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ABSTRACT
Knowledge of spatial variation of soil is important in site-specific farming
and environmental modeling. Soil particles size and water distribution
are most important soil physical properties that governing nearly all of
the other attributes of soils. The objectives of this study were to deter-
mine the degree of spatial variability of sand, silt and clay contents, and
water content at field capacity (FC), permanent wilting point (PWP), and
available water content (AWC) of alluvial floodplain soils. Data were
analyzed both statistically and geostatistically to describe the spatial
distribution of soil physical properties. Soil physical properties showed
large variability with greatest variation was observed in sand content
(68%). Exponential and spherical models were fit well for the soil physical
properties. The nugget/sill ratio indicates except clay all other soil phy-
sical properties were moderate spatially dependent (37–70%). Cross-
validation of the kriged map shows that prediction of the soil physical
properties using semivariogram parameters is better than assuming
mean of observed value for any unsampled location. The spatial distribu-
tion of water retention properties closely followed the distribution pat-
tern of sand and clay contents. These maps will help to planner to
develop the variable rate of irrigation (VRI) for the study area.
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Introduction

Soil water and soil texture, the relative percentage of sand, silt, and clay, are the most important
soil physical properties that governing nearly all of the other attributes of soils (Adhikari et al.
2009). These two soil physical properties control plant growth and influence a variety of soil
processes including, leaching and erosion potential (Adhikari et al. 2009), plant nutrient storage
(Kettler et al. 2001), organic-matter dynamics (Kong et al. 2009), chemical exchange and microbial
activity, and energy balance of the soil-plant system and pedogenesis (Western et al. 2003).

Spatial variability of soil physical properties within or among agricultural fields is inherent in
nature due to geologic and pedologic soil forming factors, but some of the variability may be
induced by tillage and other management practices. As other environmental variables, soil water
and soil texture changes in space and time. This temporal and spatial variability of soil texture and
soil water may lead to structural differences in soil quality (Kettler et al. 2001) and hydrologic cycle
(Western et al. 2003) in an ecosystem. Studies (Iqbal et al. 2005; Santra et al. 2008; many others)
showed that soil water content exhibited organized features under majority of the conditions.
However, degree of the organization varies based on the soil and climatic conditions.
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Among the various soil physical properties, saturated hydraulic properties and related measures
are reported to have the highest statistical variability (Biggar & Nielsen 1976). Vieira et al. (1981)
used variogram, kriging, and co-kriging techniques to determine the magnitude of spatial variation.
Vauclin et al. (1983) used classical and geostatistical techniques to study spatial viability of sand, silt
and clay contents, and available water content (AWC).

Spatial variability in soil water properties have been studied widely since 1975. Most of these
studies focused on nature of spatial variability and its relation to soil properties (Cassel & Bauer
1975) and others on terrain properties (Western et al. 2003), on soil management (van Vesenbeeck
& Kachanoski 1988), and on spatial interpolation of soil water content (Yates & Warrick 1987).
However, spatial variability in soil water potential [water content at field capacity (FC) (–33 kPa) and
permanent wilting point (PWP) (–1500 kPa)] are two most hydraulic parameters which indicate
plant-available soil water regime and help in scheduling irrigation to crops.

Geostatistics provides the means to characterize and quantify spatial variability, use this infor-
mation for rational interpolation, and estimate the variance of the interpolated values. Variance
estimation provides valuable information on the sampling density and configuration necessary to
estimate a property to a specified precision. Geostatistics is a technology for estimating the soil
property values in nonsampled areas or areas with sparse samplings (Yao et al. 2004). These
nonsampled areas can vary in space (in one, two, or three dimensions) from the sampled data
(Zhu et al. 2005). Geostatistical techniques incorporating spatial information into predictions can
improve estimation and enhance map quality (Mueller & Pierce 2003). Among different methods of
spatial interpolation of soil properties, ordinary kriging is most common (Franzen & Peck 1993).
Kriging is a useful tool to predict and interpolate data between measured locations (Nourzadeh
et al. 2012; Reza et al. 2012, 2013, 2015; Emadi et al. 2015).

Most of the studies showed the spatial variation of soil physical properties in plot, field, or farm
scale (Iqbal et al. 2005; Santra et al. 2008), but such information on watershed or an administrative
boundary level with sparsely distributed irregular samples is meager. Thus, the objective of this
study was to determine the spatial variability of soil particles, such as sand, silt and clay contents,
and water content at –33 kPa and –1500 kPa, and AWC with the classical statistics and geostatis-
tical analysis for Kadwa block of Katihar district, Bihar, India.

