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In this paper, integration of two models TsHARP (Tsharp) and Thin plate spline (TPS) has been performed
for spatial sharpening of 1 km (coarse) resolution of MODIS thermal imagery to 250 m resolution.
Afterwards it was validated with LANDSAT-7 thermal data (after resampled to 250 m pixel). The results
showed that LST based on integration of two (TsHARP and TPS) models is consistent with true data
(LANDSAT-7 ETM+, thermal data). We have observed R2 at pure cropped area, cropped area with low set-
tlement and cropped area with high settlement is showing, 0.74 (Multi R = 0.80, Adju R = 0.75 and
p = .001), 0.72 (Multi R = 0.78, Adju R = 72 and p = .001) and 0.71 (Multi R = 0.78, Adju R = 0.71 and
p = .001) respectively. While overall R2 of 0.69 (Multi R = 0.76, Adju R = 0.71 and p = .000) for all cate-
gories of classes (cropped area + cropped area with low settlement + cropped area with high settlement).
LST shows root mean square error (RMSE) = 0.307 �C, Relative-RMSE (R-RMSE) = 0.167 �C, mean absolute
error (MAE) = 0.033 �C, normalized RMSE (NRMSE) = 0.018 �C, index of agreement (d) = 0.99, RMSE-
observations standard deviation ratio (RSR) = 0.39 and RMSE% = 0.02 for merging process based LST.
We conclude that combination of TsHARP and TPS model has a great potential to estimate LST at
250 m with high temporal resolution. This LST can be used as an input in various models to estimate
other components which are LST dependent.
� 2018 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

Temperature information is required for crop and agriculture
monitoring at fine scale for analysis and their anticipated impacts.
Readily available LST’s data at global (with coarse spatial scale) and
higher temporal scale (per day) are provided by some satellite
(MODIS). These LST data most of time, do not fit to the needs of
local/sub-local adaptation planning due to only poor spatial resolu-
tion (SR). Therefore, decision makers are interested in alternate of
fine SR with high temporal resolution LST data sets for specific sec-
tors, e.g., agricultural and hydrology.

A remote sensing (RS) technique provides a unique opportunity
to capture land surface information over large geographic extents
at different resolutions. Therefore satellite data at finer scale is
essential for various applications. Mathematically it is possible to
make same spatial resolution of different spatial resolution data
from same satellite source. MODIS has different spatial resolution
(250, 500 and 1000 m) data sets from optical/thermal sensor at
same temporal resolution. Another issue is mismatch of optical
and thermal data sets at fine scale (optical data at 250 m) and ther-
mal data at 1 km). Results from analysis of different scale of bands
(optical and thermal) without downscaling of thermal band with
respect to optical band cannot be reliable therefore it is necessary
that both bands must be in same spatial and temporal scale. Such
types of data have a good temporal resolution (per day) and can be
used for near real time monitoring of crop parameters. MODIS data
sets have high temporal resolution (per day) but both bands have
different SR (250 m optical and 1000 m thermal band). This type
of disparity between two different kinds of SR bands can be
removed using mathematical models like TsHARP and TSP.

TsHARP method is robust and widely accepted due to its pow-
erful functioning and simplicity (Zhan et al., 2013). The powerful
functioning of TsHARP is based on the fact that vegetation covers,
mainly represented by combination of NIR (Near Infrared Region)
and Red band based vegetation index (VI) known as Normalized
Difference Vegetation Index (NDVI). It is the most significant key
for determining the land surface temperature (LST) of many land-
scapes. Therefore, this model has a sole assumption that LST (from
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thermal band) and NDVI (from optical band) is associated with a
unique relationship across a given sensor scene (data sets) and free
from different SR scales.

However, recent research work reports some of the deficiencies
of TsHARP method. The different scale effect of the LST-NDVI rela-
tionship cannot always be disregarded, which could lead to a size-
able error for areas dominated by natural covered area by
vegetation (Chen et al., 2012b). Moreover, NDVI is not only single
factor that determines LST. This suggests that LST govern by other
factors (e.g., Soil moisture (SM), albedo) also in areas where NDVI
values are low. Although this problem can be rectified to some
extent using residual correction, it is still a major source of errors
for TsHARP in mixed areas (Agam et al., 2007a,b). Therefore disad-
vantage of TsHARP is its limitation over those areas where low
NDVI exists. Therefore, TsHARP method also cannot be used as it
is. This weakness of TsHARP can be removed, if we integrate
TsHARP model with another model that can use the effectiveness
of TsHARP at low NDVI area.

