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SUMMARY
Ratio estimator is widely used survey estimation method for estimating the finite population mean (or total) using auxiliary variable which is 

linearly related to study variable. However, this method requires the availability of aggregate level population information for auxiliary variable 
which may not be always available. As a result, in many practical situations, the ratio method of estimation cannot be applied. Alternatively, the 
double (or two-phase) sampling approach is often applied in such cases. This paper develops the calibration approach based finite population ratio 
estimator using the double sampling. It is assumed that the ratio of the total of auxiliary variables is available for the first phase sample only. The 
expression for variance and estimator of the variance of the proposed estimator is also developed. In addition, optimum sample sizes for the first 
and second phase samples are also suggested for a fixed cost. Monte Carlo simulations based on real population show that the proposed estimator is 
efficient than the existing alternative.
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1.	 Introduction

In the sample survey, the auxiliary information is 
often used to improve the precision of estimators of 
finite population parameters. The calibration is widely 
used approach to incorporate auxiliary information in 
the estimation process to produce efficient estimators 
of finite population parameters such as finite population 
mean or total (Deville and Särndal, 1992, Wu and Luan, 
2003, Tracy et al., 2003, Rao et al., 2012 and Koyuncu 
and Kadilar, 2013). However, calibration approach has 
also been used for estimation of complex parameters 
like population ratio or product or variance by several 
researchers including Plikusas and Pumputis (2007, 
2010), Kim and Park (2010), Sudet al. (2014) and 
Basak et al. (2017) etc. In many practical applications, 
the estimation of population ratio is often used. For 
example, if the variable y denotes the number of 
bullocks on a holding and z its area in acres then the 
interest may be to estimate the number of bullocks 
per acre of holding in the population. Similarly, per 
capita monthly income in socio-economic surveys is 

obtained by the ratio of the sum of monthly income 
of households and the size of household, whereas, the 
productivity of crops is the ratio of total production to 
the total area where the crop is grown. Likewise, the 
unemployment rate is obtained by the ratio between 
the number of unemployed individuals and the number 
of individuals in the labour force in the country.

If there is a presence of auxiliary information 
along with the variables under study then the use of 
the calibration approach may substantially improve 
the precision of the estimator of population ratio. 
Raju (2012) used the calibration approach for the 
estimation of finite population ratio assuming that the 
information on the auxiliary variable is available at the 
population level. However, often such aggregate level 
information on auxiliary variable may not be available 
at the population level. In such cases, Hidiroglou 
and Särndal (1998) suggested to use the approach 
of double (or two-phase) sampling. This article 
describes calibration approach using double sampling 
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to estimate the population ratio when the aggregated 
population level information on the auxiliary variable 
is not available. The rest of the article is organized 
as follows: The following section introduces the 
calibration estimation of population ratio under double 
sampling design when the ratio of auxiliary variables is 
available for the first phase sample. Section 3 presents 
the variance estimation of the proposed estimator. In 
addition, optimum two-phase sample sizes for a fixed 
cost as well as variance expressions under optimum 
condition are also obtained. Section 4 reports the 
empirical performance of the proposed estimator using 
design-based simulations based on real data. Finally, 
concluding remarks are set out in Section 5.

2.	 �Methodological Development of 
Estimator 

Let us assume a finite population (1, 2..., ,..., )U k N  
containing N units. Let Y and Z be the two variables 
belonging to the population U and taking real 
values 1 2, ,..., Ny y y  and 1 2, ,..., Nz z z , respectively. 
Further it is assumed that the population U has two 
auxiliary variables X and L corresponding to Y and Z, 
respectively and the unit level values of X and L are 
denoted by 1 2, ,..., Nx x x  and 1 2, ,..., Nl l l , respectively. It 
is assumed that the population level aggregate values 
like population total (

