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Estimation of bulk density of waterlogged soils from basic properties

Nitin G. Patil* and Arun Chaturvedi

National Bureau of Soil Survey and Land Use Planning, Nagpur, India

(Received 2 July 2010; final version received 3 October 2010)

Pedotransfer functions (PTFs) to predict bulk density (BD) from basic soil data
are presented. Available data pertaining to seasonally impounded shrink–swell
soils of Jabalpur district in the Madhya Pradesh state of India were used for the
study. The data included horizon-wise information of 41 soil profiles in the study
area covering nearly 5 million ha. Six independent variables, namely textural data
(sand, silt and clay), field capacity (FC), permanent wilting point (PWP) and
organic carbon content (OC) were used as input in hierarchical steps to establish
dependencies, with bulk density as the dependent variable, using statistical
regression and artificial neural networks. The PTFs derived using neural networks
[average root mean square error (RMSE) 0.05] were relatively better than
statistical regression PTFs (average RMSE 4 0.1). The best-performing PTFs
required input data on sand, silt content, FC and PWP, with lowest prediction
errors (RMSE 0.01, maximum absolute error (MAE) 0.01) and highest values of
index of agreement (d, 0.95) and R2 (0.65). Use of measures of structure, as well as
information on pore structure, was found to be essential to derive acceptable
PTFs. Inclusion of OC as an input variable showed relatively better fitting to the
training data set, implying an underlying relationship between OC and BD, but
the neural networks could not mimic the relationship when tested against subset.

Keywords: bulk density; neural networks; pedotransfer function; waterlogged soils

Introduction

An assessment of the dynamic behaviour of soil forms an integral base of land use
plans. Therefore, simulation models of soil dynamics are increasingly gaining
credence in complex assessments. Many of the models concerned with water and
solute movement in the vadose (unsaturated) zone require soil bulk density (BD)
and particle density as basic input parameters to further calculate water retention
and hydraulic conductivity parameters (Leonavièiûtë 2000). Information on soil
BD is indispensable for the assessment of soil carbon stocks and nutrient pools
(Tamminen and Starr 1994). It is considered to be a key property that
characterizes soil structure in general. BD has been found to correlate negatively
with root density and tree growth (Salifu et al. 1999). However, data on soil
physical properties are often inadequate in India, primarily due to the high
expenses, time and manpower required for intensive or systematic sampling to
obtain spatially distributed soil data. There is a need to derive algorithms to
predict basic soil physical parameters like BD from easily available or
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easily measured data such as particle size distribution and/or organic matter/
carbon.

Indirect methods to derive required soil parameters from easily measurable input
data are called pedotransfer functions (PTF; Bouma and Van Lanen 1987). Different
types of BD PTFs have been calibrated using different approaches (Rawls 1983;
Hollis et al. 1995). Soil physical and chemical data have been used as inputs in most
of the studies (Saini 1966; Rawls 1983; Manrique and Jones 1991; Baumer 1992;
Bernoux et al. 1998; Calhourn et al. 2001). These studies focused on a specific or
limited data set. Most of the published PTFs use soil textural composition and/or
organic carbon/matter data as input variables in an attempt to utilize limited
available soil survey information (Curtis and Post 1964; Rawls 1983; Huntington
et al. 1989; Benites et al. 2007). Bulk density has been found to vary with depth
(Harrison and Bocock 1981; Huntington et al. 1989; Leonavièiûtë 2000), soil group
(Alexander, 1980; Manrique and Jones 1991; Salifu et al. 1999), land use and
vegetation (Harrison and Bocock 1981). Studies also indicate that BD can be better
predicted with limited input data. For example, Benites et al. (2007) calibrated PTFs
to predict BD in Brazilian soils using 17 different properties and concluded that the
PTFs based on clay content, total nitrogen and sum of basic cations were superior to
others using extended inputs.