The TPS is formally known as laplacian smoothing splines and is
a deterministic non-geostatistical surface fitting process. It entitles
to adjust a set of function that interpolate source point data (any
parameter of geo-data sets) while minimizing the smoothness
term. This smoothness term represents a negotiation between
the curvature of surface and the distance with source point data
and is calculated by iteratively minimizing the generalized cross
validation function. TPS is considered as a powerful and precise
method for source point data, fine smoothness and robustness.
Accordingly, TPS has been commonly used in spatial interpolation
of point data (this point data may be geo-data, DEM, meteorologi-
cal data, etc. (Boer et al., 2001; Chen and Li, 2012a). Previous
research works have suggested the need of integration of these
two model for improved spatial resolution of LST products (Yang
et al., 2011; Galianoa et al., 2012; Teggi and Despini, 2014; Wang
et al., 2015). Objective of this study is to integrate TPS with TsHAPR
for downscaling of 1 km LST into 250 m LST.
2. Materials and methods

2.1. Study area description

Study area lies between 76� 290 E to 76� 440 E and 28� 170 N to
28� 360 N, with altitude 245 m above m.s.l. in Rewari district state
of Haryana in India (Fig. 1a & b), which covers almost entire study
area in which Wheat (during Rabi season) is the major crop. The
average rainfall in last ten years in the district is 569.6 mm. The
rainfall distribution in the district is uneven and scattered which
results into drought that affects the agriculture production as well
as cropping pattern in Kharif and Rabi season.
2.2. Data acquisition

Images were acquired on 19-January-2013 with MODIS systems
in order to acquire optical and thermal band. The specification of
MODIS data are given in Table 1. The ground-truth work was per-
formed on 19-January-2013.

A LANDSAT-7ETM+ data of study area was acquired on 19-
January-2013 and used as high resolution LST (60 m) imagery with
respect to merged model data. LANDSAT-7ETM+ data have ziz-zag
lines (or zero value area, due to malfunctioning of the scan line cor-
rector).Correction operation was not necessary if selected ground
truth points lies in the middle of the scene area where there is
no image distortion (Bala et al., 2016).

Ground survey was conducted on same day of satellite pass
over the study area. Observation (X and Y co-ordinates) were taken
in different land use/land cover (LULC) types, such as fallow land,
barren land, vegetation and near of water bodies/wetlands etc.,
were identified and their co-ordinates were logged with a hand
held Global Position System (GPS) device (Garmin (eTrexH),
with ± 15 m horizontal locational accuracy (Rawat et al., 2016).
These data were used for validation of LANDSAT-7ETM+, LST with
estimated LST from purposed merged model.

2.2.1. Data processing
2.2.1.1. Data pre-processing for temperature retrieval. In this study,
for LST retrieval from LANDSAT-7ETM+ data requires radiometric
calibration, atmospheric correction and emissivity estimation,
prior to LST estimation. Radiometric calibration of LANDSAT-
7ETM+ was done using Landsat Calibration tool in ENVI 4.5 S/W,
atmospheric correction done using FLAASH module (or algorithm)
in ENVI. LST was calculated (from LANDSAT-7ETM+) using stan-
dard emissivity method suggested by Zareie et al. (2016).

ArcGIS-10.2 software was used to process the MODIS data set
(MOD09AQ and MOD09GQ, (Fig. 1a)). The software converts the .
hdf files format into .img format. While converting the data format,
its projection (spheroid_Sinusoidal) also converted into
WGS_1984_Transverse_Mercator projection. Finally, after the pro-
cess masking the data with fixed rectangular polygon (Fig. 1b), the
analysis was limited to rectangular area. General Information of
data sets is given in Table 1. Vegetation index is calculated from
MOD09 reflectance products. NDVI is the normalized ratio of the
NIR and the red bands, these NDVI index is calculated as Bala
et al. (2016, 2015) and Rawat et al. (2012).

