ICAR-NBSS&LUP Sujala MWS Publ.14

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

PADSAVLI-2 (4D5C2E1b) MICROWATERSHED

Aland Taluk, Gulbarga District, Karnataka

Karnataka Watershed Development Project – II

SUJALA – III

World Bank funded Project

ICAR – NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT GOVT. OF KARNATAKA, BANGALORE

About ICAR - NBSS&LUP

The ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS&LUP), Nagpur, a premier Institute of the Indian Council of Agricultural Research (ICAR), was set up during 1976 with the objective to prepare soil resource maps at national, state and district levels and to provide research inputs in soil resource mapping and its applications, land evaluation, land use planning, land resource management, and database management using GIS for optimising land use on different kinds of soils in the country.

The Bureau has been engaged in carrying out soil resource survey, agro-ecological and soil degradation mapping at the country, state and district levels for qualitative assessment and monitoring the soil health towards viable land use planning. The research activities have resulted in identifying the soil potentials and problems, and the various applications of the soil surveys with the ultimate objective of sustainable agricultural development. The Bureau has the mandate to correlate and classify soils of the country and maintain a National Register of all the established soil series. The Institute is also imparting in-service training to staff of the soil survey agencies in the area of soil survey, land evaluation and soil survey interpretations for land use planning. The Bureau in collaboration with Panjabrao Krishi Vidyapeeth, Akola is running post-graduate teaching and research programme in land resource management, leading to M.Sc. and Ph.D. degrees.

Citation: Rajendra Hegde, Ramesh Kumar, S.C., K.V. Niranjana, S. Srinivas, M.Lalitha, B.A. Dhanorkar, R.S. Reddy and S.K. Singh (2019). "Land Resource Inventory and Socio-Economic Status of Farm Households for Watershed Planning and Development of Padsavli-2 (4D5C2E1b) Microwatershed, Aland Taluk, Gulbarga District, Karnataka", ICAR-NBSS&LUP Sujala MWS Publ.14, ICAR – NBSS & LUP, RC, Bangalore. p.84 & 27.

560 024

TO OBTAIN COPIES,

Please write to:

Director, ICAR - NBSS & LUP,

Amaravati Road, NAGPUR - 440 033, India

Amaravati Roa	a, nagi	PUR - 440 033, India
Phone	:	(0712) 2500386, 2500664, 2500545 (O)
Telefax	:	0712-2522534
E-Mail	:	director@nbsslup.ernet.in
Website URL	:	nbsslup.in
Or		
Head, Regiona	al Centr	e, ICAR - NBSS&LUP, Hebbal, Bangalore -
Phone	:	(080) 23412242, 23510350 (O)
Telefax	:	080-23510350

E-Mail : nbssrcb@gmail.com

ICAR-NBSS&LUP Sujala MWS Publ.14

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

Padsavli-2 (4D5C2E1b) MICROWATERSHED

Aland Taluk, Gulbarga District, Karnataka

Karnataka Watershed Development Project – II

Sujala-III

World Bank funded Project

ICAR – NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT, GOVT. OF KARNATAKA, BANGALORE

PREFACE

In Karnataka, as in other Indian States, the livelihoods of rural people are intertwined with farming pursuits. The challenges in agriculture are seriously threatening the livelihood of a large number of farmers as they have been practicing farming in contextual factors beyond their control. Climatic factors are the most important ones and have become much more significant in recent times due to rapid climate changes induced by intensive anthropogenic activities affecting our ecosystem in multiple ways. Climate change has become the reality, it is happening and efforts to evolve and demonstrate climate resilient technologies have become essential. Due to the already over stressed scenario of agrarian sector, the climate change is resulting in manifold increase in the complexities, pushing the rural mass to face more and more unpredictable situations. The rising temperatures and unpredictable rainfall patterns are going to test seriously the informed decisions farmers have to make in order to survive in farming and sustain their livelihood.

It is generally recognized that impacts of climate change shall not be uniform across the globe. It is said that impact of climate change is more severe in South Asia. Based on the analysis of meteorological data, it is predicted that in India, there will be upward trend in mean temperature, downward trend in relative humidity, annual rainfall and number of wet days in a year. Also, in general, phenomena like erratic monsoon, spread of tropical diseases, rise in sea levels, changes in availability of fresh water, frequent floods, droughts, heat waves, storms and hurricanes are predicted. Each one of these adverse situations are already being experienced in various parts of India and also at the global level. Decline in agricultural productivity of small and marginal farmers becoming more vulnerable is already witnessed.

In Karnataka, more than 60 per cent of the population live in rural areas and depend on agriculture and allied activities for their livelihood. Though the state has achieved significant progress in increasing the yield of many crops, there is tremendous pressure on the land resources due to the growing and competing demands of various land uses. This is reflected in the alarming rate of land degradation observed. Already more than 50 per cent of the area is affected by various forms of degradation. If this trend continues, the sustainability of the fragile ecosystem will be badly affected. The adverse effects of change in the climatic factors are putting additional stress on the land resources and the farmers dependent on this.

The natural resources (land, water and vegetation) of the state need adequate and constant care and management, backed by site-specific technological interventions and investments particularly by the government. Detailed database pertaining to the nature of the land resources, their constraints, inherent potentials and suitability for various land based rural enterprises, crops and other uses is a prerequisite for preparing location-specific action plans, which are in tune with the inherent capability of the resources. Any effort to evolve climate resilient technologies has to be based on the baseline scientific database. Then only one can expect effective implementation of climate resilient technologies, monitor the progress, make essential review of the strategy, and finally evaluate the effectiveness of the implemented programs. The information available at present on the land resources of the state are of general nature and useful only for general purpose planning. Since the need of the hour is to have site-specific information suitable for farm level planning and detailed characterization and delineation of the existing land resources of an area into similar management units is the only option.

ICAR-NBSS&LUP, Regional Centre, Bangalore has taken up a project sponsored by the Karnataka Watershed Development Project-II, (Sujala-III), Government of Karnataka funded by the World Bank under Component -1 Land Resource Inventry. This study was taken up to demonstrate the utility of such a database in reviewing, monitoring and evaluating all the land based watershed development programs on a scientific footing. To meet the requirements of various land use planners at grassroots level, the present study on "Land Resource Inventory and Socio-Economic Status of Farm Households for Watershed Planning and Development of Padasavli-2 Microwatershed, Aland Taluk, Kalaburagi District, Karnataka" for integrated development was taken up in collaboration with theState Agricutural Universities, IISC, KSRSAC, KSNDMC as Consortia partners. The project provides detailed land resource information at cadastral level (1:7920 scale) for all the plots and socio-economic status of farm households covering thirty per cent farmers randomely selected representing landed and landless class of farmers in the micowatershed. The project report with the accompanying maps for the microwatershed will provide required detailed database for evolving effective land use plan, alternative land use options and conservation plans for the planners, administrators, agricultural extention personnel, KVK officials, developmental departments and other land users to manage the land resources in a sustainable manner.

It is hoped that this database will be useful to the planners, administrators and developmental agencies working in the area in not only for formulating location specific developmental schemes but also for their effective monitoring at the village/watershed level.

Nagpur Date: S.K. SINGH Director, ICAR - NBSS&LUP, Nagpur

Contributors

Dr. RajendraHegde	Dr. S.K.Singh
Principal Scientist, Head &	Director, ICAR-NBSS&LUP
Project Leader, Sujala-III Project	Coordinator, Sujala-III Project
ICAR-NBSS&LUP, Regional Centre	Nagpur
Bangalore	
Soil Survey, Mag	oping & Report Preparation
Dr. B.A. Dhanorkar	Sh. R.S. Reddy
Dr. K.V. Niranjana	Sh. Nagendra, B.R.
	Smt. Chaitra, S.P.
	Field Work
Sh. C.BacheGowda	Sh. Mahesha, D.B.
Sh. Somashekar	Sh. Ashok S. Sindagi
Sh. VenkataGiriyappa	Sh. Veerabhadrappa
Sh. M. Jayaramaiah	Sh. Anand
Sh. Paramesha, K.	Sh. Arun N Kambar
	Sh. Shankarappa, K.
	Sh. Kamalesh K. Avate
	Sh. Sharan Kumar Huppar
	Sh. Yogesh, H.N.
	Sh. Kalaveerachari R. Kammar
	GIS Work
Dr. S.Srinivas	Sh. A.G.Devendra Prasad
Dr. M.Ramesh	Sh. Prakashanaik, M.K.
Sh. D.H.Venkatesh	Sh. Abhijith Sastry, N.S.
Smt.K.Sujatha	Sh. Nagendra Babu Kolukondu
Smt. K.V.Archana	Sh. Sudip Kumar Suklabaidya
Sh. N.Maddileti	Sh. Avinash, K.N.
	Smt. K.Karunya Lakshmi
	Ms. Seema, K.V.
	Ms. A. Rajab Nisha
	Ms. Ramireddy Lakshmi Silpa
	Sh. Amar Suputhra, S
	Sh. Deepak, M.J.
	Ms. Bhanu Rekha, T.
	Ms.Rajata Bhat

Laboratory Analysis				
Dr. K.M.Nair	Dr. H.R. Savitha			
Smt. ArtiKoyal	Ms. Steffi Peter			
Smt. Parvathy, S.	Ms. Thara, V.R			
	Ms. Roopa, G.			
	Ms. Swati, H.			
	Sh. Shantaveera Swami			
	Ms. Shwetha, N.K.			
	Smt. Ishrat Haji			
	Ms. P. PavanKumari			
	Ms. Padmaja			
	Ms. Veena, M.			
	er Conservation			
Sh. Sunil P. Maske				
	nomic Analysis			
Dr. S.C. Ramesh Kumar	Sh. M. K. Prakashanaik			
	Ms. Sowmya K.B			
	Sh.Manjunath M			
	Sh.Veerabhadraswamy R			
	Sh.Lankesh RS			
	Sh.Kalaveerachari R Kammar			
	Sh.Pradyumma U			
	Sh.Yogesha HN			
	Sh.Vijay kumar lamani			
	Sh.Arun N Kambar			
	Sh.Vinay			
	Sh.Basavaraj.Biradar			
	Sh.Vinod R			
	Sh.Praveenkumar P Achalkar			
	Sh.Rajendra D			
Watershed Development	Department, GoK, Bangalore			
Sh. Rajeev Ranjan IFS	Dr. A. Natarajan			
Project Director & Commissioner, WDD	NRM Consultant, Sujala-III Project			
Dr. S.D. Pathak IFS				
Executive Director &				
Chief Conservator of Forests, WDD				

PART-A LAND RESOURCE INVENTORY

Contents

Preface		
Contributor	rs	
Executive S	Summary	
Chapter 1	1	
Chapter 2	Geographical Setting	3
2.1	Location and Extent	3
2.2	Geology	4
2.3	Physiography	4
2.4	Drainage	4
2.5	Climate	5
2.6	Natural Vegetation	6
2.7	Land Utilization	6
Chapter 3	Survey Methodology	9
3.1	Base maps	9
3.2	Field Investigation	11
3.3	Laboratory Characterization	12
3.4	Finalization of Soil Map	12
Chapter 4	The Soils	19
4.1	Soils of BasaltLandscape	19
Chapter 5	Interpretation for Land Resource Management	27
5.1	Land Capability Classification	27
5.2	Soil Depth	29
5.3	Surface Soil Texture	30
5.4	Soil Gravelliness	31
5.5	Available Water Capacity	32
5.6	Soil Slope	33
5.7	Soil Erosion	34
Chapter 6	Fertility Status	37
6.1	Soil Reaction (pH)	37
6.2	Electrical Conductivity (EC)	37
6.3	Organic Carbon (OC)	37
6.4	Available Phosphorus	39
6.5	Available Potassium	39
6.6	Available Sulphur	39
6.7	AvailableBoron	39
6.8	Available Iron	42
6.9	Available Manganese	42
6.10	Available Copper	42

6.11	Available Zinc	42
Chapter 7	Land Suitability for Major Crops	45
7.1	Land suitability for Sorghum	45
7.2	Land suitability for Maize	49
7.3	Land suitability for Red gram	51
7.4	Land suitability for Sunflower	52
7.5	Land suitability for Cotton	54
7.6	Land suitability for Sugarcane	55
7.7	Land suitability for Soybean	57
7.8	Land suitability for Guava	58
7.9	Land suitability for Mango	59
7.10	Land suitability for Sapota	61
7.11	Land suitability for Jackfruit	63
7.12	Land suitability for Jamun	63
7.13	Land Suitability for Musambi	64
7.14	Land Suitability for Lime	65
7.15	Land Suitability for Cashew	67
7.16	Land Suitability for Custard Apple	68
7.17	Land Suitability for Amla	69
7.18	Land Suitability for Tamarind	70
7.19	Land Management Units	71
7.20	Proposed Crop Plan	73
Chapter 8	Soil Health Management	75
Chapter 9	Soil and Water conservation Treatment Plan	79
9.1	Treatment Plan	80
9.2	Recommended Soil and Water Conservation measures	83
9.3	Greening of microwatershed	84
	References	87
	Appendix I	i-vii
	Appendix II	ix-xiv
	Appendix III	xv-xvii

LIST OF TABLES

2.1	Mean Monthly Rainfall, PET, 1/2 PET atAlandTaluk, Kalaburgi District	5
2.2	Land Utilization in Aland Taluk	7
3.1	Differentiating Characteristics used for Identifying Soil Series	12
3.2	Soil Legend	17
7.1	Soil-Site Characteristics of Padasavli-2 microwatershed	46
7.2	Crop suitability criteria for Sorghum	48
7.3	Crop suitability criteria for Maize	50
7.4	Crop suitability criteria for Red gram	51
7.5	Crop suitability criteria for Sunflower	53
7.6	Crop suitability criteria for Cotton	54
7.7	Crop suitability criteria for Sugarcane	56
7.8	Crop suitability criteria for Guava	58
7.9	Crop suitability criteria for Mango	60
7.10	Crop suitability criteria for Sapota	62
7.11	Crop suitability criteria for Lime	66
7.12	Proposed Crop Plan for Padasavli-2 Microwatershed	73

LIST OF FIGURES

2.1	Location map of Padasavli-2microwatershed	3
2.2	Rock formations in Padasavli-2 microwatershed	4
2.3	Rainfall distribution in AlandTaluk, Kalaburgi District	6
2.4	Current Land use – Padasavli-2 microwatershed	7
2.5	Location of Wells- Padasavli-2 microwatershed	8
3.1	Scanned and Digitized Cadastral map of Padasavli-2 microwatershed	10
3.2	Satellite image of Padasavli-2 microwatershed	10
3.3	Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Padasavli-2 microwatershed	11
3.4	Soil phase or management units of Padasavli-2 microwatershed	15
5.1	Land Capability Classification of Padasavli-2 microwatershed	29
5.2	Soil Depth map of Padasavli-2 microwatershed	30
5.3	Surface Soil Texture map of Padasavli-2 microwatershed	31
5.4	Soil Gravelliness map of Padasavli-2 microwatershed	32
5.5	Soil Available Water Capacity map of Padasavli-2 microwatershed	33
5.6	Soil Slope map of Padasavli-2 microwatershed	34
5.7	Soil Erosion map of Padasavli-2 microwatershed	35
6.1	Soil Reaction (pH) map of Padasavli-2 microwatershed	38
6.2	Electrical Conductivity (EC) map of Padasavli-2 microwatershed	38
6.3	Soil Organic Carbon (OC) map of Padasavli-2 microwatershed	40
6.4	Soil Available Phosphorus map of Padasavli-2 microwatershed	40
6.5	Soil Available Potassium map of Padasavli-2 microwatershed	41
6.6	Soil Available Sulphur map of Padasavli-2 microwatershed	41
6.7	Soil Available Boron map of Padasavli-2 microwatershed	42
6.8	Soil Available Iron map of Padasavli-2 microwatershed	43
6.9	Soil Available Manganese map of Padasavli-2 microwatershed	43
6.10	Soil Available Copper map of Padasavli-2 microwatershed	44
6.11	Soil Available Zinc map of Padasavli-2 microwatershed	44
7.1	Land Suitability map of Sorghum	49
7.2	Land Suitability map of Maize	50
7.3	Land Suitability map of Red gram	52
7.4	Land Suitability map of Sunflower	53

7.5	Land Suitability map of Cotton	55
7.6	Land Suitability map of Sugarcane	56
7.7	Land Suitability map of Soybean	57
7.8	Land Suitability map of Guava	59
7.9	Land Suitability map of Mango	61
7.10	Land Suitability map of Sapota	62
7.11	Land Suitability map of Jackfruit	63
7.12	Land Suitability map of Jamun	64
7.13	Land Suitability map of Musambi	65
7.14	Land Suitability map of Lime	67
7.15	Land Suitability map of Cashew	68
7.16	Land Suitability map of Custard Apple	69
7.17	Land Suitability map of Amla	70
7.18	Land Suitability map of Tamarind	71
7.19	Land Management Units map of Padasavli-2 microwatershed	72
9.1	Soil and Water Conservation map of Padasavli-2 microwatershed	83

EXECUTIVE SUMMARY

The land resource inventory of Padasavli-2 microwatershed was conducted using village cadastral maps and IRS satellite imagery on 1:7920 scale. The false colour composites of IRS imagery were interpreted for physiography and these physiographic delineations were used as base for mapping soils. The soils were studied in several transects and a soil map was prepared with phases of soil series as mapping units. Random checks were made all over the area outside the transects to confirm and validate the soil map unit boundries. The soil map shows the geographic distribution and extent, characterstics, classification and use potentials of the soils in the microwartershed.

The present study covers an area of 667 ha in Aland taluk of Kalaburagi district, Karnataka. The climate is semiarid and categorized as drought prone with an average annual rainfall of 786 mm of which about 595 mm is received during south –west monsoon, 116mm during north-east and the remaining 75 mm during the rest of the year. An area of about 98 per cent is covered by soils, two per cent by waterbodies, settlements and others. The salient findings from the land resource inventory are summarized briefly below.

- The soils belong to 6 soil series and 29 soil phases (management units) and 5 land management units.
- The length of crop growing period is about 150 days starting from the 3^{rd} week of June to 1^{st} week of October.
- From the master soil map, several interpretative and thematic maps like land capability, soil depth, surface soil texture, soil gravelliness, available water capacity, soil slope and soil erosion were generated.
- Soil fertility status maps for macro and micronutrients were generated based on the surface soil samples collected at every 250 m grid interval.
- Land suitability for growing major agricultural and horticultural crops were assessed and maps showing degree of suitability along with constraints were generated.
- About 84 per cent area is suitable for agriculture and 14 per cent is not suitable for agriculture but well suited for forestry, pasture, agroforestry, silvi-pasture, recreation, installation of wind mills and as habitat for wildlife.
- About 4 per cent of the soils are very deep (>150 cm), 9 per cent are moderately deep (75-100 cm), 39 per cent are moderately shallow to shallow (25-75 cm) and about 46 per cent are very shallow (<25 cm) soils.
- About 89 per cent of the area has clayey soils and 10 per cent has loamy soils.
- About 63 per cent of the area has non-gravelly (<15%) soils, 23 per cent gravelly soils (15-35%), 11 per cent very gravelly soils (35-60%) and 2 per cent extremely gravelly soils (60-80%).
- ★ About 4 per cent of the area has soils that are very high (>200 mm/m) in available water capacity, 9 per cent medium (100-150 mm/m) and about 85 per cent low (50-100 mm/m) and very low (<50 mm/m).</p>
- ★ About 70 per cent of the area has nearly level (0-1%) to very gently sloping (1-3%) lands and about 28 per cent area is gently (3-5%) to moderately sloping (5-10%) lands.
- An area of about 32 per cent has soils that are slightly eroded (e1), 35 per cent moderately eroded (e2) and 31 per cent severely eroded (e3).
- ★ An area of about 61 per cent has soils that are moderately alkaline (pH 7.8 to 8.4), one per cent strongly alkaline (pH 8.4 to >9.0) and about 33 per cent slightly alkaline (pH 7.3-7.8) and 3 per cent has soils that are neutral (6.5-7.3) in reaction.
- ✤ The Electrical Conductivity (EC) of the soils are dominantly <2 dsm⁻¹ indicating that the soils are non-saline.
- About 75 per cent medium (0.5-0.75%), 6 per cent high (>0.75%) and 17 per cent low (<0.5%) in organic carbon.

- Major area of 94 per cent has soils that are low (<23 kg/ha) and 4 per cent medium (23-57 kg/ha) in available phosphorus.
- ★ About 49 per cent medium (145-337 kg/ha), 40 per cent high (>337 kg/ha) and 9 per cent low (<145 kg/ha) in available potassium.</p>
- ✤ Available sulphur is low (<10 ppm) in about 70 per cent area, medium (10-20 ppm) in 27 per cent and 7 per cent high (>20 ppm).
- Available boron is low (<0.5 ppm) in about 51 per cent area and 46 per cent medium (0.5-1.0 ppm).
- ★ About 28 per cent area has soils that are deficient (<4.5 ppm) and 70 per cent sufficient (>0.6 ppm) in available iron.
- Available manganese and copper are sufficient in all the soils.
- About 78 per cent area has soils that are deficient (<0.6 ppm) and 20 per cent sufficient (>0.6 ppm) in available zinc.
- The land suitability for 18 major crops grown in the microwatershed were assessed and the areas that are highly suitable (S1) and moderately suitable (S2) are given below. It is however to be noted that a given soil may be suitable for various crops but what specific crop to be grown may be decided by the farmer looking to his capacity to invest on various inputs, marketing infrastructure, price and finally the demand and supply position.

Crop		ability n ha (%)	Crop		ıbility 1 ha (%)
	Highly suitable (S1)	Moderately suitable (S2)		Highly suitable (S1)	Moderately suitable (S2)
Sorghum	61 (9)	40 (6)	Sapota	-	-
Maize	-	-	Jackfruit	-	-
Red gram	-	101 (15)	Jamun	-	30(4)
Sunflower	61(9)	27(4)	Musambi	30(4)	58(9)
Cotton	61 (9)	40(6)	Lime	30(4)	58(9)
Sugarcane	-	-	Cashew	-	-
Soybean	61 (9)	40(6)	Custard apple	61 (9)	40 (6)
Guava	-	-	Amla	61 (9)	40 (6)
Mango	-	-	Tamarind	-	30(4)

Land suitability for various crops in the microwatershed

Apart from the individual crop suitability, a proposed crop plan has been prepared for the 5 identified LMUs by considering only the highly and moderately suitable lands for different crops and cropping systems with food, fodder, fibre and horticulture crops that helps in maintaining the ecological balance in microwatershed

- Maintaining soil-health is vital to crop production and conserve soil and land resource base for maintaining ecological balance and to mitigate climate change. For this, several ameliorative measures have been suggested to these problematic soils like saline/alkali, highly eroded, sandy soils etc.
- Soil and water conservation treatment plan has been prepared that would help in identifying the sites to be treated and also the type of structures required.
- As part of the greening programme, several tree species have been suggested to be planted in marginal and submarginal lands and also in the field bunds, hillocks, mounds and ridges.

INTRODUCTION

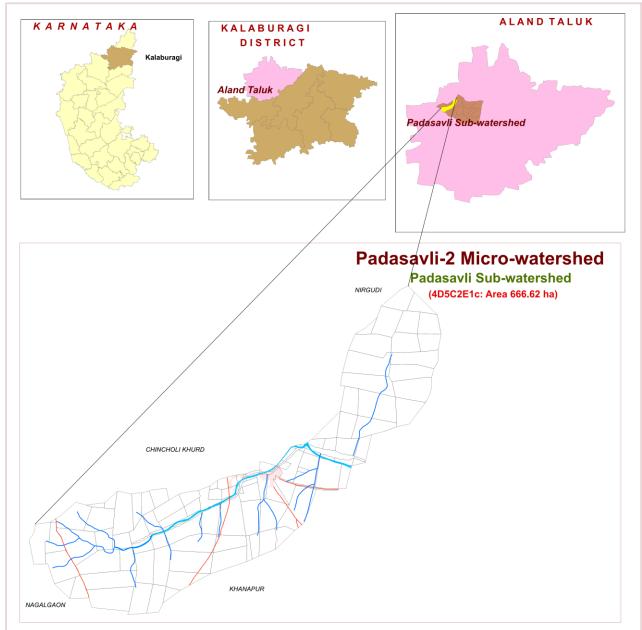
Soil is a finite natural resource that is central to sustainable agriculture and food security. Over the years, this precious resource is faced with the problems of erosion, salinity, alkalinity, degradation, depletion of nutrients and even decline in availability of land for agriculture. It is a known fact, that it takes thousands of years to form a few centimetres of soil, thus, soil is a precious gift of nature. The area available for agriculture is about 51 per cent of the total geographical area and more than 60 per cent of the people are still dependant on agriculture for their livelihood. However, the capacity of a soil to produce is limited and the limits to the production are set by its intrinsic characteristics, agro-climatic setting, and use and management. There is therefore, tremendous pressure on land and water resources, which is causing decline in soil-health and stagnation in productivity. As much as 121 m ha of land is reportedly degraded which leads to impaired soil quality. It is imperative that steps are urgently taken to check and reverse land degradation without any further loss of time. The improvements in productivity will have to come from sustainable intensification measures that make the most effective use of land and water resources. Soil erosion alone has degraded about 35 lakh ha. Almost all the uncultivated areas are facing various degrees of degradation, particularly soil erosion; salinity and alkalinity has emerged as a major problem (>3.5 lakh ha) in the irrigated areas of the State. Nutrient depletion and declining factor productivity is common in both rainfed and irrigated areas. The degradation is continuing at an alarming rate and there appears to be no systematic effort among the stakeholders to contain this process. In recent times, an aberration of weather due to climate change phenomenon has added another dimension leading to unpredictable situations to be tackled by the farmers.

In this critical juncture, the challenge before us is not only to increase the productivity per unit area which is steadily declining and showing a fatigue syndrome, but also to prevent or at least reduce the severity of degradation. If the situation is not reversed at the earliest, then the sustainability of the already fragile crop production system and the overall ecosystem will be badly affected in the state. Added to this, every year there is a significant diversion of farm lands and water resources for non-agricultural purposes. Thus, developing strategies to slow down the degradation process or reclaim the soils to normal condition and ensure sustainability of production system are the major issues today. This demands a systematic appraisal of our soil and land resources with respect to their extent, geographic distribution, characteristics, behaviour and uses potential, which is very important for developing an effective land use and cropping systems for augmenting agricultural production on a sustainable basis.

The soil and land resource inventories made so far in Karnataka had limited utility because the surveys were of different types, scales and intensities carried out at different times with specific objectives. Hence, there is an urgent need to generate detailed sitespecific farm level database on various land resources for all the villages/watersheds in a time bound manner that would help to protect the valuable soil and land resources and also to stabilize the farm production. Therefore, the land resource inventory required for farm level planning is the one which investigates all the parameters which are critical for productivity *viz.*, soils, site characteristics (slope, erosion, gravelliness and stoniness) climate, water, topography, geology, hydrology, vegetation, crops, land use pattern, animal population, socio-economic conditions, infrastructure, marketing facilities and various schemes and developmental works of the government etc. From the data collected at farm level, the specific problems and potentials of the area can be identified and highlighted, conservation measures required for the area can be planned on a scientific footing, suitability of the area for various uses can be worked out and finally viable and sustainable land use options suitable for each and every land holding can be prescribed.

The Land Resource Inventory is basically done for identifying potential and problem areas, developing sustainable land use plans, estimation of surface run off and water potential, of soil and water conservation harvesting preparation plans. land degradation/desertification etc. The Bureau is presently engaged in developing an LRI methodology using high resolution satellite remote sensing data and Digital Elevation Model (DEM) data to prepare Landscape Ecological Units (LEU) map representing agro-ecosystem as a whole. The LEU is preferred over landform as the base map for LRI. LEU is the assemblage of landform, slope and land use. An attempt has made to upscale the soil resource information from 1:250000 and 1:50000 scale to the LEU map in Goa and other states. An attempt will be made later to uplink the LRI data generated under Sujala-III Project to the Landscape Ecological Units (LEUs) map. For this, the major physiographic region, *i.e.*, South Deccan Plateau will be taken as an example.

The land resource inventory aims to provide site specific database for Padasavli-2 microwatershed in Aland Taluk, Kalaburgi District, Karnataka state for the Karnataka Watershed Development Department. The database was generated by using cadastral map of the village as a base along with high resolution IRS LISS IV and Cartosat-1 merged satellite imagery. Later, an attempt will be made to uplink this LRI data generated at 1:7920 scale under Sujala-III Project to the proposed Landscape Ecological Units (LEUs) map.


The study was organized and executed by the ICAR- National Bureau of Soil Survey and Land Use Planning, Regional Centre, Bangalore under Generation of Land Resource Inventory Data Base Component-1 of the Sujala-III Project funded by the World Bank.

Chapter 2

GEOGRAPHICAL SETTING

2.1 Location and Extent

The study area of Padasavli-2 microwatershed (Padasavli subwatershed) is located in the northeastern part of Karnataka in Aland Taluk, Kalaburgi District, Karnataka State (Fig.2.1). It comprises of parts of Padasavli and Sarasamba villages. It lies between $17^0 34$ ' and $17^0 37$ ' north latitude and $76^0 25$ ' and $76^0 28$ ' east longitude and covers an area of 667 ha. It is about 15 km south of Aland and is surrounded by Nagalogaon village on the southwest, Chincholi Budruk village on the west, Khanapur on the south and Nirgudi village on the north side of the microwatershed.

LOCATION MAP OF PADASAVLI-2 MICRO-WATERSHED

Fig.2.1 Location map of Padasavli-2 Microwatershed

2.2 Geology

Major rock formation observed in the microwatershed is Deccan Trapor basalt (Fig.2.2). The Deccan Traps cover the whole of Bidar, parts of Kalaburgi, Bijapur and Belgaum districts. In all, eight lava flows have been identified in Karnataka, horizontally overlying the older formations. The thickness of the individual flows averages about five metres. It is relatively uniform in petrographic character. The most common type is augite basalt. Dominant colour is grayish green and texture ranges from cryptocrystalline to glassy. The rock is often vesicular and scoriaceous filled up with secondary minerals like coloured augite, quartz, calcite and a large variety of zeolites. The Deccan Traps form an excellent building material and also used as road-metal and railway ballast.

Fig. 2.2 Basalt rock formation

2.3 Physiography

Physiographically, the area has been identified as basalt landscape based on geology. The area has been further subdivided into four landforms, viz; mounds/ridges, summits, side slopes and very gently sloping uplands based on slope and its relief features. The elevation ranges from 492 to 540 m. The mounds and ridges are mostly covered by rock outcrops.

2.4 Drainage

The area is drained by several small parallel streams that join Monia nala which further downstream joins Awarja river along its course. Though, it is not a perennial one, during rainy season it carries large quantities of rain water. The microwatershed has only few small tanks which are not capable of storing the water that flows during the rainy season. Due to this, the ground water recharge is very much affected. This is reflected in the failure of many bore wells in the villages. If the available rain water is properly harnessed by constructing new tanks and recharge structures at appropriate places in the villages, then the drinking and irrigation needs of the entire area can be easily met. The drainage network is parallel to sub parallel and dendritic.

2.5 Climate

The Kalaburgi district lies in the northern plains of Karnataka and falls under semiarid tract of the state and is categorized as drought prone with average annual rainfall of 785 mm (Table 2.1). Of the total rainfall, maximum of 595 mm is received during the south–west monsoon period from June to September, the north-east monsoon from October to early December contributes about 116 mm and the remaining 75 mm during the rest of the year. December is the coldest month with mean daily maximum and minimum temperatures being 29.5°C and 15° to 10°C respectively. During peak summer, temperatures shoot up to 45°C. Relative humidity varies from 26 per cent in summer to 62 per cent in winter. Rainfall distribution is shown in Figure 2.3. The average Potential Evapotranspiration (PET) is 150 mm and varies from a low of 115 mm in December to 232 mm in the month of May. The PET is always higher than precipitation in all the months except August and September. Generally, the length of crop growing period (LGP) is 150 days and starts from 3rd week of June to third week of November.

