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Characterizing spatial variability of soil properties in alluvial soils
of India using geostatistics and geographical information system
S.K. Rezaa, D.C. Nayaka, S. Mukhopadhyaya, T. Chattopadhyaya and S.K. Singhb

aICAR-National Bureau of Soil Survey and Land Use Planning, Kolkata, West Bengal, India; bICAR-National Bureau
of Soil Survey and Land Use Planning, Nagpur, Maharashtra, India

ABSTRACT
Alluvial soils constitute significant portion of cultivated land in India and
it contributes towards food grain production predominantly. The objec-
tives of this study were to assess the spatial variability of soil pH, organic
carbon (OC), available (mineralizable) nitrogen (N), available phosphorus
(P), available potassium (K) and available zinc (Zn) of alluvial floodplain
soils of Kadwa block, Katihar district, Bihar, India. A total of 85 soil
samples, representative of the plough layer (0–25 cm depth from sur-
face) were randomly collected from the study area. The values of soil pH,
OC, N, P, K and Zn varied from4.4 to 8.4, 0.20% to 1.20%, 141 to 474, 2.2
to 68.2, 107 to 903 kg ha–1 and 0.22 to 1.10 mg kg–1, respectively. The
coefficient of variation value was highest for available P (94.3%) and
lowest for soil pH (11.3%). Spherical model was found to be the best fit
for N, P and Zn contents, while exponential model was the best fit for
OC, and Gaussian model was the best-fit model for pH and K. The
nugget/sill ratio indicates that except pH and available K all other soil
properties were moderately spatially dependent (25–57%). Soil proper-
ties exhibited different distribution pattern. It was observed that the use
of geostatistical method could accurately generate the spatial variability
maps of soil nutrients in alluvial soils.
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Introduction

Alluvial soils are one of the major soil groups in India as well as in Bihar state, which are mainly
found along the river plains of Ganges, Kosi, Mahananda and their tributaries, and they largely
contribute to the national food basket. These alluvial soils in Bihar are intensively cultivated with
blanket recommendations of N, P and K for individual crops resulting in under- or over-fertilization.
These nutrient imbalances may also cause nutrient antagonism (viz. Zn–P interactions) and waste
of costly inputs like K fertilizer, which is fully imported by India (Chatterjee et al. 2015).

Site-specific soil management has received considerable attention due to potential benefits of
increasing input use efficiency, improving the economic margins of crop production and reducing
environmental risks (Yasrebi et al. 2008). Hence, a comprehensive understanding of spatial varia-
bility of soil properties is becoming increasingly essential. Variability in soil properties results mainly
from the complex interactions between geology, topography and climate, as well as soil use and
management (Shi et al. 2009; Liu et al. 2015). As a consequence, soils exhibit marked spatial
variability at the macro-scale and micro-scale (Amirinejad et al. 2011; Shukla et al. 2016).
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Spatial distribution maps of soil properties, obtained from soil surveys, help in correct manage-
ment of soil nutrients (Brevik et al. 2015). These maps are required to understand the patterns and
processes of soil spatial variability, which is the combined effect of soil physical, chemical and
biological processes operating at different spatiotemporal scales combined with anthropogenic
activities (Goovaerts 1998). Geostatistical tools are useful in preparation of the maps based on
limited number of samples collected from agricultural landscapes. Kriging interpolation technique
predicts the values at unsampled locations by spatial correlation and reduces variance of estima-
tion error and investigation costs (Saito et al. 2005; Pereira et al. 2015). Spatial variability of soil
properties is assessed effectively by geostatistical methods (Moosavi Sepaskhah 2012; Nourzadeh
et al. 2012; Reza et al. 2013, 2015; Emadi et al. 2016; Shahabi et al. 2016) for site-specific manage-
ment of nutrients. In recent years, many researchers have studied the spatial variability of soil
chemical (Reza et al. 2010, 2012a, 2012b, 2016a, 2016b; Behera et al. 2011, 2016; Behera Shukla
2015; Tripathi et al. 2015) and physical properties (Santra et al. 2008; Reza et al. 2016c) in different
soils of India. However, the information regarding spatial variability of soil properties in alluvial soils
of India is limited.