PTFs have limited use outside the area of development due to their empirical
nature. There are no PTFs that could be termed global (Tietje and Tapkenhinrichs
1993). Recent publications also corroborate that the applicability of BD PTFs
outside the area of development must be examined carefully. For example, De Vos
et al. (2005) evaluated the predictive quality of 12 published PTFs to estimate BD of
forest soils in Belgium. The evaluation demonstrated poor performance of some
published PTFs, and raised concerns that the predictive ability of even the better
models may not be adequate. They also recalibrated and validated PTFs using native
data. Harrison and Bocock (1981) recommended that to obtain a high degree of
accuracy and great precision in estimating soil BD, an equation specific for each
range of soils of relevance to a particular research program should be used, rather
than relying on general PTFs. However, PTFs calibrated using native data may not
represent the dependencies accurately, as reported by Kätterer et al. (2006). The best
PTFs calibrated by them could only explain 40–43% of the total variance with
corresponding root mean square error (RMSE) values of 0.14 g cm73 and 5.3% by
volume, respectively.

To overcome the constraints of PTF validity, Schaap and Leij (1998) suggested
choosing those PTFs that correspond to the soil data sets of a similar geographical
and geological region. They also opined that those selected PTFs still must be
calibrated, tested and evaluated on the measurements of local soils to make sure that
PTFs predictions are applicable.

Following on from these studies, we hypothesized that PTFs calibrated using
native data would be more precise than the published PTFs. The objectives of our
study were to: (1) calibrate PTFs to estimate BD, and (2) evaluate proposed PTFs
against subset. We would like to add here that, to the best of our knowledge, no
calibration or evaluation of PTFs for estimating the BD of seasonally impounded
soils have been reported from India. The agricultural productivity of these soils is
limited to only one winter crop subject to timely drainage after recession of
monsoons and the quantum of residual moisture. For better management of these
soils, it is necessary to understand their characteristics.
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Materials and methods

Seasonally impounded shrink–swell soils occupy nearly 5 million ha (50% of
geographical area) of Jabalpur district in central India (Rajput et al. 2004). From an
agricultural perspective, these soils are difficult to manage. The area receives on an
average of 1300–1500 mm rainfall, mostly during the rainy season. Because the soils
remain waterlogged in the monsoon season, an agricultural crop is possible only in
the rabi season after recession of the monsoon (October–December). The soils of the
area are clayey and classified as Vertisols and Vertic intergrades (Inceptisols). The
dominant series of this area are Sihora and Kunda, characterized as fine, smectitic,
hyperthermic Typic Haplusterts and fine, smectitic, hyperthermic Vertic Haplustepts
(Tomar et al. 1996). Being poorly drained soils and encouraged by topography, the
water stagnates in the fields during monsoon. Farmers have devised a ‘Haveli’
system, which brings the farming community together to build bunds in each field to
impound water during the monsoon. The water is released systematically 15 days
after the recession of rainfall and residual moisture is utilized to grow different crops.
This practice is believed to be more than 150 years old. Years of impounding has
imparted special characteristics to the soils. Data on basic properties were collected
by sampling 41 profiles. The ‘Haveli’ tract was traversed to mark representative sites
(depending on soil variability) and the profiles were cut open to collect stratified bulk
samples from 174 horizons. Clay, clay loam and sandy clay loam texture were
recognized in 102, 18 and 22 horizons, respectively (USDA classification). These
three textures constituted 82% of the entire data set. The remainder of the 32
horizons was dispersed over textures; loam (10), silty clay (10), silty clay loam (4),
sandy loam (3), sandy clay (3) and silt loam (2). Investigations reported here are
limited to the clay horizons because no adequate data for other textures was
available for developing PTFs. For more details the reader is referred to Patil and
Rajput (2009). A statistical summary of the physical properties data is shown in
Table 1. The soils were predominantly clayey (40.5–71.5%) in texture. The mean
sand and silt content of the soils were almost identical, but sand fraction varied
greatly [coefficient of variation (CV) 0.4] in comparison with the other two fractions.
Bulk density did not vary much with a mean value of 1.4 g cm73.

The soil properties selected for this study were: full soil particle size distribution,
field capacity (FC), permanent wilting point (PWP) and soil bulk density (BD).
These soil properties were chosen because the data on them is usually available in
many soil reports, and because other authors have reported utility in their works for
deriving PTFs.