1

N
x kk

t x
=

= ∑  and 
1

N
l kk

t l
=

= ∑ ) for 
both the auxiliary variables are unknown. Under this 
circumstance, double sampling is often used. In double 
sampling, the information on the auxiliary character is 
obtained by selecting a large sample of size 1n  denoted 
by 1s , observing the auxiliary variables and further 
a sub-sample of size ( )2 2 1,n n n  denoted by 2s  is 
selected from the 1s  to observe the study variable. 
Thus, the sampling weight for kth population unit in 

1s  is denoted as 1 11k kd π= , where ( )1 1Prk k sπ = ∈  
is the known first-phase inclusion probability for the 
kth population unit. Again, the sampling weight for 
kth population unit in 2s  is denoted as 

12 |1k k sd π= , 
where ( )

1| 2 1Pr |k s k s sπ = ∈  is the known second-phase 
inclusion probability for kth population unit. Hence, the 
total sampling weight for kth population unit is denoted 
as 1 2k k kd d d= , also known as the design weight. Let, 

1klπ  and 
1|kj sπ  denote the joint inclusion probability of 

(k,j)th population unit in 1s  and 2s , respectively. The 
population total of Y and Z are given by 1

N
y kk

t y
=

= ∑  
and 1

N
z kk

t z
=

= ∑ , respectively and it is assumed to be 

unknown. In practice, the actual demand is to estimate 
of population total instead of population ratio. But, we 
know that the precision of population total estimation 
using ratio method is depends on the precision of 
population ratio estimate. For example, the expression 
for estimate of population total ( yt ) of Y using ratio 
method is denoted as ( )1

ˆ_ N
y kk

Est t R z
=

= ∑  where, R̂  is 
an estimator of population ratio /y zR t t= . Hence, the 
precision of _ yEst t  is mostly depends on precision of 
R̂ . Following Särndal et al.(1992), an estimator of the 
ratio R without incorporating the auxiliary variables is 
given by 

ˆˆ
ˆ
y

z

t
R

t
= � (1)

Here 
2

1

ˆ
n

y k k
k

t d y
=

= ∑  and 
2

1

ˆ
n

z k k
k

t d z
=

= ∑ . The 

approximate variance of the R̂  (Särndal et al., 1992)
is given by 

( ) 1

1 1

|2
1 1 | |

1ˆ ,
N N

k j
kj s

k jz k s j s

u u
AV R

t π π= =

 
= ∆ 

  
∑∑ � (2)

where 
1 1 1 1| | | |kj s kj s k s j sπ π π∆ = − , k k ku y Rz= −  and 

1, , ,, 2j j j ku y R Nz j =− = …= . The approximate 
variance estimator of the R̂  (Särndal et al., 1992) is 
then 

( ) 2 2
1

1 1 1

|
2

1 1 | | |

ˆ ˆ1ˆ ˆ
ˆ

n n
kj s k j

k jz kj s k s j s

u u
AV R

t π π π= =

 ∆
=  

  
∑∑ ,� (3)

where, ˆˆk k ku y Rz= −  and ˆˆ ,j j ju y Rz= −  
21, 2, ,k j n= = … .

Let 
11 2, ,..., nx x x  and 

11 2, ,..., nl l l  be the values of 
the first-phase sample 1s  for the auxiliary variable 
X and L, respectively. It is assumed that the unit 
level auxiliary information is unknown, but, ratio 
of auxiliary variable total, 1 1(1)

1 1

n n
k kk k

R x l
= =

= ∑ ∑  is 
known for 1s . Further, it is assumed that for second-
phase sample 2s  the unit level information for all the 
four variables (Y, Z, X and  L) are known. Now, our 
aim is to develop calibration estimator of the finite 
population ratio under double sampling. Following 
Särndal et  al. (1992), the expression of calibration 
estimator of population ratio is given by

2 2

1 1

ˆ ,
n n

CAL k k k k
k k

R w y w z
= =

= ∑ ∑ � (4)
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where kw  be the calibration weight for both the 
variable Y and Z. Here, we obtain the kw  in such a 
way that the distance between the original design 
weight kd  and kw  is minimized by considering the 

loss function ( )2
2

1

n
k k

k k

w d
d=

−∑  subject to the constraints

2 2
(1)

