,
Wu, Xia, Gao, & McClung, 1999b). NIRS can also be used for estima-
tion of grain protein content (Delwiche, McKenzie, & Webb, 1996;
Shu et al., 1999b). But the accuracy of prediction with NIRS
depends on grain physical status, chemical constituents, grain tem-
perature, color, cleanliness, quantity used for measurement and
above all, the statistical model (regression) developed in NIR soft-
ware. Therefore, it is very crucial to develop a new approach on
available methods to select the appropriate statistical model for
prediction. Wu and Shi (2007) established that whole brown rice
is best for calibration for AC as lower standard error of calibration
(SEC) and higher coefficient of determination (RSQ) were observed.
Hu et al. (2014) indicated that use of brown rice flour is better
as compared to milled flour for estimation of GPC under
2,8,8,2/mPLS/Inverse MSC combination. In this experiment, we
used brown rice samples for prediction of AC and GPC.
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http://dx.doi.org/10.1016/j.foodchem.2015.05.038
mailto:torit.crijaf09@gmail.com
http://dx.doi.org/10.1016/j.foodchem.2015.05.038
http://www.sciencedirect.com/science/journal/03088146
http://www.elsevier.com/locate/foodchem


22 T.B. Bagchi et al. / Food Chemistry 191 (2016) 21–27
RB is the pericarp and germ of O. sativa L. seeds and constitutes
about 10% of rough rice grain (Juliano, 2003). It consists of three
fused layers –pericarp, seed coat, nucellus and little aleurone layer.
It is a byproduct in the milling process and has been used as a feed-
stock and has the potential to be used as a food ingredient and oil
source. As compared to other portion of a whole grain, RB contains
highest amount of protein, crude fat, crude ash, crude fiber, total
dietary fiber, phenolics, c-oryzanol, vitamin-E, anthocyanin pig-
ment and some essential minerals (Fe, Zn). Colored RB have high
antioxidant properties (Yawadio, Tanimori, & Morita, 2007). In fact,
very limited literature is available regarding estimation of proxi-
mate composition of RB with NIRS. As RB is the most nutritious
part of grain, its stabilized form can be used for value added pro-
duct development (Bagchi, Adak, & Chattopadhyay, 2014). The
proximate compositions of RB also provide the valuable informa-
tion regarding metabolism of some macronutrients in rice grain
under ‘‘biofortification’’ breeding programme. Therefore, it is a
holistic effort to evaluate the nutrient composition of RB as well
as whole brown rice in nondestructive and high throughput way.
Recently, NIRS have been extensively used for rapid and nonde-
structive estimation of grain quality, especially in case of cereals,
pulses and oilseeds (Velasco, Mollers, & Becker, 1999). In any
breeding programme related with value addition, it is an essential
tool to determine the nutritional composition with high through-
put and near accuracy. It requires minimum sample preparation;
therefore, it is a cost effective as well as time and labor saving
method. But, calibration with reference data, generated through
laboratory method is the primary requirement to establish the cal-
ibration model of the samples. It is based on the absorption of
molecular overtone and combination vibrations of hydrogenous
groups X–H (X = C, N, O) in the near-infrared region of the electro-
magnetic spectrum (from 750 to 2500 nm). However, a lot of
chemical constituents of grain in many crops were evaluated with
NIRS but only few reports are available on the evaluation of prox-
imate composition of RB. Therefore, the objectives of this experi-
ment were (a) to obtain a near accurate prediction model for
amylose and protein content of rice grain with minimum sample
preparation and (b) to evaluate the proximate composition of RB
under most suitable statistical model developed with NIRS.
2. Materials and methods

2.1. Materials

Around 173 rice germplasm, including popular cultivars and
lines derived from the breeding programme for the improvement
of grain protein content in rice with wide range of variation were
taken for calibration of NIR spectrophotometer. Among these, seed
samples of 129 lines were utilized for calibration of both GPC and
AC and rest 44 samples were used for AC only. In addition, another
set of 86 RB samples derived from various rice germplasm and
breeding lines were used for calibration of crude fiber, protein,
crude oil, ash and moisture content. Finally, 29 BC3F4 lines derived
from rice breeding programme were utilized for validation of these
parameters. The seed samples were derived from the cultivated
Indica rice grown at dry and wet season at CRRI experimental field
over three years (2012–2014).
2.2. Sample preparation