Table 1. Statistical summary of basic properties of 102 clay soil samples.

Sand (%) Silt (%) Clay (%) FC (%) PWP (%) BD (g cm73)

Mean 20.5 25.5 53.5 0.3 0.2 1.4
SE 0.9 0.5 0.9 0.0 0.0 0.0
SD 8.8 5.5 8.7 0.0 0.0 0.1
CV 0.4 0.2 0.2 0.1 0.2 0.1
Minimum 3.1 8.0 40.5 0.2 0.1 1.2
Maximum 36.7 39.1 71.5 0.4 0.2 1.7

Notes: BD, bulk density; CV, coefficient of variation; FC, field capacity; PWP, permanent wilting point;
SD, standard deviation; SE, standard error.
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Deriving PTFs

Statistical and neural regression PTFs were derived. Eleven levels of input
information were identified to establish dependencies between basic soil properties
and BD. Logarithmic transformation was applied to the BD values for better
representation of the data.

Input level 1 Textural data (data on sand, silt, and clay fraction – SSC)
Input level 2 Level 1 þ organic carbon (1 þ OC)
Input level 3 Level 2 þ field capacity (2 þ FC)
Input level 4 Level 3 þ permanent wilting point (3 þ PWP)
Input level 5 Data on sand, silt, OC, FC and PWP
Input level 6 Data on sand, silt, OC and FC
Input level 7 Data on sand, silt and OC
Input level 8 Data on sand, silt, clay and FC
Input level 9 Data on sand, silt, clay, FC and PWP
Input level 10 Data on sand, silt and FC
Input level 11 Data on sand, silt, FC and PWP

Based on earlier experience (Patil et al. 2010), a feed-forward neural network
(FF-NN) model with three hidden nodes was preferred. According to Maier and
Dandy (2000), feed-forward neural networks (FF-NN) are the most widely adopted
network architecture for the prediction and forecasting of geophysical variables.
Typical FF-NN consists of three layers – an input layer, a hidden layer and an
output layer. The number of nodes in an input layer corresponds to the number of
inputs considered for the PTFs. The input layer is connected to the hidden layer with
weights that determine the strength of the connections. The hidden layer provides the
network’s non-linear modelling capabilities. As a general rule, the hidden units
should be half the number of input units. Thus, in the present analysis, the maximum
number of inputs being seven, three hidden units were considered optimum. The
data sets were partitioned into ‘training’ (76 samples) and ‘test’ (26 samples) sets.
Upon finding an appropriate network model, the PTFs were derived. For network
training, the Levenberg–Marquardt (L–M) algorithm was chosen because the data
set was small. Mayr and Jarvis (1999), Van Genuchten and Leij (1992) and other
researchers used the same algorithm to develop PTFs. Further, for fair comparison
between statistical regression and artificial neural network based PTFs (ANN–
PTFs), it was desirable to seek minimization of sum of squares error.

Performance evaluation

Performance of the PTFs was evaluated based on one-to-one correspondence
between measured and predicted values of BD. Statistical indices used for the
evaluation were root mean square error (RMSE), regression coefficient (R2), mean
absolute error (MAE), degree of agreement (d) and maximum error (ME). These are
based on squared difference between measured (Mi) and estimated (Ei) value, where
‘i’ indicates the ith value of a data set containing ‘n’ values. The degree/index of
agreement is both a relative and bounded measure (0 5 d 5 1).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðEi �MiÞ2

n

s
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Index of agreement d ¼ 1�
Pn

i¼1 ðEi �MiÞ2Pn
i¼1 Ei �M

�� ��þ Mi �M
�� ��� �2

Maximum absolute error ME ¼Max Ei �Mij j

Table 2. Regression PTFs to estimate bulk density and their performance as indicated by
coefficient of determination (R2).