1 1
0

n n

k k k k
k k

w x R w l
= =

− =∑ ∑ . The objective function 

(denoted as φ ) is defined as

( )2 2 2
2

(1)

1 1 1
2

n n n
k k

k k k k
k k kk

w d
w x R w l

d
φ λ

= = =

−  
= + − 

 
∑ ∑ ∑ ,

where, λ  is a Lagrangian multiplier constant. 
Now, differentiating the objective function φ  with 
respect to kw  and equate it to zero leads to calibration 
weight kw  as

( ) ( ) ( )
2 2 2(1) (1) (1)

1 1
,

n n

k k k k k k k k k k k
k k

w d d x R l d x R l d x R l
= =

 
= − − − − 

 
∑ ∑

� (5)

where, ( ) ( )
2 2 2(1) (1)

1 1

n n

k k k k k k
k k

d x R l d x R lλ
= =

= − −∑ ∑ . 

Replacing the calibrated weights (5) in (4) yields the 
calibrated estimator of population ratio of form 

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

2(1) (1) (1)

1 1 1

2(1) (1) (1)

1 1 1

ˆ .

n n n

k k k k k k k k k k k
k k k

CAL n n n

k k k k k k k k k k k
k k k

d d x R l d x R l d x R l y
R

d d x R l d x R l d x R l z

= = =

= = =

  
− − − −  

  =
  

− − − −  
  

∑ ∑ ∑

∑ ∑ ∑

� (6)

Note that the estimator ˆ
CALR  can also be expressed 

as 

1 2 3

1 2 4

ˆ ˆ ˆ ˆˆ ,ˆ ˆ ˆ ˆ
y

CAL
z

t t t t
R

t t t t
−

=
−

where, 
2

1

ˆ
n

y k k
k

t d y
=

= ∑ , ( )
2 2(1)

1
1

ˆ
n

k k k
k

t d x R l
=

= −∑ ,  

( )
2

(1)
2

1

ˆ
n

k k k
k

t d x R l
=

= −∑ , ( )
2

(1)
3

1

ˆ
n

k k k k
k

t d x R l y
=

= −∑ ,

( )
2

(1)
4

1

ˆ
n

k k k k
k

t d x R l z
=

= −∑  and 
2

1

ˆ
n

z k k
k

t d z
=

= ∑ .

3.	 Variance Estimation 

The developed calibrated estimator of finite 
population ratio is non-linear in nature. Hence, to derive 

the variance expression of the proposed estimator (6) 
we have to linearize the estimator. Thus, we have 
used Taylor series linearization technique to derive an 
approximate variance of the proposed estimator. The 
approximate variance expression of ˆ

CALR  is as

( )
( ) ( )

1 2 3 1 2 3
1 2 1 2

1 2 4 1 2 4

(1)
1 1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ,

y y
CAL

z z

CAL CAL

t t t t t t t t
AV R V E E V

t t t t t t t t

V R E V R

   − −
= +   − −   

= + � (7)

where, 1 2 3(1)
2

1 2 4

ˆ ˆ ˆ ˆˆ
ˆ ˆ ˆ ˆ
y

CAL
z

t t t t
R E

t t t t
 −

=  − 
 and 1 2 3

1 2 4

ˆ ˆ ˆ ˆˆ
ˆ ˆ ˆ ˆ
y

CAL
z

t t t t
R

t t t t
 −

=  − 
.  

