Int.J.Curr.Microbiol.App.Sci (2017) 6(12): 1334-1348

International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 12 (2017) pp. 1334-1348
Journal homepage: http://www.ijcmas.com

Original Research Article

https://doi.org/10.20546/ijcmas.2017.612.151

Variation of Soil Microbial Growth and Enzyme Activities by Application of Treated Distillery Effluent in Maize Crop Grown Under Sandy Loam Soils

Dhakshanamoorthy Dinesh^{1*}, Lakshmanan Chithra², Murugaiyan Baskar³, Karuppusamy Rajan⁴, Kandasamy Senthilraja⁵, Mariappan Sankar⁶, Raj Kumar¹ and Karthikeyan Sivakumar⁷

¹ICAR – Indian Institute of Soil and Water Conservation, Research Centre,
Vasad, District Anand -388306, India

²TRRI, TNAU, Aduthurai, Tamil Nadu, India

³ADAC&RI, TNAU, Tiruchirappalli, Tamil Nadu, India

⁴ICAR – Indian Institute of Soil and Water Conservation, Research Centre,
Udhagamandalam, Tamil Nadu, India

⁵Department of Environmental Sciences, TNAU, Coimbatore, Tamil Nadu, India

⁶ICAR – Indian Institute of Soil and Water Conservation, Dehradun, Uttarakhand, India

⁷FC&RI, TNAU, Mettupalayam, Tamil Nadu, India

**Corresponding author*

ABSTRACT

Keywords

Treated distillery effluent, Bio compost, FYM, Soil microbial population, Maize.

Article Info

Accepted: 12 October 2017 Available Online: 10 December 2017

A field experiment was conducted to investigate the soil microbial growth and enzymatic activity of Treated Distillery Effluent (TDE) and Bio-compost (BC) applied in sandy loam soils grown with Maize crop (Zea mays). Under split plot design with five main plots with addition of organics viz., No organics; application of TDE @ 0.5 lakh litres ha-1; TDE @ 1.0 lakh litres ha-1; Bio compost @ 5 t ha-1 and FYM @ 12.5 t ha-1 + biofertilizers. In addition, five subplot treatments viz., addition of inorganic fertilizers at different levels of recommended dose of NP fertilizers (0 %, 50 %, 75 % and 100 %) compared with 100 per cent recommended dose of NPK @ 150:75:75 of kg N, P2O5 and K₂O ha⁻¹. Application of TDE 1.0 lakh litres ha⁻¹ resulted higher bacterial, fungal and actinomycetes population over control at all stages of crop growth. Indeed, the soil bacterial population recorded the highest value of 20.1 and 19.3 x10⁶ CFU g⁻¹ of soil with the application of TDE @ 1.0 lakh litres ha⁻¹ compared to control at post-harvest stage. There was an increase in the soil fungal population to the tune of 30.3 per cent over control at post-harvest stage. Furthermore, application of TDE @ 1.0 lakh litres ha-1 recorded the highest soil actinomycetes population at all stages of crop growth. The soil enzyme activities as phosphatase, dehydrogenase and urease recorded the highest values of 12.8 μg p-nitrophenol g⁻¹ soil hr⁻¹; 2.96 μg TPF g⁻¹ soil hr⁻¹ and 5.16 μg NH₄-N g⁻¹ soil hr⁻¹ respectively with the application of TDE @ 1.0 lakh litres ha 1. The soil microbial population and enzyme activities increased with the application of distillery effluent over control. Hence, it was observed that, Soil microbial activity had a direct impact on the plant nutrient availability as well as other favorable properties associated with soil productivity.