Sl.No.	Months	Rainfall	PET	1/2 PET
1	January	7.50	126.80	63.40
2	February	3.40	143.90	71.95
3	March	11.30	189.90	94.95
4	April	19.40	209.80	104.90
5	May	32.70	232.20	116.10
6	June	111.00	186.40	93.20
7	July	139.20	152.80	76.40
8	August	172.40	147.60	73.80
9	September	172.30	131.70	65.85
10	October	91.30	145.50	72.75
11	November	19.30	129.80	64.90
12	December	5.80	114.80	57.40
Total		785.6	149.70	

Table 2.1 Mean Monthly Rainfall, PET, 1/2 PET at Aland Taluk, Kalaburgi District

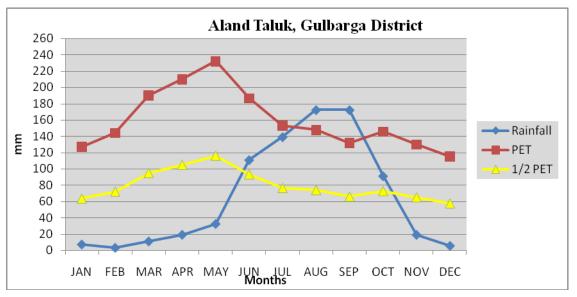
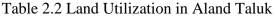


Fig 2.3 Rainfall distribution in Aland Taluk, Kalaburgi District

2.6 Natural Vegetation


The natural vegetation is sparse comprising few tree species, shrubs and herbs. The mounds, ridges and boulders occupy very sizeable area which is under thin to moderately thick forest vegetation. Still, there are some remnants of the past forest cover which can be seen in patches in some ridges and hillocks in the microwatershed.

Apart from the continuing deforestation, the presence of large population of goats, sheep and other cattle in the microwatershed is causing vegetative degradation of whatever little vegetation left in the area. The uncontrolled grazing has left no time for the regeneration of the vegetative cover. This leads to the accelerated rate of erosion on the hill slopes resulting in the formation of deep gullies in the foot slopes that eventually result in the heavy siltation of tanks and reservoirs in the microwatershed.

2.7 Land Utilization

About 89 per cent area (Table 2.2) in Aland taluk is cultivated at present. An area of about 2 per cent is permanently under pasture, 3 per cent under current fallows and 2 per cent each under non agricultural land and currently barren. Forests occupy an area of about 2 per cent and the tree cover is in a very poor state. Most of the mounds, ridges and bouldery areas have very poor vegetative cover. Major crops grown in the area are sorghum, maize, cotton, sugarcane, sunflower, groundnut, red gram and sapota. While carrying out land resource inventory, the land use/land cover particulars are collected from all the survey numbers and a current land use map of the microwatershed is prepared. The current land use map prepared shows the arable and non-arable lands, other land uses and different types of crops grown in the area. The current land use map of Padasavli-2 microwatershed is presented in Fig 2.4.

Sl. No.	Agricultural land use	Area (ha)	Per cent
1	Total geographical area	173417	
2	Total cultivated area	153806	88.69
3	Area sown more than once	7910	
4	Trees and grooves	59	0.034
5	Forest	2854	1.64
6	Cultivable wasteland	974	0.56
7	Permanent Pasture land	3469	2.00
8	Barren land	3142	1.81
9	Non- Agriculture land	3465	1.99
10	Current Fallows	5648	3.25

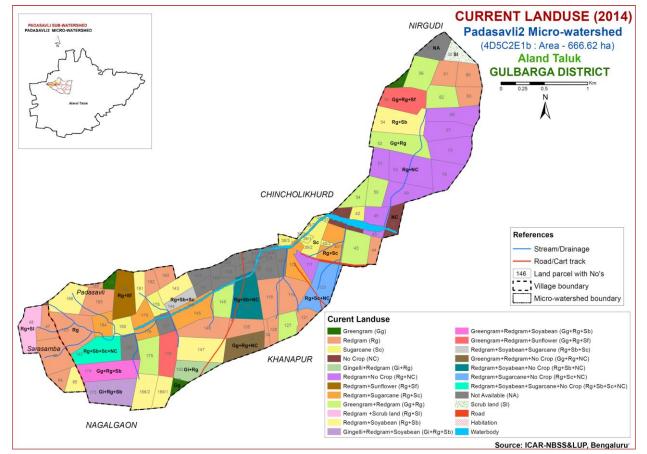


Fig.2.4 Current Land Use Map of Padasavli-2 Microwatershed

Simultaneously, enumeration of wells (bore wells and open wells) in the microwatershed was made and their location in different survey numbers is located on the cadastral map. Map showing the location of wells and other water bodies in the Padasavli-2 microwatershed is given in Figure 2.5.

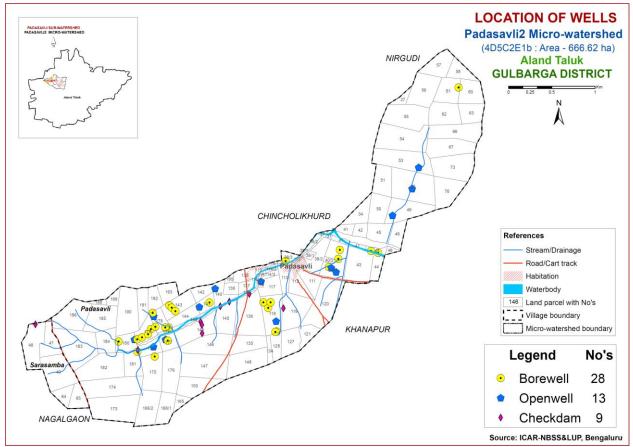


Fig.2.5 Location of Wells in Padasavli-2 Microwatershed

SURVEY METHODOLOGY

The purpose of land resource inventory is to delineate similar areas (soil series and phases), which respond or expected to respond similarly to a given level of management. This was achieved in Padasavli-2 microwatershed by the detailed study of all the soil characteristics (depth, texture, colour, structure, consistence, coarse fragments, porosity, soil reaction, soil horizons etc.) and site (slope of the land, erosion, drainage, occurrence of rock fragments etc.) followed by grouping of similar areas based on soil-site characteristics into homogeneous (management units) units and showing their area extent and geographic distribution on the microwatershed cadastral map. The detailed survey at 1:7920 scale was carried out in 667 ha area. The methodology followed for carrying out land resource inventory was as per the guidelines given in Soil Survey Manual (IARI, 1971; Soil Survey Staff, 2006; Natarajan *et al.*, 2015) which is briefly described below.

3.1 Base Maps

The detailed survey of the land resources occurring in the microwatershed was carried out by using digitized cadastral map as a base. The cadastral map shows field boundaries with their survey numbers, location of tanks, streams and other permanent features of the area (Fig. 3.1). Apart from the cadastral map, remote sensing data products from Cartosat-1 and LISS-IV merged at the scale of 1:7920 were used in conjunction with the cadastral map to identify the rock types, the landscapes, landforms and other surface features. The imagery helped in the identification and delineation of boundaries between hills, uplands and lowlands, water bodies, forest and vegetated areas, roads, habitations and other cultural features of the area (Fig. 3.2). The cadastral map was overlaid on the satellite imagery (Fig.3.3) that helps to identify the parcel boundaries and other permanent features. Apart from cadastral maps and images, toposheets of the area (1:50,000 scale) were used for initial traversing, identification of geology and landforms, drainage features, present land use and also for selection of transects in the microwatershed.

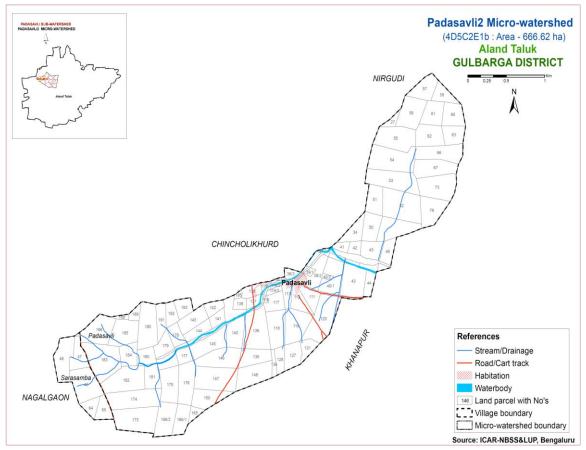


Fig 3.1 Scanned and Digitized Cadastral map of Padasavli-2 Microwatershed

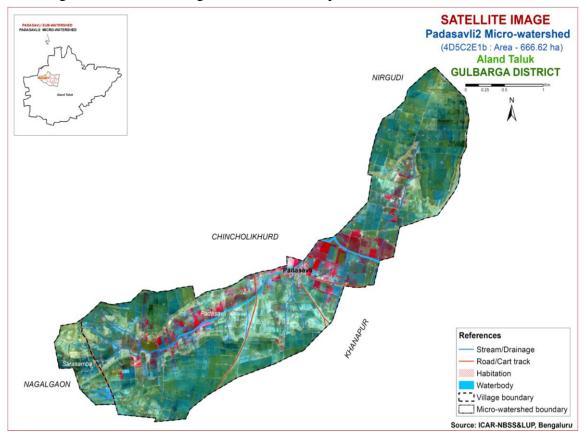


Fig.3.2 Satellite Image of Padasavli-2 Microwatershed

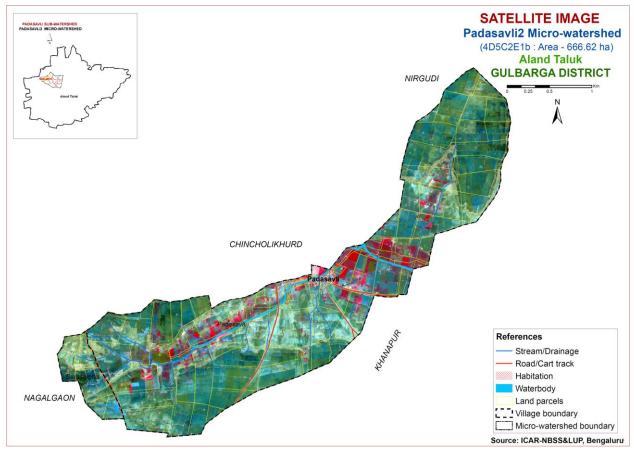


Fig.3.3 Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Padasavli-2 Microwatershed

3.2 Field Investigation

Preliminary traverse of the microwatershed was carried out with the help of cadastral map, imagery and toposheets. While traversing, landforms and physiographic units identified were checked and preliminary soil legend was prepared by studying soils at a few selected places. The field boundaries and survey numbers given on the cadastral sheet were located on the ground by following permanent features like roads, cart tracks, nallas, streams, tanks etc., and wherever changes were noticed, they were incorporated on the microwatershed cadastral map. Then, intensive traversing of each physiographic unit like hills, ridges and uplands was carried out. Based on the variability observed on the surface, transects were selected across the slope covering all the landform units in the microwatershed (Natarajan and Dipak Sarkar, 2010).

In the selected transect, soil profiles were located at closely spaced intervals to take care of any change in the land features like break in slope, erosion, gravel, stones etc. In the selected sites, profiles (vertical cut showing the soil layers from surface to the rock) were opened up to 200 cm or to the depth limited by rock or hard substratum and studied in detail for all their morphological and physical characteristics. The soil and site characteristics were recorded for all profile sites on a standard proforma as per the guidelines given in USDA Soil Survey Manual (Soil Survey Staff, 2012). Apart from the transect study, profiles were also studied at random, almost like in a grid pattern, outside the transect areas.

Based on the soil-site characteristics, the soils were grouped into different soil series (soil series is the most homogeneous unit having similar horizons and properties and behaves similarly for a given level of management). Soil depth, texture, colour, kind of horizon and horizon sequence, amount and nature of gravel present, nature of substratum etc, were used as the major differentiating characteristics for identifying soil series occurring in the area. The differentiating characteristics used for identifying soil series are given in Table 3.1. Based on the above characteristics, 8 soil series were identified in the Padasavli-2 microwatershed.

	SOILS OF BASALT LANDSCAPE								
Sl. no	Soil Series	Depth (cm)	Colour	Text- ure	Gravel (%)	Horizon sequence	Calcar- eousness		
1	Margutti (MGT)	<25	10YR3/3,4/3,5/4 7.5YR4/3	с	15-35	Ap-R/cr	-		
2	Novinihala (NHA)	25-50	10YR3/2,3/1,4/2 7.5YR3/4	с	<15	Ap-Bw- cr/R	-		
3	Bhimanahalli (BHI)	25-50	10YR3/2,3/3,3/1 7.5YR3/2,4/2	с	15-35	Ap-Bw- cr/R	-		
4	Gutti (GTT)	50-75	10YR3/2, 3/1 7.5YR3/3, 4/3	с	15-35	Ap-Bw- Bss-cr	-		
5	Kamalapur (KMP)	75-100	10YR3/2, 3/1	с	<15	Ap-Bw- Bss-cr	-		
6	Mahagaon (MAN)	>150	10YR3/2,3/1	с	<15	Ap-BA- Bss	-		

Table 3.1 Differentiating Characteristics used for Identifying Soil Series (Characteristics are of Series Control Section)

3.3 Laboratory Characterization

Soil samples were collected from representative master profiles for laboratory characterization by following the methods outlined in the Laboratory Manual (Sarma *et al*, 1987). Surface soil samples collected from farmer's fields (105 samples) for fertility status (major and micronutrients) at 250 m grid interval were analyzed in the laboratory. (Katyal and Rattan, 2003) By linking the soil fertility data to the survey numbers through GIS, soil fertility maps for 11 elements including pH and EC were generated for the microwatershed.

3.4 Finalization of Soil Maps

The area under each soil series was further separated and mapped as soil phases and their boundaries delineated on the cadastral map based on the variations observed in the texture of the surface soil, slope, erosion, presence of gravel, stoniness etc. A soil phase is a subdivision of soil series based mostly on surface features that affect its use and management.

The soil mapping units are shown on the map (Fig.3.4) in the form of symbols. During the survey about 19 profile pits, few minipits and a few auger bores representing different landforms occurring in the microwatershed were studied. All the profile locations are indicated on the village cadastral map in the form of a triangle. In addition to the profile study, spot observations in the form of minipits, road cuts, terrace cuts etc., were studied to validate the soil boundaries on the soil map. The soil map shows the geographic distribution of 29 mapping units representing 6 soil series occurring in the microwatershed. The soil map unit (soil legend) description is presented in Table 3.2.

The soil phase map (management units) shows the distribution of 29 phases identified and mapped in the microwatershed. Each mapping unit (soil phase) delineated on the map has similar soil and site characteristics. In other words, all the farms or survey numbers included in one phase will have similar management needs and they have to be treated accordingly.

The 29 soil phases identified and mapped in the microwatershed were regrouped into 5 Land Management Units (LMU's) for the purpose of preparing a proposed crop plan for sustained development of the microwatershed. The database (soil phases) generated under LRI was utilized for identifying Land Management Units (LMUs) based on the management needs. One or more than one soil site characteristic having influence on the management have been choosen for identification and delineation of LMUs. For Padasavli-2 microwatershed, five soil and site characteristics, namely soil depth, soil texture, slope, erosion and gravel content have been considered for defining LMUs. The land management units are expected to behave similarly for a given level of management.

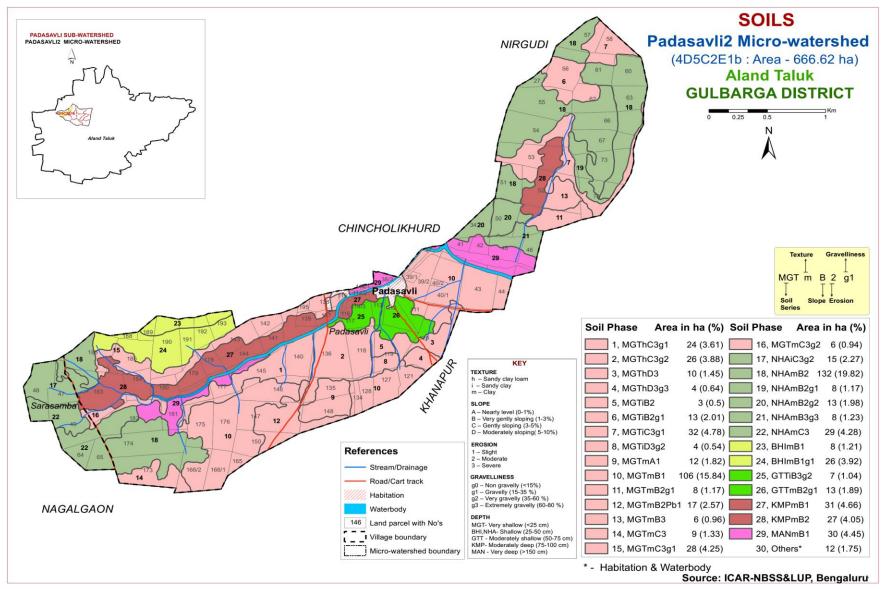


Fig 3.4 Soil Phase or Management Units map of Padasavli-2 Microwatershed

Soil map unit no.	Soil series	Soil phase	Mapping Unit Description	Area in ha (%)
		Soi	ils of Basalt Landscape	
	MGT	Margutti soils are very shallow (<25 cm), well drained, have very dark grayish brown to dark brown clayey soils occurring on very gently to moderately sloping uplands		308.52 (46.26)
1		MGThC3g1	Sandy clay loam surface, 3-5% slope, severe erosion, gravelly (15-35%)	24.06 (3.61)
2		MGThC3g2	Sandy clay loam surface, 3-5% slope, severe erosion, very gravelly (35-60%)	25.85 (3.88)
3		MGThD3	Sandy clay loam surface, 5-10% slope, severe erosion	9.65 (1.45)
4		MGThD3g3	Sandy clay loam surface, 5-10% slope, severe erosion, extremely gravelly (60-80%)	4.28 (0.64)
5		MGTiB2	Sandy clay surface, 1-3% slope, moderate erosion	3.34 (0.50)
6		MGTiB2g1	Sandy clay surface, 1-3% slope, moderate erosion, gravelly (15-35%)	13.40 (2.01)
7		MGTiC3g1	Sandy clay surface, 3-5% slope, severe erosion, gravelly (15-35%)	31.84 (4.78)
8		MGTiD3g2	Sandy clay surface, 5-10% slope, severe erosion, very gravelly (35-60%)	3.58 (0.54)
9		MGTmA1	Clay surface, 0-1% slope, slight erosion	12.12 (1.82)
10		MGTmB1	Clay surface, 1-3% slope, slight erosion	105.59 (15.84)
11		MGTmB2g1	Clay surface, 1-3% slope, moderate erosion, gravelly (15-35%)	7.83 (1.17)
12		MGTmB2pb1	Clay surface, 1-3% slope, moderate erosion, gravelly (15-35%)	17.14 (2.57)
13		MGTmB3	Clay surface, 1-3% slope, severe erosion	6.37 (0.96)
14		MGTmC3	Clay surface, 3-5% slope, severe erosion	8.89 (1.33)
15		MGTmC3g1	Clay surface, 3-5% slope, severe erosion, gravelly (15-35%)	28.30 (4.25)
16		MGTmC3g2	Clay surface, 3-5% slope, severe erosion, very gravelly (35-60%)	6.28 (0.94)
	NHA	Novinihala soil very dark grayis on very gently t	100.45 (8.12)	
17		NHAiC3g2	Sandy clay surface, 1-3% slope, severe	7.83

Table 3.2 Soil Legend

			erosion, very gravelly (35-60%)	(1.17)		
				17.14		
18		NHAmB2	Clay surface, 1-3% slope, moderate erosion	(2.57)		
10		NHAmB2g1	Clay surface, 1-3% slope, moderate erosion,	7.81		
19			gravelly (15-35%)	(1.17)		
20		NHAmB2g2	Clay surface, 1-3% slope, moderate erosion,	13.19		
20			very gravelly (35-60%)	(1.98)		
21		NHAmB3g3	Clay surface, 1-3% slope, severe erosion,	8.22		
21			extremely gravelly (60-80%)	(1.23)		
22		NHAmC3	Clay surface, 3-5% slope, severe erosion	29		
				(4.28)		
		Bhimanahalli soils are shallow (25-50 cm), well drained,		34.23		
	BHI	have very dark	(5.13)			
		gently sloping t	gently sloping to gently sloping uplands.			
23		BHImB1	Clay surface, 1-3% slope, slight erosion	8.10		
				(1.21)		
24		BHImB1g1	Clay surface, 1-3% slope, slight erosion,	26.13		
		<u> </u>	gravelly (15-35%)	(3.92)		
	C T T		moderately shallow (50-75 cm), moderately	19.51		
	GTT		have very dark gray to brown clayey soils ery gently sloping uplands under cultivation	(2.93)		
		< 0 0				
25		GTTiB3g2	Sandy clay surface, 1-3% slope, severe	6.92		
			erosion, very gravelly (35-60%)	(1.04)		
26		GTTmB2g1	Clay surface, 1-3% slope, moderate erosion,	12.59		
		Vamalanun	gravelly (15-35%) bils are moderately deep (75-100 cm),	(1.89)		
	KMP	_	58.04 (8.71)			
		moderately well grayish brown				
			s under cultivation	31.06		
27		KMPmB1	Clay surface, 1-3% slope, slight erosion	(4.66)		
				26.98		
28		KMPmB2	Clay surface, 1-3% slope, moderate erosion	(4.05)		
		Mahagaon soil	s are very deep (>150 cm), moderately well	<u>(4.03)</u> 29.63		
	MAN	drained, have very dark gray to very dark grayish brown		(4.45)		
		cracking clay soils occurring on very gently sloping uplands		((1-1-3))		
			is securing on very gentry sloping uplands	29.63		
29		MANmB1	Clay surface, 1-3% slope, slight erosion	(4.45)		
	Miscellaneous Lands					
		Habitation		11.69 (1.75)		
				(1.75)		

THE SOILS

Detailed information pertaining to the nature, extent and distribution of different kinds of soils occurring in Padasavli-2 microwatershed is provided in this chapter. The microwatershed area has been identified as basalt landscape. In all, 6 soil series were identified in this landscape. Soil formation is the result of the combined effect of environmental and terrain factors that are reflected in soil morphology. In the basalt landscape, it is by parent material and climate. A brief description of each of the 6 soil series identified followed by 29 soil phases (management units) mapped under each series are furnished below. The soils in any one map unit differ from place to place in their depth, texture, slope, gravelliness, erosion or any other site characteristics that affect management. The soil phase map can be used for identifying the suitability of areas for growing specific crops or for other alternative uses and also for deciding the type of conservation structures needed. The detailed information on soil and site-characteristics like soil depth, surface soil texture, slope, erosion, gravelliness, AWC, LCC etc, with respect to each of the soil phase identified is given village/survey number wise for the microwatershed in Appendix-I.

4.1 Soils of Basalt Landscape

In this landscape, 6 soil series are identified and mapped. Of these, Margutti (MGT) soil series occupies maximum area of about 309 ha (46%). The brief description of each series along with the soil phases identified and mapped is given below.

4.1.1 Margutti (MGT) Series: Margutti soils are very shallow (<25cm), well drained, have very dark grayish brown to dark brown clay soils. They have developed from basalt and occur on very gently sloping to strongly sloping uplands.

The total depth of the soil ranges from 10 to 23 cm. The thickness of A horizon ranges from 7 to 18 cm. Its colour is in 10 YR and 7.5 YR hue with value 3 to 4 and chroma 2 to 4. The texture is clay with 15 to 35 per cent gravel. The available water capacity is very low (<50 mm/m).

MGThC3g1	Sandy clay loam surface, 3-5% slope, severe erosion, gravelly (15-35%)
MGThC3g2	Sandy clay loam surface, 3-5% slope, severe erosion, very gravelly (35-60%)
MGThD3	Sandy clay loam surface, 5-10% slope, severe erosion
MGThD3g3	Sandy clay loam surface, 5-10% slope, severe erosion, extremely gravelly (60-80%)
MGTiB2	Sandy clay surface, 1-3% slope, moderate erosion
MGTiB2g1	Sandy clay surface, 1-3% slope, moderate erosion, gravelly (15-35%)

Sixteen phases were identified:

MGTiC3g1	Sandy clay surface, 3-5% slope, severe erosion, gravelly (15-35%)
MGTiD3g2	Sandy clay surface, 5-10% slope, severe erosion, very gravelly (35-60%)
MGTmA1	Clay surface, 1-3% slope, slight erosion
MGTmB1	Clay surface, 1-3% slope, slight erosion
MGTmB2g1	Clay surface, 1-3% slope, moderate erosion, gravelly (15-35%)
MGTmB2pb1	Clay surface, 1-3% slope, moderate erosion, gravelly (15-35%)
MGTmB3	Clay surface, 1-3% slope, severe erosion
MGTmC3	Clay surface, 3-5% slope, severe erosion
MGTmC3g1	Clay surface, 3-5% slope, severe erosion, gravelly (15-35%)
MGTmC3g2	Clay surface, 3-5% slope, severe erosion, very gravelly (35-60%)

Landscape and Soil Profile Characteristics of Margutti (MGT) Series

4.1.2 Novinihala (NHA) Series: Novinihala soils are shallow (25-50 cm), well drained, have very dark grayish brown to dark brown clay soils. They have developed from basalt and occur on very gently to moderately sloping uplands.

The thickness of the solum ranges from 27 to 48 cm. The thickness of A horizon ranges from 12 to 20 cm. Its colour is in 7.5 YR and 10 YR hue with value 3 to 4 and chroma 2 to 4. The texture varies from sandy clay to clay with 10 to 20 per cent gravel. The thickness of B horizon ranges from 22 to 37 cm.

Its colour is in 10 YR and 7.5 YR hue with value 3 to 4 and chroma 2 to 4. Its texture is clay with gravel content of 10-15 per cent. The available water capacity is low (51-100 mm/m).

Six phases were identified:

NHAiC3g2	Sandy clay surface, 1-3% slope, severe erosion, very gravelly (35-60%)
NHAmB2	Clay surface, 1-3% slope, moderate erosion
NHAmB2g1	Clay surface, 1-3% slope, moderate erosion, gravelly (15-35%)
NHAmB2g2	Clay surface, 1-3% slope, moderate erosion, very gravelly (35-60%)
NHAmB3g3	Clay surface, 1-3% slope, severe erosion, extremely gravelly (60-80%)
NHAmC3	Clay surface, 3-5% slope, severe erosion

Landscape and Soil Profile Characteristics of Novinihala (NHA) Series

4.1.3 Bhimanahalli (BHI) Series: Bhimanahalli soils are shallow (25-50 cm), well drained, have very dark gray to brown clay soils. They have developed from basalt and occur on very gently sloping uplands.

The thickness of the solum ranges from 29 to 48 cm. The thickness of A horizon ranges from 15 to 20 cm. Its colour is in 7.5 YR and 10 YR hue with value 3 to 4 and chroma 2 to 4. The texture varies from sandy clay to clay with 15 to 25 per cent gravel. The thickness of B horizon ranges from 23 to 33 cm. Its colour is in 10 YR and 7.5 YR hue with value 3 to 4 and chroma 1 to 3. Its texture is clay with gravel content of 15 to 35 per cent. The available water capacity is very low (<50 mm/m).

Two phases were identified:

BHImB1	Clay surface, 1-3% slope, slight erosion
BHImB1g1	Clay surface, 1-3% slope, slight erosion, gravelly (15-35%)

Landscape and Soil Profile Characteristics of Bhimanahalli (BHI) Series

4.1.4 Gutti (GTT) Series: Gutti soils are moderately shallow (50-75 cm), moderately well drained, have very dark gray to brown clayey soils. They have developed from basalt and occur on very gently sloping uplands.

The thickness of the solum ranges from 51 to 74 cm. The thickness of A horizon ranges from 7 to 23 cm. Its colour is in 10 YR and 7.5 YR hue with value 3 to 4 and chroma 2 to 3. The texture is clay with 10 to 15 per cent gravel. The thickness of B horizon ranges from 28 to 65 cm. Its colour is in 10 YR and 7.5 YR hue with value 3 to 4 and chroma 2 to 3. Its texture is clay with gravel content of 15 to 35 per cent. The available water capacity is low (51-100 mm/m).

Two phases were identified:

GTTiB3g2	Sandy clay surface, 1-3% slope, severe erosion, very gravelly (35-60%)
GTTmB2g1	Clay surface, 1-3% slope, moderate erosion, gravelly (35-60%)

Landscape and Soil Profile Characteristics of Gutti (GTT) Series

4.1.5 Kamalapur (KMP) Series: Kamalapur soils are moderately deep (75-100 cm), moderately well drained, have very dark gray to very dark grayish brown cracking clay soils. They have developed from basalt and occur on very gently sloping uplands.

The thickness of the solum ranges from 75 to 95 cm. The thickness of A horizon ranges from 10 to 30 cm. Its colour is in 10 YR and 7.5 YR hue with value 3 to 4 and chroma 1 to 4. The texture is clay with less than 10 per cent gravel. The thickness of B horizon ranges from 45 to 84 cm. Its colour is in 10 YR hue with value 3 to 4 and chroma 1 to 4. Its texture is clay with gravel content of less than 15 per cent. The available water capacity is medium (101-150 mm/m).

Two phases were identified:

KMPmB1	Clay surface, 1-3% slope, slight erosion
KMPmB2	Clay surface, 1-3% slope, moderate erosion

Landscape and Soil Profile Characteristics of Kamalapur (KMP) Series

4.1.6 Mahagaon (MAN) Series: Mahagaon soils are very deep (>150 cm), moderately well drained, have very dark gray to very dark grayish brown cracking clay soils. They have developed from basalt and occur on nearly level lands.

The thickness of the solum ranges from 150 to 195 cm. The thickness of A horizon ranges from 18 to 22 cm. Its colour is in 10 YR and 7.5 YR hue with value 3 to 4 and chroma 1 to 3. The texture is clay with less than 10 per cent gravel. The thickness of B horizon ranges from 130 to 160 cm. Its colour is in 10 YR hue with value 3 to 4 and chroma 1 to 2. Its texture is clay with gravel content of less than 15 per cent. The available water capacity is very high (>200 mm/m).

Only one phase was identified:

MANmB1 Clay surface, 1-3% slope, slight erosion	MANmB1	Clay surface, 1-3% slope, slight erosion

Landscape and Soil Profile Characteristics of Mahagaon (MAN) Series

INTERPRETATION FOR LAND RESOURCE MANAGEMENT

The most important soil and site characteristics that affect land use and conservation needs of an area are land capability, soil depth, soil texture, coarse fragments, available water capacity, soil slope, soil erosion, soil reaction etc. These are interpreted from the data base generated through land resource inventory and several thematic maps are generated. These would help in identifying the areas suitable for growing crops and, soil and water conservation measures and structures needed thus helping to maintain good soil health for sustained crop production. The various thematic maps generated are described below.

5.1 Land Capability Classification

Land capability classification is an interpretative grouping of soil map units (soil phases) mainly based on inherent soil characteristics, external land features and environmental factors that limit the use of land for agriculture, pasture, forestry, or other uses on a sustained basis (IARI, 1971). The land and soil characteristics used to group the land resources in an area into various land capability classes, subclasses and units are *Land characteristics*: Slope, erosion, drainage, rock outcrops.

Climate: Total rainfall and its distribution, and length of crop growing period.