Keeping above things in view, a systematic study was carried out to explore the spatial
variability of pH, organic carbon (OC), available nitrogen (N), available phosphorus (P), available
potassium (K) and available zinc (Zn) in intensively cultivated soils of Kadwa block of Katihar
district, Bihar, India, for site-specific soil management. A better understanding of the spatial
variability of soil properties would enable for refined agricultural and environmental management
practices by identification of proper sites for management.

Material and methods

Site description

The study was carried out in Kadwa block of Katihar district (25°30′–25°47′ N latitude and 87°35′–
87°55′ E longitude) covering an area 340.47 km2 (Figure 1) situated in north-eastern part of Bihar,
India. The maximum temperature is 43°C during July and August; a minimum temperature falls up
to 8°C in the month of January. The difference between the mean summer and mean winter soil
temperature is more than 5°C. Mean annual rainfall is 2100–2500 mm and about 85% of rainfall is
from south-west monsoon. Geomorphologically, the study area represents flat topography (1–2%
slope) with regional slope towards south. The regional slope takes a tilt from west to east and
shifting of channels and courses of rivers over a period of times. Based on regional slope, the block
is divided into four major physiographic units, viz. old alluvial plain, recent alluvial plain, meander
plain and flood plain. The elevation varied from 11 to 53 m above the mean sea level. The soils
under investigation have been generally formed on unconsolidated sediments of Quaternary
period. There are six soil types in the study area according to WRB (2014) soil classification, viz.
Haplic Fluvisols, Stagnic Cambisols, Fluvic Cambisols, Haplic Cambisols, Endogleyic Cambisols and
Haplic Arenosols.

Soil sampling and analysis

A total of 85 georeferenced composite soil samples were collected from surface (0–25 cm depth)
layers which included 10 from old alluvial plain, 27 from recent alluvial plain, 43 from meander
plain and 5 from flood plain sites using stainless steel soil augers and handheld global positioning
system (Figure 1). Two to three subsamples were collected for making a composite sample. Soil
samples were air-dried and ground to pass through a 2-mm sieve. Soil pH was determined by pH
meter in a 1:2.5 soil:water suspension, available N by Subbiah and Asija (1956) method, OC by
Walkley and Black (1934) method. Available P content was measured by Olsen method by extract-
ing 2.5 g of soil with 50 ml of 0.5 M NaHCO3 (pH 8.5) for 30 min and determining the phosphorus in
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the extract by the L-ascorbic acid method (Murphy & Riley 1962). Available K was extracted with
1 M NH4OAc and then estimated by flame photometry (Hanway & Heidel 1952). Available Zn was
determined by Lindsay and Norvell (1978) method.

Statistical analysis

The statistical parameters like minimum, maximum, mean, standard deviation, coefficient of varia-
tion (CV), skewness and kurtosis were obtained. The Pearson correlation coefficients were esti-
mated for all possible paired combinations of the response variables to generate a correlation
coefficient matrix. The normal frequency distribution of data was verified by the Kolmogorov–
Smirnov (K–S) test. The results indicated that the available P, available K and Zn data passed the K–
S normality test at a significance level of 0.05 after logarithmic transformation. These statistical
parameters were calculated with EXCEL® 2007 and SPSS 15.0® (SPSS Inc., Chicago, IL, USA).

Geostatistical analysis

Spatial interpolation and GIS mapping techniques were employed to produce spatial distribution
maps for the investigated soil properties, and the software used for this purpose was ArcGIS v.10.1
(ESRI Co, Redlands, CA, USA). In ArcGIS, kriging can express the spatial variation and allow a variety of
map outputs, and at the same time minimize the errors of predicted values (González et al. 2014). The
semivariogram analyses were carried out before application of ordinary kriging interpolation as the
semivariogram model determines the interpolation function (Goovaerts 1997) as given below.