Now, we have to linearized both the term (1)ˆ
CALR  

and ˆ
CALR  of (7) separately. The first order Taylor’s 

expansion of the function (1)ˆ
CALR  is 

( ) ( ) ( ) ( )(1) (1) (1) (1) (1)
2 2

1ˆ ˆ ,c
CAL CAL y y z z

z z z

RRR R lin R t t t t t t
t t t

≅ = + − − − + −

where, 4 3

1
c

Rt tR
t
−= , 

1
(1)

1
1

n

y k k
k

t d y
=

= ∑ , 
1

(1)
1

1

n

z k k
k

t d z
=

= ∑  

and ( )
1

(1) (1)
2 1

1

n

k k k
k

t d x R l
=

= −∑ . Again, the first order 

Taylor’s expansion of the function ˆ
CALR is given by

( ) ( ) ( ) ( )
(1)(1)

(1) (1) (1) (1)
2 2(1) (1) (1)

1ˆ ˆ ˆ ˆ ˆ ,c
CAL CAL y y z z

z z z

RRR R lin R t t t t t t
t t t

≅ = + − − − + −

where, 1 1(1)
1 1

n n
k kk k

R x l
= =

= ∑ ∑ , 
1

(1)
1

1

n

y k k
k

t d y
=

= ∑ , 

1
(1)

1
1

n

z k k
k

t d z
=

= ∑ , ( )
1 2(1) (1)

1 1
1

n

k k k
k

t d x R l
=

= −∑  
( )1 (1) (1)

(1) 4 3
(1)
1

c
R t tR

t
−= , 

( )
1

(1) (1)
3 1

1

n

k k k k
k

t d x R l y
=

= −∑  and ( )
1

(1) (1)
4 1

1

n

k k k k
k

t d x R l z
=

= −∑ .

Following Särndal et al. (1992), the expression of 
approximate variance of ˆ

CALR  is as

( ) ( )

1 1

1

1 1

(1)
2

1 1 1 1

1 |(1) 2
1 1 1 | 1 |

1ˆ ˆ

1 ,
( )

N N
k j

CAL CAL kj
k jz k j

n n
jk

kj s
k jz k k s j j s

u u
AV R AV R lin

t

vvE
t

π π

π π π π

= =

= =

 
 ≅ = ∆ +     

  
∆      

∑∑

∑∑

� (8)

where (1)
1 1 1kj kj k jπ π π∆ = − , 

1 1 1 1| | | |kj s kj s k s j sπ π π∆ = − , 
( )( )1

k k k c k ku y Rz R x R l = − + −   and 
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( ) ( )( )1 1(1)
k k k c k kv y R z R x R l= − + − .

The estimator of the approximate variance of ˆ
CALR  

is obtained as

( ) 1 1

1 1

1

1 1

(1)

2
1 1 1 1 1

|2
1 1 1 2 | 1 2 |

ˆ ˆ1ˆ ˆ
ˆ

ˆˆ1 ,ˆ

n n
kj k j

CAL
k jz kj k j

n n
jk

kj s
k jz k k s j j s

u u
AV R

t

vv
t

π π π

π π π π

= =

= =

 ∆
≅ + 

  
  

∆  
   

∑∑

∑∑ � (9)

where ( ) ( )( )1 1(1)ˆk k k c k ku y R z R x R l = − + −  ,

( )( )1ˆ ˆˆk k k c k kv y Rz R x R l= − + −  and 
( )1

4 3

1

ˆ ˆˆ
ˆc

R t tR
t

−= .

Further, we derive the expression of (8) and (9) 
under simple random sampling without replacement 

(SRSWOR). In case of SRSWOR, 1
1 1k l

n
N

π π= = ,

( )
( )

1 1
1

1
1kj

n n
N N

π
−

=
−

, 
( )
( )1

2 2
|

1 1

1
1kj s

n n
n n

π
−

=
−  and 

1 1

2
| |

1
k s j s

n
n

π π= = .

Therefore, the approximate variance of ˆ
CALR under 

SRSWOR as

( ) ( ) ( )2
1 1 22 2

2 2
1 1 2

1ˆ
CAL u vSRS

z z

N N n N n n
AV R S S

t n t n n
  − −

≅ +   
   

,

� (10) 

where, 
( ) ( )

2
2

1

1
1

N

u k
k

S u u
N =

= −
− ∑ ,  

( ) ( )
2

2

1

1
1

N

v k
k

S v v
N =

= −
− ∑ , 1

1

N

k
k

u N u−

=

= ∑  and 1

1

N

k
k

v N v−

=

= ∑ .