The Land capability classification system is divided into land capability classes, subclasses and units based on the level of information available. Eight land capability classes are recognized. They are

- *Class I*: Very good lands that have no limitations or very few limitations that restrict their use.
- *Class II*: Good lands that have minor limitations and require moderate conservation practices.
- *Class III*: Moderately good lands that have moderate limitations that reduce the choice of crops or that require special conservation practices.
- *Class IV*: Fairly good lands that have very severe limitations that reduce the choice of crops or that require very careful management.
- *Class V*: Soils in these lands are not likely to erode, but have other limitations like wetness that are impractical to remove and as such not suitable for agriculture, but suitable for pasture or forestry with minor limitations.
- *Class VI*: The lands have severe limitations that make them generally unsuitable for cultivation, but suitable for pasture or forestry with moderate limitations.
- *Class VII*: The lands have very severe limitations that make them unsuitable for cultivation, but suitable for pasture or forestry with major limitations.
- *Class VIII*: Soil and other miscellaneous areas (rock lands) that have very severe limitations that nearly preclude their use for any crop production, but suitable for wildlife, recreation and wind mills.

The land capability subclasses are recognised based on the dominant limitations observed within a given land capability class. The subclasses are designated by adding a lower case letter like 'e', 'w', 's', or 'c' to the class numeral. The subclass "e" indicates that the main hazard is risk of erosion, "w" indicates drainage or wetness as a limitation for plant growth, "s" indicates shallow soil depth, coarse or heavy textures, calcareousness, salinity/alkalinity or gravelliness and "c" indicates limitation due to climate.

The land capability subclasses have been further subdivided into land capability units based on the kinds of limitations present in each subclass. Ten land capability units are used in grouping the soil map units. They are stony or rocky (0), erosion hazard (slope, erosion) (1), coarse texture (sand, loamy sand, sandy loam) (2), fine texture (cracking clay, silty clay) (3), slowly permeable subsoil (4), coarse underlying material (5), salinity/alkali (6), stagnation, overflow, high ground water table (7), soil depth (8) and fertility problems (9). The capability units thus identified have similar soil and land characteristics that respond similarly to a given level of management. The soils of the microwatershed have been classified upto land capability subclass level.

The 29 soil map units identified in the Padasavli-2 microwatershed are grouped under 4 land capability classes and 8 land capability subclasses. About 84 per cent area in the microwatershed is suitable for agriculture (Fig. 5.1) and 14 per cent not suitable for agriculture but well suited for grazing or forestry, recreation and wildlife.

Good cultivable lands (Class II) cover about 13 per cent area is distributed in the western, central and northern part of the micowatershed with minor problems of soil and erosion. Moderately good cultivable lands (Class III) cover area of about 31 per cent and are distributed in the southwestern, central and northern part of the microwatershed with moderate problems of erosion and soil. The fairly good lands (Class IV) cover maximum area of about 40 per cent. They have severe limitations of erosion and soil and are distributed in all parts of the microwatershed.

The Class VI lands cover about 14 per cent and are distributed in the southwestern and central part of the microwatershed. They are well suited for wild life, pasture, forestry and recreation. They have very severe limitations of soil and erosion.

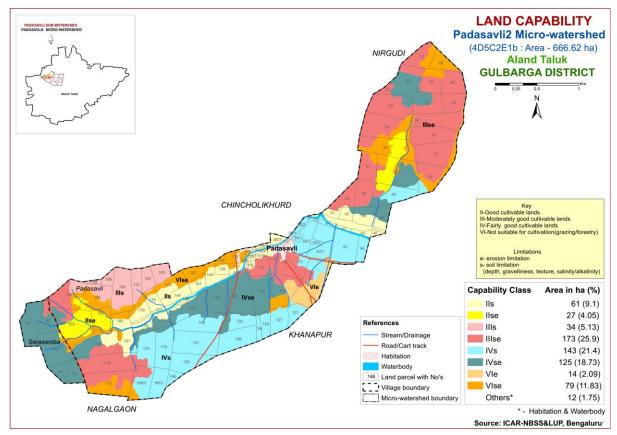


Fig. 5.1 Land Capability map of Padasavli-2 Microwatershed

5.2 Soil Depth

Soil depth refers to the depth of the soil occurring above the parent material or hard rock. The depth of the soil determines the effective rooting depth for plants and in accordance with soil texture, mineralogy and gravel content, the capacity of the soil column to hold water and nutrient availability. Soil depth is one of the most important soil characteristic that is used in differentiating soils into different soil series. The soil depth classes used in identifying soils in the field are very shallow (<25 cm), shallow (25-50 cm), moderately shallow (50-75 cm), moderately deep (75-100 cm), deep (100-150 cm) and very deep (>150 cm). They were used to classify the soils into different depth classes and a soil depth map was prepared (Fig. 5.2).

Very deep soils (>150 cm) occur in a minor area of about 30 ha (4%) and are distributed in the southwestern and central part of the microwatershed. Moderately deep soils (75-100 cm) occur in about 58 ha (9%) and are distributed in the southwestern and central part of the microwatershed. Moderately shallow (50-75 cm) soils occupy small area of about 20 ha (3%) and are distributed in the central part of the microwatershed.

Major area of about 309 ha (46%) is under very shallow soils (<25 cm) and are distributed in the all part of the microwatershed. Shallow soils (25-50 cm) occupy area of about 239 ha (36%) in the northern and western part of the microwatershed.

The most productive lands 30 ha (4%) with respect to soil rooting depth where all climatically adapted annual and perennial crops can be grown are very deep soils (>150 cm depth) occurring in the central and southwestern part of the microwatershed.

The most problem lands with a maximum area of about 548 ha (82%) having very shallow (<25 cm) and shallow (25-50 cm) occur in all parts of the microwatershed. They are not suitable for growing agricultural crops but well suited for pasture, forestry or other recreational purposes. Occasionally, short duration crops may be grown if rainfall is normal.

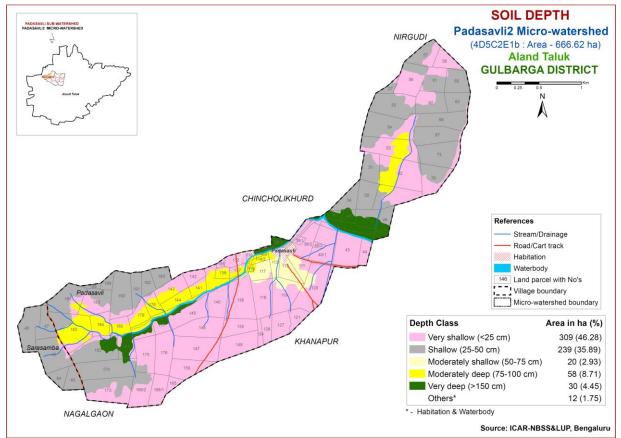


Fig. 5.2 Soil Depth map of Padasavli-2 Microwatershed

5.3 Surface Soil Texture

Texture is an expression to indicate the coarseness or fineness of the soil as determined by the relative proportion of primary particles of sand, silt and clay. It has a direct bearing on the structure, porosity, adhesion and consistence. The surface layer of a soil to a depth of about 25 cm is the layer that is most used by crops and plants. The surface soil textural class provides a guide to understanding soil-water retention and availability, nutrient holding capacity, infiltration, workability, drainage, physical and chemical behaviour, microbial activity and crop suitability.

Maximum area of about 591 ha (89%) has soils that are clayey in surface soil texture and are distributed all parts of the microwatershed (Fig. 5.3). About 64 ha (10%) area is sandy clay loam and is distributed in the central part of the microwatershed.

The most productive lands (89%) with respect to surface soil texture are the clayey soils that have high potential for soil-water retention and availability, and nutrient retention and availability, but have problems of drainage, infiltration, workability and other physical problems.

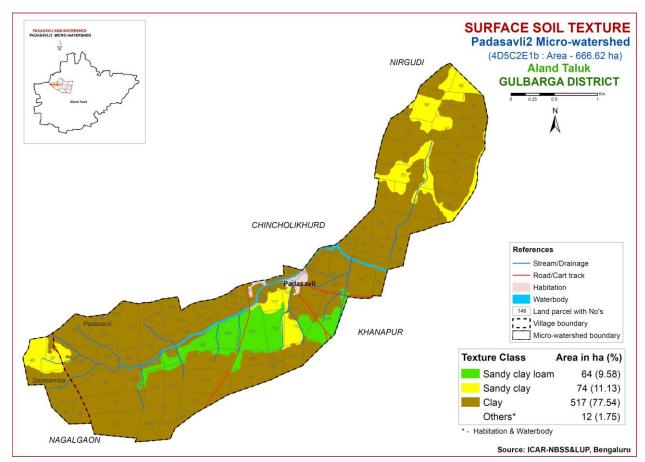


Fig. 5.3 Surface Soil Texture map of Padasavli-2 Microwatershed

5.4 Soil Gravelliness

Gravel is the term used for describing coarse fragments between 2 mm and 7.5 cm diameter and stones for those between 7.5 cm and 25 cm. The presence of gravel and stones in soil reduces the volume of soil responsible for moisture and nutrient storage, drainage, infiltration and runoff and hinders plant growth by impeding root growth and seedling emergence, intercultural operations and farm mechanization.

Maximum area has soils that are nongravelly (<15%) covering about 420 ha (63%) and are distributed all over the microwatershed (Fig.5.4).

About 152 ha (23%) area in the microwatershed has soils that are gravelly (15-35%) and are distributed in the western, central and northern part of the microwatershed. An area of about 71 ha (11%) has soils that are very gravelly (35-60%) that are distributed in the central part of the microwatershed. Extremely gravelly (60-80%) soils covering about 13 ha (2%) area in the microwatershed and are distributed in the central part of the microwatershed.

The most productive lands with respect to gravelliness are found to be 63 per cent. They are nongravelly with less than 15 per cent gravel and have potential for growing both annual and perennial crops.

The problem soils that are very gravelly (35-60%) and extremely gravelly (60-80%) are found to be 13 per cent where only short duration crops can be grown.

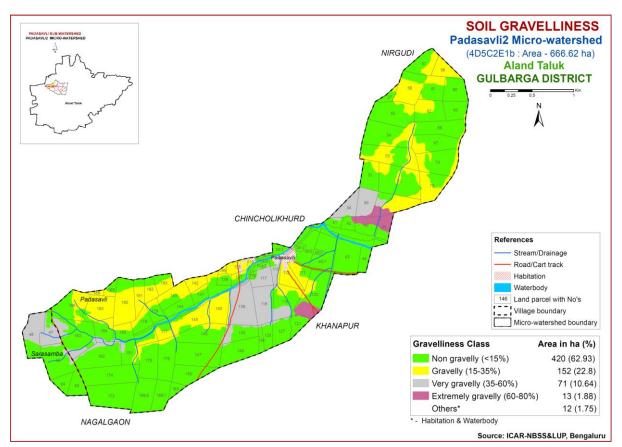


Fig. 5.4 Soil Gravelliness map of Padasavli-2 Microwatershed

5.5 Available Water Capacity

The soil available water capacity (AWC) is estimated based on the ability of the soil column to retain water between the tensions of 0.33 and 15 bar in a depth of 100 cm or the entire solum if the soil is shallower. The AWC of the soils (soil series) as estimated by considering the soil texture, mineralogy, soil depth and gravel content (Sehgal *et al.*, 1990) and accordingly the soil map units were grouped into five AWC classes *viz*, very low (<50 mm/m), low (50-100 mm/m), medium (100-150 mm/m), high (150-200 mm/m) and very high (>200 mm/m) and using these values, an AWC map was prepared (Fig. 5.5).

The major area of about 343 ha (51%) has soils that are very low (<50 mm/m) in available water capacity and are distributed in all parts of the microwatershed. An area of about 225 ha (34%) has soils that are low (51-100 mm/m) in available water capacity and are distributed in the northern, central and southwestern part of the microwatershed. An area of about 58 ha (9%) has soils that are medium (101-150 mm/m) in available water capacity and

are distributed in the northern and western part of the microwatershed followed by soils that are very high (>200 mm/m) in AWC covering a small area of about 30 ha (4%) in the microwatershed and are distributed in the central part of the microwatershed.

An area of about 30 ha (4%) has soils that have very high potential (>200 mm/m) with regard to available water capacity. In these areas, if the rainfall is normal and well distributed, all climatically adapted long duration annual and perennial crops can be grown. About 568 ha (85%) area in the microwatershed has soils that are problematic with regard to available water capacity. Here, only the short or medium duration crops can be grown and the probability of crop failure is very high. These areas are best put to other alternative uses.

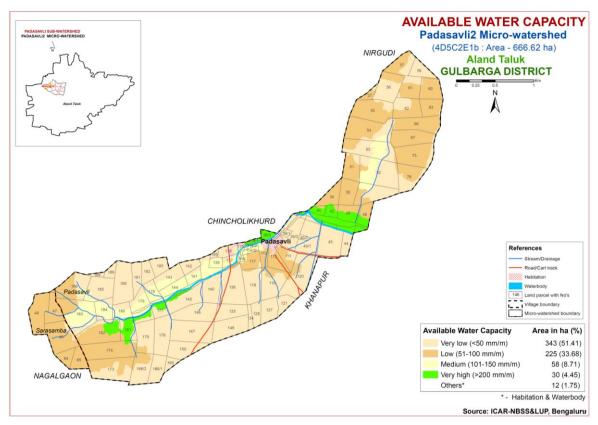


Fig. 5.5 Soil Available Water Capacity map of Padasavli-2 Microwatershed

5.6 Soil Slope

Soil slope refers to the inclination of the surface of the land. It is defined by gradient, shape and length, and is an integral feature of any soil as a natural body. Slope is considered important in soil genesis, land use and land development. The length and gradient of slope influences the rate of runoff, infiltration, erosion and deposition. The soil map units were grouped into four slope classes and a slope map was prepared showing the area extent and geographic distribution of different slope classes in the microwatershed (Fig. 5.6).

The major area of the microwatershed falls under very gently sloping (1-3%) class. It covers an area of about 456 ha (66%) and is distributed in all parts of the microwatershed. An

area of about 169 ha (25%) in the microwatershed falls under gently sloping (3-5%) class and is distributed in the northern, central and southwestern part of the microwatershed.

Moderately sloping (5-10%) lands cover about a very small area of 18 ha (3%) and is distributed in the central part of the microwatershed. Nearly (0-1% slope) lands cover a minor area of about 12 ha (2%) and distributed in the central part of the microwatershed. An area of about 468 ha (70%) in the microwatershed has soils that have high potential in respect of soil slopes. In these areas, all climatically adapted annual and perennial crops can be grown without much soil and water conservation and other land development measures.

An area of about 18 ha (12%) in the microwatershed has soils that are problematic in respect of slopes.

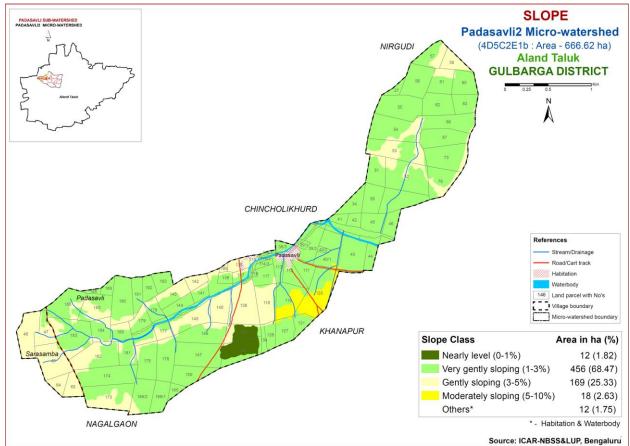


Fig. 5.6 Soil Slope map of Padasavli-2 Microwatershed

5.7 Soil Erosion

Soil erosion refers to the wearing away of the earth's surface by the forces of water, wind and ice involving detachment and transport of soil by raindrop impact. It is used for accelerated soil erosion resulting from disturbance of the natural landscape by burning, excessive grazing and indiscriminate felling of forest trees and tillage, all usually by man. The erosion classes showing an estimate of the current erosion status as judged from field observations in the form of rills, gullies or a carpet of gravel on the surface are recorded. Four erosion classes, viz, slight erosion (e1), moderate erosion (e2), severe erosion (e3) and very severe (e4) are recognized. The soil map units were grouped into different erosion classes and soil erosion map was generated. The area extent and their spatial distribution in the microwatershed is given in Figure 5.7.

Soils that are slightly eroded (e1 class) cover about 213 ha (32%) and are distributed in the southwestern and central part of the microwatershed. Soils that are moderately eroded (e2 class) cover maximum area of about 234 ha (35%) and are distributed in the southwestern, central and northern part of the microwatershed. Severely eroded (e3 class) soils cover an area about 208 ha (31%) and are distributed in the northern, central and southwestern part of the microwatershed.

Top priority is to be given to 208 ha area where they are severely eroded for taking up soil and water conservation and other land development measures followed by moderately eroded lands that cover about 234 ha.

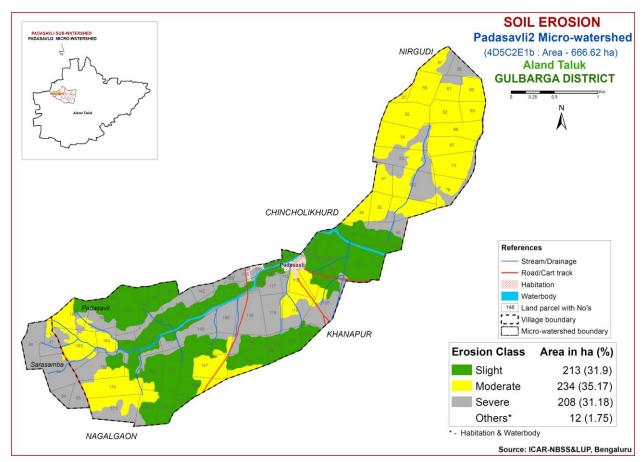


Fig. 5.7 Soil Erosion map of Padasavli-2 Microwatershed

FERTILITY STATUS

Soil fertility plays an important role in increasing crop yield. The adoption of high yielding varieties that require high amounts of nutrients has resulted in deficiency symptoms in crops and plants due to imbalanced fertilization and poor inherent fertility status. Hence, it is necessary to know the fertility (macro and micro nutrients) status of the soils of the watersheds for assessing the kind and amount of fertilizers required for each of the crop intended to be grown. For this purpose, the surface soil samples collected from the grid points (one soil sample at every 250 m interval) all over the microwatershed through land resource inventory in the year 2014 were analysed for pH, EC, organic carbon, available phosphorus, potassium and for micronutrients like zinc, boron, copper, iron and manganese and secondary nutrient sulphur.

Soil fertility data generated has been assessed and individual maps for all the nutrients for the microwatershed have been prepared. The village/survey number wise fertility data for the microwatershed is given in Appendix-II.

6.1 Soil Reaction (pH)

The soil fertility analysis of the Padasavli-2 microwatershed for soil reaction (pH) showed that maximum area of 407 ha (61%) is under moderately alkaline (pH 7.8-8.4) and is distributed in all parts of the microwatershed (Fig 6.1). About 223 ha (33%) area is slightly alkaline (pH 7.3-7.8) and is distributed in the northern and southwestern part of the microwatershed. About a small area of 17 ha (3%) has soils that are neutral (pH 6.5-7.3) and are distributed in the northern part of the microwatershed. A very small area of about 9 ha (1%) is strongly alkaline (pH 8.4-9.0) in reaction and are distributed in the central part of the microwatershed.

6.2 Electrical Conductivity (EC)

The Electrical Conductivity of the soils of the entire microwatershed area is $<2 \text{ dSm}^{-1}$ (Fig 6.2) and as such the soils in the microwatershed are nonsaline.

6.3 Organic Carbon

The soil organic carbon content of the soils in the microwatershed is medium (0.5-0.75%) in 501 ha (75%) area that are distributed in all parts of the microwatershed (Fig.6.3). Low (<0.5%) organic carbon content accounts for 112 ha (17%) area and is distributed in the central and southwestern part of the microwatershed. High (>0.75%) organic carbon content accounts for small area 43 ha (6%) and are distributed in the central and southwestern part of the microwatershed.

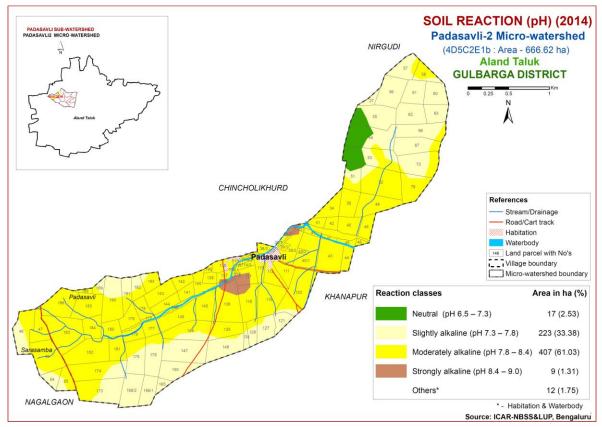


Fig.6.1 Soil Reaction (pH) map of Padasavli-2 Microwatershed

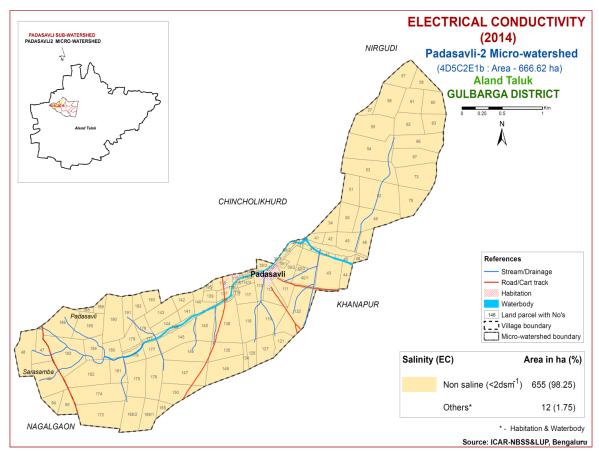


Fig.6.2 Electrical Conductivity (EC) map of Padasavli-2 Microwatershed

6.4 Available Phosphorus

The soil fertility analysis revealed that available phosphorus is low (<23 kg/ha) in major area of about 623 ha (94%) and is distributed in all parts of the microwatershed (Fig 6.4). There is an urgent need to increase the dose of phosphorous for all the crops by 25 per cent over the recommended dose to realize better crop performance. A small area of about 27 ha (4%) is medium (23-57 kg/ha) and is distributed in the central and southern part. A very small area of about 4 ha is high (>57 kg/ha) in available phosphorus and is distributed in the central part of the microwatershed.

6.5 Available Potassium

Available potassium content is high (>337 kg/ha) in 269 ha (40%) area and is distributed in the northern, central and southwestern part of the microwatershed (Fig 6.5); medium available potassium (145-337 kg/ha) content accounts for major area of 326 ha (49%) and are distributed in all parts of the microwatershed and low available potassium (<145 kg/ha) content accounts for an area of 60 (9%) and are distributed in the southern and central part of the microwatershed.

6.6 Available Sulphur

Maximum area of about 467 ha (70%) is low (<10 ppm) in available sulphur and is distributed in all parts of the microwatershed (Fig 6.6). Available sulphur content is medium (10-20 ppm) in 181 ha (27%) area and is distributed in the northern and central part of the microwatershed. Available sulphur is high (>20 ppm) in a very small area of 7 ha (1%) and is distributed in the central part of the microwatershed.

6.7 Available Boron

Available boron content is low (<0.5 ppm) in major area of about 340 ha (51%) and is distributed in all parts of the microwatershed. About 308 ha (46%) has soils that are medium (0.5-1.0 ppm) in available boron (Fig 6.7) and is distributed in all parts of the microwatershed. Available boron is high (>1.0 ppm) in small area of 7 ha (1%) and is distributed in the central part of the microwatershed.

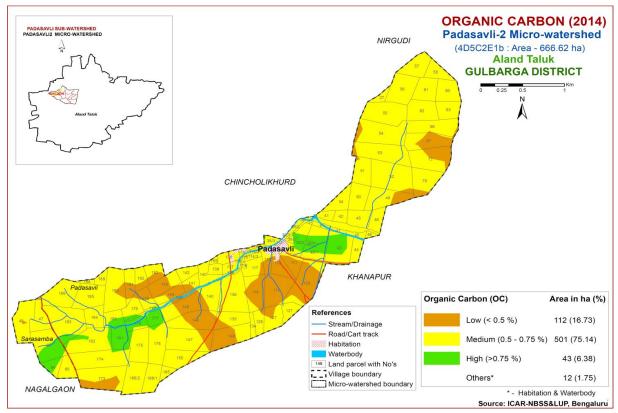


Fig.6.3 Soil Organic Carbon map of Padasavli -2 Microwatershed

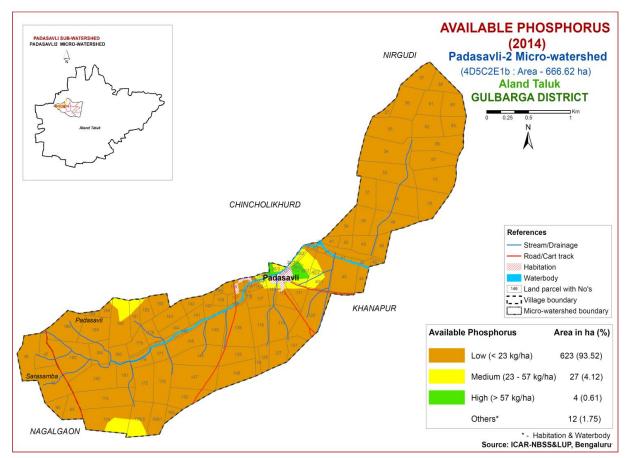


Fig.6.4 Soil available Phosphorus map of Padasavli-2 Microwatershed

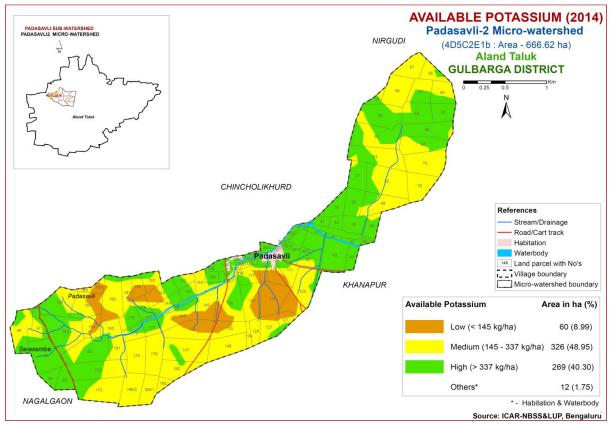


Fig.6.5 Soil available Potassium map of Padasavli-2 Microwatershed

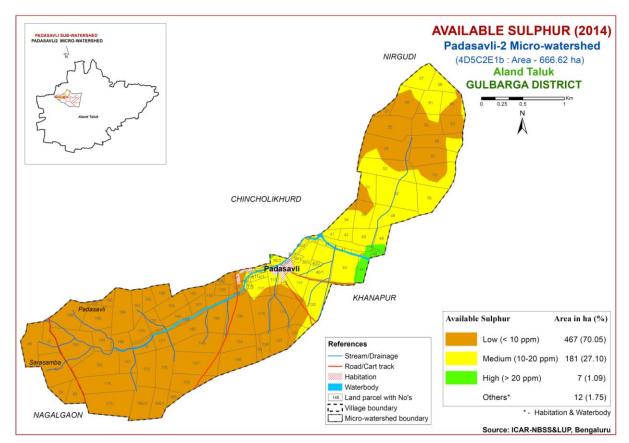


Fig.6.6 Soil available Sulphur map of Padasavli-2 Microwatershed

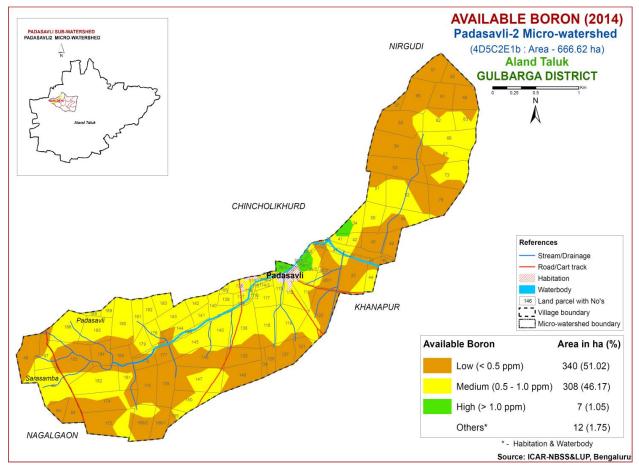


Fig.6.7 Soil available Boron map of Padasavli-2 Microwatershed

6.8 Available Iron

Available iron content is deficient (<4.5 ppm) in an area of 187 ha (28%) and is distributed in the central and southwestern part of the microwatershed (Fig 6.8). It is sufficient in major area of 468 ha (70%) and are distributed in all parts of the microwatershed.

6.9 Available Manganese

Available manganese content is sufficient (>1.0 ppm) in the entire microwatershed area (Fig 6.9).

6.10 Available Copper

Available copper content is sufficient (>0.2 ppm) in the entire microwatershed area (Fig 6.10).

6.11 Available Zinc

Available zinc content is deficient (<0.6 ppm) in major area of about 522 ha (78%) and is distributed in all parts of the microwatershed (Fig 6.11). It is sufficient (>0.6 ppm) in an area of about 132 ha (20%) and is distributed in the central, northern and southwestern part.