2.2.1.2. Resampling of LANDSAT data. Resampling is just changing of
the spatial resolution of raster dataset and set rules for aggregating
values across the new pixel size (250 m). In our case, nearest
neighbour method was sleeted because of maximum possible spa-
tial error is one-half the cell size (Borra-Serrano et al., 2015; it is
lesser than other methods). In the present study, the Thermal band
(60 m, Band 6 (TIR)) of Landsat-7 ETM+ was resample into 250 m
for validation of simulated LST data (based on TsHARP and TPS).

2.3. Model

TsHARP and TPS two model were used for solving downscaling
(1 km to 250 m) of thermal data (1 km) using Red (250 m) and NIR
band (250 m) reflectance. Both models have advantage and disad-
vantage, TsHARP is fit for those area where vegetation condition is
good and TPS performances is just opposite good performances at
low vegetations cover area therefore in present study we
merge/combine TsHARP and TPS models and use advantages of
each model.

The detailed methodology used for downscaling of LST using
combination/merging process is given in Fig. 2.

2.3.1. TsHARP model
TsHARP assumes that the sole relationship exists between LST

and VI within a RS data at multiple spatial resolutions (like 250,
500 and 1000 m). In first step of TsHARP, establish an empirical
relationship between coarse resolution NDVI (Fig. 3a) and LST
(Fig. 4a).

Tlow ¼ f regðVIÞ þ dreg
¼ a � NDVIlow þ bþ dreg

ð1Þ

where, freg is regression function, VI is NDVI, low suffix is represent
to poor resolution (here low = 1 km SR) image, a and b are represent
regression parameter, dreg residual field at poor resolution (1km)
image pixel. Obtained regression equation applied over high resolu-
tion (250 m) NDVI images (Fig. 3b) and calculated high resolution
(250 m) LST (or Thigh = Treg) as:



Fig. 1. a MODIS tiles, b Study area after masking from MODIS tiles.

Table 1
General information about LANDSAT-7 and MODIS data sets.

Sensor (LANDSAT-7ETM+) Wavelength Spectral Resolution

Band 1 (Blue) 435–520 nm 30 m
Band 2 (Green) 500–624 nm 30 m
Band 3 (Red) 614–704 nm 30 m
Band 4 (NIR) 740–914 nm 30 m
Band 5 (SWIR) 1508–1791 nm 30 m
Band 6 (TIR) 1040–1250 nm 60* (30)
Band 7 209–235 nm 30 m
Band 8 052–090 nm 15 m
Sensor (MODIS),

(MOD09AQ and MOD09GQ)
Band 1 (VIR) 620–670 nm 250 m, 500 m, 1 km
Band 2 (NIR) 841–876 nm 250 m, 500 m, 1 km
Band 3 (VIS) 459–479 nm 250 m, 500 m, 1 km
Band 4 (NIS) 545–565 nm 250 m, 500 m, 1 km
Band 5 (SWIR) 1230–1250 nm 250 m, 500 m, 1 km
Band 6 (SWIR) 1628–1652 nm 250 m, 500 m, 1 km
Band 7 (SWIR) 2105–2155 nm 250 m, 500 m, 1 km

* ETM + Band 6 is acquired at 60-meter resolution, but products are resampled to
30-meter pixels.
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Thigh reg ¼ a � NDVIhigh þ b ð2Þ
Finally high resolution LST from TsHARP (Fig. 4b) is given by

adding residual field (dreg) behind of regression estimate (Eq. (1))
as:

TTsHARP ¼ Thigh reg þ dreg
¼ Thigh reg þ Tlow � Treg

¼ Tlow þ a½NDVIlow � NDVIhigh�
ð3Þ
2.3.2. TSP model
TPS is a deterministic non-geostatistical surface fitting process

or in simple term it is interpolation method for known point data
sets, which is commonly use able technique for downscaling of
geo-data in raster format (Fig. 4c). The fundamental principle of
TPS technique is based on the spatial dependence of geo-data
(Bindhu et al., 2013). A general form of TPS model is given as:
f TPS ¼ a� þ a1xþ a2yþ 1
2