Material and methods

Study area

The area under investigation belongs to the Kadwa block of Katihar district (25°30′–25°47′ N, 87°
35′–87°55′ E) covering an area 340.47 km2 (Figure 1) in northeastern Bihar, India. The climate is
moderate during the winter and hot in summer. The maximum temperature is 43ºC during July and
August; a minimum temperature falls up to 8ºC in the month of January. Annual rainfall is
2100–2500 mm and about 85% of rainfall is from South-West monsoon. Geomorphologically, the
study area represents a flat topography (1–2% slope) with regional slope toward south and divided
into four major physiographic units viz. old alluvial plain, recent alluvial plain, meander plain, and
flood plain. The elevation varied from 11 to 53 m above the mean sea level. The soils under
investigation have been generally formed on unconsolidated sediments of Quaternary period.
There are six broad soil subgroups in the study area according to Soil Taxonomy (USDA) namely
– Typic Ustifluvents, Aquic Haplustepts, Fluventic Haplustepts, Typic Haplustepts, Typic
Endoaquepts, and Ustipsamments.

Soil sampling and analysis

A total of 85 sampling sites were randomly selected throughout the study area, which included 10
old alluvial plain sites, 27 recent alluvial plain sites, 43 meander plain sites, and 5 flood plain sites
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depending upon the area from the plough layer (0–25 cm depth) (Figure 1) with the help of hand-
held global positioning system (GPS). Soil samples were air-dried and ground to pass through a 2-
mm sieve and used to determine soil texture by hydrometer method. Organic carbon was
determined by the Walkley and Black (1934) method. The pressure plate apparatus (Klute 1986)
was used to determine the water content at FC (–33 kPa) and PWP (–1500 kPa). The AWC was
calculated as the difference between water content at PWP – FC (Jury et al. 1991.)

Geostatistical analysis based on GIS

Spatial interpolation and GIS mapping techniques were employed to produce spatial distribution
ant maps for the investigated basic soil properties, and the software used for this purpose was
ArcGIS v.10.1 (ESRI Co, Redlands, USA). In ArcGIS, kriging can express the spatial variation and allow
a variety of map outputs, and at the same time minimize the errors of predicted values (González
et al. 2014). Moreover, it is very flexible and allows users to investigate graphs of spatial auto-
correlation. Kriging, as applied within moving data neighborhoods, is a nonstationary algorithm
which corresponds to a nonstationary random function model with varying mean but stationary
covariance (Deutsch & Journal 1992). In kriging, a semivariogram model was used to define the
weights of the function (Webster & Oliver 2001), and the semivariance is an autocorrelation statistic
defined as follows (Mabit & Bernard 2007):

γ hð Þ ¼ 1
2N hð Þ

XN hð Þ

i¼1

½z xið Þ � z xi þ hð Þ�2 (1)

where z xið Þ is the value of the variable z at location of xi, h the lag, and N hð Þ the number of pairs of
sample points separated by h.

Figure 1. Location and sampling points map of the study area.
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During pair calculation for computing the semivariogram, maximum lag distance was taken as
half of the minimum extent of sampling area. Anisotropic semivariograms did not show any
differences in spatial dependence based on direction, for which reason isotropic semivariograms
were chosen. Circular, spherical, exponential, and Gaussian models were fitted to the empirical
semivariograms. Best-fit model with minimum root mean square error (RMSE) were selected for
each soil property:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

z xið Þ � ẑ xið Þ½ �2
vuut (2)

The spherical and exponential models were best fitted to all the soil physical properties.
Expression for different semivariogram models used in this study is given below:

Exponential model:

γ hð Þ ¼ C0 þ C1 1� exp � h
a

� �� �
for h � 0 (3)

Spherical model:

γ hð Þ ¼ C0 þ C1 1:5
h
a
� 0:5

h
a

� �3
" #

; 0 � h � a ¼ C0 þ C1; Otherwise; (4)

Using the semivariogram model, basic spatial parameters such as nugget C0ð Þ, sill C þ C0ð Þ, and
range Að Þ was calculated which provide information about the structure as well as the input
parameters for the kriging interpolation. Nugget represents variation caused by stochastic factors,
such as error in measurement, sill is the lag distance between measurements at which one value
for a variable does not influence neighboring values, and range is the distance at which values of
one variable become spatially independent of another (Lopez-Granados et al. 2002).