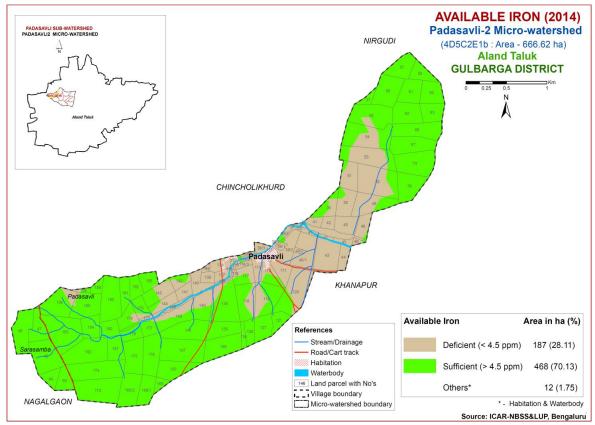


Fig.6.8 Soil available Iron map of Padasavli-2 Microwatershed

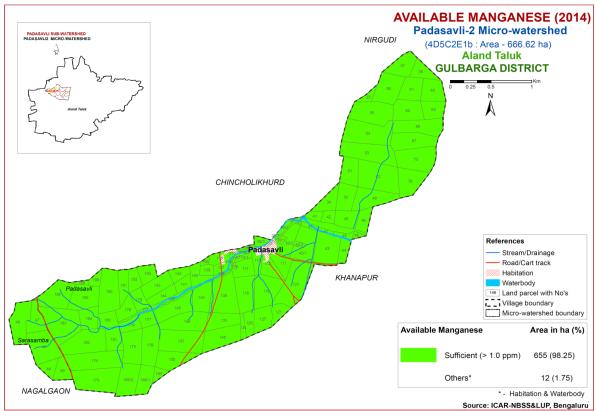


Fig.6.9 Soil available Manganese map of Padasavli -2 Microwatershed

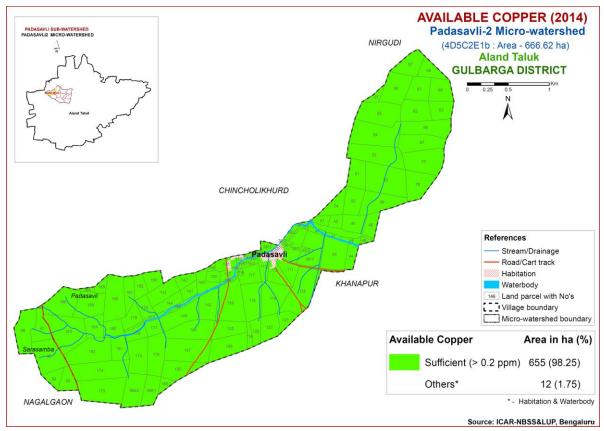


Fig.6.10 Soil available Copper map of Padasavli-2 Microwatershed

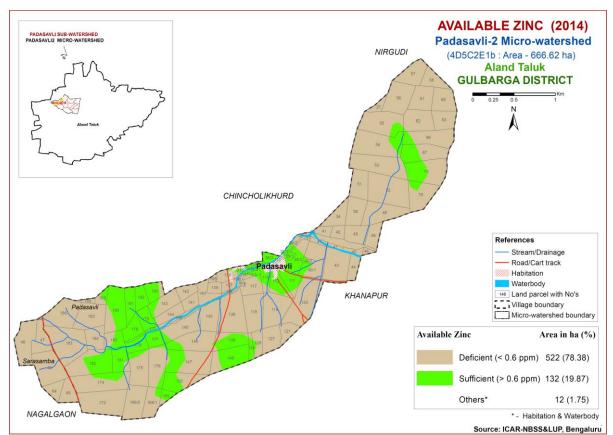


Fig.6.11 Soil available Zinc map of Padasavli-2 Microwatershed

LAND SUITABILITY FOR MAJOR CROPS

The soil and land resource units (soil phases) of Padasavli-2 microwatershed were assessed for their suitability for growing food, fodder, fibre and other horticulture crops by following the procedure as outlined in FAO, 1976 and 1983. Crop requirements were developed for each of the crop from the available research data and also by referring to Naidu et. al. (2006) and Natarajan et. al (2015). The crop requirements were matched with the soil and land characteristics (Table 7.1) to arrive at the crop suitability. In FAO land suitability classification, two orders are recognized. Order S-Suitable and Order N-Not suitable. The orders have classes, subclasses and units. Order-S has three classes, Class S1-Highly Suitable, Class S2-Moderately Suitable and Class S3- Marginally Suitable. Order N has two classes, N1-Currently not Suitable and N2-Permanently not Suitable. There are no subclasses within the class S1 as they will have very minor or no limitations for crop growth. Classes S2 and S3 are divided into subclasses based on the kinds of limitations encountered. The limitations that affect crop production are 'c' for erratic rainfall and its distribution and length of growing period (LGP), 'e' for erosion hazard, 'r' for rooting condition, 't' for lighter or heavy texture, 'g' for gravelliness or stoniness, 'n' for nutrient availability, 'l' for topography, 'm' for moisture availability and 'w' for drainage. These limitations are indicated as lower case letters to the class symbol. For example, moderately suitable land with the limitations of soil depth and erosion is designated as S2re. For the microwatershed, the soil mapping units were evaluated and classified up to subclass level.

Using the above criteria, the soil map units of the microwatershed were evaluated and land suitability maps for 18 major annual and perennial crops were generated. The detailed information on the kind of suitability of each of the soil phase for the crops assessed are given village/ survey number wise for the microwatershed in Appendix-III.

7.1 Land Suitability for Sorghum (Sorghum bicolor)

Sorghum is one of the major crops grown in Karnataka in an area of 11.02 lakh ha in northern Karnataka in Bijapur, Kalaburgi, Raichur, Bidar, Belgaum, Dharwad and Bellary districts. The crop requirements for growing sorghum (Table 7.2) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and land suitability map for growing sorghum was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed is given in Figure. 7.1.

An area of about 61 ha (9%) in the microwatershed has soils that are highly suitable (class S1) for growing sorghum crop. They are distributed mainly in the southwestern and central part of the microwatershed. A small area of about 40 ha (6%) is moderately suitable (class S2) for growing sorghum and are distributed in the southwestern and central part the microwatershed. They have minor limitations of erosion and rooting depth.

*	Climate	Growing	Drai-	Soil	Soil	texture	Grave	elliness	AWC	Slope				CEC	
Soil Map Units	(P) (mm)	period (Days)	nage class	depth (cm)	Surf- ace	Sub- surface	Surface (%)	Subsurfa ce (%)	(mm/m)	(%)	Erosion	pН	EC E	$\begin{array}{c c} SP & [Cmc] \\ (p^+) kg \end{array}$	
MGThC3g1	786	150	WD	<25	scl	с	15-35	15-35	<50	3-5	Severe	6.8	0.3 0	2 46	100
MGThC3g2	786	150	WD	<25	scl	c	35-60	15-35	<50	3-5	Severe	6.8	0.3 0	2 46	100
MGThD3	786	150	WD	<25	scl	с	-	15-35	<50	5-10	Severe	6.8	0.3 0	2 46	100
MGThD3g3	786	150	WD	<25	scl	c	60-80	15-35	<50	5-10	Severe	6.8	0.3 0	2 46	100
MGTiB2	786	150	WD	<25	sc	c	-	15-35	<50	1-3	Moderate	6.8	0.3 0	2 46	100
MGTiB2g1	786	150	WD	<25	sc	c	15-35	15-35	<50	1-3	Moderate	6.8	0.3 0	2 46	100
MGTiC3g1	786	150	WD	<25	sc	c	15-35	15-35	<50	3-5	Severe	6.8	0.3 0	2 46	100
MGTiD3g2	786	150	WD	<25	sc	c	35-60	15-35	<50	5-10	Severe	6.8	0.3 0	2 46	100
MGTmA1	786	150	WD	<25	c	c	-	15-35	<50	0-1	Slight	6.8	0.3 0	2 46	100
MGTmB1	786	150	WD	<25	c	c	-	15-35	<50	1-3	Slight	6.8	0.3 0	2 46	100
MGTmB2g1	786	150	WD	<25	c	c	15-35	15-35	<50	1-3	Moderate	6.8	0.3 0	2 46	100
MGTmB2g1	786	150	WD	<25	c	c	15-35	15-35	<50	1-3	Moderate	6.8	0.3 0	2 46	100
MGTmB3	786	150	WD	<25	c	c	-	15-35	<50	1-3	Severe	6.8	0.3 0	2 46	100
MGTmC3	786	150	WD	<25	c	c	-	15-35	<50	3-5	Severe	6.8	0.3 0	2 46	100
MGTmC3g1	786	150	WD	<25	c	c	15-35	15-35	<50	3-5	Severe	6.8	0.3 0	2 46	100
MGTmC3g2	786	150	WD	<25	c	c	35-60	15-35	<50	3-5	Severe	6.8	0.3 0	2 46	100
NHAiC3g2	786	150	WD	25-50	sc	c	35-60	<15	51-100	3-5	Severe	7.2	0.1 0.	3. 40	100
NHAmB2	786	150	WD	25-50	с	с	-	<15	51-100	1-3	Moderate	7.2	0.1 0.	3. 40	100
NHAmB2g1	786	150	WD	25-50	с	с	15-35	<15	51-100	1-3	Moderate	7.2	0.1 0.	3. 40	100
NHAmB2g2	786	150	WD	25-50	с	с	35-60	<15	51-100	1-3	Moderate	7.2	0.1 0.	3. 40	100
NHAmB3g3	786	150	WD	25-50	с	с	60-80	<15	51-100	1-3	Severe	7.2	0.1 0.	3. 40	100
NHAmC3	786	150	WD	25-50	c	c	-	<15	51-100	3-5	Severe	7.2	0.1 0.	3. 40	100
BHImB1	786	150	WD	25-50	c	с	-	15-35	<50	1-3	Slight	7.0	0.1 0	2 28	100

Table 7.1 Soil-Site Characteristics of Padasavli-2 Microwatershed

*	Climate	Growing	Drai-	Soil	Soil t	exture	Grave	lliness	AWC	Slope					CEC	
Soil Map Units	(P)	period	nage	depth	Surf-	Sub-	Surface	Subsurfa	(mm/m)	(%)	Erosion	pН	EC	ESP		BS (%)
I	(mm)	(Days)	class	(cm)	ace	surface	(%)	ce (%)	(11111/111)	(70)					$(p^+) kg^{-1}$]	
BHImB1g1	786	150	WD	25-50	c	с	15-35	15-35	<50	1-3	Slight	7.0	0.1	0.2	28	100
GTTiB3g2	786	150	MWD	50-75	sc	с	35-60	15-35	51-100	1-3	Severe	6.5	0.1	0.6	38	91
GTTmB2g1	786	150	MWD	50-75	c	с	15-35	15-35	51-100	1-3	Moderate	6.5	0.1	0.6	38	91
KMPmB1	786	150	MWD	75-100	c	с	-	<15	101-150	1-3	Slight	6.7	0.2	0.2	43	100
KMPmB2	786	150	MWD	75-100	c	с	-	<15	101-150	1-3	Moderate	6.7	0.2	0.2	43	100
MANmB1	786	150	MWD	>150	c	с	-	<15	>200	1-3	Slight	8.3	0.2	0.1	58	100

*Symbols and abbreviations are according to Field Guide for LRI under Sujala-III Project, Karnataka

Marginally suitable lands (class S3) for growing sorghum occupy major area of about 238 ha (36%) and occur in the northern, central and southwestern part of the microwatershed. They have moderate limitations of rooting depth, erosion and gravelliness. Major area of about 317 ha (48%) is not suitable for growing sorghum and occur in all parts the microwatershed.

Crop requireme	Rating						
Soil –site		Highly	Moderately	Marginally	Not		
characteristics	unit	suitable	Suitable	suitable	suitable		
characteristics		(S1)	(S2)	(S3)	(N)		
Slope	%	2-3	3-8	8-15	>15		
LGP	Days	120-150	120-90	<90			
		Well to					
Soil drainage	class	mod.	imperfect	Poorly/excessively	V. poorly		
		drained					
Soil reaction	pН	6.0-8.0	5.5-5.9	<5.5	>9.0		
Son reaction	pn	0.0-0.0	8.1-8.5	8.6-9.0	29.0		
		C cl sicl			S,		
Surface soil texture	Class	C, cl, sicl, sc	l, sil, sic	Sl, ls	fragmental		
		50			skeletal		
Soil depth	Cm	100-75	50-75	30-50	<30		
Gravel content	% vol.	5-15	15-30	30-60	>60		
Salinity (EC)	dSm ⁻¹	2-4	4-8	8-10	>10		
Sodicity (ESP)	%	5-8	8-10	10-15	>15		

Table 7.2 Crop suitability criteria for Sorghum

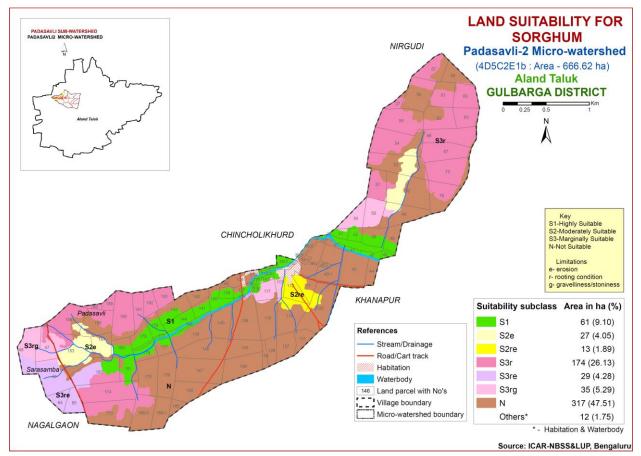
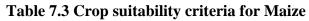


Fig. 7.1 Land Suitability map of Sorghum


7.2 Land Suitability for Maize (Zea mays)

Maize is the most important food crop grown in an area of 13.73 lakh ha in all the districts of Karnataka. The crop requirements for growing maize (Table 7.3) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing maize was generated. The area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.2.

In Padasavli-2 microwatershed there are no lands that are highly (class S1) or moderately (class S2) suitable for growing maize.

The marginally suitable (class S3) lands cover maximum area of about 338 ha (51%) and occur in the southwestern, central and northern part of the microwatershed. They have moderate limitations of texture, gravelliness, erosion and rooting depth. About 317 ha (48%) area is not suitable for growing maize and occur in all parts of the microwatershed.

Crop requirem	ent	Rating							
Soil –site characteristics	unit	Highly suitable (S1)	Moderately Suitable (S2)	Marginally suitable (S3)	Not suitable (N)				
Slope	%	<3	3.5	5-8					
LGP	Days	>100	100-80	60-80					
Soil drainage	class	Well drained	Mod. to imperfectly	Poorly/excessiv ely	V.poorly				
Soil reaction	pН	5.5-7.5	7.6-8.5	8.6-9.0					
Surface soil texture	Class	l, cl, scl, sil	Sl, sicl, sic	C(s-s), ls	S,fragmental				
Soil depth	Cm	>75	50-75	25-50	<25				
Gravel content	% vol.	<15	15-35	35-50	>50				
Salinity (EC)	dSm ⁻¹	<1.0	1.0-2.0	2.0-4.0					
Sodicity (ESP)	%	<10	10-15	>15					

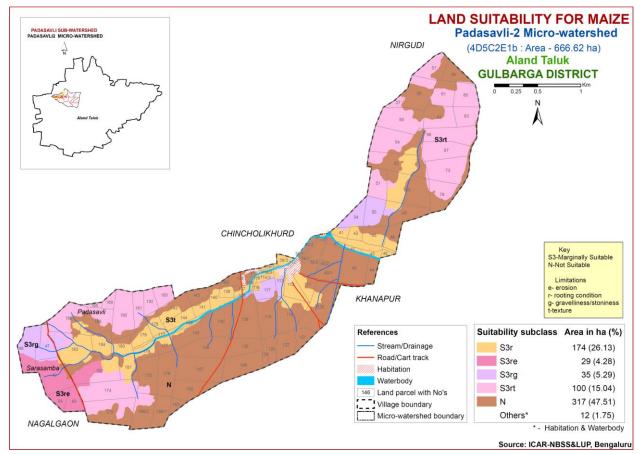


Fig. 7.2 Land Suitability map of Maize

7.3 Land Suitability for Red gram (Cajanus cajan)

Red gram is one of the major pulse crop grown in an area of 8.23 lakh ha mainly in northern Karnataka in Bijapur, Kalaburgi, Raichur, Bidar, Belgaum, Dharwad and Bellary districts. The crop requirements for growing red gram (Table 7.4) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and land suitability map for growing red gram was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed is given in Figure 7.3.

An area of about 101 ha (15%) is moderately suitable (class S2) for red gram and is dominantly distributed in the central and southwestern part of the microwatershed. They have minor limitations of rooting depth, erosion and texture. Marginally suitable lands (class S3) for growing red gram occupy maximum area of about 232 ha (35%) and mainly occur in the northern, central and southwestern part of the microwatershed. They have moderate limitations of rooting depth and erosion. A maximum area of about 317 ha (48%) is not suitable for growing red gram and occur in all parts of the microwatershed.

		_	-	-				
Crop requirement		Rating						
Soil –site		Highly	Moderately	Marginally	Not suitable			
characteristics	unit	suitable	Suitable	suitable	(N)			
characteristics		(S1)	(S2)	(S3)				
Slope	%	<3	3-5	5-10	>10			
LGP	Days	>210	180-210	150-180	<150			
Soil drainage	class	Well	Mod. to well	Imperfectly	Poorly			
Son dramage	Class	drained	drained	drained	drained			
Soil reaction	pН	6.5-7.5	5.0-6.5	8.0-9.0	>9.0			
Son reaction	pm	0.5-7.5	7.6-8.0	0.0-9.0	~9.0			
Surface soil texture	Class	l, scl, sil, cl,	sicl, sic,	ls	S,			
Surface som texture	Class	sl	c(m)	15	fragmental			
Soil depth	Cm	>100	85-100	40-85	<40			
Gravel content	% vol.	<20	20-35	35-60	>60			
Salinity (EC)	dSm ⁻¹	<1.0	1.0-2.0	>2.0				
Sodicity (ESP)	%	<10	10-15	>15				

Table 7.4 Crop suitability criteria for Red gram

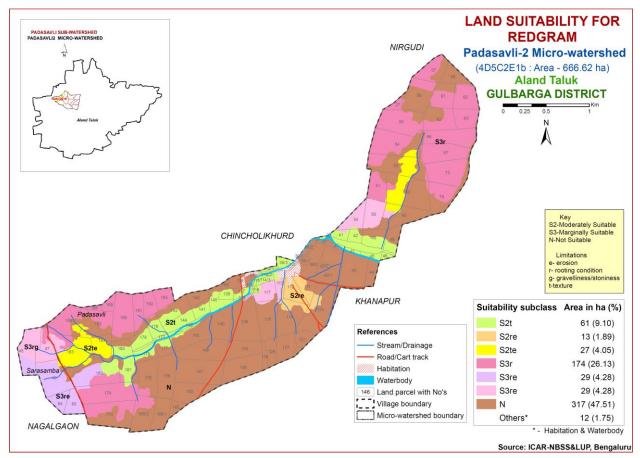


Fig. 7.3 Land Suitability map of Red gram

7.4 Land Suitability for Sunflower (Helianthus annus)

Sunflower is the most important oilseed crop grown in an area of 4.1 lakh ha in the State in all the districts. The crop requirements for growing sunflower (Table 7.5) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sunflower was generated. The area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.4.

Highly suitable (class S1) lands are found to occur in an area of 61 ha (9%) and are distributed in the central and southwestern part of the microwatershed. Moderately suitable (class S2) lands are found to occur in small area of about 27 ha (4%). The soils have minor limitations of erosion. They are distributed in the southwestern and central part of the microwatershed. The marginally suitable (class S3) lands cover about a very small area of 13 ha (2%) in the microwatershed and mainly occur in the central part of the microwatershed. They have moderate limitations of rooting depth. Major area of about 555 ha (83%) is not suitable for growing sunflower and occur in all parts of the microwatershed.

Crop requirement		Rating				
Soil –site characteristics	unit	Highly suitable (S1)	Moderately Suitable (S2)	Marginally suitable (S3)	Not suitable (N)	
Slope	%	<3	3-5	5-10	>10	
LGP	Days	>90	80-90	70-80	<70	
Soil drainage	class	Well drained	mod. Well drained	imperfectly drained	Poorly drained	
Soil reaction	pН	6.5-8.0	8.1-8.5 5.5-6.4	8.6-9.0; 4.5-5.4	>9.0 <4.5	
Surface soil texture	Class	l, cl, sil, sc	Scl, sic, c,	c (>60%), sl	ls, s	
Soil depth	cm	>100	75-100	50-75	<50	
Gravel content	% vol.	<15	15-35	35-60	>60	
Salinity (EC)	dSm ⁻¹	<1.0	1.0-2.0	>2.0		
Sodicity (ESP)	%	<10	10-15	>15		

Table 7.5 Crop suitability criteria for Sunflower

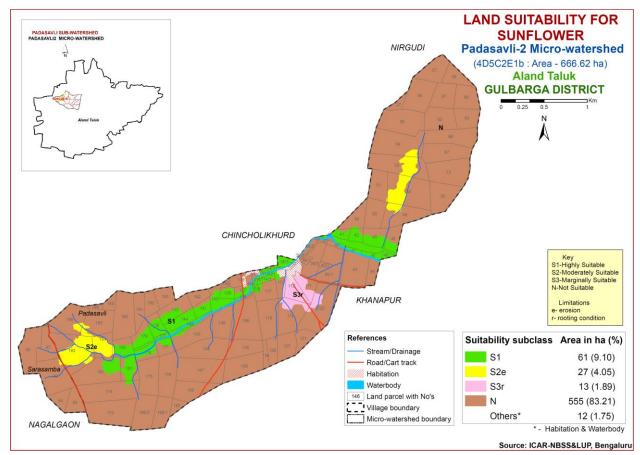


Fig. 7.4 Land Suitability map of Sunflower

7.5 Land Suitability for Cotton (Gossypium hirsutum)

Cotton is the most important fibre crop grown in the State in about 6.6 lakh ha area in Raichur, Dharwad, Belgaum, Kalaburgi, Bijapur, Bidar, Bellary, Chitradurga and Chamarajnagar districts. The crop requirements for growing cotton (Table 7.6) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing cotton was generated. The area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.5.

Highly suitable (class S1) lands are found to occur in an area of 61 ha (9%) and are distributed in the southwestern and central part of the microwatershed. Moderately suitable (class S2) lands are found to occur in a small area of about 40 ha (6%). The soils have minor limitations of erosion and rooting depth. They are distributed in the central, southwestern and northern part of the microwatershed. The marginally suitable (class S3) lands cover a major area of about 238 ha (36%) and mainly occur in the central, northern, southwestern and southern part of the microwatershed. They have moderate limitations of rooting depth, erosion and gravelliness. Major area of about 317 ha (48%) is not suitable for growing cotton and is distributed in all parts of the microwatershed.

Crop requirement		Rating				
Soil-site characteristics	unit	Highly suitable (S1)	Moderately Suitable (S2)	Marginally suitable (S3)	Not suitable (N)	
Slope	%	1-2	2-3	3-5	>5	
LGP	Days	180-240	120-180	<120		
Soil drainage	class	Well to moderately well	imperfectly drained	Poor somewhat excessive	Stagnant/excessive	
Soil reaction	рН	6.5-7.5	7.6-8.0	8.1-9.0	>9.0 >6.5	
Surface soil texture	Class	Sic, c	Sicl, cl	Si, sil, sc, scl, l	Sl, s,ls	
Soil depth	Cm	100-150	60-100	30-60	<30	
Gravel content	% vol.	<5	5-10	10-15	15-35	
CaCO ₃ in root zone	%	<3	3-5	5-10	10-20	
Salinity (EC)	dSm ⁻¹	2-4	4.0-8.0	8.0-12	>12	
Sodicity (ESP)	%	5-10	10-20	20-30	>30	

Table 7.6 Crop suitability criteria for Cotton

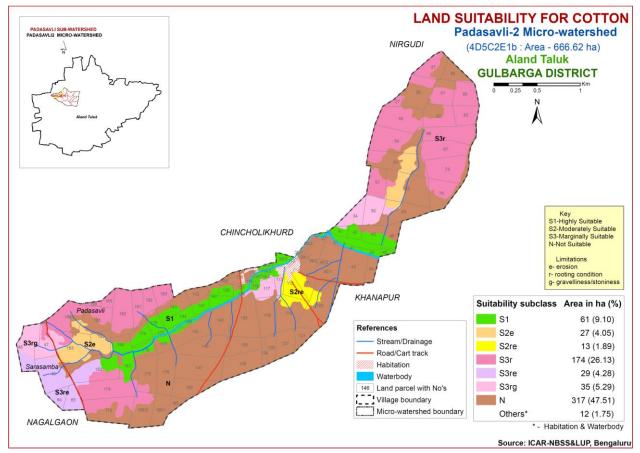


Fig. 7.5 Land Suitability map of Cotton

7.6 Land Suitability for Sugarcane (Saccharum officinarum)

Sugarcane is the most important commercial crop grown in 6.7 lakh ha area in Kalaburgi, Bijapur, Bagalkot, Bidar, Mysore, Chamarajanagar and Mandya districts. The crop requirements for growing sugarcane (Table 7.7) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sugarcane was generated. The area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.6.

In Padasavli-2 microwatershed, there are no lands that are highly (class S1) or moderately (class S2) suitable for growing sugarcane.

The marginally suitable (class S3) lands cover about 100 ha (15%) area and mainly occur in the central and southwestern part of the microwatershed. They have severe limitations of texture. Major area of about 555 ha (83%) is not suitable for growing sugarcane and occur in all parts of the microwatershed.

Crop requireme	ent	Rating					
Soil-site	unit	Highly	Highly Moderately		Not suitable (N)		
characteristics	um	suitable (S1)	Suitable (S2)	suitable (S3)	Not suitable (N)		
Slope	%	<3	3-5	5-8	>8		
Soil drainage	class	Well drained	Mod./imperfectl	Poorly	V.poor/excessivel		
Son dramage	01035	wen dramed	y drained	drained	y drained		
Soil reaction	Soil reaction pH 7.0-8.0 6.0-6.9 8.2		6.0-6.9 8.1-9.0	4.0-5.9 9.1-	<4.0/ >9.5		
Son reaction			0.0 0.9 0.1 9.0	9.5			
Surface soil	Class	l, cl, sil, sicl	C(m/k), sl	C+(ss)			
texture	Clubb	i, ci, sii, sici	C(III/K), 51	01(00)			
Soil depth	cm	>100	100-75	75-50	<50		
stoniness	%	<15	15-35	35-50	>50		
Salinity (EC)	dSm ⁻¹	<2.0	2.0-4.0	4.0-9.0	>9		
Sodicity	%	<10	10-15	15-25	>25		
(ESP)	/0	<10	10 15	15 45	>23		

Table 7.7 Crop suitability criteria for Sugarcane

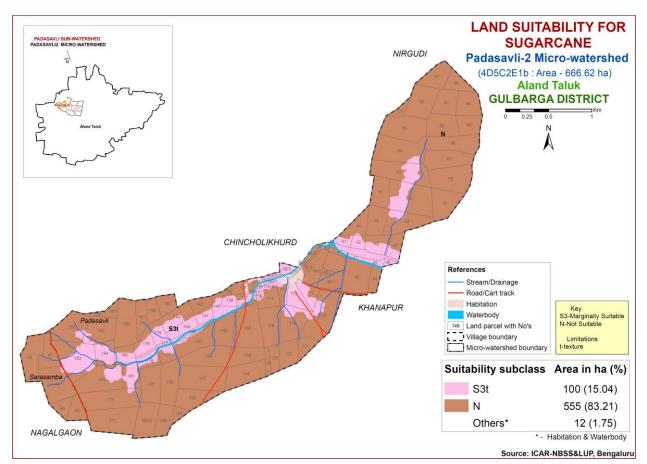


Fig. 7.6 Land Suitability map of Sugarcane

7.7 Land Suitability for Soybean (*Glycine max*)

Soybean is the most important pulse and oil seed crop grown in about 1.68 lakh ha area in the northern districts of the state. The crop requirements for growing soybean were matched with the soil-site characteristics and a land suitability map for growing soybean was generated. The area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.7.

Highly suitable (class S1) lands are found to occur in an area of 61 ha (9%) and are distributed in the central and southwestern part of the microwatershed. Moderately suitable (class S2) lands are found to occur in a small area of about 40 ha (6%). The soils have minor limitations of erosion and rooting depth. They are dominantly distributed in the central, southwestern and northern part of the microwatershed. The marginally suitable (class S3) lands cover about 238 ha (36%) area and mainly occur in the northern, central and southwestern part of the microwatershed. They have moderate limitations of rooting depth, erosion and gravelliness. Major area of about 317 ha (48%) is not suitable for growing soybean and occur in all parts of the microwatershed.

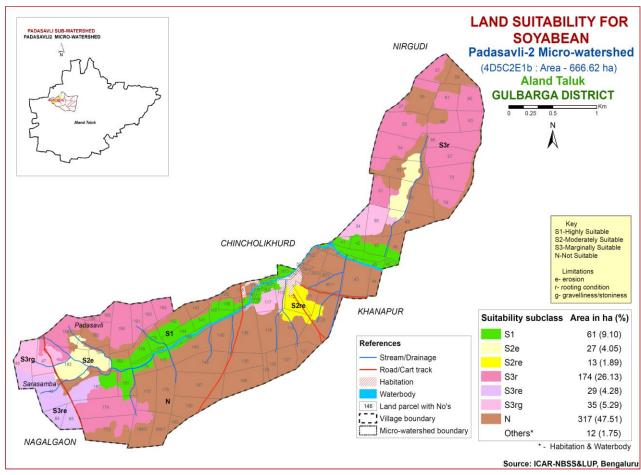


Fig. 7.7 Land Suitability for Soybean

7.8 Land Suitability for Guava (*Psidium guajava*)

Guava is the most important fruit crop grown in the State in Raichur, Dharwad, Belgaum, Kalaburgi, Bijapur, Bidar, Bellary, Chitradurga, Bangalore and Chamarajnagar districts. The crop requirements for growing guava (Table 7.8) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing guava was generated. The area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.8.

In Padasavli-2 microwatershed, there are no lands that are highly (class S1) or moderately (class S2) suitable for growing guava. The marginally suitable (class S3) lands cover about 108 ha (16%) area in the microwatershed and mainly occur in the southwestern, central and northern part of the microwatershed. They have moderate limitations of texture, erosion and rooting depth. Major area of about 548 ha (82%) is not suitable for growing guava and occur in all parts of the microwatershed.

Cro	p requirement			Rati	ng	
Soil –site c	characteristics	unit	Highly suitable (S1)	Moderately Suitable (S2)	Marginally suitable (S3)	Not suitable (N)
climate	Temperature in growing season	⁰ C	28-32	33-36 24-27	37-42 20-23	
Soil moisture	Growing period	Days	>150	120-150	90-120	<90
Soil aeration	Soil drainage	class	Well drained	Mod. to imperfectly	poor	Very poor
	Texture	Class	Scl, l, cl, sil	Sl,sicl,sic.,sc,c	C (<60%)	C (>60%)
Nutrient availability	рН	1:2.5	6.0-7.5	7.6-8.0:5.0- 5.9	8.1-8.5:4.5- 4.9	>8.5:<4.5
	CaCO ₃ in root zone	%	Non calcareous	<10	10-15	>15
Rooting	Soil depth	cm	>100	75-100	50-75	<50
conditions Gravel content		% vol.	<15	15-35	>35	
Soil	Salinity	dS/m	<2.0	2.0-4.0	4.0-6.0	
toxicity	Sodicity	%	Non sodic	10-15	15-25	>25
Erosion	Slope	%	<3	3-5	5-10	>10

Table 7.8 Crop suitability criteria for Guava

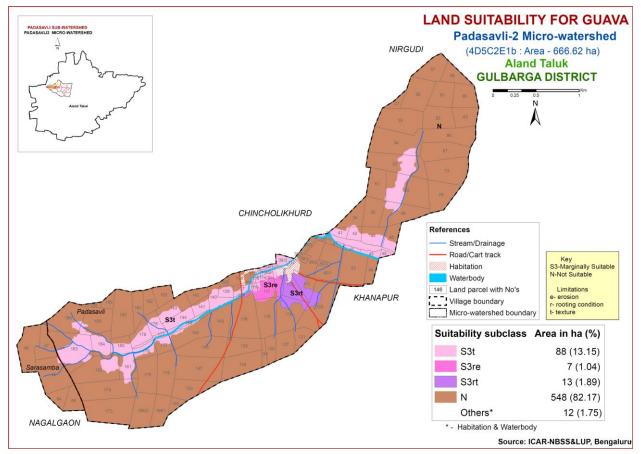


Fig 7.8 Land Suitability for Guava

7.9 Land Suitability for Mango (Mangifera indica)

Mango is the most important fruit crop grown in the State in all the districts of the state. The crop requirements for growing mango (Table 7.9) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing mango was generated. The area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.9.

No highly (class S1) and moderately (class S2) suitable lands are available for growing mango in the microwatershed. The marginally suitable (class S3) lands cover about 88 ha (13%) area in the microwatershed and mainly occur in the central and southwestern part of the microwatershed. They have moderate limitations of texture. Major area of about 567 ha (85%) is not suitable for growing mango and occur in all parts of the microwatershed.