γ hð Þ ¼ 1
2N hð Þ

XN hð Þ

i¼1

½z xið Þ � z xi þ hð Þ�2 (1)

Figure 1. Location and sampling points map of the study area.
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where z xið Þ is the value of the variable z at location ofxi, hthe lag and N hð Þ the number of pairs of
sample points separated by h. For irregular sampling, it is rare for the distance between the sample
pairs to be exactly equal to h. That is, h is often represented by a distance band.

Different semivariogram models were evaluated to select the best fit with the data. Best-fit
models with minimum root-mean-square error (RMSE) were selected for each soil property:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

z xið Þ � ẑ xið Þ½ �2
vuut (2)

The spherical, exponential and Gaussian models were best fitted to all the soil properties.
Expressions for different semivariogram models used in this study are given below:

Spherical model:

γ hð Þ ¼ C þ C0 1:5
h
a
� 0:5ðh

a
Þ
3� �
for 0 � h � a otherwise C þ Co (3)

Exponential model:

γ hð Þ ¼ Co þ C 1� exp � h
A

� �� �
for h � 0 (4)

Gaussian model:

γ hð Þ ¼ Co þ C 1� exp
�h2

A2

� �� �
for h � 0 (5)

where h is the lag interval, Cois the nugget variance � 0, C is the structure variance � Co and A is
the range parameter.

Using the model semivariogram, basic spatial parameters such as nugget C0ð Þ, sill C þ C0ð Þ and
range Að Þ were calculated which provide information about the structure as well as the input
parameters for the kriging interpolation. The nugget/sill ratio, i.e. C0ð Þ= C þ C0ð Þ and the range are
the parameters which characterize the spatial structure of a soil property. The range defines the
distance over which the soil property values are correlated with each other. A low value of
C0ð Þ= C þ C0ð Þ and a high range generally indicates that high precision of the property can be
obtained by kriging (Cambardella et al. 1994). The nugget/sill ratio was used as the criterion to classify
the spatial dependence of variables. Ratio values lower than or equal to 0.25 were considered to have
strong spatial dependence, whereas values between 0.25 and 0.75 indicate moderate dependence
and those greater than 0.75 show weak spatial dependence (Cambardella et al. 1994).

Accuracy of the soil maps was evaluated through cross-validation approach (Davis 1987).
Among three evaluation indices used in this study, mean absolute error (MAE) and mean squared
error (MSE) measure the accuracy of prediction, whereas goodness of prediction (G) measures the
effectiveness of prediction (Utset et al. 2000). MAE is a measure of the sum of the residuals (e.g.
predicted minus observed) (Voltz & Webster 1990).

MAE ¼ 1
N

XN
i¼1

z xið Þ � ẑ xið Þ (6)

whereẑ xið Þ is the predicted value at location i. Small MAE values indicate less error. The MAE
measure, however, does not reveal the magnitude of error that might occur at any point and hence
MSE will be calculated.

MSE ¼ 1
N

XN
i¼1

z xið Þ � ẑ xið Þ½ �2 (7)
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Squaring the difference at any point gives an indication of the magnitude; for example, small
MSE values indicate more accurate estimation, point-by-point. The Gmeasure gives an indication of
how effective a prediction might be relative to that which could have been derived from using the
sample mean alone (Schloeder et al. 2001).

G ¼ 1�
PN

i¼1 ½z xið Þ � ẑ xið Þ�2PN
i¼1 ½z xið Þ � �z�2

" #
� 100 (8)

where z is the sample mean. G is one of the methods used for accuracies of interpolated maps
(Tesfahunegn et al. 2011). Accuracies of interpolated maps of studied soil properties were checked
by G values. According to Parfitt et al. (2009), positive G values indicate that the map obtained by
interpolating data from the samples is more accurate than a catchment average. Negative and
close to zero G values indicate that the catchment-scale average predicts the values at unsampled
locations as accurately as or even better than the sampling estimates.