PTF R2 (Fitting) R2 (Testing)

Log (BD) ¼ 0.09045 þ 0.0000172*Sand7
0.00071*Silt þ 0.001584*Clay

0.18 0.13

Log (BD) ¼ 71.2628 þ 0.01409*Sand þ
0.0134*Silt þ 0.01516*Clay70.0675*OC

0.23 0.12

Log (BD) ¼ 71.2595 þ 0.0141*Sand þ 0.0135*Silt þ
0.0153*Clay70.0006*FC70.0663*OC

0.24 0.14

Log (BD) ¼ 70.6862 þ 0.0084*Sand þ 0.0077*Silt þ
0.0090*Clay70.0027FC þ 0.0060*PWP70.0735*OC

0.40 0.12

Log (BD) ¼ 0.2046–0.00049*Sand70.0001*Silt7
0.0717*OC70.0028*FC þ 0.0066*PWP

0.36 0.06

Log (BD) ¼ 0.2569–0.0010*Sand70.0016*
Silt70.0602*OC70.0004*FC

0.17 0.21

Log (BD) ¼ 0.2417–0.0009*Sand70.0016*
Silt70.0612*OC

0.17 0.25

Log (BD) ¼ 0.09649–0.0000317*Sand70.00071*
Silt þ 0.001568*Clay70.000013*FC

0.18 0.13

Log (BD) ¼ 0.4515–0.00358*Sand70.00434*
Silt70.00249*Clay70.00235*FC þ 0.005976*PWP

0.30 0.32

Log (BD) ¼ 0.251831–0.00158*Sand70.00226*
Silt70.000014*FC

0.18 0.12

Log (BD) ¼ 0.206618–0.00114*Sand70.0019*
Silt70.00225*FC þ 0.005755*PWP

0.30 0.32

Notes: BD, bulk density; FC, field capacity; OC, organic carbon; PWP, permanent wilting point.

Table 3. Statistical indices to judge performance of PTFs.

Training Testing

PTF Input RMSE d ME MAE R2 RMSE d ME MAE R2

SSC 0.02 0.81 0.05 0.02 0.52 0.03 0.59 0.08 0.03 0.13
SSC þ OC 0.04 0.46 0.07 0.03 0.27 0.03 0.59 0.08 0.03 0.05
SSC þ OC þ FC 0.04 0.39 0.07 0.03 0.22 0.03 0.49 0.09 0.03 0.01
SSC þ OC
þ FC þ PWP

0.02 0.88 0.05 0.02 0.59 0.02 0.75 0.06 0.03 0.42

SS þ OC
þ FC þ PWP

0.04 0.67 0.06 0.03 0.64 0.02 0.86 0.05 0.02 0.35

SS þ OC þ FC 0.03 0.59 0.06 0.03 0.23 0.03 0.60 0.08 0.03 0.18
SS þ OC 0.03 0.49 0.06 0.03 0.23 0.03 0.59 0.08 0.03 0.07
SSC þ FC 0.04 0.18 0.09 0.03 0.01 0.05 0.19 0.09 0.04 0.05
SSC þ FC þ PWP 0.02 0.93 0.03 0.02 0.79 0.05 0.53 0.09 0.05 0.05
SS þ FC 0.29 0.70 0.06 0.02 0.38 0.03 0.70 0.08 0.02 0.28
SS þ FC þ PWP 0.01 0.95 0.04 0.01 0.83 0.01 0.95 0.07 0.01 0.65

Notes: FC, field capacity; OC, organic carbon; PWP, permanent wilting point; SSC, sand, silt, clay content.
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MAE ¼
Xn
i¼1

Ei �Mij j
n

:

Results and discussion

Statistical PTFs derived from the measured data are presented in Table 2. Evaluation
of the performance of PTFs (Table 3 showed that the equations did not fit accurately
to the data. This was evident from the testing data as well, which showed that
correspondence between measured and estimated BD values was poor. Regression
coefficient values in fitting to the measured data and testing with subset ranged from
0.12 to 0.32, indicating a poor performance of PTFs. Thus our attempt to utilize
limited soil information did not succeed.