Crop	o requiremen	t		Rati	ng	
soil	l-site	unit	Highly	Moderately	Marginally	Not suitable
charac	teristics	um	suitable (S1)	Suitable (S2)	suitable (S3)	(N)
climate	Temp in growing season	⁰ C	28-32	24-27 33-35	36-40	20-24
ennac	Min. temp. before flowering	^{0}C	10-15	15-22	>22	
Soil moisture	Growing period	Days	>180	150-180	120-150	<120
Soil aeration	Soil drainage	class	Well drained	Mod. To imperfectly drained	Poor drained	Very poorly drained
	Water table	Μ	>3	2.50-3.0	2.5-1.5	<1.5
	Texture	Class	Sc, l, sil, cl	Sl, sc, sic, l, c	C (<60%)	C (>60%),
Nutrient availabil	pН	1:2.5	5.5-7.5	7.6-8.5; 5.0-5.4	8.6-9.0; 4.0-4.9	>9.0 <4.0
ity	OC	%	High	medium	low	
Ity	CaCO ₃ in root zone	%	Non calcareous	<5	5-10	>10
Rooting	Soil depth	cm	>200	125-200	75-125	<75
conditions	Gravel content	%vol	Non gravelly	<15	15-35	>35
Soil	Salinity	dS/m	Non saline	<2.0	2.0-3.0	>3.0
toxicity	Sodicity	%	Non sodic	<10	10-15	>15
Erosion	Slope	%	<3	3-5	5-10	

 Table 7.9 Crop suitability criteria for Mango

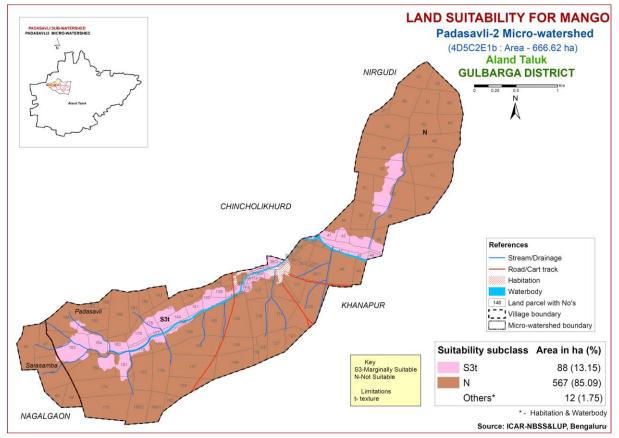


Fig. 7.9 Land Suitability for Mango

7.10 Land Suitability for Sapota (*Manilkara zapota*)

Sapota is the most important fruit crop grown in almost all the districts of the state. The crop requirements for growing sapota (Table 7.10) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sapota was generated. The area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.10.

In Padasavli-2 microwatershed, there are no highly (class S1) and moderately (class S2) suitable lands available for growing sapota. The marginally suitable (class S3) lands cover about 108 ha (16%) area and mainly occur in the central, southwestern and northern part of the microwatershed. They have moderate limitations of rooting depth, erosion and texture. Major area of about 548 ha (82%) is not suitable for growing sapota and occur in all parts of the microwatershed.

Cı	rop requirement		Rating				
Soil –site characteristics		unit	Highly suitable (S1)	Moderately Suitable (S2)	Marginally suitable (S3)	Not suitable (N)	
climate	Temperature in growing season	⁰ C	28-32	33-36 24-27	37-42 20-23	>42 <18	
Soil moisture	Growing period	Days	>150	120-150	90-120	<120	
Soil aeration	Soil drainage	class	Well drained	Moderately well drained	Imperfectly drained	Poorly drained	
Nuclei	Texture	Class	Scl, l, cl, sil	Sl, sicl, sc	C (<60%)	ls, s, C (>60%)	
Nutrient availabiliy	рН	1:2.5	6.0-7.5	7.6-8.0 5.0-5.9	8.1-9.0 4.5-4.9	>9.0 <4.5	
	CaCO ₃ in root zone	%	Non calcareous	<10	10-15	>15	
Destine	Soil depth	cm	>150	75-150	50-75	<50	
Rooting conditions	Gravel content	% vol.	Non gravelly	<15	15-35	<35	
Soil	Salinity	dS/m	Non saline	Up to 1.0	1.0-2.0	2.0-4.0	
toxicity	Sodicity	%	Non sodic	10-15	15-25	>25	
Erosion	Slope	%	<3	3-5	5-10	>10	

Table 7.10 Crop suitability criteria for Sapota

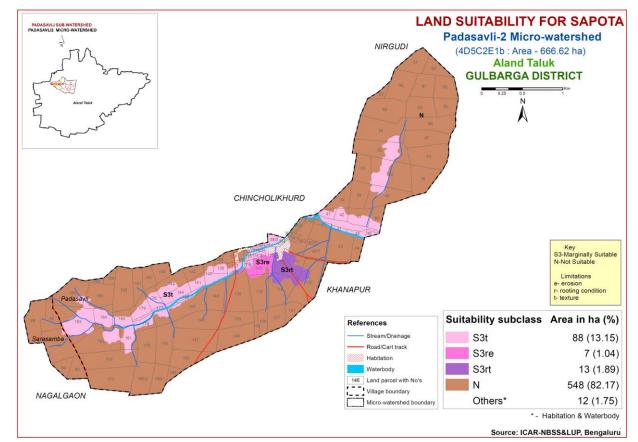


Fig. 7.10 Land Suitability for Sapota

7.11 Land Suitability for Jackfruit (Artocarpus heterophyllus)

Jackfruit is the most important fruit crop grown in southern and western districts of the state. The crop requirements for growing jackfruit were matched with the soil-site characteristics and a land suitability map for growing jackfruit was generated and the area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.11.

No highly (class S1) and moderately (class S2) suitable lands are available for growing jackfruit in the microwatershed.

The marginally suitable (class S3) lands cover about 108 ha (16%) area in the microwatershed and mainly occur in the central, southwestern and northern part of the microwatershed. They have moderate limitations of rooting depth, erosion and texture. Major area of about 548 ha (82%) is not suitable for growing jackfruit and occur in all parts of the microwatershed.

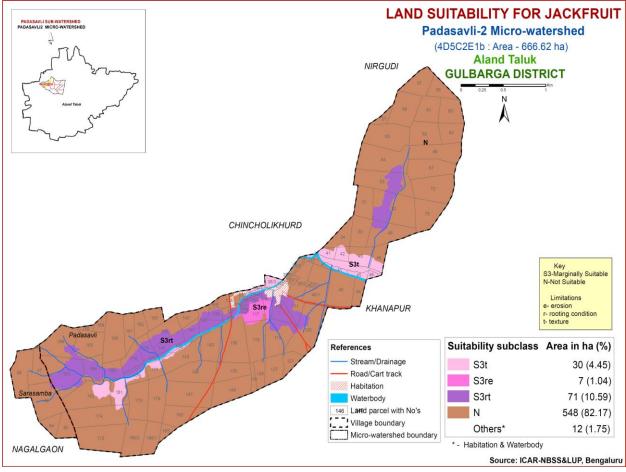
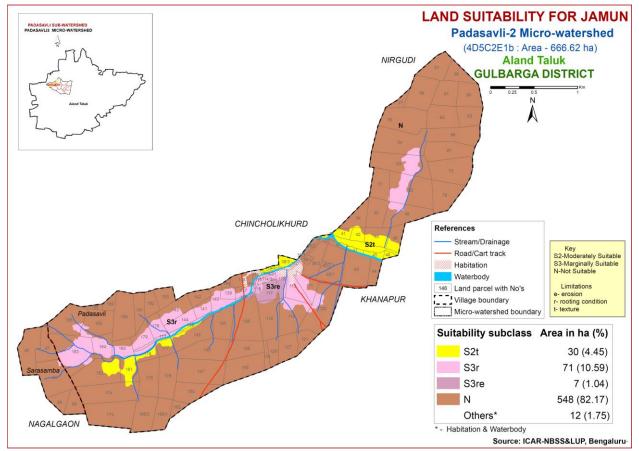
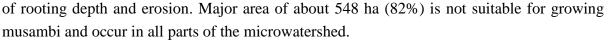


Fig 7.11 Land Suitability for Jackfruit

7.12 Land Suitability for Jamun (Syzygium cumini)

Jamun is the most important fruit crop grown in almost all the districts of the state. The crop requirements for growing jamun were matched with the soil-site characteristics and a land suitability map for growing jamun was generated. The area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.12. Moderately suitable (class S2) lands are found to occur in an area of about 30 ha (4%). The soils have minor limitations of texture. They are dominantly distributed in the central and southwestern part of the microwatershed. The marginally suitable (class S3) lands cover about 78 ha (12%) area and mainly occur in the southwestern, central and northern part of the microwatershed. They have moderate limitations of rooting depth and erosion. Major area of about 548 ha (82%) is not suitable for growing jamun and occur in all parts of the microwatershed.




Fig 7.12 Land Suitability for Jamun

7.13 Land Suitability for Musambi (Citrus limetta)

Musambi is the most important fruit crop grown in almost all the districts of the state. The crop requirements for growing musambi were matched with the soil-site characteristics and a land suitability map for growing musambi was generated. The area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.13.

Highly suitable (class S1) lands are found to occur in an area of 30 ha (4%) and are distributed in the central and southwestern part of the microwatershed. Moderately suitable (class S2) lands are found to occur in an area of about 58 ha (9%). The soils have minor limitations of erosion and rooting depth. They are dominantly distributed in the southwestern, central and northern part of the microwatershed.

The marginally suitable (class S3) lands cover a very small area of about 20 ha (3%) and mainly occur in the central part of the microwatershed. They have moderate limitations

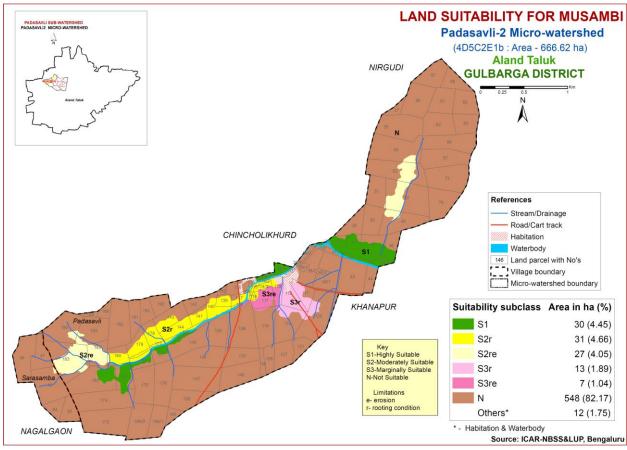


Fig 7.13 Land Suitability for Musambi

7.14 Land Suitability for Lime (*Citrus sp*)

Lime is the most important fruit crop grown in almost all the districts of the state. The crop requirements for growing lime (Table 7.11) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Lime was generated. The area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.14.

Highly suitable (class S1) lands are found to occur in an area of about 30 ha (4%) and are distributed in the central and southwestern part of the microwatershed. Moderately suitable (class S2) lands are found to occur in an area of about 58 ha (9%). The soils have minor limitations of rooting depth and erosion. They are dominantly distributed in the central, northern and southwestern part of the microwatershed.

The marginally suitable (class S3) lands cover a very small area of about 20 ha (3%) and occur in the central part of the microwatershed. They have moderate limitations of rooting depth and erosion. Major area of about 548 ha (82%) is not suitable for growing lime and occur in all parts of the microwatershed.

Cro	op requirement			Rating				
Soil –site ch	aracteristics	unit	Highly	Moderately	Marginally	Not suitable		
		0	suitable (S1)	Suitable (S2)	suitable (S3)	(N)		
	Temp in	⁰ C	28-30	31-35	36-40	>40		
Climate	growing			24-27	20-23	<20		
	season							
Soil	Growing	Days	240-265	180-240	150-180	<150		
moisture	period							
Soil	Soil drainage	class	Well	Mod. to	poorly	Very poorly		
aeration			drained	imperfectly				
aeration				drained				
	Texture	Class	Scl, l, sicl,	Sc, sc, c	C (>70%)	S, ls		
			cl, s					
Nutrient	рН	1:2.5	6.0-7.5	5.5-6.4/ 7.6-	4.0-5.4 8.1-	<4.0>8.5		
availability				8.0	8.5			
	CaCO ₃ in	%	Non	Upto 5	5-10	>10		
	root zone		calcareous					
Rooting	Soil depth	cm	>150	100-150	50-100	<50		
condition	Gravel	% vol.	Non	15-35	35-55	>55		
condition	content		gravelly					
Soil	Salinity	dS/m	Non saline	Upto 1.0	1.0-2.5	>2.5		
toxicity	Sodicity	%	Non sodic	5-10	10-15	>15		
Erosion	Slope	%	<3	3-5	5-10			

Table 7.11 Crop suitability criteria for Lime

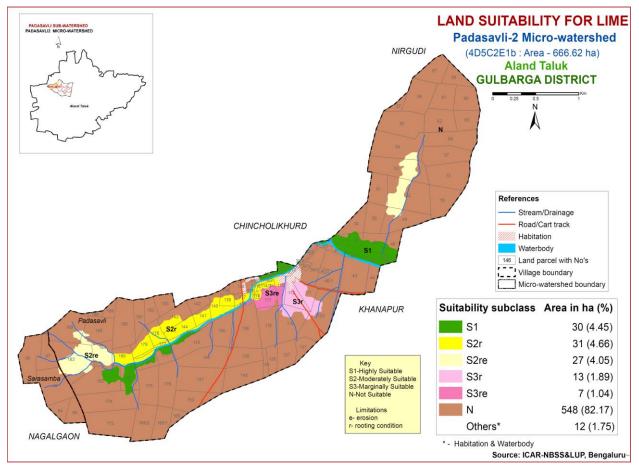


Fig 7.14 Land Suitability for Lime

7.15 Land Suitability for Cashew (Anacardium occidentale)

Cashew is the most important plantation crop grown mostly in coastal and western part and also in Bidar and Kolar districts. The crop requirements for growing Cashew were matched with the soil-site characteristics and a land suitability map for growing Cashew was generated. The area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.15.

The entire area is not suitable for growing cashew in the microwatershed.

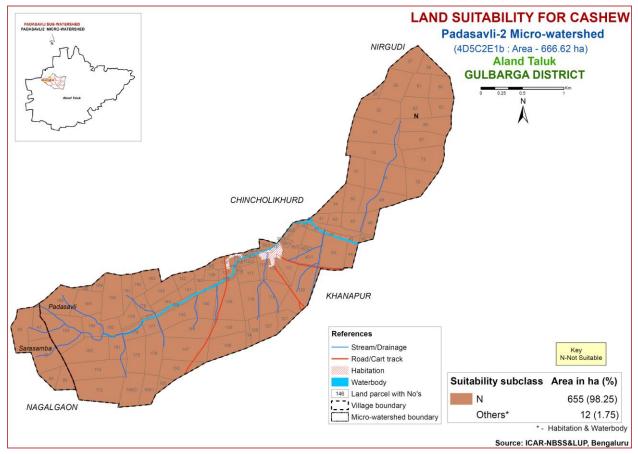


Fig 7.15 Land Suitability for Cashew

7.16 Land Suitability for Custard Apple (Annona reticulata)

Custard apple is the most important fruit crop grown in almost all the districts of the state. The crop requirements for growing custard apple were matched with the soil-site characteristics and a land suitability map for growing custard apple was generated. The area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.16.

Highly suitable (class S1) lands are found to occur in an area of 61 ha (9%) and are distributed in the southwestern, central and northern part of the microwatershed. Moderately suitable (class S2) lands are found to occur in small area of about 40 ha (6%). The soils have minor limitations of erosion and rooting depth. They are dominantly distributed in the central, northern and southwestern part of the microwatershed. The marginally suitable (class S3) lands cover about 238 ha (35%) area and mainly occur in the northern, southern, southwestern and central part of the microwatershed. They have moderate limitations of rooting depth, erosion and gravelliness. An area of about 317 ha (47%) is not suitable for growing custard apple and occur in the all parts of the microwatershed.

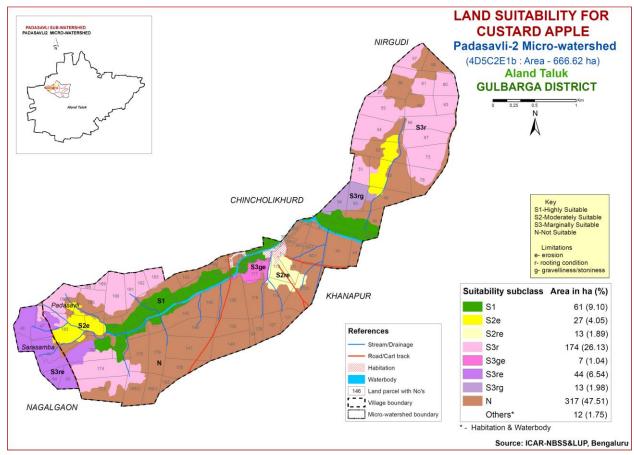


Fig 7.16 Land Suitability for Custard Apple

7.17 Land Suitability for Amla (*Phyllanthus emblica*)

Amla is the most important fruit crop grown in almost all the districts of the state. The crop requirements for growing amla were matched with the soil-site characteristics and a land suitability map for growing amla was generated. The area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.17.

Highly suitable (class S1) lands are found to occur in an area of 61 ha (9%) and are distributed in the central and southwestern part of the microwatershed. Moderately suitable (class S2) lands are found to occur in a very minor area of about 40 ha (6%). The soils have minor limitations of erosion and rooting depth. They are distributed in the central, southwestern and northern part of the microwatershed. The marginally suitable (class S3) lands cover about 238 ha (35%) area and occur in the northern, central and southwestern part of the microwatershed. They have moderate limitations of rooting depth, erosion and gravelliness. Maximum area of about 317 ha (47%) is not suitable for growing amla and occur in the all part of the microwatershed.

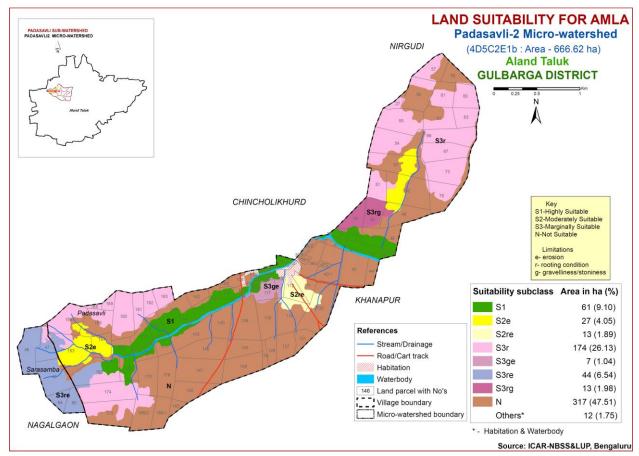


Fig 7.17 Land Suitability for Amla

7.18 Land Suitability for Tamarind (Tamarindus indica)

Tamarind is the most important spice crop grown in all the districts of the state. The crop requirements for growing tamarind were matched with the soil-site characteristics and a land suitability map for growing tamarind was generated. The area and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.18.

Moderately suitable (class S2) lands are found to occur in small area of about 30 ha (4%). The soils have minor limitations of rooting depth. They are dominantly distributed in the central and southwestern part of the microwatershed. Marginally suitable (class S3) lands cover about 58 ha (9%) area and are distributed in the central and southwestern part of the microwatershed. They have moderate limitations of rooting depth. Major area of about 567 ha (85%) is not suitable for growing tamarind and occur in all parts of the microwatershed.

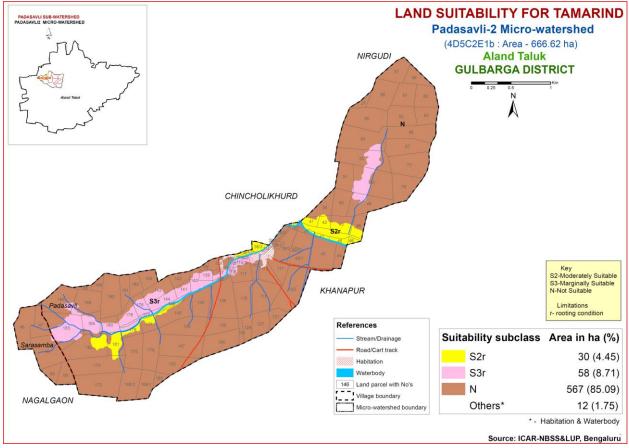


Fig 7.18 Land Suitability for Tamarind

7.19 Land Management Units (LMUs)

The 29 soil map units identified in Padasavli-2 microwatershed have been regrouped into 5 Land Management Units (LMU's) for the purpose of preparing Proposed Crop Plan. Land Management Units are grouped based on the similarities in respect of the type of soil, the depth of the soil, the surface soil texture, gravel content, AWC, slope, erosion etc. and a Land Management Units map (Fig.7.19) has been prepared. These Land Management Units are expected to behave similarly for a given level of management.

The map units that have been grouped into 5 land management units along with brief description of soil and site characteristics are given below.

LMUs	Soil map units	Soil and site characteristics
	MGThC3g1, MGThC3g2, MGThD3,	Very shallow, black soils with slopes of 3-
1	MGThD3g3, MGTiC3g1, MGTiD3g2,	10%, gravelly to extremely gravelly (15-
1	MGTmC3, MGTmC3g1, MGTmC3g2,	80%) and severe erosion
	NHAiC3g2	
	MGTiB2, MGTiB2g1, MGTmA1,	Very shallow, black soils with slopes of
2	MGTmB1, MGTmB2g1, MGTmB2g1,	<1-3%, nongravelly to extremely gravelly
	MGTmB3, NHAmB3g3	(15-80%) and slight to severe erosion
	NHAmB2, NHAmB2g1, NHAmB2g2,	Shallow, black soils with slopes of 1-5 %,
3	NHAmC3, BHImB1, BHImB1g1,	nongravelly to very gravelly (15-60%) and
	GTTiB3g2	slight to severe erosion
	GTTmB2g1, KMPmB1, KMPmB2	Moderately shallow, black soils with slopes
4		of 1-3%, nongravelly to gravelly (<15-35%)
		and slight to moderate erosion.
5	MANmB1	Very Deep, black soils with slopes of 1-3%,
		nongravelly (<15%) and slight erosion.

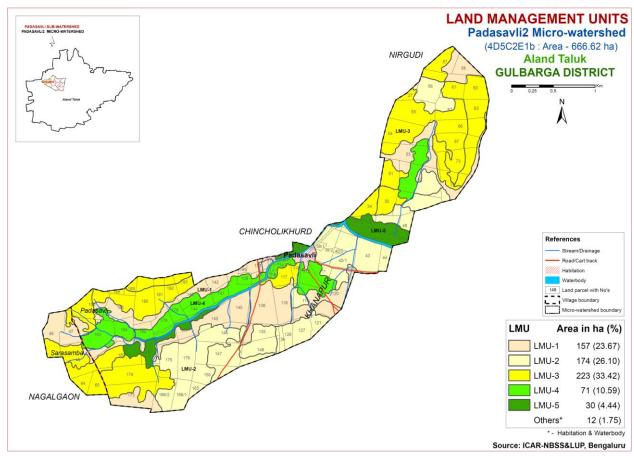


Fig. 7.19 Land Management Units map - Padasavli-2 Microwatershed

7.20 Proposed Crop Plan for Padasavli-2 Microwatershed

After assessing the land suitability for the 18 crops, the proposed crop plan has been prepared for the 5 identified LMUs by considering only the highly (class S1) and moderately (class S2) suitable lands for each of the eighteen crops. The resultant proposed crop plan is presented below in Table 7.12.

LMUs No	Mapping Units	Survey Number	Field Crops	Forestry/ Grasses	Horticulture Crops (Rainfed Condition)	Horticulture Crops with Suitable Intervention	Recommended Intervention
LMU-1	1 MGThC3g1 2 MGThC3g2 3 MGThD3 4 MGThD3g3 7 MGTiC3g1 8 MGTiD3g2 14 MGTmC3 15 MGTmC3g1 16 MGTmC3g2 17 NHAiC3g2	Padsavli: 53,58 ,78,118,119,12 0,136,138,140, 142,143,145,17 7,185,195 Sarasamba: 47 ,48		Neem, Glyricydia , Silviculture, Agave, Simaroba	-	-	Crescent bunds
LMU-2	5 MGTiB2 6 MGTiB2g1 9 MGTmA1 10 MGTmB1 11 MGTmB2g1 12 MGTmB2g1 13 MGTmB3 21 NHAmB3g3	Padsavli:37,39 /1,39/2,40/1,40 /2,43,44,46,48, 52,56,121,127, 128,134,135,14 6,147,148,150, 165,166/1,166/ 2,175,176		Neem, Glyricydia , Silviculture, Agave, Simaroba	-	-	Crescent bunds
LMU-3	18 NHAmB2 19 NHAmB2g1 20 NHAmB2g2 22 NHAmC3	Padsavli: 27,34 ,50,51,54,55,57 ,60,61,62,63,66 ,67,73,113,117,	J	Neem, Teak	Custard apple, Charoli, Ber, Amla Vegetables: Ladies finger, Brinjal,	Charoli, Ber, Amla	Drip irrigation, suitable soil and water conservation

Table 7.12 Proposed Crop Plan for Padasavli-2 Microwatershed

	23 BHImB1 24 BHImB1g1 25 GTTiB3g2	173,174,182,18 6,188,189,190, 191,192,193 Sarasamba :46 ,49,64,65		Flowers: Marigold,	Chillies, Bhendi Flowers: Marigold,	measures like cultivation on raised beds with mulches and drip
LMU-4	26 GTTmB2g1 27KMPmB1 28 KMPmB2	Padsavli: 111,112,114/2, 114/3,116,137, 139,141,144,17 8,179,180,183, 184	Sorghum, Cotton, Red Gram, Black gram, Green gram, Soybean, Sesame, Sunflower, Rabi: Sorghum, Chickpea, Safflower, Coriander	Custard apple, Charoli, Ber, Amla Vegetables: Ladies finger, Brinjal, Cowpea, Flowers: Marigold, Chrysanthemum	Papaya, Banana,	-do- Graded bunds, Strengthening of field bunds
LMU-5	29 MANmB1	Padsavli: 38/3,41,42,45,1 14/1, 181	Sorghum, Cotton, Red Gram Black gram, Green gram, Soybean, Sesame, Sunflower, Rabi: Sorghum, Chickpea, Safflower, Coriander, Linseed	Sorghum, Cotton, Red Gram, Sunflower, Safflower, Perennial components: Guava, Sapota,	Banana Panava	-do- Graded bunds, Strengthening of field bunds

SOIL HEALTH MANAGEMENT

8.1 Soil Health

Soil is fundamental to crop production. Without soil, no food could be produced nor would livestock be fed on a large scale. Because it is finite and fragile, soil is a precious resource that requires special care from its users.

Soil health or the capacity of the soil to function is critical to human survival. Soil health has been defined as: "the capacity of the soil to function as a living system without adverse effect on the ecosystem". Healthy soils maintain a diverse community of soil organisms that help to form beneficial symbiotic associations with plant roots, recycle essential plant nutrients, improve soil structure with positive repercussions for soil, water and nutrient holding capacity and ultimately improve crop production and also contribute to mitigating climate change by maintaining or increasing its carbon content.

Functional interactions of soil biota with organic and inorganic components, air and water determine a soil's potential to store and release nutrients and water to plants and to promote and sustain plant growth. Thus, maintaining soil health is vital to crop production and conserve soil resource base for sustaining agriculture.

The most important characterististics of a healthy soil are

- Good soil tilth
- Sufficient soil depth
- Good water storage and good drainage
- Adequate supply, but not excess of nutrients
- Large population of beneficial organisms
- Small proportion of plant pathogens and insect pests
- Low weed pressure
- Free of chemicals and toxins that may harm the crop
- Resistance to degradation
- Resilience when unfavourable conditions occur

Characteristics of Padasavli-2 Microwatershed

- The soil phases with sizeable area identified in the microwatershed belonged to the soil series of MGT (308 ha), NHA (205 ha), KMP (58 ha), BHI (34 ha), MAN (30 ha) and GTT (19 ha).
- As per land capability classification, about 84 per cent area falls under arable land category (Class II, III and IV) and 14 cent area belongs to nonarable land category (Class VI). The major limitations identified in the arable lands were soil and erosion.
- On the basis of soil reaction, about 407 ha (61%) area is moderately alkaline (pH 7.8-8.4) followed by slightly alkaline (pH 7.3-7.8) 223 ha (33%) and about 9 ha (1%) area is

strongly alkaline (pH 8.4-9.0). Thus, about 95 per cent of the soils are alkaline in reaction. About 17 ha (3%) area is neutral (pH 6.5-7.3).

Soil Health Management

The following actions are required to improve the current land husbandry practices that provide a sound basis for the successful adoption of sustainable crop production system.

Alkaline soils

(Slightly alkaline to moderately alkaline soils)

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers (Azospirullum, Azatobacter, Rhizobium).
- 3. Application of 25% extra N and P (125 % RDN&P).
- 4. Application of $ZnSO_4 12.5$ kg/ha (once in three years).
- 5. Application of Boron 5kg/ha (once in three years).

Neutral soils

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers (Azospirullum, Azotobacter, Rhizobium).
- 3. Application of 100 per cent RDF.
- 4. Need based micronutrient applications.

Besides the above recommendations, the best transfer of technology options are also to be adopted.

Soil Degradation

Soil erosion is one of the major factor affecting the soil health in the microwatershed. Out of a total area of 655 ha in the microwatershed, major area of 442 ha is suffering from either moderate or severe erosion. These areas need immediate soil and water conservation and, other land development, and land husbandry practices for restoring soil health.

Disseminate information and communicate benefits

Any large scale implementation of soil health management requires that supporting information is made available widely, particularly through channels familiar to farmers and extension workers. Given the very high priority attached to soil health especially by the Central Government on issuing Soil-Health Cards to all the farmers, media outlets like regional, state and national newspapers, Radio and Dooradarshan programs in local languages but also modern information and communication technologies such as cellular phones and the Internet, which can be much more effective in reaching younger farmers.

Inputs for Net Planning and Interventions needed

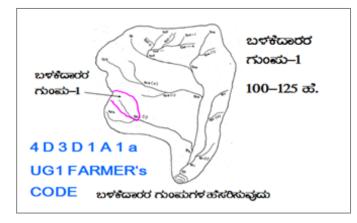
Net planning in IWMP is focusing on preparation of

- 1. Soil and Water Conservation Plans for each plot or farm.
- 2. Productivity enhancement measures/ interventions for existing crops/livestock/other farm enterprises.
- 3. Diversification of farming mainly with perennial horticultural crops and livestock.
- 4. Improving livelihood opportunities and income generating activities.

In this connection, how various outputs of Sujala-III are of use in addressing these objectives of Net Planning are briefly presented below.

- Soil Depth: The depth of a soil decides the amount of moisture and nutrients it can hold, what crops can be taken up or not, depending on the rooting depth and the length of growing period available for raising any crop. Deeper the soil, better for a wide variety of crops. If sufficient depth is not available for growing deep rooted crops, either choose medium or short duration crops or deeper planting pits need to be opened and additional good quality soil brought from outside has to be filled into the planting pits.
- Surface soil texture: Lighter soil texture in the top soil means, better rain water infiltration, less run-off and soil moisture conservation, less capillary rise and less evaporation losses. Lighter surface textured soils are amenable to good soil tilth and are highly suitable for crops like groundnut, root vegetables (carrot, raddish, potato etc) but not ideal for crops that need stagnant water like lowland paddy. Heavy textured soils are poor in water infiltration and percolation. They are prone for sheet erosion; such soils can be improved by sand mulching. The technology that is developed by the AICRP-Dryland Agriculture, Vijayapura, Karnataka can be adopted.
- Gravelliness: More gravel content is favorable for run-off harvesting but poor in soil moisture storage and nutrient availability. It is a significant parameter that decides the kind of crop to be raised.
- Land Capability Classification: The land capability map shows the areas suitable and not suitable for agriculture and the major constraints in each of the plot/survey number. Hence, one can decide what kind of enterprise is possible in each of these units. In general, erosion and soil are the major constraints in Padasavli-2 microwatershed.
- Organic Carbon: The OC content is medium (0.5-0.75%) in about 501 ha (75%) area, it is high (>0.75%) in 43 ha (6%) and low (<0.5%) in about 112 ha (17%). The areas that are low and medium in OC needs to be further improved by applying farmyard manure and rotating crops with cereals and legumes or mixed cropping.</p>
- Promoting green manuring: Growing of green manuring crops costs Rs. 1250/ha (green manuring seeds) and about Rs. 2000/ha towards cultivation that totals to Rs. 3250/- per ha. On the other hand, application of organic manure @ 10 tons/ha costs Rs. 5000/ha. The practice needs to be continued for 2-3 years or more. Nitrogen fertilizer needs to be supplemented by 25% in addition to the recommended level in 65 ha area

where OC is less than 0.5-0.75%. For example, for rainfed maize, recommended level is 50 kg N per ha and an additional 12 kg /ha needs to be applied for all the crops grown in these plots.