Rice grains were harvested at maturity and sun-dried naturally
for further processing to a grain moisture of 12–13%. The dried
grains were stored at 20 �C and <60% RH in a closed chamber for
analysis of amylose and protein. Brown rice samples (10–15 g)
were prepared through rice huller (Satake Corporation, Japan)
and after cleaning it was immediately used for analysis with
NIRS. The RB samples were also prepared through rice miller
(Satake Corporation, Japan) as a byproduct after dehusking of the
grain and subsequently laboratory and NIR analysis were accom-
plished for moisture, ash, crude fiber, crude oil and crude protein.
In order to compare the performance of different calibration mod-
els, the samples in the reference and prediction sets were kept
unchanged for all calibration models, developed for amylose and
protein content of brown rice but in case of bran, it was different.
2.3. Chemical analysis of the sample

The total nitrogen content of RB and BR samples was deter-
mined by taking 10 dehusked grains (or 100 mg defatted bran) as
per AOAC (1990) and used to calculate crude protein content
(%N � 5.95). The amylose content (AC) was measured according
to Juliano (2003) using iodine reagent for generating blue colored
complex, the intensity of which was measured spectrophotometri-
cally (Thermo spectronic) at 620 mm. The moisture content was
estimated by digital moisture meter (OSWA scientific, India).
Crude fiber content of bran was also estimated according to
Maynard (1970). Ash and crude oil content of bran were analyzed
as per AOAC, 1990 using muffle furnace and soxhlet apparatus
respectively. Hexane was used for crude oil extraction from RB
samples.
3. Calibration of NIRS for BR and RB

Before NIR analysis, the samples were kept at room tempera-
ture (25 �C) for 6 h to balance the moisture and temperature as
these factors can affect the reflectance and absorbance of NIR
wave. The NIRS was calibrated with the help of three softwares
related to NIR spectroscopy (model: FOSS- NIRSDS 2500, FOSS
Analytical, Sweden). The software ISI Nova scan, Mosaic solo and
WinISI III Project Manager v 1.50e (Windows Infra Soft
International, USA) were used for scanning, configuration and cal-
ibration of samples respectively. A small cup (size: inner diameter
66 mm and height 25 mm) was used for scanning of the sample
with full spectrum (400–2500 nm) taking about 15 g of each sam-
ple. The reflectance spectra (log1/R) from 400 to 2500 nm were
recorded at 2 nm intervals. After incorporating the laboratory
value in spectra file, the regression equation was developed and
simultaneously, various trial and error methods of mathematics
(e.g. – ‘‘1,4,4,1’’, ‘‘1,2,3,1’’ etc.) under modified partial least square
(mPLS) were also developed to find out a best regression equation
for prediction of different parameters (Table 1). The first digit of
these mathematics indicates the order of the derivative (0 repre-
sents no derivative, 1 is first derivative of log1/R and so on), the
second digit is the gap in data points over which the derivative
was calculated, the third and fourth digit refers to the number of
data points used in the first and second smoothing, respectively.
Generally, the fourth digit of the mathematics remains unaltered
i.e. Cross validation for calibration under SNV (standard normal
variate) plus detrend scatter correction method was performed
for avoiding overfit (Wu & Shi, 2004). After making different equa-
tions with different mathematics, another set of known samples
(24) was scanned for prediction to get external validation and pair
t-test was performed to obtain any significant variation between
laboratory value and predicted value. The best equation was iden-
tified on the basis of lowest SEC (standard error of calibration) and
SECV (standard error of cross validation) and highest 1 � VR (1
minus variance ratio) and RSQ (coefficient of determination)
(Wu, Shi, & Zhang, 2002). All the spectra files were generated from
WIN ISI software to justify reflectance and absorbance of the differ-
ent samples with graphical representation. Only cross-validation



Table 1
Calibration and external validation of brown rice (BR) samples using different mathematical treatments in NIRS.