Xn

i

bir2i log r
2
i ð4Þ

with the following condition:

Xn

i¼1

bi ¼
Xn

i¼1

bixi ¼
Xn

i¼1

biyi ¼ 0 ð5Þ

where, r2i ¼ ðx� xiÞ2 þ ðy� yiÞ2 and the parameters are obtained by
satisfying the condition:

f low TPS ¼ Tlow ð6Þ
TTPS high ¼ f high TPS ð7Þ
Finally, in comparison of TsHARPmethod, TPS reveal less spatial

details of LST image; however, it can perform better result in the
areas where NDVI poor/low indicates LST.
2.4. Integration of TPS and TsHARP models

From above section it is clear that both models are just opposite
in performances for NDVI condition. One (TsHARP) is highly effec-
tive in good NDVI cover area while second model (TPS) performs
better in those area where NDVI cover is poor. Therefore we merge
both the models to obtain a model that can perform well under
good vegetation cover area as well as under week vegetation cover
area. In this direction, First step, two high resolution (250 m) LST
images were acquired by regression (Eq. (2) TsHARP not including
d) and TPS method, respectively. Second step, estimation of error in
both method for each poor resolution pixel. Third step, the
weighted results of the regression and TPS method were combined
with the estimation of their errors. Finally and fourth step, d fields
were added back to the weighted results. Mathematically repre-
sentations of above four steps are given as below:



Fig. 2. Flow chart for adopted methodology.

Fig. 3. a MODIS 1 km NDVI (low SR), b MODIS 250 m NDVI (high SR).
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2.4.1. Mathematical representations of error estimation in regression
method

For the regression method, the error variance of regressed LST
in poor resolution image can be calculated as the square of a poor
resolution d (Fig. 5a) if the error is assumed to be constant in poor
resolution image.

d2reg ¼ ½Tlow � Treg �2 ð8Þ
2.5. Mathematical representations of error estimation in TPS method

In most of cases, TPS produces smoother raster output with a
lack of spatial information because TPS considered only spatial
dependence. Therefore, the spatial variance of downscaled LST by
TPS is generally lower than that of original LST (without interpo-
lated) at same spatial resolution. Assuming that total variance
(Var.) of original LST can be divided into error Var. and model



Fig. 4. a MODIS 1 km LST (low SR), b MODIS 250 m LST (Thigh_reg), c Interpolated LST (250 m, TTPS_high) using TPS.

Fig. 5. a Error variance (dreg2 ) of regressed LST, b variance in TPS (Var[TTPS]).
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Var., the error Var. of sharpened LST in poor resolution image can
be expressing as Eq. (9):

d2TPS ¼ jVar½Thigh � Var½TTPS high�j ð9Þ
where,

Var½Thigh� ¼ 1
m

Xm

1

½Thigh � Tlow�2 ð10Þ

Var½TTPS� ¼ 1
m

Xm

1

½TTPS high � Tlow�2 ð11Þ

Eq. (10) and (11, Fig. 5b) are the total Var. and model Var. of LST
in poor resolution image respectively. The absolute operation in Eq.
(9) is to address the abnormal case that total Var. is less than model
Var. as the original high resolution LST (Thigh) is unknown, the total
Var. cannot be calculated directly. However, it can be calculated by
regression between LST-NDVI and mathematically expressed as:
Var½Thigh� ¼ b2 � Var½NDVIhigh� þ VarðdregÞ ð12Þ
Var½NDVIhigh� ¼ 1
m

Xm

1

½NDVIhigh � NDVIlow�2 ð13Þ

and Var(dreg) is the residual Var. in low/poor SR image based on LST-
NDVI regression model. Now Eq. (8) can be re-write with the help of
Eqs. (10), (12) (Fig. 6a) and (14) (Fig. 6b) for error Var. of TPS at each
low/poor resolution image (Fig. 7a) is:

d2TPS ¼ jb2 � Var½NDVIlow� þ VarðdregÞ � Var½TTPS high�j ð14Þ
Eq. (14) represents Var. Difference of the LST estimated from

LST-NDVI model and TPS can reflect the error of TPS. In general,
spatial Var. of the LST sharpened by TPS is relatively small. If NDVI
Var. in a lower resolution image is large, TPS method cannot give
better output because NDVI is use as main factor to sharpening
low resolution LST. But NDVI Var. is small, TPS perform better



Fig. 6. a variance in Thigh (Var[Thigh]), b variance in NDVIhigh (Var[NDVIhigh]).