- Available Phosphorus: In 623 ha (94%) area, the available phosphorus is low and about 27 ha (4%) area it is medium in available phosphorus, Hence for all the crops, 25% additional P-needs to be applied. About 4 ha area is high in available phosphorus in the microwatershed.
- Available Potassium: Available potassium is medium in 326 ha (49%) area and low in 60 ha (9%) area of the microwatershed. Hence, in all these plots, for all crops, additional 25 % potassium may be applied. It is high in 269 ha (40%) area of the microwatershed.
- Available Sulphur: Available sulphur is a very critical nutrient for oilseed crops. It is low in 467 ha (70%) area of the microwatershed and medium in 181 ha (27%). These areas need to be applied with magnesium sulphate or gypsum or Factamphos (p) fertitilizer (13% sulphur) for 2-3 years for the deficiency to be corrected. About 27 ha (4%) area is high in available sulphur.
- Available iron: It is deficient in an area of 187 ha (28%) in the microwatershed. To manage iron deficiency, iron sulphate @ 25 kg/ha needs to be applied for 2-3 years. It is sufficient in the rest of 468 ha (70%) area in the microwatershed.
- Available Zinc: It is deficient in 522 ha (78%) area of the microwatershed. Application of zinc sulphate @25 kg/ha is to be applied. It is sufficient in an area of 132 ha (20%) in the microwatershed.
- Soil alkalinity: The microwatershed has 416 ha area with soils that are moderately to strongly alkaline. These areas need application of gypsum and wherever calcium is in excess, iron pyrites and element sulphur can be recommended. Management practices like treating repeatedly with good quality water to drain out the excess salts and provision of subsurface drainage and growing of salt tolerant crops like Casuarina, Acasia, Neem, Ber etc, are recommended.

Land Suitability for various crops: Areas that are highly, moderately and marginally suitable for growing various crops are indicated. Along with the suitability, various constraints that are limiting the productivity are also indicated. For example, in case of cotton, gravel content, rooting depth and salinity/alkalinity are the major constraints in various plots. With suitable management interventions, the productivity can be enhanced. In order to increase water holding capacity of light textured soils, growing of green manure crops and application of organic manure is recommended.

SOIL AND WATER CONSERVATION TREATMENT PLAN

For preparing soil and water conservation treatment plan for Padasavli-2 microwatershed, the land resource inventory database generated under Sujala-III project has been transformed as information through series of interpretative (thematic) maps using soil phase map as a base. The various thematic maps (1:7920 scale) generated were

- ➢ Soil depth
- Surface soil texture
- Available water capacity
- ➤ Soil slope
- Soil gravelliness
- ➤ Land capability
- Present land use and land cover
- Crop suitability maps
- ➤ Rainfall map
- > Hydrology
- ➢ Water Resources
- Socio-economic data

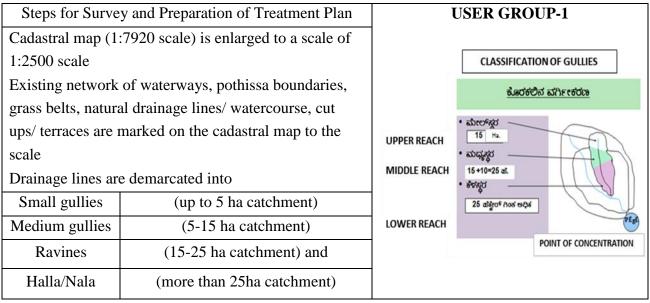
- Contour plan with existing features- Network of waterways, pothissa boundaries, cut up/ minor terraces etc.
- Cadastral map (1:7920 scale)
- Satellite imagery (1:7920 scale)

Apart from these, Hand Level/ Hydro Marker/ Dumpy Level/ Total Station and Kathedars' List has to be collected.

Steps for Survey and Preparation of Treatment Plan

The boundaries of Land user Groups' and Survey No. boundaries are traced in the

field.


- Naming of user groups and farmers
- Identification of arable and non arable lands
- Identification of drainage lines and gullies
- Identification of non treatable areas
- Identification of priority areas in the arable lands
- \succ Treatment plan for a able lands
- Location of water harvesting and recharge structures

9.1 Treatment Plan

The treatment plan recommended for arable lands is briefly described below.

9.1.1 Arable Land Treatment

A. BUNDING

Measurement of Land Slope

Land slope is estimated or determined by the study and interpretation of contours or by measurement in the field using simple instruments like Hand level or Hydromarker.

Vertical and Horizontal intervals between bunds as recommended by the Watershed Development Department.

Slope percentage	Vertical interval (m)	Corresponding Horizontal Distance (m)
2 - 3%	0.6	24
3 - 4%	0.9	21
4 - 5%	0.9	21
5 - 6%	1.2	21
6 - 7%	1.2	21

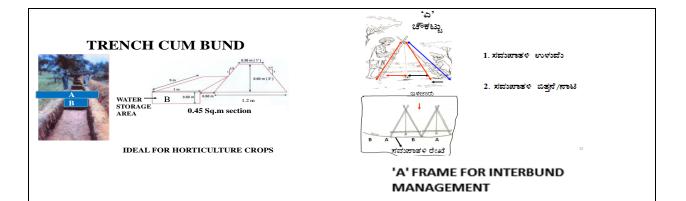
Note: i) The above intervals are maximum.

(ii) Considering the slope class and erosion status (A1- 0-1% slope, slight erosion) the intervals have to be decided.

Bund length recording: Considering the contour plan and the existing grass belts/partitions, the bunds are aligned and lengths are measured.

Section of the Bund

Bund section is decided considering the soil texture class and gravelliness class (bg₀-loamy sand, <15% gravel). The recommended Sections for different soils are given below.


Тор	Base	Haight	Side	Cross		
width	width	Height	slope	section (sq	Soil Texture	Remarks
(m)	(m)	(m)	(Z:1;H:V)	m)		
0.3	0.9	0.3	01:01	0.18	Sandy loam	Vegetative
0.3	1.2	0.3	1.5:1	0.225	Sandy clay	bund
0.3	1.2	0.5	0.9:1	0.375	Red gravelly soil	
0.3	1.2	0.6	0.75:1	0.45		
0.3	1.5	0.6	01:01	0.54	Red sandy loam	
0.3	2.1	0.6	1.5:1	0.72	Very shallow black	
0.5	2.1	0.0	1.3.1	0.72	soils	
0.45	2	0.75	01:01	0.92		
0.45	2.4	0.75	1.3:1	1.07	Shallow black soils	
0.6	3.1	0.7	1.78:1	1.29	Medium black soils	
0.5	3	0.85	1.47:1	1.49		

Recommended Bund Section

Formation of Trench cum Bund

Dimensions of the Borrow Pits/ Trenches to be excavated (machinery are decided considering the Bund Section).

Details of Borrow Pit dimensions are given below

Size	Size of Borrow Pits/ Trench recommended for Trench cum Bund (by machinery)								
Bund	Bund	Earth			Pit		Berm	Soil depth	
section	length	quantity			ГI		(pit to pit)	class	
m ²	m	m ³	L(m)	W(m)	D(m)	QUANTITY (m ³)	m		
0.375	6	2.25	5.85	0.85	0.45	2.24	0.15	Shallow	
0.45	6	2.7	5.4	1.2	0.43	2.79	0.6	Shallow	
0.45	6	2.7	5	0.85	0.65	2.76	1	Moderately Shallow	
0.54	5.6	3.02	5.5	0.85	0.7	3.27	0.1	Moderately shallow	
0.54	5.5	2.97	5	1.2	0.5	3	0.5	Shallow	
0.72	6.2	4.46	6	1.2	0.7	5.04	0.2	Moderately shallow	
0.72	5.2	3.74	5.1	0.85	0.9	3.9	0.1	Moderately deep	

Size of Borrow Pits/ Trench recommended for Trench cum Bund (by machinery)

B. Waterways

- a) Existing waterways are marked on the cadastral map (1:7920 scale) and their dimensions are recorded.
- b) Considering the contour plan of the MWS, additional waterways/ modernization of the existing ones can be thought of.
- c) The design details are given in the Manual.

C. Farm Ponds

Waterways and the catchment area will give an indication on the size of the Farm Pond. Location of the pond can be decided based on the contour plan/ field condition and farmers' need/desire.

D. Diversion channel

Existing EPT/ CPT are marked on the cadastral map. Looking to the need, these can be modernized or fresh diversion channel can be proposed and runoff from this can be stored in Gokatte/ Recharge ponds.

9.1.2 Non-Arable Land Treatment

Depending on the gravelliness and crops preferred by the farmers, the concerned authorities can decide appropriate treatment plan. The recommended treatments may be Contour Trench, Staggered Trench, Crescent Bund, Boulder Bund or Pebble Bunds are formed in the field.

9.1.3 Treatment of Natural Water Course/ Drainage Lines

- a) The cadastral map has to be updated as regards the network of drainge lines (gullies/ nalas/ hallas) and existing structures are marked to the scale and storage capacity of the existing water bodies are documented.
- b) The drainage line will be demarcated into Upper Reach, Middle Reach and Lower Reach.
- c) Considering the Catchment, Nala bed and bank conditions, suitable structures are decided.
- d) Number of storage structures (Check dam/ Nala bund/ Percolation tank) will be decided considering the commitments and available runoff in water budgeting and quality of water in the wells and site suitability.
- e) Detailed Levelling Survey using Dumpy Level / Total Station has to be carried out to arrive at the site-specific designs as shown in the Manual.
- f) The location of ground water recharge structures are decided by examining the lineaments and fracture zones from geological maps.
- g) Rainfall intensity data of the nearest Rain gauge station is considered for Hydrologic Designs.
- h) Silt load to the Storage/Recharge structures is reduced by providing vegetative, boulder and earthern checks in the natural water course. Location and design details are given in the Manual.

9.2 Recommended Soil and Water Conservation Measures

The appropriate conservation structures best suited for each of the land parcel/ survey number (Appendix-I) are selected based on the slope per cent, severity of erosion, amount of rainfall, land use and soil type.

The different kinds of conservation structures recommended are

- 1. Graded / Strengthening of bunds
- 2. Trench cum Bunds (TCB)
- 3. Trench cum Bunds / Strengthening
- 4. Crescent Bunds

A map (Fig. 9.1) showing soil and water conservation plan with different kinds of structures recommended has been prepared which shows the spatial distribution and extent of area. An area of about 78 ha (12%) requires trench cum bunding/ GB and about 30 ha (4%) area needs graded bunds/strengthening of bunds. The maximum area of about 548 ha (82%) requires crescent bunds.

The conservation plan prepared may be presented to all the stakeholders including farmers and after including their suggestions, the conservation plan for the microwatershed may be finalised in a participatory approach.

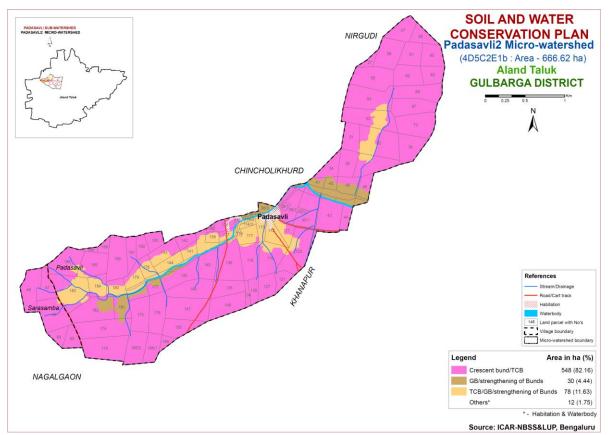


Fig. 9.1 Soil and Water Conservation Plan map of Padasavli-2 Microwatershed

9.3 Greening of Microwatershed

As part of the greening programme in the watersheds, it is envisaged to plant a variety of horticultural and other tree plants that are edible, economical and produce lot of biomass which helps to restore the ecological balance in the watersheds. The lands that are suitable for greening programme are non-arable lands (land capability classes V, VI and VII) and also the

lands that are not suitable or marginally suitable for growing annual and perennial crops. The method of planting these trees is given below.

It is recommended to open pits during the 1st week of March along the contour and heap the dugout soil on the lower side of the slope in order to harness the flowing water and facilitate weathering of soil in the pit. Exposure of soil in the pit also prevents spread of pests and diseases due to scorching sun rays. The pits should be filled with mixture of soil and organic manure during the second week of April and keep ready with sufficiently tall seedlings produced either in poly bags or in root trainer nurseries so that planting can be done during the 2nd or 3rd week of April depending on the rainfall.

The tree species suitable for the area considering rainfall, temperature and adaptability is listed below; waterlogged areas are recommended to be planted with species like Neral (*Sizyzium cumini*) and Bamboo. Dry areas are to be planted with species like Honge, Bevu, Seetaphal *etc*.

	Dry De	ciduous Species	Temp (°C)	Rainfall (mm)
1.	Bevu	Azadiracta indica	21–32	400-1,200
2.	Tapasi	Holoptelia integrifolia	20-30	500 - 1000
3.	Seetaphal	Anona Squamosa	20-40	400 - 1000
4.	Honge	Pongamia pinnata	20 - 50	500-2,500
5.	Kamara	Hardwikia binata	25 - 35	400 - 1000
6.	Bage	Albezzia lebbek	20 - 45	500 - 1000
7.	Ficus	Ficus bengalensis	20 - 50	500-2,500
8.	Sisso	Dalbargia Sissoo	20 - 50	500 -2000
9.	Ailanthus	Ailanthus excelsa	20 - 50	500 - 1000
10.	Hale	Wrightia tinctoria	25 - 45	500 - 1000
11.	Uded	Steriospermum chelanoides	25 - 45	500 -2000
12.	Dhupa	Boswella Serrata	20 - 40	500 - 2000
13.	Nelli	Emblica Officinalis	20 - 50	500 -1500
14.	Honne	Pterocarpus marsupium	20 - 40	500 - 2000
	Moist D	eciduous Species	Temp (°C)	Rainfall (mm)
15.	Teak	Tectona grandis	20 - 50	500-5000
16.	Nandi	Legarstroemia lanceolata	20 - 40	500 - 4000
17.	Honne	Pterocarpus marsupium	20 - 40	500 - 3000
18.	Mathi	Terminalia alata	20 - 50	500 - 2000
19.	Shivane	Gmelina arboria	20 - 50	500 -2000
20.	Kindal	T.Paniculata	20 - 40	500 - 1500
21.	Beete	Dalbargia latifolia	20 - 40	500 - 1500
22.	Tare	T. belerica	20 - 40	500 - 2000

23.	Bamboo	Bambusa arundinasia	20 - 40	500 - 2500
24.	Bamboo	Dendrocalamus strictus	20-40	500 - 2500
25.	Muthuga	Butea monosperma	20 - 40	400 - 1500
26.	Hippe	Madhuca latifolia	20 - 40	500 - 2000
27.	Sandal	Santalum album	20 - 50	400 - 1000
28.	Nelli	Emblica officinalis	20 - 40	500 - 2000
29.	Nerale	Sizyzium cumini	20 - 40	500 - 2000
30.	Dhaman	Grevia tilifolia	20 - 40	500 - 2000
31.	Kaval	Careya arborea	20 - 40	500 - 2000
32.	Harada	Terminalia chebula	20 - 40	500 - 2000

References

- 1. FAO (1976) Framework for Land Evaluation, Food and Agriculture Organization, Rome.72 pp.
- 2. FAO (1983) Guidelines for Land Evaluation for Rainfed Agriculture, FAO, Rome, 237 pp.
- 3. IARI (1971) Soil Survey Manual, All India Soil and Land Use Survey Organization, IARI, New Delhi, 121 pp.
- 4. Katyal, J.C. and Rattan, R.K. (2003) Secondary and Micronutrients; Reaserch Gap and future needs. Fert. News 48 (4); 9-20.
- Naidu, L.G.K., Ramamurthy, V., Challa, O., Hegde, R. and Krishnan, P. (2006) Manual Soil Site Suitability Criteria for Major Crops, NBSS Publ. No. 129, NBSS &LUP, Nagpur, 118 pp.
- 6. Natarajan, A. and Dipak Sarkar (2010) Field Guide for Soil Survey, National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur, India.
- Natarajan, A., Rajendra Hegde, Raj, J.N. and Shivananda Murthy, H.G. (2015) Implementation Manual for Sujala-III Project, Watershed Development Department, Bengaluru, Karnataka.
- Sarma, V.A.K., Krishnan, P. and Budihal, S.L. (1987) Laboratory Manual, Tech. Bull. 23, NBSS & LUP, Nagpur.
- Sehgal, J.L. (1990) Soil Resource Mapping of Different States of India; Why and How?, National Bureau of Soil Survey and Land Use Planning, Nagpur, 49 pp.
- 10. Shivaprasad, C.R., R.S. Reddy, J. Sehgal and M. Velayuthum (1998) Soils of Karntaka for Optimising Land Use, NBSS Publ. No. 47b, NBSS & LUP, Nagpur, India.
- 11. Soil Survey Staff (2006) Keys to Soil Taxonomy, Tenth edition, U.S. Department of Agriculture/ NRCS, Washington DC, U.S.A.
- Soil Survey Staff (2012) Soil Survey Manual, Handbook No. 18, USDA, Washington DC, USA.

Appendix	-1
----------	----

							Padasav	li2 Microwate	ershed					
							Soil Site an	d Thematic Inf	ormation					
Village	Sur- vey No.	Total Area (ha)	Soil phase	Land Manage- ment Unit	Soil Depth	Surface Soil Texture	Soil Grave- lliness	AWC	Slope	Soil Erosion	CLU Code	WELLS	Land Capab- ility	Conservation Plan
Padasavali	27	1.97	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Greengram (Gg)	Not Available	IIIse	Crescent bund/TCB
Padasavali	34	5.53	NHAmB2g2	LMU-3	Shallow (25-50 cm)	Clay	Very gravelly (35-60%)	Low (51- 100 mm/m)	Very gently sloping (1-3%)	Moderate	Greengram+Red gram (Gg+Rg)	Not Available	IIIse	Crescent bund/TCB
Padasavali	37	0.67	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Sugarcane (Sc)	Not Available	IVs	Crescent bund/TCB
Padasavali	38/3	1.92	MANmB1	LMU-5	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Sugarcane (Sc)	Borewell	IIs	GB/strengtheni ng of Bunds
Padasavali	39/1	1.14	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Sugarcane (Sc)	Not Available	IVs	Crescent bund/TCB
Padasavali	39/2	7.44	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Sugarcane (Sc)	Not Available	IVs	Crescent bund/TCB
Padasavali	40/1	9.75	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram+ Sugarcane (Rg+Sc)	 Openwell, Borewell 	IVs	Crescent bund/TCB
Padasavali	40/2	0.75	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Sugarcane (Sc)	Not Available	IVs	Crescent bund/TCB
Padasavali	41	4.26	MANmB1	LMU-5	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	No Crop (NC)	Not Available	IIs	GB/strengtheni ng of Bunds
Padasavali	42	2.42	MANmB1	LMU-5	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Sugarcane (Sc)	Not Available	IIs	GB/strengtheni ng of Bunds
Padasavali	43	10.82	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Greengram+ Redgram (Gg+Rg)	Not Available	IVs	Crescent bund/TCB
Padasavali	44	3.64	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram (Rg)	Not Available	IVs	Crescent bund/TCB
Padasavali	45	7.22	MANmB1	LMU-5	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Redgram+No Crop (Rg+NC)	Borewell, Borewell	IIs	GB/strengtheni ng of Bunds
Padasavali	46	5.23	NHAmB3g3	LMU-2	Shallow (25-50 cm)	Clay	Extremely gravelly (60- 80%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Severe	No Crop (NC)	Not Available	IVse	Crescent bund/TCB
Padasavali	48	10.41	MGTmB2g1	LMU-2	Very shallow (<25 cm)	Clay	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Redgram+No Crop (Rg+NC)	Not Available	IVs	Crescent bund/TCB

	Sur-	Total		Land		Surface	Soil Grave-			Soil			Land	Conservation
Village	vey No.	Area (ha)	Soil phase	Manage- ment Unit	Soil Depth	Soil Texture	lliness	AWC	Slope	Erosion	CLU Code	WELLS	Capab- ility	Plan
Padasavali	50	7	NHAmB2g2	LMU-3	Shallow (25-50 cm)	Clay	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Greengram+Redgra m (Gg+Rg)	Not Available	IIIse	Crescent bund/TCB
Padasavali	51	7.01	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Redgram+No Crop (Rg+NC)	Not Available	IIIse	Crescent bund/TCB
Padasavali	52	16.89	MGTmB3	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Severe	Redgram+No Crop (Rg+NC)	Openwell	IVse	Crescent bund/TCB
Padasavali	53	14.24	MGTiC3g1	LMU-1	Very shallow (<25 cm)	Sandy clay	Gravelly (15- 35%)	Very low (<50 mm/m)	Gently sloping (3-5%)	Severe	Greengram+ Redgram (Gg+Rg)	Openwell	VIse	Crescent bund/TCB
Padasavali	54	15.72	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Redgram+Soybean (Rg+Sb)	Not Available	IIIse	Crescent bund/TCB
Padasavali	55	13.12	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Greengram+ Redgram+Sunflower (Gg+Rg+Sf)	Not Available	IIIse	Crescent bund/TCB
Padasavali	56	10.7	MGTiB2g1	LMU-2	Very shallow (<25 cm)	Sandy clay	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Greengram+ Redgram (Gg+Rg)	Not Available	IVse	Crescent bund/TCB
Padasavali	57	7.42	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Not Available (NA)	Not Available	IIIse	Crescent bund/TCB
Padasavali	58	4.91	MGTiC3g1	LMU-1	Very shallow (<25 cm)	Sandy clay	Gravelly (15- 35%)	Very low (<50 mm/m)	Gently sloping (3-5%)	Severe	Scrub land (Sl)	Not Available	VIse	Crescent bund/TCB
Padasavali	60	7.22	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Redgram (Rg)	Not Available	IIIse	Crescent bund/TCB
Padasavali	61	7.27	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Redgram (Rg)	Borewell	IIIse	Crescent bund/TCB
Padasavali	62	8.91	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Greengram+ Redgram (Gg+Rg)	Not Available	IIIse	Crescent bund/TCB
Padasavali	63	5.95	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Redgram (Rg)	Not Available	IIIse	Crescent bund/TCB
Padasavali	66	10.77	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Redgram+No Crop (Rg+NC)	Not Available	IIIse	Crescent bund/TCB
Padasavali	67	10.38	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Redgram+No Crop (Rg+NC)	Not Available	IIIse	Crescent bund/TCB
Padasavali	73	12.91	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Redgram+No Crop (Rg+NC)	Not Available	IIIse	Crescent bund/TCB
Padasavali	78	9.37	MGTiC3g1	LMU-1	Very shallow (<25 cm)	Sandy clay	Gravelly (15- 35%)	Very low (<50 mm/m)	Gently sloping (3-5%)	Severe	Redgram+No Crop (Rg+NC)	Not Available	VIse	Crescent bund/TCB

Village	Sur- vey No.	Total Area (ha)	Soil phase	Land Manage- ment Unit	Soil Depth	Surface Soil Texture	Soil Grave- lliness	AWC	Slope	Soil Erosion	CLU Code	WELLS	Land Capab- ility	Conservation Plan
Padasavali	111	4.95	GTTmB2g1	LMU-4	Moderately shallow (50- 75 cm)	Clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Redgram+No Crop (Rg+NC)	Not Available	IIIse	TCB/GB/strengt hening of Bunds
Padasavali	112	6.85	GTTmB2g1	LMU-4	Moderately shallow (50- 75 cm)	Clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Redgram+ Sugarcane (Rg+Sc)	Not Available	IIIse	TCB/GB/strengt hening of Bunds
Padasavali	113	3.52	GTTiB3g2	LMU-3	Moderately shallow (50- 75 cm)	Sandy clay	Very gravelly (35- 60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Severe	Not Available (NA)	Not Available	IIIse	TCB/GB/strengt hening of Bunds
Padasavali	114/ 1	0.53	MANmB1	LMU-5	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIs	GB/strengtheni ng of Bunds
Padasavali	114/ 2	0.63	KMPmB1	LMU-4	Moderately deep (75- 100 cm)	Clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIs	TCB/GB/strengt hening of Bunds
Padasavali	114/ 3	1.34	KMPmB1	LMU-4	Moderately deep (75- 100 cm)	Clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIs	TCB/GB/strengt hening of Bunds
Padasavali	115	1.05	Habitation	Others	Others	Others	Others	Others	Others	Others	Not Available (NA)	Not Available	Others	Others
Padasavali	116	0.41	KMPmB1	LMU-4	Moderately deep (75- 100 cm)	Clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Openwell	IIs	TCB/GB/strengt hening of Bunds
Padasavali	117	4.94	GTTiB3g2	LMU-3	Moderately shallow (50- 75 cm)	Sandy clay	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Severe	Not Available (NA)	Not Available	IIIse	TCB/GB/strengt hening of Bunds
Padasavali	118	9.69	MGThC3g2	LMU-1	Very shallow (<25 cm)	Sandy clay loam	Very gravelly (35-60%)	Very low (<50 mm/m)	Gently sloping (3-5%)	Severe	Redgram (Rg)	5. Borewell, Openwell	IVse	Crescent bund/TCB
Padasavali	119	11.07	MGTiD3g2	LMU-1	Very shallow (<25 cm)	Sandy clay	Very gravelly (35- 60%)	Very low (<50 mm/m)	Moderately sloping (5-10%)	Severe	Redgram (Rg)	Checkdam	VIse	Crescent bund/TCB
Padasavali	120	15.78	MGThD3	LMU-1	Very shallow (<25 cm)	Sandy clay loam	Non gravelly (<15%)	Very low (<50 mm/m)	Moderately sloping (5-10%)	Severe	Redgram+ Sugarcane+No Crop (Rg+Sc+NC)	Not Available	VIe	Crescent bund/TCB
Padasavali	121	3.82	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram (Rg)	Not Available	IVs	Crescent bund/TCB

Village	Sur- vey No.	Total Area (ha)	Soil phase	Land Manage- ment Unit	Soil Depth	Surface Soil Texture	Soil Grave- lliness	AWC	Slope	Soil Erosion	CLU Code	WELLS	Land Capab- ility	Conservation Plan
Padasavali	127	6.29	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Greengram+Red- gram (Gg+Rg)	Not Available	IVs	Crescent bund/TCB
Padasavali	128	3.56	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram (Rg)	Not Available	IVs	Crescent bund/TCB
Padasavali	134	1.69	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram (Rg)	Not Available	IVs	Crescent bund/TCB
Padasavali	135	7.33	MGTmA1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Nearly level (0-1%)	Slight	Redgram (Rg)	Not Available	IVs	Crescent bund/TCB
Padasavali	136	15.03	MGThC3g2	LMU-1	Very shallow (<25 cm)	Sandy clay loam	Very gravelly (35-60%)	Very low (<50 mm/m)	Gently sloping (3-5%)	Severe	Redgram+Soybean+ No Crop (Rg+Sb+NC)	Not Available	IVse	Crescent bund/TCB
Padasavali	137	2.47	KMPmB1	LMU-4	Moderately deep (75- 100 cm)	Clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIs	TCB/GB/stren gthening of Bunds
Padasavali	138	3.48	MGTmC3g1	LMU-1	Very shallow (<25 cm)	Clay	Gravelly (15- 35%)	Very low (<50 mm/m)	Gently sloping (3-5%)	Severe	Not Available (NA)	Not Available	VIse	Crescent bund/TCB
Padasavali	139	2.25	KMPmB1	LMU-4	Moderately deep (75- 100 cm)	Clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIs	TCB/GB/stren gthening of Bunds
Padasavali	140	11.87	MGThC3g1	LMU-1	Very shallow (<25 cm)	Sandy clay loam	Gravelly (15- 35%)	Very low (<50 mm/m)	Gently sloping (3-5%)	Severe	Greengram+Redgra m (Gg+Rg)	Openwell	IVse	Crescent bund/TCB
Padasavali	141	3.01	KMPmB1	LMU-4	Moderately deep (75- 100 cm)	Clay	Non gravelly (<15%)	Medium (101-150 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Openwell, Borewell	IIs	TCB/GB/stren gthening of Bunds
Padasavali	142	3.39	MGTmC3g1	LMU-1	Very shallow (<25 cm)	Clay	Gravelly (15- 35%)	Very low (<50 mm/m)	Gently sloping (3-5%)	Severe	Not Available (NA)	Not Available	VIse	Crescent bund/TCB
Padasavali	143	6.98	MGTmC3g1	LMU-1	Very shallow (<25 cm)	Clay	Gravelly (15- 35%)	Very low (<50 mm/m)	Gently sloping (3-5%)	Severe	Redgram+Soybean (Rg+Sb)	3. Borewell	VIse	Crescent bund/TCB
Padasavali	144	4.45	KMPmB1	LMU-4	Moderately deep (75- 100 cm)	Clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Redgram+Soybean+ Sugarcane (Rg+Sb+Sc)	Not Available	IIs	TCB/GB/stren gthening of Bunds
Padasavali	145	11.15	MGThC3g1	LMU-1	Very shallow (<25 cm)	Sandy clay loam	Gravelly (15- 35%)	Very low (<50 mm/m)	Gently sloping (3-5%)	Severe	Redgram+Sugarcane (Rg+Sc)	3. Checkdam	IVse	Crescent bund/TCB
Padasavali	146	11.33	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram (Rg)	Not Available	IVs	Crescent bund/TCB

Village	Sur- vey No.	Total Area (ha)	Soil phase	Land Manage- ment Unit	Soil Depth	Surface Soil Texture	Soil Grave- lliness	AWC	Slope	Soil Erosion	CLU Code	WELLS	Land Capab- ility	Conservation Plan
Padasavali	147	14.81	MGTmB2Pb 1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Redgram+Soybean (Rg+Sb)	Not Available	IVs	Crescent bund/TCB
Padasavali	148	10.78	MGTmA1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Nearly level (0-1%)	Slight	Greengram+Red gram+No Crop (Gg+Rg+NC)	Not Available	IVs	Crescent bund/TCB
Padasavali	150	8.48	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Gingelli+Redgram (Gi+Rg)	Not Available	IVs	Crescent bund/TCB
Padasavali	165	2.11	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Greengram (Gg)	Not Available	IVs	Crescent bund/TCB
Padasavali	166/ 1	6.3	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram+Soybean (Rg+Sb)	Not Available	IVs	Crescent bund/TCB
Padasavali	166/ 2	9.45	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram+Soybean (Rg+Sb)	Not Available	IVs	Crescent bund/TCB
Padasavali	173	15.26	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Gingelli+Redgram+ Soybean (Gi+Rg+Sb)	Not Available	IIIse	Crescent bund/TCB
Padasavali	174	14.38	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Greengram+Redgra m+Soybean (Gg+Rg+Sb)	Not Available	IIIse	Crescent bund/TCB
Padasavali	175	9.59	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Greengram+Red gram (Gg+Rg)	Borewell	IVs	Crescent bund/TCB
Padasavali	176	10	MGTmB1	LMU-2	Very shallow (<25 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Greengram+Red gram+Sunflower (Gg+Rg+Sf)	Not Available	IVs	Crescent bund/TCB
Padasavali	177	4.01	MGThC3g1	LMU-1	Very shallow (<25 cm)	Sandy clay loam	Gravelly (15- 35%)	Very low (<50 mm/m)	Gently sloping (3-5%)	Severe	Not Available (NA)	Borewell, Openwell	IVse	Crescent bund/TCB
Padasavali	178	4.15	KMPmB1	LMU-4	Moderately deep (75- 100 cm)	Clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Sugarcane (Sc)	4. Borewell, Openwell,	IIs	TCB/GB/strength ening of Bunds
Padasavali	179	8.67	KMPmB1	LMU-4	Moderately deep (75- 100 cm)	Clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Redgram+ Sugarcane (Rg+Sc)	Openwell, 4. Borewelll	IIs	TCB/GB/strength ening of Bunds
Padasavali	180	4.66	KMPmB1	LMU-4	Moderately deep (75- 100 cm)	Clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Sugarcane (Sc)	Borewell, Openwell	IIs	TCB/GB/streng thening of Bunds