Accuracy assessment

Accuracy of the maps was evaluated through cross-validation approach (Davis 1987). Among the
three evaluation indices used in this study, mean absolute error (MAE) and mean-squared error
(MSE) measure the accuracy of prediction, whereas goodness of prediction (G) measures the
effectiveness of prediction. MAE is a measure of the sum of the residuals (Voltz & Webster 1990).

MAE ¼ 1
N

XN
i¼1

z xið Þ � ẑ xið Þ (5)

Where bz xið Þ is the predicted value at location i. Small MAE values indicate less error. The MAE
measure, however, does not reveal the magnitude of error that might occur at any point and hence
MSE will be calculated.

MSE ¼ 1
N

XN
i¼1

z xið Þ � ẑ xið Þ½ �2 (6)

Squaring the difference at any point gives an indication of the magnitude, for example, small
MSE values indicate more accurate estimation, point-by-point. The G measure gives an indication
of how effective a prediction might be relative to that which could have been derived from using
the sample mean alone (Schloeder et al. 2001).
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G ¼ 1�
PN

i¼1 ½z xið Þ � ẑ xið Þ�2PN
i¼1 ½z xið Þ � �z�2

" #
� 100 (7)

Where z is the sample mean. If G = 100, it indicates perfect prediction, while negative values
indicate that the predictions are less reliable than using sample mean as the predictors. The
comparison of performance between interpolations was achieved by using MAE.

Results and discussion

Descriptive statistics of soil physical properties

Measured variables in the data set were analyzed using SPSS 17.0 software to obtain the minimum,
maximum, mean, standard deviation (SD), coefficient of variation (CV), skewness, and kurtosis. The
statistical characteristics of sand, silt, clay, organic carbon (OC), volumetric water content (θv) at FC,
PWP, and AWC are listed in Table 1. There was a difference in the CV of the soil physical properties.
According to Wilding (1985), the silt content of soil had low variability (CV of 17%), sand and clay
contents which made high variability (CV of 68% and 39%, respectively). Other researchers also
documented a higher variation of sand and clay contents for alluvial soils compared to silt content
in surface soil (Iqbal et al. 2005). All the soil hydraulic properties like FC, PWP and AWC, and OC
exhibited medium variability (CV of 15–35%). A similar result was reported by Mulla and McBratney
(2001).

Although these statistical studies provide useful information about the soil physical properties
distribution, they do not describe the spatial continuity of the data, that is, the relationship
between the value for a property in one location and the values for the same property at other
location through the landscape. Hence, geostatistical techniques were applied to better under-
stand of spatial distribution pattern of the studied variables. Besides, normality may not be strictly
required in geostatistical analyses but normal distribution may lead to more reliable results
(Webster & Oliver 2001). Therefore, the data distribution was tested for normality using the
Kolmogorov–Smirnov test. The AWC which was not normally distributed (Table 1), was subjected
to a natural log transformation.

Semivariogram analysis of soil physical properties

Semivariogram parameters (nugget, sill, and range) for each soil physical properties with best-
fitted modal were identified based on minimum RMSE. Analysis of the isotropic variogram
indicated that the sand, silt, and clay contents semivariograms were well-described by expo-
nential model, with the distance of spatial dependence being 2437, 2012, and 2342 m,
respectively, while the FC, PWP, and AWC semivariograms were well-described by spherical
model, with the distance of spatial dependence being 1989, 1787, and 1654 m, respectively

Table 1. Summary statistics for selected soil physical properties.

Soil property Mean Minimum Maximum SD CV (%) Skewness Kurtosis Distribution pattern

Sand (%) 14.4 1.1 37.9 9.8 68 0.53 −0.65 Normal
Silt (%) 65.7 45.6 84.5 11.1 17 −0.02 −1.30 Normal
Clay (%) 19.9 6.8 46.8 7.9 39 0.95 1.57 Normal
OC (%) 0.67 0.22 1.18 0.19 28 0.40 0.67 Normal
FC (%, v/v) 42.2 19.0 75.0 10.6 25 0.18 0.84 Normal
PWP (%, v/v) 16.5 8.0 35.0 5.6 34 0.97 1.16 Normal
AWC (%, v/v) 25.7 11.0 63.0 8.9 35 1.20 4.52 Log