Amylose Calibration External validation

Chemometrics N Mean Range Est. max% SEC 1 � VR SECV SD N SEP(C) Bias limit RSQ Slope

1,5,5,1 168 21.66 15.6–25.16 28.00 1.341 0.501 1.491 2.115 29 1.668 0.895 0.487 1.003
1,6,6,1 169 21.63 15.6–25.16 28.05 1.318 0.494 1.520 2.140 29 1.599 0.912 0.529 1.011
1,4,4,1 168 21.65 15.6–25.16 28.00 1.346 0.497 1.497 2.115 29 1.669 0.898 0.486 1.005
2,4,4,1 173 21.53 15.6–26.17 28.34 1.458 0.326 1.862 2.272 29 1.680 1.117 0.540 0.975
1,2,3,1 169 21.62 15.6–25.16 28.09 1.435 0.457 1.584 2.156 29 1.724 0.950 0.452 0.953

Protein
Chemometrics

N Mean Range Est. max% SEC 1 � VR SECV SD 29 SEP(C) Bias limit RSQ Slope

1,3,4,1 128 10.75 6.81–13.37 15.92 0.656 0.807 0.756 1.722 29 0.982 0.453 0.749 0.943
1,4,4,1 128 10.76 6.81–13.37 15.92 0.656 0.807 0.756 1.722 29 0.872 0.454 0.749 0.943
1,4,3,1 128 10.75 6.81–13.38 15.92 0.656 0.807 0.755 1.722 29 0.872 0.453 0.749 0.943
2,3,3,1 129 10.83 6.93–13.37 15.75 0.707 0.685 0.919 1.638 29 0.951 0.552 0.698 0.988
2,4,4,1 129 10.837 6.93–13.38 15.75 0.712 0.688 0.914 1.638 29 0.972 0.548 0.683 0.981

N.B.: SEC = standard error of calibration; 1 � VR = 1 minus variance ratio; SECV = standard error of cross validation; SD = standard deviation; SEP(C) = standard error of
prediction; RSQ = coefficient of determination.
Bold values indicate lowest.
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to assess the calibration equations might not be sufficient.
A subsequent external validation of the initial calibration model
using samples independent from the calibration set led to further
NIRS performance values for each constituent.
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4. Statistical analysis

To obtain linear regression coefficient of reference vs. predicted
values of different parameters, MS excel was used. Further, to com-
pare calibrated values with predicted ones, t-test was performed
using SAS version 9.3 (base command: PROC TTEST) (Kong et al.,
2015; SAS Institute Inc., 2001). All the data and spectra generated
for evaluating calibration and prediction under different mathe-
matics was developed by WinISI III Project Manager software
version 3.1.
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Fig. 1. Reference values versus NIR predicted values plots for (a) amylose and (b)
protein content of brown rice. The R2 indicates that there are very little difference
between reference and predicted value in both AC and PC.
5. Results and discussion

5.1. Selection of best NIR equation for determination of amylose
content and total protein content of brown rice

Amylose is an essentially linear polymer of a-(1–
4)-linked-D-glucopyranosyl units with up to 0.1% a-(1–6) linkages.
In rice AC% varied from 0% to 30% depending on genotypes and
agro-climatic variations. It is mainly associated with sensory prop-
erties of cooked rice whereas protein in rice varies between 5% and
20% and is associated with textural properties of cooked rice
(Juliano, 2003). Rice protein is hypoallergenic in nature and mainly
concentrated in RB layers. Therefore, considering the above facts,
we selected both the BR and RB samples for analysis under NIRS.
A total of 173 and 129 samples were used for calibration of amy-
lose content (AC) and grain protein content (GPC) of brown rice
respectively. But for prediction, 29 samples were used for both
the parameters. To find out the best mathematical treatments with
scatter correction (SNV + D), five regression equations were devel-
oped using five random mathematical treatments (‘‘1,5,5,1’’,
‘‘1,6,6,1’’, ‘‘1,4,4,1’’, ‘‘2,4,4,1’’ and ‘‘1,2,3,1’’ for AC and ‘‘1,3,4,1’’,
‘‘1,4,4,1’’, ‘‘1,4,3,1’’, ‘‘2,3,3,1’’ and ‘‘2,4,4,1’’ for GPC) for brown rice
(Table1). The prediction equations for these parameters were
developed by modified partial least squares (mPLS) regression
and evaluated by the external validation.