	Com	Tatal		Land	T	Gundana		1		1			Land	
Village	Sur- vey No.	Total Area (ha)	Soil phase	Land Manage- ment Unit	Soil Depth	Surface Soil Texture	Soil Grave- lliness	AWC	Slope	Soil Erosion	CLU Code	WELLS	Land Capab- ility	Conservation Plan
Padasavali	181	5.79	MANmB1	LMU-5	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Borewell, Checkdam	IIs	GB/strengtheni ng of Bunds
Padasavali	182	13.98	NHAmC3	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Severe	Redgram+Soybean+ Sugarcane+No Crop (Rg+Sb+Sc+NC)	Not Available	IVse	Crescent bund/TCB
Padasavali	183	16.23	KMPmB2	LMU-4	Moderately deep (75- 100 cm)	Clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	- Very gently sloping (1-3%)	Moderate	Redgram (Rg)	Not Available	IIse	TCB/GB/streng thening of Bunds
Padasavali	184	5.8	KMPmB2	LMU-4	Moderately deep (75- 100 cm)	Clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	- Very gently sloping (1-3%)	Moderate	Redgram+ Sugarcane (Rg+Sc)	Not Available	IIse	TCB/GB/streng thening of Bunds
Padasavali	185	10.04	MGTmC3g1	LMU-1	Very shallow (<25 cm)	Clay	Gravelly (15- 35%)	Very low (<50 mm/m)	Gently sloping (3-5%)	Severe	Redgram (Rg)	Not Available	VIse	Crescent bund/TCB
Padasavali	186	11.31	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Redgram+Soybean (Rg+Sb)	Not Available	IIIse	Crescent bund/TCB
Padasavali	188	0.96	BHImB1g1	LMU-3	Shallow (25-50 cm)	Clay	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram (Rg)	Not Available	IIIs	Crescent bund/TCB
Padasavali	189	2.1	BHImB1	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Greengram (Gg)	Not Available	IIIs	Crescent bund/TCB
Padasavali	190	12.4	BHImB1g1	LMU-3	Shallow (25-50 cm)	Clay	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram+Sunflower (Rg+Sf)	Not Available	IIIs	Crescent bund/TCB
Padasavali	191	4.79	BHImB1g1	LMU-3	Shallow (25-50 cm)	Clay	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram+Soybean (Rg+Sb)	Not Available	IIIs	Crescent bund/TCB
Padasavali	192	3.87	BHImB1g1	LMU-3	Shallow (25-50 cm)	Clay	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram (Rg)	Not Available	IIIs	Crescent bund/TCB
Padasavali	193	4.38	BHImB1g1	LMU-3	Shallow (25-50 cm)	Clay	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram (Rg)	Not Available	IIIs	Crescent bund/TCB
Padasavali	195	0.75	MGTmC3g1	LMU-1	Very shallow (<25 cm)	Clay	Gravelly (15- 35%)	Very low (<50 mm/m)	Gently sloping (3-5%)	Severe	Not Available (NA)	Not Available	VIse	Crescent bund/TCB
Padasavali	SETT LEM ENT	0.06	MANmB1	LMU-5	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Habitation	Not Available	IIs	GB/strengtheni ng of Bunds
Padasavali	STRE -AM	10.82	MANmB1	LMU-5	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Waterbody	Not Available	IIs	GB/strengtheni ng of Bunds
Sarasamba	46	0.16	NHAmB2	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	No Crop (NC)	Not Available	IIIse	Crescent bund/TCB

Village	Sur- vey No.	Total Area (ha)	Soil phase	Land Manage- ment Unit	Soil Depth	Surface Soil Texture	Soil Grave- lliness	AWC	Slope	Soil Erosion	CLU Code	WELLS	Land Capab- ility	Conservation Plan
Sarasamba	47	6.18	NHAiC3g2	LMU-1	Shallow (25-50 cm)	Sandy clay	Very gravelly (35-60%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Severe	Redgram (Rg)	Not Available	IVse	Crescent bund/TCB
Sarasamba	48	10.47	NHAiC3g2	LMU-1	Shallow (25-50 cm)	Sandy clay	Very gravelly (35-60%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Severe	Redgram +Scrub land (Rg+Sl)	Checkdam	IVse	Crescent bund/TCB
Sarasamba	49	12.45	NHAmC3	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Severe	Redgram (Rg)	Not Available	IVse	Crescent bund/TCB
Sarasamba	64	3.54	NHAmC3	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Severe	Redgram (Rg)	Not Available	IVse	Crescent bund/TCB
Sarasamba	65	4.67	NHAmC3	LMU-3	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Severe	Redgram+Soybean (Rg+Sb)	Not Available	IVse	Crescent bund/TCB

						Appendix - II						
					Soi	l Fertility Informa	tion					
Village	Survey No.	Soil Reaction (pH)	EC	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Padasavali	27	Slightly alkaline (pH 7.3-7.8)	Non Saline (<2dsm)	Medium (0.5- 0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	Low (<10 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Padasavali	34	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2dsm)	Medium (0.5- 0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Padasavali	37	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2dsm)	Medium (0.5- 0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Deficient (<4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Padasavali	38/3	Moderately alkaline (pH 7.8-8.4)		Medium (0.5- 0.75 %)	Medium (23- 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	High (>1.0 ppm)	Deficient (<4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Padasavali	39/1	Moderately alkaline (pH 7.8-8.4)	. ,	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	High (>1.0 ppm)	Deficient (<4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Padasavali	39/2	Moderately alkaline (pH 7.8-8.4)	. ,	Medium (0.5- 0.75 %)	Medium (23- 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Deficient (<4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Padasavali	40/1	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2dsm)	High (>0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Deficient (<4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Padasavali	40/2	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2dsm)	High (>0.75 %)	Medium (23- 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Deficient (<4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Padasavali	41	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2dsm)	Medium (0.5- 0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Deficient (<4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Padasavali	42	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2dsm)	Medium (0.5- 0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Deficient (<4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Padasavali	43	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2dsm)	High (>0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Deficient (<4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Padasavali	44	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2dsm)	Medium (0.5- 0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	High (>20 ppm)	Medium (0.5- 1.0 ppm)	Deficient (<4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Padasavali	45	Moderately alkaline (pH 7.8-8.4)	· /	Medium (0.5- 0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Deficient (<4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Padasavali	46	Moderately alkaline (pH 7.8-8.4)	· /	Medium (0.5- 0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Deficient (<4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Padasavali	48	Moderately alkaline (pH 7.8-8.4)	. ,	Medium (0.5- 0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Deficient (<4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Padasavali	50	Moderately alkaline (pH 7.8-8.4)		Medium (0.5- 0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Deficient (<4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Padasavali	51	Slightly alkaline (pH 7.3-7.8)	Non Saline (<2dsm)	Medium (0.5- 0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Deficient (<4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)

	Survey	Soil Reaction		Organic	Available	Available	Available	Available	Available	Available	Available	Available
Village	No.	(pH)	EC	Carbon	Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
		Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Medium (10-	Medium (0.5-	Deficient	Sufficient	Sufficient	Deficient
Padasavali	52	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
D 1 11		Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Medium (10-	Low (<0.5	Deficient	Sufficient	Sufficient	Deficient
Padasavali	53	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Delement	54	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
Padasavali	54	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Dadagavali	55	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
Padasavali	55	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Dadagavali	56	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
Padasavali	50	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	57	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
r auasavan	57	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	58	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
1 auasavan	- 50	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	60	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
1 auasavan	00	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	61	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
1 auasavan	01	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	62	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
1 auasavan	02	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	63	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
1 auasavan	05	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	66	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
1 uuusuvun	00	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	67	Slightly alkaline	Non Saline	Low (<0.5 %)	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
1 uuusuvun	07	(pH 7.3-7.8)	(<2dsm)		kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	73	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
i uuusu vun		(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	78	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
i uuusu vun	70	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	111	Moderately alkaline		Low (<0.5 %)	Low (<23	Medium (145-	Medium (10-	Medium (0.5-	Deficient	Sufficient	Sufficient	Sufficient
- uniou vull		(pH 7.8-8.4)	(<2dsm)		kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Padasavali	112	Moderately alkaline	Non Saline	Low (<0.5 %)	Low (<23	Low (<145	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
- uniou vull		(pH 7.8-8.4)	(<2dsm)		kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Padasavali	113	Moderately alkaline	Non Saline	Low (<0.5 %)	Low (<23	High (>337	Medium (10-	Medium (0.5-	Deficient	Sufficient	Sufficient	Sufficient
- uniou vull		(pH 7.8-8.4)	(<2dsm)		kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)

	Survey	Soil Reaction		Organic	Available	Available	Available	Available	Available	Available	Available	Available
Village	No.	(pH)	EC	Carbon	Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
		Moderately alkaline	Non Saline	Medium (0.5-	Medium (23-	High (>337	Medium (10-	Medium (0.5-	Deficient	Sufficient	Sufficient	Sufficient
Padasavali	114/1	(pH 7.8-8.4)	(<2dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately alkaline	Non Saline	Medium (0.5-		High (>337	Medium (10-	Medium (0.5-	Deficient	Sufficient	Sufficient	Sufficient
Padasavali	114/2	(pH 7.8-8.4)	(<2dsm)	0.75 %)	Others	kg/ha)	20 ppm)	1.0 ppm)	(<4.5 ppm)	(> 1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately alkaline	× ,	Medium (0.5-	Low (<23	Medium (145-	Medium (10-	Medium (0.5-	Deficient	Sufficient	Sufficient	Sufficient
Padasavali	114/3	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Medium (10-	Medium (0.5-		Sufficient	Sufficient	
Padasavali	115	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	Others	(>1.0 ppm)	(>0.2 ppm)	Others
		Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Medium (10-	Medium (0.5-	Deficient	Sufficient	Sufficient	Deficient
Padasavali	116	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(< 0.6 ppm)
		Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Medium (10-	Medium (0.5-	Deficient	Sufficient	Sufficient	Deficient
Padasavali	117	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
D 1 11	110	Moderately alkaline	Non Saline	T (0 5 0()	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Padasavali	118	(pH 7.8-8.4)	(<2dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Delement	110	Moderately alkaline	Non Saline	T	Low (<23	Low (<145	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Padasavali	119	(pH 7.8-8.4)	(<2dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Dedesseel	120	Moderately alkaline	Non Saline		Low (<23	Medium (145-	Medium (10-	Low (<0.5	Deficient	Sufficient	Sufficient	Deficient
Padasavali	120	(pH 7.8-8.4)	(<2dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Dedesseel	121	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Low (<145	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
Padasavali	121	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	127	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
r auasavan	127	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	128	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
1 auasavan	120	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	134	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Sufficient
i auasavan	134	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Padasavali	135	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Sufficient
Tauasavan	155	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Padasavali	136	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Tauasavan	150	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	137	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Medium (0.5-	Deficient	Sufficient	Sufficient	Deficient
i uuusavali	1.57	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	138	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Medium (0.5-	Deficient	Sufficient	Sufficient	Deficient
- uuusuvan	100	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	139	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Medium (0.5-	Deficient	Sufficient	Sufficient	Deficient
- uuusuvuli	107	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)

¥7411	Survey	Soil Reaction	EG	Organic	Available	Available	Available	Available	Available	Available	Available	Available
Village	No.	(pH)	EC	Carbon	Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
D. J	1.40	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Deficient	Sufficient	Sufficient	Deficient
Padasavali	140	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Dadaaaak	1.41	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Medium (0.5-	Deficient	Sufficient	Sufficient	Deficient
Padasavali	141	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Dadagavali	142	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Medium (0.5-	Deficient	Sufficient	Sufficient	Deficient
Padasavali	142	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	143	Moderately alkaline	Non Saline	Low (<0.5 %)	Low (<23	High (>337	Low (<10	Medium (0.5-	Deficient	Sufficient	Sufficient	Deficient
r auasavan	145	(pH 7.8-8.4)	(<2dsm)	LUW (<0.5 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	144	Moderately alkaline	Non Saline	Low (<0.5 %)	Low (<23	High (>337	Low (<10	Medium (0.5-	Deficient	Sufficient	Sufficient	Deficient
r auasavan	144	(pH 7.8-8.4)	(<2dsm)	LUW (<0.5 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	145	Moderately alkaline	Non Saline	Low (<0.5 %)	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Deficient	Sufficient	Sufficient	Deficient
r auasavan	145	(pH 7.8-8.4)	(<2dsm)	LOW (<0.5 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	146	Moderately alkaline	Non Saline	Low (<0.5 %)	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
1 auasavan	140	(pH 7.8-8.4)	(<2dsm)	LOW (<0.3 70)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	147	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
1 auasavan	14/	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	148	Slightly alkaline	Non Saline	Low (<0.5 %)	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Sufficient
1 auasavan	140	(pH 7.3-7.8)	(<2dsm)		kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Padasavali	150	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Tauasavan	150	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Padasavali	165	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Tauasavan	105	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Padasavali	166/1	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
1 uuusu vun	100/1	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	166/2	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
1 uuusu vun	100/2	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	173	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
1 uuusu vun	1.0	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	174	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
1 uuusu vun		(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	175	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
		(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	176	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
- adubu (dil	1.0	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	177	Moderately alkaline	Non Saline	High (>0.75	Low (<23	High (>337	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Sufficient
- adusu (dii	1	(pH 7.8-8.4)	(<2dsm)	%)	kg/ha)	kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)

	Survey	Soil Reaction		Organic	Available	Available	Available	Available	Available	Available	Available	Available
Village	No.	(pH)	EC	Carbon	Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
		Moderately alkaline	Non Saline		Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Padasavali	178	(pH 7.8-8.4)	(<2dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately alkaline		Medium (0.5-	Low (<23	High (>337	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Sufficient
Padasavali	179	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately alkaline	· · · ·	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Sufficient
Padasavali	180	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
D 1 1	101	Moderately alkaline	Non Saline	High (>0.75	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Sufficient
Padasavali	181	(pH 7.8-8.4)	(<2dsm)	%)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Delement	100	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Padasavali	182	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Delement	102	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
Padasavali	183	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Dedegevel	184	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
Padasavali	104	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	185	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
r auasavan	105	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	186	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
r auasavan	100	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	188	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
r auasavan	100	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	189	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Low (<145	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
1 auasavan	107	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	190	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
1 auasavan	170	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Padasavali	191	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
1 auasavan	171	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Padasavali	192	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	Low (<145	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
1 auasa van	172	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Padasavali	193	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
1 auasa van	1)5	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Padasavali	195	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Medium (0.5-	Deficient	Sufficient	Sufficient	Deficient
i auasavali		(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Padasavali	SETTLE	Moderately alkaline	Non Saline	Medium (0.5-	High (> 57	High (>337	Medium (10-	Medium (0.5-	Deficient	Sufficient	Sufficient	Sufficient
i auasavali	MENT	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Padasavali	STRE	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Medium (10-	Medium (0.5-	Deficient	Sufficient	Sufficient	Deficient
i auasavali	AM	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)

Village	Survey No.	Soil Reaction (pH)	EC	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Companyha	46	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
Sarasamba	40	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Sarasamba	47	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Sarasaniba	4/	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Sarasamba	48	Slightly alkaline	Non Saline	Medium (0.5-	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
Sarasaniba	40	(pH 7.3-7.8)	(<2dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Sarasamba	49	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Sarasaniba	49	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Samaamha	64	Slightly alkaline	Non Saline	High (>0.75	Low (<23	High (>337	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
Sarasamba	04	(pH 7.3-7.8)	(<2dsm)	%)	kg/ha)	kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Saracamba	65	Moderately alkaline	Non Saline	Medium (0.5-	Low (<23	High (>337	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
Sarasamba 6	05	(pH 7.8-8.4)	(<2dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)

Appendix – III
Soil Suitability information

Village N	irvey						Sugar	NOT/			1	Jack-	1			1	Custard	1	Tam-
	No.	Sorg- hum	Maize	Red- gram	Sun- flower	Cotton	Sugar- cane	Soy- bean	Guava	Mango	Sapota	fruit	Jamun	Musambi	Lime	Cashew	Apple	Amla	arind
Padasavali	27	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	34	S3rg	S3rg	S3rg	Ν	S3rg	N	S3rg	Ν	Ν	N	Ν	N	Ν	Ν	N	S3rg	S3rg	N
Padasavali	37	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	N	Ν	N	N	Ν	N	Ν	Ν	Ν
Padasavali 3	38/3	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3t	S2t	S1	S1	N	S1	S1	S2r
Padasavali 3	39/1	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali 3	39/2	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali 4	40/1	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali 4	40/2	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	N	Ν	N	N	Ν	N	Ν	Ν	Ν
Padasavali	41	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3t	S2t	S1	S1	Ν	S1	S1	S2r
Padasavali	42	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3t	S2t	S1	S1	N	S1	S1	S2r
Padasavali	43	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	N	Ν	N	N	Ν	N	Ν	Ν	Ν
Padasavali	44	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	45	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3t	S2t	S1	S1	N	S1	S1	S2r
Padasavali	46	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	48	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	N	Ν	N	Ν	Ν	N	Ν	Ν	Ν
Padasavali	50	S3rg	S3rg	S3rg	Ν	S3rg	N	S3rg	Ν	Ν	N	Ν	N	N	Ν	N	S3rg	S3rg	Ν
Padasavali	51	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	52	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	53	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	54	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	55	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	56	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	N	Ν	N	N	Ν	N	Ν	Ν	Ν
Padasavali	57	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	58	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	N	Ν	N	Ν	Ν	N	Ν	Ν	Ν
Padasavali	60	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	61	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	62	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	63	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	66	S3r	S3rt	S3r	Ν	S3r	N	S3r	Ν	Ν	N	Ν	N	N	Ν	N	S3r	S3r	Ν
Padasavali	67	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	N	Ν	N	S3r	S3r	Ν
Padasavali	73	S3r	S3rt	S3r	Ν	S3r	N	S3r	Ν	N	Ν	Ν	N	N	Ν	Ν	S3r	S3r	Ν
Padasavali	78	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	N	Ν	Ν	N	Ν	Ν	Ν	N	Ν	Ν
Padasavali	111	S2re	S3t	S2re	S3r	S2re	S3t	S2re	S3rt	Ν	S3rt	S3rt	S3r	S3r	S3r	Ν	S2re	S2re	Ν
Padasavali	112	S2re	S3t	S2re	S3r	S2re	S3t	S2re	S3rt	Ν	S3rt	S3rt	S3r	S3r	S3r	Ν	S2re	S2re	Ν
Padasavali	113	S3rg	S3rg	S3rg	Ν	S3rg	Ν	S3rg	S3re	Ν	S3re	S3re	S3re	S3re	S3re	Ν	S3ge	S3ge	Ν

Village	Survey No.	Sorg- hum	Maize	Red- gram	Sun- flower	Cotton	Sugar- cane	Soy- bean	Guava	Mango	Sapota	Jack- fruit	Jamun	Musambi	Lime	Cashew	Custard Apple	Amla	Tam- arind
Padasavali	114/1	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3t	S2t	S1	S1	Ν	S1	S1	S2r
Padasavali	114/2	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3rt	S3r	S2r	S2r	Ν	S1	S1	S3r
Padasavali	114/3	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3rt	S3r	S2r	S2r	Ν	S1	S1	S3r
Padasavali	115	Others	Others	Others	Others	Others	Others	Others		Others	Others			Others	Others				Others
Padasavali	116	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3rt	S3r	S2r	S2r	N	S1	S1	S3r
Padasavali	117	S3rg	S3rg	S3rg	Ν	S3rg	Ν	S3rg	S3re	Ν	S3re	S3re	S3re	S3re	S3re	Ν	S3ge	S3ge	Ν
Padasavali	118	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	119	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	120	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	121	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	127	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	128	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	134	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	135	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	136	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	137	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3rt	S3r	S2r	S2r	Ν	S1	S1	S3r
Padasavali	138	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	139	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3rt	S3r	S2r	S2r	Ν	S1	S1	S3r
Padasavali	140	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	141	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3rt	S3r	S2r	S2r	Ν	S1	S1	S3r
Padasavali	142	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	143	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν
Padasavali	144	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3rt	S3r	S2r	S2r	Ν	S1	S1	S3r
Padasavali	145	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	146	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	147	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	148	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	150	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν
Padasavali	165	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	166/1	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	166/2	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	173	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	174	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	175	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	176	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	177	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν

Village	Survey No.	Sorg- hum	Maize	Red- gram	Sun- flower	Cotton	Sugar- cane	Soy- bean	Guava	Mango	Sapota	Jack- fruit	Jamun	Musambi	Lime	Cashew	Custard Apple	Amla	Tam- arind
Padasavali	178	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3rt	S3r	S2r	S2r	Ν	S1	S1	S3r
Padasavali	179	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3rt	S3r	S2r	S2r	Ν	S1	S1	S3r
Padasavali	180	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3rt	S3r	S2r	S2r	Ν	S1	S1	S3r
Padasavali	181	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3t	S2t	S1	S1	Ν	S1	S1	S2r
Padasavali	182	S3re	S3re	S3re	Ν	S3re	Ν	S3re	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3re	S3re	Ν
Padasavali	183	S2e	S3t	S2te	S2e	S2e	S3t	S2e	S3t	S3t	S3t	S3rt	S3r	S2re	S2re	Ν	S2e	S2e	S3r
Padasavali	184	S2e	S3t	S2te	S2e	S2e	S3t	S2e	S3t	S3t	S3t	S3rt	S3r	S2re	S2re	Ν	S2e	S2e	S3r
Padasavali	185	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	186	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	188	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	189	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	190	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	191	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	192	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	193	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Padasavali	195	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Padasavali	SETTLE MENT	S1	S3t	S2t	S1	S 1	S3t	S1	S3t	S3t	S3t	S3t	S2t	S1	S1	Ν	S1	S 1	S2r
Padasavali	STRE AM	S1	S3t	S2t	S1	S1	S3t	S1	S3t	S3t	S3t	S3t	S2t	S1	S1	Ν	S1	S 1	S2r
Sarasamba	46	S3r	S3rt	S3r	Ν	S3r	Ν	S3r	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	S3r	S3r	Ν
Sarasamba	47	S3rg	S3rg	S3rg	Ν	S3rg	Ν	S3rg	Ν	N	Ν	Ν	N	Ν	Ν	Ν	S3re	S3re	Ν
Sarasamba	48	S3rg	S3rg	S3rg	Ν	S3rg	Ν	S3rg	Ν	N	Ν	Ν	N	Ν	Ν	Ν	S3re	S3re	Ν
Sarasamba	49	S3re	S3re	S3re	Ν	S3re	Ν	S3re	Ν	N	Ν	Ν	N	Ν	Ν	Ν	S3re	S3re	Ν
Sarasamba	64	S3re	S3re	S3re	N	S3re	Ν	S3re	Ν	N	Ν	Ν	N	Ν	Ν	Ν	S3re	S3re	Ν
Sarasamba	65	S3re	S3re	S3re	Ν	S3re	Ν	S3re	Ν	N	Ν	Ν	Ν	N	Ν	Ν	S3re	S3re	Ν

PART-B

SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS

CONTENTS

1	Executive summary	1-3
2	Introduction	4
3	Methodology	7-11
4	Results and discussions	13-27

I. Soc	al status	
1	Human population among sample households	13
2	Basic needs of sample households	15
II. Ec	onomic status	
3	Occupational pattern in sample households	15
4	Domestic assets among samples households	16
5	Farm assets among samples households	16
6	Livestock assets among sample households	18
7	Milk produced and Fodder availability of sample households	18
8	Women empowerment of sample households	19
9	Per capita daily consumption of food among the sample households	17
10	Annual average Income from various sources	20
11	Average annual expenditure of sample households	20
12	Distribution of land holding among the sample households	21
13	Land holding among samples households	21
III. R	esource use pattern	
14	Number of tree/plants covered in sample farm households	22
15	Present cropping pattern among samples households	22
16	Distribution of soil series in the watershed	22-23
IV. Ec	conomic land evaluation	
17	Cropping pattern on major soil series	23
18	Alternative land use options for different size group of farmers	23
10	(Benefit Cost Ratio)	23
19	Economics Land evaluation and bridging yield gap for different crops	24
20	Estimation of onsite cost of soil erosion	25
21	Ecosystem services of food grains production	26
22	Ecosystem services of water supply for crop production	26
23	Farming constraints	26

LIST OF TABLES

1	Location of study area	8
2	ALPES Framework	9
3	Basic needs of sample households	14
4	Domestic assets among the sample households	16
5	Farm assets among samples households	17
6	Livestock assets among sample households	17
7	Per capita daily consumption of food among the sample households	19
8	Average annual expenditure of sample households	20
9	Estimation of onsite cost of soil erosion	25

LIST OF FIGURES

Chapter 1

EXECUTIVE SUMMARY

Baseline socioeconomic characterisation is prerequisite to prepare action plan for program implementation and to assess the project performance before making any changes in the watershed development program. The baseline provides appropriate policy direction for enhancing productivity and sustainability in agriculture.

Methodology: Padasavli-2 micro-watershed (Padasavli sub-watershed, Aland taluk, Gulbarga district) is located in between $17^{0}34'-17^{0}37'$ North latitudes and $76^{0}25' 76^{0}28'$ East longitudes, covering an area of about 666.62 ha, bounded by Chincholi Khurd, Khanapur, Nagalogaon and Nirgudi villages with length of growing period (LGP) 120-150 days. We used soil resource map as basis for sampling farm households to test the hypothesis that soil quality influence crop selection, and conservation investment of farm households. The level of technology adoption and productivity gaps and livelihood patterns were analyses. The cost of soil degradation and ecosystem services were quantified.

Results: The socio-economic outputs for Padasavli-2 micro-watershed (Padasavli subwatershed, Aland taluk, Gulbarga district) are presented here.

Social Indicators

- Male and female ratio is 58.7 to 41.3 per cent to the total sample population.
- Younger age 18 to 50 years group of population is around 57.4 per cent to the total population.
- *Literacy population is around 97.8 per cent.*
- Social groups belong to others backward caste (OBC) is around 90.0 per cent.
- *Fire wood is the source of energy for a cooking among 90.0 per cent.*
- About 90.0 per cent of households have a yashaswini health card.
- Dependence on ration cards for food grains through public distribution system is around 90.0 per cent.
- Swach bharath program providing closed toilet facilities around 20.0 per cent of sample households.
- Women participation in decisions making of agriculture production activities was found.

Economic Indicators

- The average land holding is 3.33 ha indicates that majority of farm households are belong to medium and large farmers. The total cultivated area by dry land condition among the sample farmers.
- Agriculture is the main occupation among 23.9 per cent and agriculture is the main and agriculture labour is subsidiary occupation for 71.7 per cent of sample households.

- The average value of domestic assets is around Rs.6300 per household. Mobile and television are popular media mass communication.
- The average value of farm assets is around Rs. 4575 per household, about 60.0 per cent of sample farmers weeder and sprayer.
- The average value of livestock is around Rs. 43000 per household; about 20.0 per cent of household are having livestock.
- The average per capita food consumption is around 786.8 grams (1814.6 kilo calories) against national institute of nutrition (NIN) recommendation at 827 gram. Around 90.0 per cent of sample households are consuming less than the NIN recommendation.
- The annual average income is around Rs. 47502 per household. About 60.0 per cent of farm households are below poverty line.
- The per capita average monthly expenditure is around Rs.3280.

Environmental Indicators-Ecosystem Services

- The value of ecosystem service helps to support investment to decision on soil and water conservation and in promoting sustainable land use.
- The onsite cost of different soil nutrients lost due to soil erosion is around Rs. 1364 per ha/year. The total cost of annual soil nutrients is around Rs. 893286 per year for the total area of 666.62 ha.
- The average value of ecosystem service for food grain production is around Rs 14165/ ha/year. Per hectare food grains production services is maximum in sunflower (Rs. 15850) and redgram (Rs. 12479).
- The data on water requirement for producing one quintal of grain is considered for estimating the total value of water required for crop production. The per hectare value of water used and value of water was maximum in redgram (Rs 496378) and sunflower (Rs 23903).

Economic Land Evaluation

- The major cropping pattern is redgram (90.3 %) and sunflower (9.7 %).
- In Padsalvi-2 micro-watershed, major soils are margutti (MGT) series is having very shallow soil depth cover around 46.28 % of area. On this soil farmers are presently growing redgram (85.0 %), sunflower (15.0 %) and Mannur (MAN) are also having very deep soil depth cover 4.45 % of area, the crops are redgram.
- The total cost of cultivation and benefit cost ratio (BCR) in study area of red gram range between Rs.21016/ha in MGT soil (with BCR of 1.64) and Rs.16175/ha in MAR soil (with BCR of 1.52).
- In sunflower the cost of cultivation Rs. 16105/ha in MGT soil (with BCR of 1.98).

- The land management practices reported by the farmers are crop rotation, tillage practices, fertilizer application and use of farm yard manure (FYM). Due to higher wages farmer are following labour saving strategies is not prating soil and water conservation measures. Less ownership of livestock limiting application of FYM.
- It was observed soil quality influences on the type and intensity of land use.
 More fertilizer applications in deeper soil to maximize returns.

Suggestions

- Involving farmers is watershed planning helps in strengthing institutional participation.
- The per capita food consumption and monthly income is very low. Diversifying income generation activities from crop and livestock production in order to reduce risk related to drought and market prices.
- Majority of farmers reported that they are not getting timely support/extension services from the concerned development departments.
- By strengthing agricultural extension for providing timely advice improved technology there is scope to increase in net income of farm households.
- By adopting recommended package of practices by following the soil test fertiliser recommendation, there is scope to increase yield in redgram (19.3 to 56.4 %) and sunflower (46.0 %).

INTRODUCTION

Watershed Development program aim to restore degraded watersheds in rainfed regions to increase their capacity to capture and store rain water, reduce soil erosion, and improved soil nutrients and carbon contents so they can produce greater agricultural yields and other benefits. As majority of rural poor live in these regions and dependent on natural resources for their livelihood and sustenance, improvements in agricultural yields improve human welfare and simultaneously improve national food security.

Sujala–III watershed development project conceptualised and implemented by the Watershed Development Department of Government of Karnataka with tripartite costsharing arrangements. The World Bank through International Development Association provided major portion of plan outlay as a loan to Government of India and in turn loan to Government of Karnataka.

The objectives of Sujala-III is to demonstrate more effective watershed management through greater integration of programs related to rain fed agriculture, innovative and science based approaches and strengthened institutions and capacities. The project is implemented in 11 districts of Bidar, Vijayapura, Gulbarga, Yadgir, Koppal, Gadag, Raichur, Davanagere, Tumkur, Chikkamangalur and Chamarajanagar which have been identified by the Watershed Development Department based on rainfall and socioeconomic conditions. The project will be implemented over six years and linked with the centrally financed integrated watershed management programme.