Fig. 7. a Error variance (dTPS2 ) of regressed LST, b weights map per pixel (WTPS).
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because spatial dependency participate more important role than
NDVI in estimating LST. Mainly, low/poor NDVI covered area,
LST-NDVI relationship not works strongly therefore spatial depen-
dence should be considered more.

2.6. Mathematical representations of merging TPS and TsHARP models

From Eqs. (8) and (14) we calculated sharpening error Var. of
TsHARP and TPS, the weights (WTPS and WTsHARP) of these two
models are estimated for low resolution images at pixel level as
Eq. ((15), Fig. 7b) and ((17), Fig. 8a).
WTPSðxi; yiÞ ¼
d2regðxi; yiÞ

d2regðxi; yiÞ þ d2TPSðxi; yiÞ
ð15Þ
Wregðxi; yiÞ ¼
d2TPSðxi; yiÞ

d2regðxi; yiÞ þ d2TPSðxi; yiÞ
ð16Þ

According to bayesian theory, weighted summation of both
model (TsHARP and TPS) is the best estimation (Wikle et al.,
2007). As suggestion of Wikle et al. (2007), weighted value from
each modal for each lower resolution pixels must be multiple with



Fig. 8. a weights map per pixel (Wreg), b weight map (Tweight_high) of higher resolution image at pixel level.
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generated/obtain high resolution images (TTSP_high and Thigh_reg)
from both model. From Eqs. (15) and (17) a higher resolution
weighted T (say Tweight) can be generated (Fig. 8b), which tell
weight of higher resolution image at pixel level.

TWeight high ¼ WTPS � TTPS high þWreg � Treg high ð17Þ
Finally we can obtain merged high resolution LST (Fig. 9a) using

TsHARP and TSP, after correction in low resolution d field is added
back to the result which is representing as:

T ¼ TWeight high þ Tlow � 1
m

Xm

1

TWeight high ð18Þ
Fig. 9. a Merged high resolution (250 m) LST, b LST f
Adopted methodology of merging or combining of TPS and
TsHARP illustrated by Fig. 2.

3. Validation of merged LST data with true LST from LANDSAT-
7ETM+

120 ground points at different condition (pure cropped area
(C1), cropped area with light settlements (C2), cropped area with
high settlement (C3) and union of all class (C4) were collected dur-
ing (19th January 2013) satellites (MODIS and LANDSAT-7
(Fig. 9b)) pass over study area. We observed LST in different land
use/land cover because we assumed that this range is more
rom LANDSAT-7ETM + using emissivity method.



Fig. 10. Correlation between a 250 m LST from LANDSAT-7 and fused under 40 observed point data in each different category of land use and b 250 m LST (from LANDSAT-7
and merged) under full observed point data sets.
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dynamic from LST point of view. LST along these points from true
imagery (from LANDSAT-7 at 250 m) and purposed merged model
were collected and obtain R2 (for different condition of land
use/land cover) using 2D scatter plot (Fig. 10). Another statistical
test (RMSE, R-RMSC, RSR, NRMSE, MAE, and d also applied over
these LST points for validation of LST from merging of two models
with reference to LAND SAT-7ETM+LST.
4. Results and discussion