The results in Table 1 showed the effects of different mathemat-
ical treatments with SNV + D for calibration equations with brown
rice samples (about 15 g),scanned by using small cup. For AC, the
pretreatment of ‘‘1,6,6,1’’ and ‘‘1,4,4,1’’ with each combined with
SNV + D were better than others. The other pretreatments were
found to be less precise in external validation. For the equations
of GPC, the pretreatment method of ‘‘1,4,4,1’’ and SNV + D had a
better effect than others, whereas others were more or less similar
based on external validation. In brief, both ‘‘1,6,6,1’’ and ‘‘1,4,4,1’’
mathematical treatments are best for AC showing high coefficient
of determination (RSQ: 0.529–0.486; 1 � VR: 0.494–0.497) and low
standard error (SEC: 1.318–1.346; SECV: 1.520–1.497 and SEP(C):
1.59–1.669). In case of GPC of brown rice,’’1,4,4,1’’ and ‘‘1,4,3,1’’
treatments were best among others showing high coefficient of
determination (RSQ: 0.749; 1 � VR: 0.807) and low standard error
(SEC: 0.656; SECV: 0.756–0.755 and SEP(C): 0.872). But consider-
ing lowest SEC and SEP(C), ‘‘1,6,6,1’’ was best for AC and both
‘‘1,4,4,1’’ and ‘‘1,4,3,1’’ were best for GPC prediction of brown rice.
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Fig. 2. Reference versus NIR predicted values plots for moisture, protein, ash, oil
and dietary fiber content of rice bran. The R2 indicates that there are very little
difference between reference and predicted value for all the proximate
compositions.
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For calibration of AC the mean, range and estimated maximum (%)
of data set under ‘‘1,6,6,1’’ were 21.63, 15.6–25.6 and 28.05 respec-
tively, where as for GPC these were 10.76–10.75, 6.81–13.37 to
6.81–13.38 and 15.92 for both ‘‘1,4,4,1’’ and ‘‘1,4,3,1’’ pretreat-
ments. Therefore, these calibration equations for AC and GPC of
brown rice were incorporated in the NIRS for future analysis of
the samples.

The reference values versus predicted values plots with optimal
models in the predicted set of GPC and AC are shown in Fig. 1. The
models for protein and amylose content of brown rice illustrate
good accuracy. It was observed that the points are randomly dis-
tributed around the line for both the parameters and the R2 was
0.859 and 0.918 for AC and GPC respectively. It indicates that these
calibration models could quantify for predicting AC and GPC of
brown rice and can be very useful in screening of large numbers
of samples nondestructively with short period of time.

The spectra for regression coefficient (load plots) of AC and GPC
of brown rice obtained from WinISI III software can be analyzed to
evaluate optimum NIR calibration models as spectra variations at
different wavelength (400–2500 nm) reflect the information
regarding different functional groups (eg. O–H, N–H etc.) of
measured components (Milica, Jasna, Dragan, & Mladenka, 2010).
Figs. 2A and 3B shows the correlation coefficient and absorption
curve under mPLS and optimum pretreatments mathematics for
AC and GPC of brown rice. The plots showed similar type of absorp-
tion peak (black lines) in both AC and GPC under first derivative
but correlation spectra (red lines) was little different. Five
absorption peaks between 932 and 1455 nm and two absorption
peaks between 1455 and 1977 nm were observed for both the
parameters. For first set of peaks, mainly C–H second overtone
and combination are responsible, which corresponds to amylose
whereas for second set C@O stretch, O–H stretch, N–H stretch
and also C–H stretch first overtone were responsible which indi-
cates protein of brown rice (Burns & Curczak, 1992). All these sug-
gest that the models are authentic and this is why they yielded
high predictive abilities. These calibration equations can only be
used to analyze samples of advanced rice lines where enough sam-
ples are available for analysis because, for small size of sample
(<5 g) standard error of prediction was higher (>1.00) (Delwiche
et al., 1995; Wu & Shi, 2004).