Results and discussion

Descriptive statistics of soil properties

The descriptive statistics revealed considerable variability of soil properties (Table 1). The mean
values of pH, OC, N, P, K and Zn were 6.0, 0.67%, 315 kg ha–1, 16.0 kg ha–1, 324 kg ha–1 and
0.44 mg kg–1, respectively. The values of CV for soil properties ranged from 11.3% to 94.3%. The
value of CV for pH revealed their low variability (CV <25%). Other researchers also documented a
smaller variation of soil pH compared to other soil properties (Reza et al. 2012b, 2016a; Shukla
et al. 2016). Low variability of pH may be attributed to the fact that pH values are log scale of
proton concentration in soil solution; there would be much greater variability if soil acidity is
expressed in terms of proton concentration directly. Generally, soil buffering capacity resists the
abrupt change of soil pH or its high variability under different cropping systems and its manage-
ment in the study area. The rest of the soil properties exhibited moderate (CV 25–75%) variability
except available P. Skewness values of 0.01–2.10 for different soil proprieties revealed that some
soil properties were not normally distributed. This variation and non-normal distribution of soil
properties in the studied areas may be due to adoption of different soil management practices
including variation in fertilizer application and other crop management practices (Srinivasarao
et al. 2014; Behera et al. 2016).

The Pearson linear correlation analysis results (Table 2) showed highly significant positive
relationship of soil pH with available P (r = 0.44, p < 0.01). There have been reports on a positive
relationship between OC and the capacity of the soil to supply essential plant nutrients including N
and P (Rezaei & Gilkes 2005; Reza et al. 2011). Pearson linear correlation analysis indicated
significant positive relationships of OC with available N (r = 0.28, p < 0.05) and available P
(r = 0.23, p < 0.05).

Table 1. Summary statistics for soil properties.

Soil property Mean Minimum Maximum SD CV (%) Skewness Kurtosis Distribution pattern

pH 6.0 4.4 8.4 0.68 11.3 0.68 2.53 Normal
Organic carbon (%) 0.67 0.20 1.20 0.21 31.3 0.29 0.45 Normal
Available N (kg ha–1) 315 141 474 74.5 23.6 0.01 0.13 Normal
Available P (kg P2O5 ha

–1) 16.0 2.2 68.2 15.1 94.3 1.49 1.91 Log
Available K (kg K2O ha–1) 324 107 903 164 50.6 1.71 3.42 Log
Available Zn (mg kg–1) 0.44 0.22 1.10 0.14 31.8 2.10 8.15 Log

SD: standard deviation; CV: coefficient of variation.
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Spatial variability of soil properties

Four models, viz. circular, exponential, spherical and Gaussian were identified as best-fit models for the
studied soil properties based onminimumRMSE. Based on a best-fit model criterion, only onemodel was
selected for kriging. Other researchers also used the similar methodology for selecting the best model for
interpolation using kriging (Santra et al. 2008; Foroughifar et al. 2013; Tripathi et al. 2015; Reza et al. 2016a,
2016c). Analysis of the isotropic variograms indicated that, semivariograms for soil pH and available K
were well described by Gaussian model with distance of spatial dependence being 3315 and 2345 m,
respectively. Available N, available P, and Zn semivariograms were well described by spherical model,
with the distance of spatial dependence being 1958, 2420 and 2247 m, respectively, while the OC was
well described by exponential model, with the distance of spatial dependence being 3101 m (Table 3).

The nugget (an indication of micro-variability) was highest for K, which is ascribed to the fact
that the selected sampling distance could not capture the spatial dependence well. The nugget/sill
ratio values were 17%, 57%, 50%, 38%, 82% and 43% for pH, OC, N, P, K and Zn, respectively,
indicating moderate spatial dependence for N, P and Zn, and strong spatial dependence for pH.
This is attributed to inherent soil properties as well as management factors including fertilization
and cropping sequences practiced. Reza et al. (2016a) reported similar results.