Figure 1. Correspondence between measured and predicted bulk density values with
textural data as an input in a derived pedotransfer function (PTF): (a) training and (b) testing
data set.
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However, neural PTFs performed better than statistical PTFs. PTFs utilizing
minimum information (sand, silt and clay) were of the lowest value, as indicated by
the statistical indices (Table 3) for testing. It was observed that the networks fitted to
the observed/training data well (Figure 1a with lower RMSE (0.02) and other errors,
d (0.81) and R2 (0.52). But, when tested against subset, the magnitude of error(s)
increased (Figure 1b) with poor R2 (0.05) and d (0.19). The neural networks are
expected to improve in modelling ability with increase in number of input variables
that are believed to affect the predicted property. However, with inclusion of FC as
an input variable, the PTF performance declined. In fact, among all PTFs, this PTF
using textural information and FC was observed to be of the lowest utility value. The
highest prediction error was indicated by RMSE, R2, ME and MAE values. FC is
expected to provide better information on soil pore structure. However, the shrink–
swell nature of the study soils was perhaps responsible for the inadequacy of neural
networks in mimicking the effect on BD. Replacing FC by OC produced similar
results, implying that texture and OC did not combine well to influence BD. These

Figure 2. Correspondence between measured and predicted bulk density values with textural
data, field capacity (FC), permanent wilting point (PWP) and organic carbon (OC) as an input
in a derived pedotransfer function (PTF): (a) training and (b) testing data set.
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soils are very poor in organic matter/carbon content, varying within a narrow range
of 0.2–0.4%. It can be seen from Table 3 that the best performing PTFs were: (1) SS
(sand, silt) þ FC þ PWP, and (2) SSC (sand, silt, clay) þ OC þ FC þ PWP. OC
content as an input showed some influence in combination with FC and PWP
(Figure 2) or sand, silt and PWP (Figure 3) but it was not adequately expressed,
perhaps owing to the narrow band of variation. The PTFs trained well but
committed large errors in prediction. Against expectations, incremental addition of
input variables in different combinations did not necessarily improve PTFs. The
inability of the neural networks in predicting BD may also be due to an insufficient
spread of the data or inadequate data for networks to mimic the underlying
relationship.

Use of maximum number of variables (6) in PTF SSC þ OC þ FC þ PWP
recorded the second best RMSE (0.02) and a lower magnitude of other errors. The
testing of PTF also showed better predictive ability. The best PTF required
information on four variables namely sand, silt, FC and PWP. The networks trained

Figure 3. Correspondence between measured and predicted bulk density values with sand,
silt, organic carbon (OC) and permanent wilting point (PWP) as an input in derived PTF: (a)
training and (b) testing data set.
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well when these data were used as input variables (Figure 4a) implying that the
choice of input properties also influenced performance of neural regression. There
was definite improvement in PTFs performance when FC and PWP were included in
place of the clay fraction as an input. It could be argued that measures of structure,
as well as information on pore structure, were essential to predict BD accurately.
Exclusion of clay as an input variable led to improvement in PTFs performance
probably because the clay content was always 440% with low coefficient of
variation that caused difficulty in training networks. The best-performing PTFs
(input sand, silt, FC and PWP) had the lowest RMSE (0.01), MAE (0.01), and the
highest d (0.95) and R2 (0.83) when networks were fitted to the measured data. It also
had the lowest RMSE (0.01) and MAE (0.01), and the highest d (0.7) and R2 (0.65)
when tested for predictive ability.

Thus it was evident that PTFs to predict BD of the impounded shrink–swell soils
could be used to obtain reasonable estimates with a relatively higher number of input
variables compared with PTFs reported in the literature.

Figure 4. Correspondence between measured and predicted bulk density values with sand,
silt fractions and moisture constants [field capacity (FC) and permanent wilting point (PWP)]
data as an input in derived pedotransfer function (PTF): (a) training and (b) testing data set.
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Compared with statistical regression, superiority of neural regression was evident
from the evaluation indices for fitted data as well as test data. Neural regressions
usually require at least three input variables to establish dependencies between the
input and output. The input variables were always three or more in this study so it
can be inferred that limitations of neural regression as a tool were addressed and it is
the inadequacies of the data or insufficient spread of the data that caused poor
network training. These shortcomings were overcome when information on physical
structure as well as pore structure was related to BD. The study also suggests that
PTFs could be successfully calibrated even for problem soils.