The estimator of approximate variance of ˆ
CALR  

under SRSWOR is given by

( ) ( ) ( )2
1 1 22 2

2 2
1 1 2

1ˆ ˆˆ ˆ
ˆ ˆCAL u vSRS
z z

N N n N n n
AV R S S

t n t n n
  − −

≅ +   
   

,

� (11)

where 
( ) ( )2

2
2

12

1ˆ ˆ ˆ
1

n

u k
k

S u u
n =

= −
− ∑ , 

( ) ( )2
2

2

12

1ˆ ˆ ˆ
1

n

v k
k

S v v
n =

= −
− ∑ , 

2
1

2
1

ˆ ˆ
n

k
k

u n u−

=

= ∑  and ˆ ˆv n v∑ .

3.1	 Optimum sample size estimation for a fixed cost 

We have also found the optimum sample sizes 
1n  and 2n  for a fixed cost 0C  that minimizes the 

approximate variance (9). The objective function ψ
is minimized using Lagrangian multiplier approach 
subject to the calibration constraint 0 1 1 2 2C n C n C= +
where 1C  and 2C  are per unit cost of data collection 
for 1s  and 2s , respectively. The objective function used 
for optimum sample size estimation, is given below:

( ) ( ) ( )
2

1 1 22 2
1 1 2 2 02 2

1 1 2

1
u v

z z

N N n N n n
S S n C n C C

t n t n n
ψ λ

  − −
= + + + −  

   
.

First order differentiation of the function ψ  with 
respect to 1n  and 2n , separately and equating it to zero, 
we get optimum value of 1n  and 2n  that minimizes the 
variance estimator for the fixed cost 0C  as

( )
2

0
1 2 2 2

2 2 1

uopt

v u v

C S
n

C S C C S S
=

+ − � (12)

( )
( )

2 2
0

2 2 2 2
2 1 1

u vopt

v u v

C S S
n

C C S C S S

−
=

+ − � (13)

3.1.1 �Variance estimation under two-phase 
optimum sample size pair

We get expression of the minimum approximate 
variance of ˆ

CALR  under SRSWOR by substituting the 
optimum values of 1n  and 2n  in (10) as

( ) ( ) ( )2
1 1 22 2

2 2min
1 1 2

1ˆ .
opt opt opt

CAL u vopt opt opt
z z

N N n N n n
AV R S S

t n t n n

   − −
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      

� (14) 

Similarly, the minimum approximate variance 
estimator of ˆ

CALR  under SRSWOR is obtained by 
substituting the optimum values of 1n  and 2n  in (11) as

( ) ( ) ( )2
1 1 22 2

2 2min
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1ˆ ˆˆ ˆ
ˆ ˆ
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4.	 Empirical Evaluations 

In this Section, we report the results using the design 
based simulations that illustrate the performance of 
the proposed estimators. In particular, we consider two 
estimators of finite population ratio in our empirical 
evaluation. These are (i) Ratio estimator given by 
expression (1), denoted as Est.R, and (ii) Calibration 
estimator given in (6), denoted as Est.R.CAL. The 
design based simulations are based on a real dataset of 
284 municipalities of Sweden, denoted as the MU284 
population. In this data set, the population size is 
N  =  284. From the MU284 population, a sample of 
large size 1 150n =  is taken using SRSWOR and a 
second sample of three different size 2 60, 80n =   and 
100 are selected from the first sample using SRSWOR. 
Similar to 1 150n = , we select second phase sample of 
size 2 60, 80n =   and 100 using SRSWOR for 1 175n =  
and 1 200n = , separately. Here, the aim is to estimate 
population ratio between variables 1985 population 
(P85, in thousands) to the variables revenues from 
the 1985 Municipal taxation (RMT85, measured in 
millions of kronor). Let us assume that 1975 population 
(P75, in thousands) as the auxiliary variable to the P85 
and the variable number of municipal employees in 
1984 (ME84) as the auxiliary variable to the RMT85. 
The correlations between the variables are presented 
in Table 1.