4.1. Downscaling

The main objective of this study was to produce daily LST at
250 m scale (Fig. 9a) identical to the MODIS MOD09GQ using com-
bination of two models (TsHARP and TPS). The LST (at 250 m) was
validated with LANDSAT-7ETM+ thermal data (after resampled to
250 m pixel) of same day (local time 10:00 am, nearby MODIS
overpass time 10:15 am, local time) of study area, because of high
SR (60 m) data. Since validation using field observation is time and
cost effective at the large area with 250 m scale, the effectiveness
of the followed merge process may best be assessed by comparison
to LANDSAT-7 TIR data over study areas. As revealed in scatter
plots between calculated LST and LST of truth image (TIR data of
LANDSAT-7 at 250 m), calculated LST was closely related to LST
of truth image with R2 = 0.74 (C1), 0.72 (C2), 0.71(C3), and 0.69
(C4) (Table 2). The results revealed that integrated approach was
effective, the accuracy of the output was enhanced. This reveals
the fact that vegetation in a higher SR pixel (at 250 m) is usually
heterogeneous therefore sharpening of poor SR LST (1 km) is possi-
ble. Wonsook et al. (2010) also used TsHARP techniques for down-
scaling MODIS, LANDSAT-5 TM and ASTER LST data sets with help
of NDVI and found good result in evapotranspiration (ET) analysis.
In our approach NDVI (at 250 m SR) is major input factor for down-
scaling LST, in other study (Immerzeel et al., 2009; Bisquert et al.,
2016) they also used NDVI (at different SR) for downscaling of
LST using some different model but it is clear decision of selection
of NDVI as appropriate parameter for downscaling of LST in our
study was justified.

The efficiency of TsHARP depends on logic that a healthy correla-
tion always exists between VI (NDVI) and LST. But in case of low
NDVI for example, water cover area with low/poor NDVI exhibit
low LST, for this case, TsHARP could generate high downscaling
errors in those area and in this matter TPS can help us because TPS
performs better for various conditions. Thus, TPS could enhanced
the efficiency of TsHARP in those areas where NDVI poor/low indi-
cates LST. For this merit of TPS, we merged TsHARP and TPS based
on their error estimation hypothesis. The technique with the high
error estimation is assignwith lessweight; therefore, TPSwill assign
large weights in those areas where TsHARP will act weekly for
avoiding high amount of error during downscaling process. Other
than TPS, there are many spatial interpolation techniques such as
Bilinear, Cubic-convolution and Near-neighbourhood interpola-
tions and are generally used for resampling raster image/data.While
smoothing of the resampled raster data using these techniques is
slightly inferior to TPS (Chen et al., 2012a,b).

4.2. Result from statistics tests

Our statistics also reveal that merged based downscaling of LST
is an effective way to achieve synthetically good resolution ther-
mal data with help of available resolution NDVI (in the desired res-
olution). Mechri et al. (2014) used genetic particle filter (GPF)
approach for downscaling of LST (using NDVI) and found a good



Table 2
statistical test for modeled and observed LST.

Test Crop area Crop + Li Sett Area Crop + Hi Sett Area Crop + Li+Hi Sett Area

RMSE 0.306 0.215 0.375 0.307
R-RMSE 0.018 0.012 0.022 0.167
NRMSE 0.018 0.013 0.023 0.018
RMSE% 0.047 0.033 0.057 0.016
MAE 0.081 0.025 0.011 0.033
RSR 0.41 0.41 0.40 0.39
d 0.99 0.99 0.99 0.99
R2 0.74 0.72 0.71 0.63
Multi R 0.80 0.78 0.78 0.76
Adju R 0.75 0.72 0.71 0.71
p 0.000 0.000 0.000 0.000

Li = Light, Hi = High, Sett. = Settlements.
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synthetical resolution LST with RMSE = 0.3 (RMSEprior = 1.2 and
RMSEposterior = 0.3), which is similar to our result (RMSC for full
set data 0.307, Table 2) which shows that our selection of NDVI
(as a main factor) for downscaling process is justified. Gao et al.
(2012) used mean absolute errors (MAE) statistical test to scale
the error in downscaling of LST using data mining sharpener
(DMS) approach for the complex terrain and found variation in
MAE from 0.78 to 1.67 for downscaling ratios of 1 (250 m) to 4
(1000 m), between the SR of the shortwave (VIR/NIR) and TIR band.
This MAE value (0.78) is higher than our MAE (0.081–0.011) for
plane terrain area. This difference may be due to the fact that
energy conservation enforcement is obtained when LST residuals
are incorporated, especially for the C1, C3 and complex terrain sites
(Gao et al., 2012).