Notes: SD: standard deviation; CV: coefficient of variation; OC = organic carbon; FC: field capacity, volumetric water content (v/
v) at −33 kPa; PWP: permanent wilting point, volumetric water content at −1500 kPa; AWC: available water content,
calculated as the difference between −33 and −1500 kPa.
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(Table 2). Within the study area, the soil particles displayed slight difference in the distance of
spatial dependence. Such differences in the distance of spatial dependence for soil particles
were reported in other studies (Cambardella et al. 1994; Safari et al. 2013). The ratios of nugget
and sill between 0.25 and 0.75 represented moderate spatial dependence; those below 0.25
represented strong spatial dependence (Cambardella et al. 1994). The resulting semivariograms
indicated that except clay all other soil physical properties were moderate spatially dependent
(37–70%), imprinted by intrinsic factor (soil forming process), and extrinsic factors (tillage
operation and cultivation practices) (Cambardella et al. 1994). Some other researchers had
also found the moderate spatial dependence of soil physical properties (Iqbal et al. 2005;
Safari et al. 2013).

Spatial distribution map and cross-validation

The parameters of the exponential and spherical models were used for kriging to produce the
spatial distribution maps of soil physical properties of the study area. Spatial maps of sand,
silt, and clay (Figure 2a–c) showed that high sand content was found in NW quadrant, high
silt content in NE quadrant, and high clay content in the center of the study area. Spatial
maps of θv at FC, PWP, and AWC (Figure 3a–c) indicated that soils in the NW part of the study
area have low water retention at FC and PWP, as well as lower AWC. As expected, a
significant (P < 0.01, two-tailed) negative relationships were obtained of sand content with
FC (−0.57), PWP (−0.41), and AWC (−0.43), positive relationship of clay with FC (0.32, P < 0.05,
two-tailed) and PWP (0.75), and highly significant positive relationship of OC with FC (0.42)
and PWP (0.73) (Table 3).

In summary, the distribution maps of various soil physical properties across the study area
have implications for variable rate application of fertilizer, water, seed rate, and so forth. For
instance, the spatial distribution of water retention properties closely followed the distribution
of pattern of sand and clay contents. These maps will help to planner to develop the variable
rate of irrigation (VRI) for the study area. The VRI plan for the study area would not only
optimize yield of crops by avoiding crop water stress in highly prone areas, but would also
reduce groundwater and surface water nitrogen pollution due to over irrigation resulting in
runoff and percolation.

Table 4 showed the evaluation indices resulting from cross-validation of spatial maps of soil
physical properties. It was observed that, sand content, FC, and AWC had low MAE however, clay
content and PWP had relatively low MSE than other soil physical properties. For all the soil physical
properties, the G value was greater than 0, which indicates that spatial prediction using semivar-
iogram parameters is better than assuming mean of observed value as the property value for any
unsampled location. This also shows that semivariogram parameters obtained from fitting of
experimental semivariogram values were reasonable to describe the spatial variation of all the
studied soil physical properties.

Table 2. Geostatistical parameters of the fitted semivariogram models for soil physical properties.

Soil properties Fitted model Nugget Sill Range* Nugget/Sill (%) RMSE**

Sand Exponential 70 100 2438 0.70 9.40
Silt Exponential 68 114 2012 0.60 14.46
Clay Exponential 2 65 2342 0.03 7.63
FC Spherical 62 132 1989 0.47 11.46
PWP Spherical 16 34 1787 0.47 5.99
AWC Spherical 35 94 1654 0.37 8.52

Notes: *range in m; **root mean square error.
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Conclusions

The classical and geostatistical method on a large scale could be accurately used to evaluate spatial
variability of soil physical properties. The raw data sets of AWC strongly positively skewed and the
application of log transformation was effective in normalizing the data. Among the four models
selected, the exponential model fits the experimental semivariogram for soil particles, while for soil
hydraulic properties, the spherical model was found the best to fit the experimental semivario-
gram. Semivariograms for soil properties indicated that except clay content all other soil physical
properties were moderate spatially dependent. Spatial maps of sand, silt, and clay contents showed

Figure 2. Spatial distribution maps of percentage: (a) sand content, (b) silt content, and (c) clay content.
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that high sand content was found in NW, high silt content in NE, and high clay content while, low
water retention at FC and PWP, as well as lower AWC in the NW part of the study area. Cross-
validation of kriged map shows that spatial prediction of soil physical properties using semivario-
gram parameters is better than mean of the observed value for any unsampled location. Spatial
variability maps of various soil physical properties will help in site-specific farming, for example,
variable rate irrigation in the study area.

Figure 3. Spatial distribution maps of volumetric water content (v/v), expressed in percentage: (a) at field capacity (FC) (−33
kPa), (b) at permanent wilting point (PWP) (−1500 kPa), and (c) available water content (AWC) (calculated as the difference
between −33 and −1500 kPa).
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