Table 1. Correlation between different variables  
in MU284 population

Variables RMT85 P85 ME84 P75

RMT85 1 0.961 0.999 0.967

P85 0.961 1 0.965 0.998

ME84 0.999 0.965 1 0.971

P75 0.967 0.998 0.971 1

The Monte Carlo simulation was run H=5000 
times. The Simulation study was performed using 
R software. The performance of the estimators was 
evaluated by percentage absolute relative bias (ARB), 
percentage relative root mean squared error (RRMSE) 
and percentage relative efficiency (RE), defined by

1

ˆ1ˆ( ) 100
H

h

h

R RARB R
H R=

−= ×∑ ,

2

1

1

ˆˆ( ) 100
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Here ˆ
hR  denotes the predicted value of the 

population ratio at simulation h, with true value R 
and H denotes the number of simulations. The values 
of percentage absolute relative bias (ARB) and the 
values of percentage relative root mean square error 
(RRMSE) and percentage relative efficiency (RE) of 
the proposed estimator are summarized in Table 2. The 
results in Table 2 show that the values of percentage 
ARB and RRMSE for the Est.R is more than the 
Est.R.CAL for all sample sizes. For a fixed first phase 
sample with the decreases in second phase sample size, 
the rate of increase of percentage ARB and RRMSE for 
Est.R is more than the Est.R.CAL. For a fixed second 
phase sample, the percentage ARB and RRMSE for 
Est.R.CAL decreases with an increase in first phase 
sample size whereas the performance of Est.R does not 
dependent on the first phase sample size. Therefore, it 
can be concluded that in terms of ARB and RRMSE the 
estimator Est.R.CAL shows better performance. The 
performance of the developed estimator is also found 
to be superior in terms of RE. Figure 1 confirmed the 

Table 2. Values of percentage absoluterelative biases (ARB), 
percentage relative root mean squared errors (RRMSE) and 
percentage relative efficiencies (RE) of the two estimators 

for different sample sizes

1n 2n Estimator ARB RRMSE RE

150 100 Est.R 6.41 7.37 100

Est.R.CAL 5.04 5.89 125

80 Est.R 7.39 8.48 100

Est.R.CAL 5.43 6.29 135

60 Est.R 8.82 9.87 100

Est.R.CAL 5.96 6.90 143

175 100 Est.R 6.42 7.37 100

Est.R.CAL 4.59 5.40 137

80 Est.R 7.33 8.43 100

Est.R.CAL 4.94 5.80 145

60 Est.R 8.72 9.77 100

Est.R.CAL 5.55 6.62 148

200 100 Est.R 6.48 7.44 100

Est.R.CAL 4.08 4.97 150

80 Est.R 7.34 8.42 100

Est.R.CAL 4.54 5.43 155

60 Est.R 8.69 9.75 100

Est.R.CAL 5.21 6.38 153
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n1=150

n1=175

n1=200

fig. 1. The values of percentage absolute relative bias (ARB) (left side plots) and percentage relative root mean squared error (RRMSE) (right side plots) 
of Est.R (dark) and Est.R.CAL (light) estimators for different combinations of the fi rst phase ( 1n ) and the second phase ( 2n ) sample sizes
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validity of the results of Table 2 in terms of percentage 
ARB as well as percentage RRMSE.

5.	 Concluding Remarks

This article discusses the calibration estimation 
of finite population ratio when population ratio of 
auxiliary variables is known for the first phase sample 
only. The developed calibration estimator of finite 
population ratio gives better performance than the 
simple ratio estimator. Variance estimation of the 
calibrated estimator was done through the Taylor 
series linearization approach. Besides this, optimum 
sample sizes are also obtained for both first and second 
phase sample for a fixed cost. 
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