For this study, the goal was to identify methodology applicable
across a wide range of germplasms grown for high throughput
screening for high protein rice, other grains and RB quality.
Herein, the correlations had value as t-test showed p-values less
than 0.01 and the estimates were within a range of variation.
This indicated that NIR should be effective for pre-screening to
establish relative (low, medium and high) concentrations of these
compounds, which can then be followed by further analysis to
confirm their exact values.

5.2. Selection of best NIR equation for determination of proximal
components of RB

A total of 86 samples were used for calibration of proximate
composition of RB. Due to large number of parameters, we applied
two mathematical treatments (‘‘1,2,3,1’’ and ‘‘1,4,4,1’’) under
SNV + detrend scatter correction. For the calibration set, reference
values for ash, fiber, protein, oil and moisture ranged from 5.42 to
14.22%, 7.12–9.89%, 10.98–14.87%, 0.58–20.22% and 6.39–12.28%



Fig. 3. Regression coefficient along with correlation plot of modified partial least squares model (mPLSs) calibration equations under first derivative for (A) amylose content
of brown rice; (B) protein content of brown rice; (C) preprocessed first derivative absorbance spectra and (D) raw absorbance spectra of all proximate composition of rice bran
samples.
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respectively under optimum ‘‘1,2,3,1’’ mathematical pretreatment.
The results in Table 2 showed the effects of different mathematical
treatments with SNV + D for calibration equations with RB samples
(about 15 g), scanned by using small cup. For all the parameters,
pretreatment of ‘‘1,4,4,1’’ with SNV + D under mPLS was better
than ‘‘1,2,3,1’’ because it showed high or at par coefficient of



Table 2
Calibration and external validation for proximate compositions of rice bran (RB) samples using two mathematical pretreatments in NIRS.

1,2,3,1 chemometrics Calibration External validation

Parameters N Mean Range Est. max% SEC 1 � VR SECV SD N SEP(C) Bias limit RSQ Slope

Ash 84 9.36 5.42–14.22 13.22 0.532 0.724 0.671 1.286 29 0.639 0.403 0.822 1.088
Fiber 78 8.37 7.12–9.89 9.92 0.398 0.293 0.432 0.546 29 0.813 0.260 0.334 1.458
Protein 84 13.29 1098–14.87 16.03 0.415 0.659 0.531 0.915 29 0.435 0.319 0.833 0.955
Oil 82 14.12 0.58–20.22 26.56 0.487 0.977 0.621 4.147 29 0.865 0.373 0.956 0.986
Moisture 81 9.72 6.39–12.28 13.98 0.509 0.856 0.536 1.421 29 0.881 0.321 0.690 0.992

1,4,4,1 chemometrics
Parameters

N Mean Range Est. max% SEC 1 � VR SECV SD 29 SEP(C) Bias limit RSQ Slope

Ash 84 9.36 5.42–14.22 13.22 0.531 0.731 0.669 1.286 29 0.640 0.402 0.822 1.088
Fiber 78 8.37 7.12–9.86 9.92 0.398 0.304 0.423 0.518 29 0.814 0.260 0.333 1.457
Protein 84 13.29 10.98–14.87 16.03 0.413 0.660 0.532 0.915 29 0.432 0.319 0.835 0.958
Oil 82 14.12 0.58–20.22 26.56 0.487 0.978 0.620 4.147 29 0.866 0.372 0.955 0.986
Moisture 81 9.72 6.39–12.88 13.98 0.506 0.861 0.531 1.421 29 0.881 0.319 0.690 0.991

Table 3
t-Test for amylose and total protein content of brown rice and proximate compositions of rice bran (RB). It predicts that there was no statistical difference (at 1% level of
significance) between calibrated and predicted values.