Surface maps of soil properties were prepared by ordinary kriging (Figure 2). The surface map of soil
pH showed that pH value in the north-east portion, central and extreme north-west portion was in
acidic range and the value in the south-east and south-west portion was neutral to alkaline range of the
study area. The greater distribution of acid soils in the study area was due to Mahananda river carrying
high load of acid sediments and deposited in the block (Kumari 2014) as well as application of high
dose of N fertilizer in rice–wheat cropping system (Yadav et al. 1998). The surface map of OC content
showed that the north-west and extreme north-east corner of the study area had low OC content.

The surface map of available N showed that the N content in south-east portion was high may
be due to the high OC content in south-east portion of the study area since these parameters are
interlinked via the microbial mineralization processes. The available P content of the study area was
scattered in their distribution. The surface map of available K content was found low in western
portion of the study area, where the rate of K fertilizer application is low, while available Zn was
low in north-west and south-east portion of the study area.

Table 2. Correlation coefficients among soil properties and their level of significance.

pH Organic carbon Available N Available P Available K Available Zn

pH 1.00
Organic carbon –0.09 1.00
Available N 0.03 0.28* 1.00
Available P 0.44** 0.23* 0.07 1.00
Available K 0.07 0.08 –0.08 0.01 1.00
Available Zn 0.02 0.10 0.22 0.21 0.30* 1.00

*Correlation is significant at p < 0.05 level (two-tailed); **correlation is significant at p < 0.01 level (two-tailed).

Table 3. Geostatistical parameters of the fitted semivariogram models for soil properties.

Soil properties Fitted model Nugget C0ð Þ Sill C þ C0ð Þ Range Að Þ(m) Nugget/Sill (%) RMSE

pH Gaussian 0.117 0.688 3315 17 0.679
Organic carbon (%) Exponential 15.11 26.15 3101 57 0.215
Available N (kg ha–1) Spherical 443.2 885.1 1958 50 73.99
Available P (kg P2O5 ha

–1) Spherical 81.57 210.7 2420 38 16.12
Available K (kg K2O ha–1) Gaussian 3518 4253 2345 82 152.4
Available Zn (mg kg–1) Spherical 0.414 0.948 2247 43 0.152

RMSE: root mean square error.
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Table 4 shows the evaluation indices resulting from cross-validation of surface maps of soil
properties. It was observed that pH, OC and Zn had low MAE than other soil properties. For all the
soil properties, the G value was greater than 0, which indicates that spatial prediction using
semivariogram parameters is better than assuming mean of observed value as the property
value for any unsampled location. This also shows that semivariogram parameters obtained from
fitting of experimental semivariogram values were reasonable to describe the spatial variation of all
the studied soil properties.

Conclusions

The classical and geostatistical method on a large scale could be accurately used to evaluate spatial
variability of soil physical properties. The summary statistics for soil properties were shown that CV

Figure 2. Surface maps of (a) soil pH, (b) organic carbon, (c) available N, (d) available P, (e) available K and (f) available Zn
content.

Table 4. Evaluation performance of kriged map of soil properties through cross-validation.

Soil properties Mean absolute error Mean square error Goodness of prediction

pH 0.009 0.461 14.2
Organic carbon (%) 0.007 0.046 16.5
Available N (kg ha–1) 0.251 5475 24.8
Available P (kg P2O5 ha

–1) 0.279 261.3 13.3
Available K (kg K2O ha–1) 2.361 9879 12.6
Available Zn (mg kg–1) 0.005 0.023 14.7
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for soil properties ranged from 11.3% to 94.3%. The raw data sets of P, K and Zn strongly positively
skewed and the application of log transformation was effective in normalizing the data.
Geostatistical analysis revealed Gaussian, exponential and spherical best-fit semivariogram models
for studied soil properties. The nugget/sill ratio values indicate moderate spatial dependence for N,
P and Zn, and strong spatial dependence for pH. The kriged surface maps of soil properties
exhibited different distribution pattern. The spatial distribution maps developed for soil properties
could be the primary guide for region-specific nutrient management and designing future soil
sampling strategies in the intensively cultivated alluvial soils of India.
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