Conclusion

The study demonstrated that native PTFs to predict the BD of seasonally
impounded soils could be calibrated successfully provided the correct choice of
input variables is made. Further, it was also observed that statistical regression as a
tool to establish dependencies between basic soil properties and BD had severe
limitations and neural regression was a preferred method for calibrating PTFs.
Contrary to expectations, the clay fraction was found to be an unimportant input
parameter in predicting soil BD of the study soils. Owing to the narrow range of
variation in organic carbon content, its influence on BD was not adequately
expressed when neural networks were tested for predictive ability. However, there
were indications that a greater spread of data or a greater quantity of data could
alter the results. The best-performing PTF required input data on sand, silt, FC and
PWP to predict BD, whereas the second best PTF required textural information,
OC, FC and PWP as an input. Other PTFs using an intermediate number of input
parameters performed poorly. The two proposed neural PTFs were shown to have
reasonable predictive ability.

References

Alexander EB. 1980. Bulk densities of California soils in relation to other soil properties. Soil
Sci Soc Am J. 44:689–692.

Baumer OM. 1992. Predicting unsaturated hydraulic parameters. In: van Genuchten MTh.,
et al., editors. Proceedings of the International Workshop on Indirect Methods for
Estimating the Hydraulic Properties of Unsaturated Soils; Riverside, CA. October 11–13
1989. Riverside (CA): University of California. p. 341–354.

Benites VM, Machado PLOA, Fidalgo ECC, Coelho MR, Madari BE. 2007. Pedotransfer
functions for estimating soil bulk density from existing soil survey reports in Brazil.
Geoderma. 139(1–2):90–97.

Bernoux MD, Arrouays CC, Cerri BV, Jolivet C. 1998. Bulk density of Brazilian Amazon soils
related to other soil properties. Soil Sci Soc Am J. 62:743–749.

Bouma J, van Lanen HAJ. 1987. Transfer functions and threshold values: from soil
characteristics to land qualities. In: Quantified Land Evaluation Procedures. Proceedings
of the International Workshop on Quantified Land Evaluation Procedures; 1986 April
27–May 2. Washington (DC): ITC Publication, Enschede.

Calhourn FG, Smeck NE, Slater BL, Bigham JM, Hall GF. 2001. Predicting bulk density of
Ohio soils from morphology, genetic principles, and laboratory characterization data. Soil
Sci Soc Am J. 65:811–819.

Curtis RO, Post BW. 1964. Estimating bulk density from organic matter content is some
Vermont forest soils. Soil Sci Soc Am Proc. 28:285–286.

De Vos B, Van Meirvenne M, Quataert P, Deckers J, Muys B. 2005. Predictive quality of
pedotransfer functions for estimating bulk density of forest soils. Soil Sci Soc Am J.
69:500–510.

508 N.G. Patil and A. Chaturvedi

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l B
ur

ea
u 

of
 S

oi
l S

ur
ve

y]
 a

t 2
2:

55
 1

6 
Fe

br
ua

ry
 2

01
4 



Harrison AF, Bocock KL. 1981. Estimation of soil bulk-density from loss-on-ignition values.
J Appl Ecol. 8:919–927.

Hollis JM, Thanigasalam P, Hallett SH, Mayr TR, Jarvis N. 1995. SEISMIC: User manual.
Silsoe (UK): Soil Survey and Land Research Centre, Cranfield University.

Huntington TG, Johnson CE, Johnson AH, Siccama TG, Ryan DF. 1989. Carbon, organic
matter, and bulk density relationships in a forested spodosol. Soil Sci. 148:380–386.

Kätterer T, Andrén O, Jansson PE. 2006. Pedotransfer functions for estimating plant available
water and bulk density in Swedish agricultural soils. Acta Agr Scand B-S P. 56:263–276.
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