Parameters (%) Data set Number t-Value P-value Significance

Amylose content (BR) Calibration 173 0.93 0.36 NS
Prediction 29

Protein Content (BR) Calibration 129 �2.5 0.02 NS
Prediction 29

Moisture content (RB) Calibration 86 �1.92 0.06 NS
Prediction 29

Protein content (RB) Calibration 86 �1.15 0.26 NS
Prediction 29

Oil content (RB) Calibration 86 �0.69 0.49 NS
Prediction 29

Crude fiber content (RB) Calibration 86 0.81 0.42 NS
Prediction 29

Crude ash content (RB) Calibration 86 �0.89 0.38 NS
Prediction 29
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determination (RSQ and 1 � VR) and low or at par standard error
(SEC: 0.398–0.531; SECV: 0.423–0.669 and SEP(C): 0.432–0.881)
(Table 2). Actually, ‘‘1,4,4,1’’ was slightly better regression equation
than ‘‘1,2,3,1’’. Further, Table 3 showed the non-significant differ-
ence between calibrated and predicted value (p > 0.01) under this
regression equation.

RB is an excellent source of fat (10.25–16.62%), protein
(14–18%), moisture (9–12%), ash (7–9%) and total dietary fiber
(20–30%) (Azizah & Luan, 2000). The reference values, obtained
from our laboratory versus predicted values in NIRS, plots with
optimal models in the predicted set of RB parameters are shown
in Fig. 2. A total of 29 samples were selected for prediction of these
RB parameters against the optimal calibration equation and
observed that R square varied from 0.518 to 0.929 and correlation
coefficient (R) was 0.720–0.964 (not shown in figures). The range
of different parameters of RB was also nearly same as previous
reports. It suggests that this calibration model could quantify for
predicting these RB compositions with near accuracy and can be
very useful in screening of large numbers of samples with short
period of time.

The whole as well as average NIR spectra under first derivative
and absorbance spectra of five constituents of RB were shown in
Fig. 3C and D respectively. There were total six (two peaks between
932 and 1455 nm, two peaks between 1455 and 1977 nm and two
peaks between 1977 and 2499 nm) major peaks were observed.
The first two peaks may be the overtone from the C–H stretching
of a CH2 group (generally found at 1215 nm) or corresponding to
the second overtone of C–H stretching of CH3 group (generally
found at 1195 nm) (Osborne & Fearn, 1986). This functional group
is present in the oil or fiber molecule, an important nutritional
compound of RB. The peaks at 1450–1974 nm corresponds to the
absorption band of moisture (typically 1490 and 1540 nm) and
protein (typically at 1471–1530 nm), due to corresponding to the
first overtone of O–H and N–H stretching. The last observed
peaks were found at 1974–2490 nm, which could correspond to
the absorbance band of ash, fiber or protein molecules. The
first overtone of the OH stretching/bending combination mode is
at 1960 nm and N–H/C–H bending in plane is at 2050–2070 nm
(Burns & Curczak, 1992). All these results suggest that this
model will be very useful for prediction of RB proximate
compositions.

6. Conclusion

This study demonstrated the potential of NIRS for rapid predic-
tion of AC and GPC of BR samples. The major outcome of this study
largely depends on the variations and precision in the reference
values and suitable regression equations used. The models for
the AC obtained in this work were more precise than the models
reported by Hu et al. (2014), Barton et al. (2000) where SECV were
higher (1.927 and 1.830) as compared to this study (1.520). For the
GPC of BR, the current results were slightly less precise to those
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obtained by Hu et al. (2014) (generated through ‘‘2,8,8,2’’/mPLS/
MSC regression model) because SEC and SECV was slightly higher
in our study. However, they used rice flour and milled rice which
was destructive in nature but we used brown rice, which can be
used for further analysis; even for growing seedlings. Therefore,
for AC, ‘‘1,6,6,1’’/mPLS/SNV + D and for GPC, ‘‘1,4,4,1’’/mPLS/SN
V + D are the best calibration model developed under NIRS if
non-destruction of the grain and minimal sample preparation will
be considered. But, the novelty of this study lies on development of
NIRS models for proximate compositions of RB. The prediction
model developed through ‘‘1,4,4,1’’ with SNV + D under mPLS
was better because it showed high coefficient of determination
and low standard error (SEC: 0.398–0.531; SECV: 0.423–0.669
and SEP(C): 0.432–0.881) for all these bran constituents. In fact,
very limited literature is available till now in this aspect.
However, our study will be helpful for the effective utilization of
NIRS in high throughput screening of rice bran samples for their
proximate composition as well as AC and GPC of any rice samples
in nondestructive way.
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