The efficacy of purposed integration approach to improve LST
estimation was validated using the LANDSAT-7ETM+ TIR dataset.
The results of statistical tests (for validation) are tabulated in
Table 2. From this table it can be concluded that the proposed
merging of sharpening process has good coefficient of determina-
tion (R2) and low RMSE. The sharpening LST map (at 250 m) is of
good accuracy than the 1 km LST from MODIS data and this sharp-
ening method is effective.

Fig. 10 shows the variation of R2 varies with land types or cat-
egory at the same time. The coefficient of determination is not
much different for different land classes with respect to union of
class (Fig. 10b). The highest R2 (0.74) found for C1 area in study
area, and then R2 (0.72) for C2 and then C3 with R2 of 0.71. In the
category of C3 R2 is slightly which may be due to high LST domi-
nant area. From Table 2 ‘d’ given degree of model prediction error
and its value varies between zero to one. Value of one reveal an
ideal agreement between the observed and model (merged model)
predicted values, and zero shows not matching with observed data
(LST from LANDSAT-7ETM+). For proposed process, d values in all
cases (all classes) are same (1 � 0.99), that is revealing model
(TsHARP + TSP) capable to simulating observed values (from
LANDSAT-7ETM+) successfully. R-RMSE (Rawat et al., 2013, Bala
et al., 2016) standardizes the RMSE computed LST from TsHARP
+ TSP model with respect to the observed LST value from
LANDSAT-7 at different land bin of category. The advantage of R-
RMSE over RMSE, assigns equal weight to overestimation or under-
estimation of the statistics. From table 2, R-RMSE (0.018 (C1), 0.012
(C2), 0.022 (C3) and 0.67 (C4)) reveals that model is working well
for simulating LST with references to LANDSAT-7. In order to com-
pare RMSE at different category (C1, C2, C3, and C4), it was normal-
ized to mean of observed LST values and thus normalized RMSE
(NRMSE) is calculate. Table 2, NRMSE test also shows model is
acceptable due to low values. %RMSE statistics estimates error in
predicted values (or model value), the least values of these
observed LST, the closer is the model’s LST. Ideally, % RMSE values
of zero would mean that the observed LST is the same as the
model’s LST. Generally, the desirability of having zero or low values
of %RMSE depends on how close the observed values are. Therefore
to compare the closeness of LSTs (from model and observed), per-
centage root mean square error (% RMSE) are measured and we
found modelled and observed LST are nearest (Table 2) for each
category of Cn (n = 1, 2, 3, 4). RSR standardizes RMSE using SD
(standard deviation) in observations, and it combines both an error
index RMSE and SD (Chu and Shirmohammadi, 2004; Singh et al.,
2004). RSR values of zero (optimal) would mean that the zero
RMSE and perfect simulation by model. Therefore lower RSR
(Table 2) shows lower the RMSE and reveal a good simulation with
respect to observed LST. MAE statistical test is also used for show-
ing how far model (TsHARP + TSP) LST are from observed LST from
LANDSAT-7ETM + and MAE is a more natural calculation of average
error and (unlike RMSE) is unambiguous (Rawat et al., 2013; Bala
et al., 2016). From Table 2, MAE values (0.081(C1), 0.025 (C2),
0.011 (C3) and 0.033 (C4)) shows proposed model is acceptable
due to less average error and unambiguous in prediction.

5. Conclusions

TIR data provides vital information for land surface energy fluxes
and ET, and for near real time agriculture drought monitoring. LST
data at fine resolution are required for field scale applications, TIR
imagery is normally acquired at a low resolution compared to VIR
(visual infrared region) and NIR (near infrared region) spectral
bands. Integration of two models (TsHARP and TPS) for remote
sensing data sharpening ways has been developed to sharpen TIR
data using VIR/NIR reflectance. The analyses of the sharpening
method was explored in this paper and were conducted using LST
and reflectance data from the MODIS and represent the improved
LST maps at high SR (250 m). The application of sharpening of LST
data from different sensor may be affected by numerous factors
such as the date/time differences, the number of spectral bands
available for sharpening, differences in data quality and geo-
referencing accuracy. Therefore preference of same sensor product
for sharpening of LST data is desirable to avoid errors.
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