Economic evaluations can better guide in watershed planning and implementation, as well as raise awareness of benefits of ecosystem restoration for food security and poverty alleviation program. The present study aims to characterize socio-economic status of farm households, assess the land and water use status, evaluate the economic viability of land use, prioritize farming constraints and suggest the measures for soil and water conservation for sustainable agriculture.

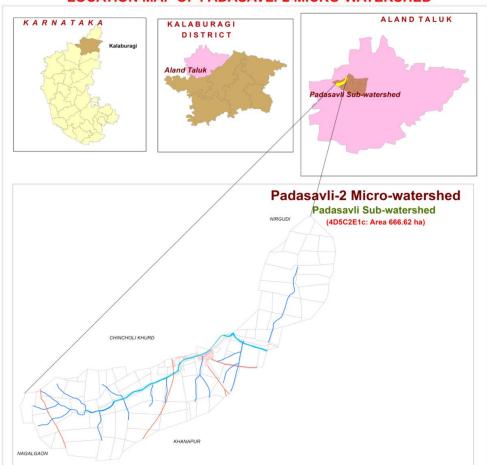
Objectives of the study

- 1. To characterize socio-economic status of farm households
- 2. To evaluate the economic viability of land use and land related constraints
- 3. To estimate the ecosystem service provided by the watershed and
- 4. To suggest alternatives for sustainable agriculture production.

METHODOLOGY

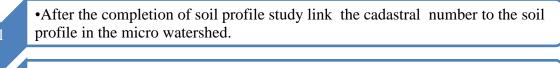
Study area

Padasavli-2 Microwatershed located in north-eastern dry zone of Karnataka (Figure 1): The total geographic area of this zone is about 1.76 M ha covering 8 taluks of Gulbarga district and 3 taluks of Raichur. Net cultivated area in the zone is about 1.31 M ha of which about 0.09 M ha are irrigated. The mean elevation of the zone is 300-450 m MSL. The main soil type is deep to very deep soils with small pockets of shallow to medium black soils. The zone is cropped predominantly during rabi due to insufficient rainfall (465-785 mm). The principal crops of the zone are jowar, bajra, oilseeds, pulses, cotton and sugarcane. It's represented Agro Ecological Sub Region (AESR) 6.2 having LGP 120-150 days.


Padasavli-2 Microwatershed (Padasavli sub-watershed, Aland taluk, Gulbarga district) is located in between $17^{0}34'-17^{0}37'$ North latitudes and $76^{0}25'-76^{0}28'$ East longitudes, covering an area of about 666.62 ha, bounded by Chincholi Khurd, Khanapur, Nagalogaon and Nirgudi villages.

Sampling Procedure:

In this study we have followed soil variability as criterion for sampling the farm households. In each micro-watershed the survey numbers and associated soil series are listed. Minimum three farm households for each soil series were taken and summed up to arrive at total sample for analysis.


Sources of data and analysis:

For evaluating the specific objectives of the study, primary data was collected from the sample respondents by personal interview method with the help of pre-tested questionnaire. The data on socio-economic characteristics of respondents such as family size and composition, land holdings, asset position, occupational pattern and education level was collected. The present cropping pattern and the level of input use and yields collected during survry. The data collected from the representative farm households were analysed using Automated Land Potential Evalution System (Figure 2).

LOCATION MAP OF PADASAVLI-2 MICRO-WATERSHED

Figure 1: Location of study area Steps followed in socio-economic assessment

- Download the names of the farmers who are owning the land for each cadastral number in the Karnataka BHOOMI Website.
- Compiling the names of the farmers representing for all the soil profiles studied in the micro watershed for socio-economic Survey.

4

- Conducting the socioeconomic survey of selected farm households in the micro watershe .
- Farm households database created using the Automated Land Potential Evaluation System (ALPES) for analysis of socio economic status for each micro watershed.
- Synthesis of tables and preparation of report for each micro watershed.

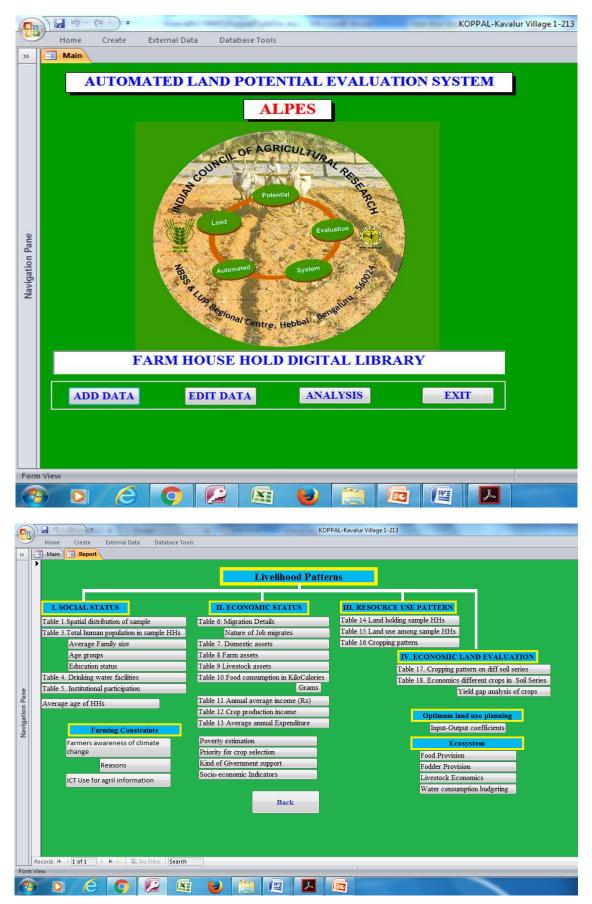


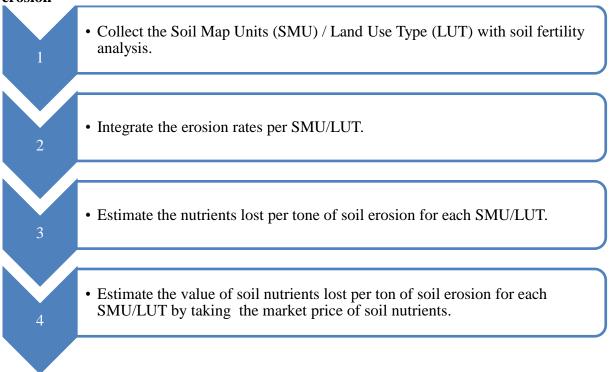
Figure 2: ALPES FRAMEWORK

The sample farmers were post classified in to marginal and small (0.0 to ≤ 2 ha), medium and semi medium (>2 to ≤ 10 ha) and large (>10 ha). The steps involved in estimation of soil potential involve estimation of total cost of cultivation, the yield/gross returns and net income per hectare. The cost of inputs such seed, manure and fertilizer, plant protection chemicals, payment towards human and bullock labour and interest on working capita are included under operational costs. In the case of perennial crops, the cost of establishment was estimated by using actual physical requirements and prevailing market prices. Estimation cost included maintenance cost up to bearing period. The value of main product and by product from the crop enterprise at the market rates were the gross returns of the crop. Net returns were worked out by deducting establishment and maintained cost from gross returns.

Operational Cost = cost of seeds, fertilizers, pesticides. Cost of human and bullock labour, cost of machinery, cost of irrigation water + interest on working capital.

Gross returns = Yield (Quintals/hectare)*Price (Rs/Quintal)

Net returns = Gross returns-Operational cost.


Benefit Cost Ratio = Net returns/Total cost.

Economic suitability classes: once each land use –land area combination has been assigned an economic value by the land evaluation, the question arises as to its 'suitability', that is, the degree to which it satisfies the land user. The FAO framework defines two suitability orders: 'S'(suitable if benefit cost ratio (BCR)>1) and 'N'(not suitable if (BCR<1), which are dived into five economic suitability classes:'S1'(highly suitable if BCR>3), 'S2'(suitable if BCR>2 and <3),'S3'(Marginally suitable if BCR >1 and <2), 'N1'(Not suitable for economic reasons but physically suitable) and 'N2'(not suitable for physical reasons). The limit between 'S3' and 'N1'must be at least at the point of financial feasibility (i.e. net returns, NPV, or IRR>0 and BCR>1). The other limits depend on social factors such as farm size, family size, alternative employment or investment possibilities and wealth expectations; these need to be specified for the Soil series.

Economic Valuation of Soil ecosystem services:

The replacement cost approach was followed for estimating the onsite cost of soil erosion, Market price method was followed for estimating the value of food and fodder production. Value transfer menthods was followed for estimating the value of water demand by different crops in the micro watershed.

Steps followed in Replacement cost methods for estimation of onsite cost of soil erosion

Chapter 4

RESULTS AND DISCUSSIONS

The demographic information shows that the household population dynamics encompasses the socioeconomic status of the farmer. For a rural family, the household size should be optimal to earn a comfortable livelihood through farm and non-farm wage earning. The total number of population in watershed area was 46, out of which 58.7 per cent were males and 41.3 per cent females. Average family size of the households is 4.6. Age is an important factor, which affects the potential employment and mobility status of respondents. The data on age wise distribution of farmers in the sample households indicated that majority of the farmers are coming under the age group of 18 to 30 years (39.1 %) followed by 30 to 50 years (28.3 %), 0 to 18 years (17.4 %) and more than 50 years (15.2 %).Hence, in the study area in general, the respondents were of young and middle age, indicating thereby that the households had almost settled with whatever livelihood options they were practicing and sample respondents were young by age who could venture into various options of livelihood sources. Data on literacy indicated that 2.2 per cent of respondents were illiterate and 97.8 per cent literate (Table 1).

Particulars	Units	Value
Total human population in sample HHs	Number	46
Male	% to total Population	58.7
Female	% to total Population	41.3
Average family size	Number	4.6
Age group		
0 to 18 years	% to total Population	17.4
18 to 30 years	% to total Population	39.1
30 to 50 years	% to total Population	28.3
>50 years	% to total Population	15.2
Average age	Age in years	32.4
Education Status		
Illiterates	% to total Population	2.2
Literates	% to total Population	97.8
Primary School (<5 class)	% to total Population	13.0
Middle School (6- 8 class)	% to total Population	15.2
High School (9- 10 class)	% to total Population	43.5
Others	% to total Population	26.1

Table 1: Human population among sample households in Padsavli-2Microwatershed

The ethnic groups among the sample farm households found to be 90.0 per cent belonging to other backward caste (OBC) and 10.0 per cent belonging to general caste (Table 2 and Figure 3). About 90.0 per cent of sample households are using wood as source of fuel for cooking. All the sample farmers are having electricity connection. About 90.0 per cent are sample households having health cards. About 90.0 per cent of farm households are having ration cards for taking food grains from public distribution system. About 20.0 per cent of farm households are having toilet facilities.

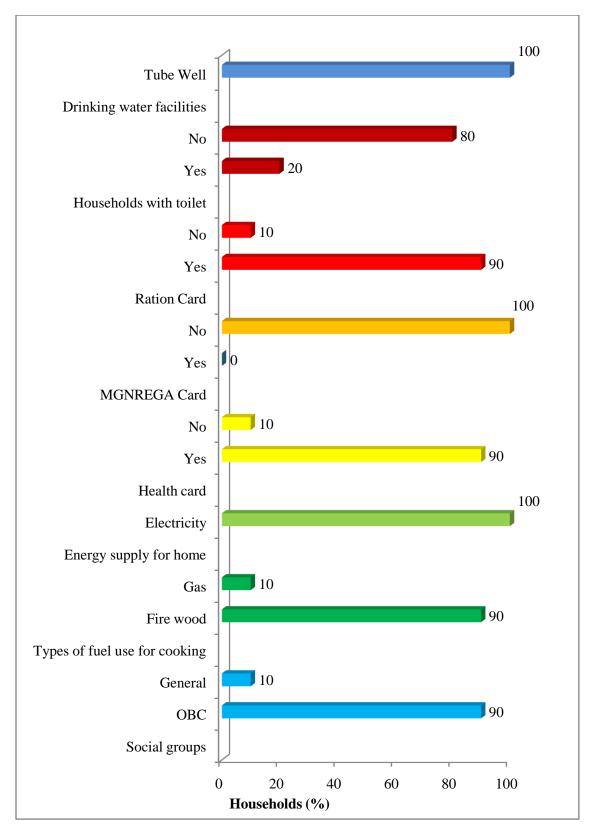


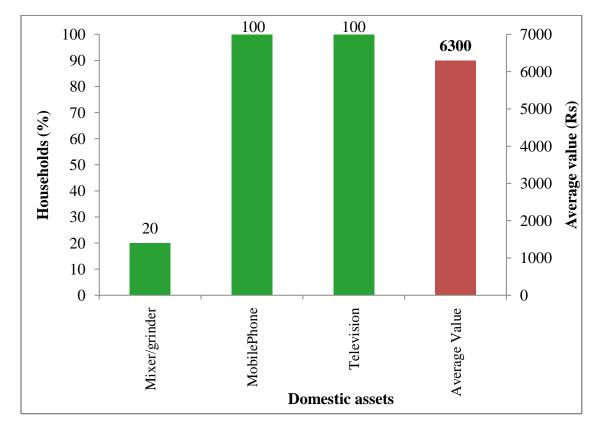
Figure 3: Basic needs of sample households in Padsavli-2 Microwatershed

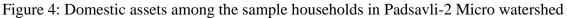
The data collected on the source of drinking water in the study area is presented in Table 2. All the sample respondents are having tube well source for water supply for domestic purpose.

Particulars	Units	Value		
Social groups				
OBC	% of Households	90.0		
General	% of Households	10.0		
Types of fuel use for cooking	ng			
Fire wood	% of Households	90.0		
Gas	% of Households	10.0		
Energy supply for home				
Electricity	% of Households	100.0		
Number of households hav	ing Health card			
Yes	% of Households	90.0		
No	% of Households	10.0		
MGNREGA Card				
Yes	% of Households	0.0		
No	% of Households	100.0		
Ration Card				
Yes	% of Households	90.0		
No	% of Households	10.0		
Households with toilet				
Yes	% of Households	20.0		
No	% of Households	80.0		
Drinking water facilities				
Tube Well	% of Households	100.00		

 Table 2: Basic needs of sample households in Padsavli-2 Microwatershed

The occupational pattern (Table 3) among sample households shows that agriculture is the main occupation around 23.9 per cent and subsidiary occupation like agriculture labour (71.7 %) of farmers followed by private service (2.2 %) and govt. service (2.2%).


 Table 3: Occupational pattern in sample population in Padsavli-2 Microwatershed


Occupation		% to total	
Main	Subsidiary		
	Agriculture	23.9	
Agriculture	Agriculture Labour	71.7	
Private service	Private service	2.2	
Govt.service		2.2	
Family labour availabi	ility	Man days/month	
Male		30	
Female		22	
Total		52	

The important assets especially with reference to domestic assets were analyzed and are given in Table 4 and Figure 4. The important domestic assets possessed by all categories of farmers are mobile phones (100 %) followed by television (100 %) and mixer/grinder (20 %). The average value of domestic assets is around Rs. 6300 per households.

Particulars	% of households	Average value in Rs
Mixer/grinder	20.0	2000
Mobile Phone	100.0	7900
Television	100.0	9000
Average Value	6300)

Table 4: Domestic assets among the sample households in Padsavli-2Microwatershed

The most popularly owned farm equipments were sickles, plough, cattle shed; pump sets, chaff cutter, bullock cart, sprayer and thresher. Plough and sickle were commonly present in all the sampled farmers; these were primary implements in agriculture. The per cent of households owned weeder (60 %), sprayer (60 %), plough (40 %) and bullock cart (40 %) was found among the sample farmers. The average value of farm assets is around Rs. 4575 per households (Table 5 and Figure 5).

Table 5: Farm assets among samples households in Padsavli-2 Microwatershe

Particulars	% of households	Average value in Rs
Bullock cart	40.0	13750
Plough	40.0	1750
Sprayer	60.0	2000
Weeder	60.0	800
Average Value	4575	

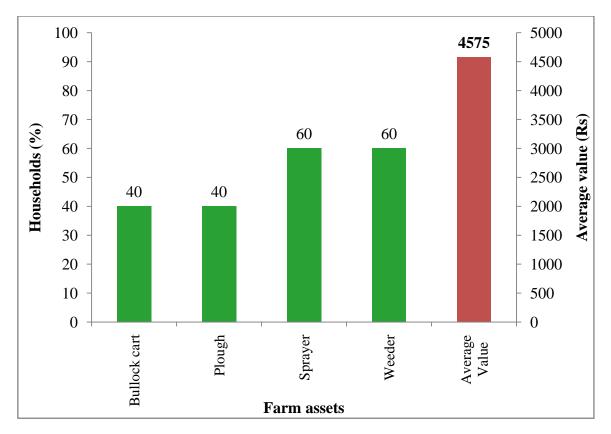
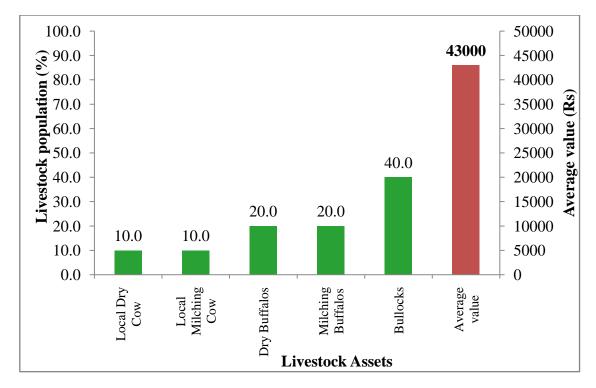
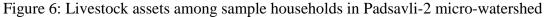




Figure 5: Farm assets among samples households in Padsavli-2 Microwatershed

Livestock is an integral component of the conventional farming systems (Table 6 and Figure 6). The highest livestock population is bullocks were around 40.0 per cent

fallowed by milching buffalos (20.0 %), dry buffalos (20.0 %), local dry cow (10.0 %) and local milching cow (10.0 %.The average livestock value was Rs. 43000 per household.

Particulars	% of livestock population	Average value in Rs
Local Dry Cow	10.0	30000
Local Milching Cow	10.0	50000
Dry Buffalos	20.0	12500
Milching Buffalos	20.0	22500
Bullocks	40.0	100000
Average value	43000	

 Table 6: Livestock assets among sample households in Padsavli-2 micro-watershed

Average milk produced in sample households is 640 litters/ annum. (Table7). Among the major milk produce is local mulching (720 lit/annum) and mulching buffalos (600 lit/annum).

Particulars		
Name of the Livestock	Ltr./Lactation/animal	
Local Milching Cow	720	
Milching Buffalos	600	
Average Milk Produced	640	
Livestock having households (%)	63	
Livestock population (Numbers)	17	

 Table 7: Milk produced of sample households in Padsavli-2 Microwatershed

 Particulars

A woman participation in decision making is in this micro-watershed is presented in Table 8. Among all the women taking decision in her family and agriculture related activities, and participation in women earning for her family requirement.

 Table 8: Women empowerment of sample households in Padsavli-2 Microwatershed

 %
 to Cronged Total

Y	o to Gran	a lotal
Particulars	Yes	No
Women participation in local organization activities	0.0	100.0
Women elected as panchayat member	0.0	100.0
Women earning for her family requirement	100.0	0.0
Women taking decision in her family and agriculture related activitie	s 100.0	0.0

The food intake in terms of kilo calorie (kcal) per person per day was calculated and presented in the Table 9 and Figure 7. More quantity of cereals is consumed by sample farmers which accounted for 1226.2 kcal per person. The other important food items consumed was pulses 159.3 kcal followed by cooking oil 176.7 kcal, milk 78.3 kcal, vegetables 32.0 kcal, egg 131.0 kcal and meat 11.3 kcal. In the sampled households, farmers were consuming less (1814.6 kcal) than NIN- recommended food requirement (2250 kcal).

Table 9: Per capita daily consumption of food among the sample households in **Padsavli-2 Microwatershed**

Particulars	NIN recommendation (gram/ per day/ person)	Present level of consumption (gram/ per day/ person)	Kilo Calories /day/person
Cereals	396	360.7	1226.2
Pulses	43	46.4	159.3
Milk	200	120.4	78.3
Vegetables	143	133.5	32.0
Cooking	31	31.0	176.7
Oil			
Egg	0.5	87.3	131.0
Meat	14.2	7.5	11.3
Total	827.7	786.8	1814.6
Threshold of	NIN recommendation	827 gram*	2250 Kcal*
% Below NIN	J	90.0	70.0
% Above NI	N	20.0	30.0
Note: * day/p	erson		

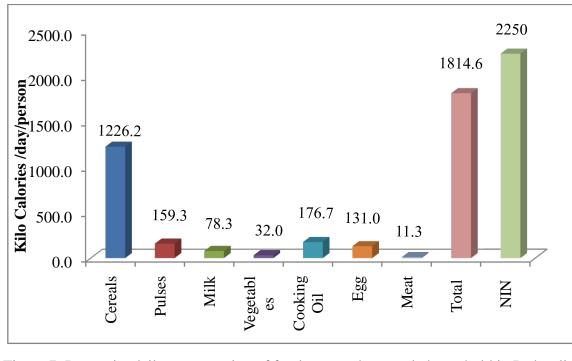


Figure 7: Per capita daily consumption of food among the sample household in Padsavli-2

Microwatershed.

Annual income of the sample HHs: The average annual household income is around Rs 47502. Major source of income to the farmers in the study area is from crop production (Rs 37129) followed by livestock (Rs. 10373). The monthly per capita income is Rs. 860 which is less than the threshold monthly income of Rs 975 for considering above poverty line. Due to the fact that erratic rainfall and shortage of water, farmers are diverting from crop production activities to enable the household for a comfortable livelihood. The incomes from the other aforesaid sources are very meagre (Table 10).

where water shed	
Particulars	Income *
Nonfarm income (Rs)	0 (0)
Livestock income (Rs)	10373 (30)
Crop Production (Rs)	37129 (100)
Total Annual Income (Rs)	47502
Average monthly per capita income (Rs)	860
Threshold for Poverty level (Rs 975 per month/person)	
% of households below poverty line	60.0
% of households above poverty line	40.0

Table 10: Annual average income of HHs from various sources in Padsavli-2 Microwatershed

* Figure in the parenthesis indicates % of Households

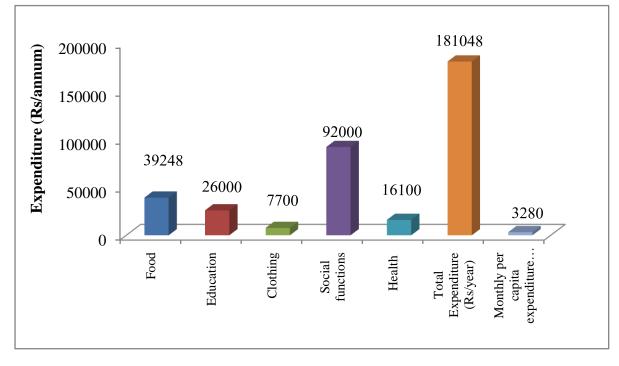


Figure 8: Average annual expenditure of sample HHs in Padsavli-2 Microwatershed

Particulars	Value in Rupees	Per cent
Food	39248	21.7
Education	26000	14.4
Clothing	7700	4.3
Social functions	92000	50.8
Health	16100	8.9
Total Expenditure (Rs/year)	181048	100.0
Monthly per capita expenditure (Rs)	3280	

The average annual expenditure of farm households indicated that farmers in the study area spend highest on food (Rs. 39248) followed by education, clothing, social function and health. Now a day's education is most important among all of us. In today's competitive world, education is a necessity for man after food, clothing, and shelter. It is

the only fundamental way by which a desired change in the society can happen. The average per capita monthly expenditure is around Rs 3280 and about 60.0 per cent of farm households are below poverty line and 40.0 per cent of farm households are above poverty line (Table 11 and Figure 8).

Land holding: Total area cultivated by them is 33.3 ha. The average land holding of sample HHs is 3.3 ha. Large number of sample HHs (50.0 %) belong to medium size group with an average holding size of 3.2 ha followed by small farmer (30.0 %) with a average land holding size of 1.7 ha and large farmer (20.0 %) with a average land holding size of 6.1 ha (Table 12).

Particulars	Units	Values
Small farmers		
Total land	ha	5.2
Sample size	Per cent	30.0
Average land holding	ha	1.7
Medium farmers		
Total land	ha	15.9
Sample size	Per cent	50.0
Average land holding	ha	3.2
Large farmers		
Total land	ha	12.1
Sample size	Per cent	20.0
Average land holding	ha	6.1
Total sample households		
Total land	ha	33.3
Sample size	Per cent	100.0
Average land holding	ha	3.3

 Table 12: Distribution of land holding among the sample households in Padsavli-2

 micro-watershed

Land use: The total land holding in the Padsavli-2 micro-watershed is 33.3 ha (Table 13). Of which 33.3 ha is dry land. The average land holding per household is worked out to be 3.3 ha.

Particulars	Per cent	Area in ha	
Irrigated land	0.0	0.0	
Dry land	100.0	33.3	
Fallow Land	0.0	0.0	
Total land holding	100.0	33.3	
Average land holding		3.3	

In the Microwatershed, the prevalent present land uses under perennial plants are neem trees (85.1 %) followed by teak (7.5 %), tamarind (4.0 %) and mango (1.5 %) (Table 14).

Particulars	Number of Plants/trees	Per cent
Mango	1	1.5
Neem trees	57	85.1
Tamarind	4	6.0
Teak	5	7.5
Grand Total	67	100.0

Table 14: Number of trees/plants covered in sample farm households in Padsavli-2Microwatershed

The land use decisions are usually based on experience of farmers, tradition, expected profit, personal preferences, resources and social requirements. The present dominant crops grown in dry lands in the study area were by redgram (90.3 %) and sunflower (9.7 %). which are taken during Kharif season (Table 15).

Table 15: Present cropping pattern and cropping intensity in Padsavli-2 Microwatershed % to Grand Total

Crops	Kharif	Grand Total
Redgram	90.3	90.3
Sunflower	9.7	9.7
Grand Total	100.0	100.0

Economic land evaluation

The main purpose to characterise the socio-economic systems in the watershed is to identify the existing production constraints and propose the potential/alternate options for agro-technology transfer and for bridging the adoption and yield gap.

In Padsavli-2 Microwatershed, 7 soil series are identified and mapped (Table 16). The distribution of major soil series are margutti (MGT) covering an area around 308.5 ha (46.3%) followed by Novinihala (NHA) 205 ha (30.7%), Kamalapur (KMP) 58.04 ha (8.7%), Bhimanahalli (BHI) 34.2 ha (5.1%), Mannur (MAR) 29.6 ha (4.4%), Gutti (GTT) 19.51 ha (2.9%) and habitation 11.69 (1.7%).

Sl. No	Soil series	Description	Area in ha (%)
1	MGT	Very shallow, black gravelly clay soils developed from	308.5
		weathered basalt on gently sloping uplands; sandy clay loam	(46.3)
		surface on 3-5 % slope, severely eroded, slightly gravelly, 15-	
		35 per cent gravels.	
2	NHA	Shallow, black clayey soils developed from weathered basalt	205.0
		on very gently sloping uplands; sandy clay surface on 1-3%	(30.7)
		slope, severely eroded, moderately gravelly, 35-60 per cent	
		gravels.	
3	BHI	Shallow, black clay soils developed from weathered basalt on	34.2
		very gently sloping uplands; clay surface on 1-3% slope,	(5.1)
		slightly eroded.	

Table 16: Distribution of soil series in Padsavli-2 Microwatershed

4	GTT	Moderately shallow, black clayey soils developed from	19.5		
		weathered basalt on very gently sloping uplands; sandy clay	(2.9)		
		surface on 1-3% slope, severely eroded, moderately gravelly,			
		35-60 per cent gravels.			
5	KMP	Moderately deep, black clayey soils developed from	58.0		
		weathered basalt on very gently sloping uplands; clay surface			
		on 1-3% slope, slightly eroded			
6	MAN	Deep, black clayey soils developed from weathered basalt on	29.6		
		very gently sloping uplands; clay surface on 1-3 % slope,	(4.4)		
		slightly eroded			
Habi	tation		11.7		
			(1.7)		

Present cropping pattern on different soil series are given in Table 17. Crops grown on Margutti (MGT) soils are redgram and sunflower and Mannur (MAR) soils are crops grown by redgram.

			(Are	ea in per cent)
Soil Series	Soil Depth	Crops	Dry	Grand Total
			Kharif	Area in ha
MGT	Very shallow (<25 cm)	Redgram	85.0	85.0
		Sunflower	15.0	15.0
MAN	Very deep (>150 cm)	Redgram	100	100

 Table 17: Cropping pattern on major soil series in Padsavli-2 Microwatershed

Land is used for agricultural use for growing cereals, pulse, oilseeds and commercial crops. The soil/ land potential are measures in terms of physical yield and net income. The alternative land use options for each micro-watershed are given below (Table 18).

Cost Ratio) in Padsavli-2 Microwatershed.	Table 18: Alternative land use options for different size group of farmers (Benefit	ŧ
	Cost Ratio) in Padsavli-2 Microwatershed.	

Soil Series	Small Farmers	Medium Farmers	Large Farmers
DDR	Redgram (1.70)	Redgram (1.64) Sunflower 1.98	Redgram (1.50)
MAN		Redgram 169	

The productivity of different crops grown in Padsavli-2 micro-watershed under potential yield of the crops is given in Table 19.

The data on cost of cultivation and benefit cost ratio (BCR) of different crops is given in Table 19. The total cost of cultivation in study area for redgram range between Rs 21016/ha in MGT soil (with BCR of 1.64) and Rs 16175/ha in MAR soil (with BCR of 1.52) and sunflower range Rs. 16105/ha in MGT soil (with BCR of 1.98).

The data on FYM, Nitrogen, Phosphorus and Potash application by the farmers to different crops and recommended FYM for different crops is given in Table 19. There is a huge gap between FYM application by farmers and recommended FYM in all the crops across the soils. There is a larger yield gap in crops grown across different soil series.

Adequate knowledge about recommended package of practices is the pre-requisite for their use in cultivation of crops. It is a fact that, recommended practices are major contributing factors to yield. Inadequate knowledge about recommended practices leads to their improper adoption. Strengthening of extension services by concerned agency is required to increase adoption of recommended cultivation practices and ultimately reducing the gap. By adopting soil-test fertiliser recommendation, there is scope to increase yield and income to a maximum of Rs. 35081 in sunflower and minimum of Rs.15113 in redgram cultivation.

Particulars	MGT(<25	MAN(>150 cm)			
Particulars	Redgram	Sunflower	Redgram		
Total cost (Rs/ha)	21016	16105	16175		
Gross Return (Rs/ha)	34444	31956	25112		
Net returns (Rs/ha)	13428	15850	8936		
BCR	1.64	1.98	1.52		
Farmers Practices (FP)					
FYM (t/ha)	2.1	1.3	1.6		
Nitrogen (kg/ha)	35.0	80.0	23.8		
Phosphorus (kg/ha)	60.3	57.5	60.7		
Potash (kg/ha)	0.0	0.0	0.0		
Grain (Qtl/ha)	10.0	7.2	6.7		
Price of Yield (Rs/Qtl)	3500	4500	3750		
Soil test based fertilizer Rec	commendation (STBR)				
FYM (t/ha)	7.4	6.6	7.4		
Nitrogen (kg/ha)	25.6	69.0	24.7		
Phosphorus (kg/ha)	61.8	74.1	61.8		
Potash (kg/ha)	24.7	37.1	18.5		
Grain (Qtl/ha)	12.4	16.5	12.4		
% of Adoption/yield gap (S	TBR-FP) / (STBR)				
FYM (%)	72.0	81.0	77.9		
Nitrogen (%)	-36.9	-16.0	3.8		
Phosphorus (%)	2.4	22.4	1.7		
Potash (%)	100.0	100.0	100.0		
Grain (%)	19.3	56.4	46.0		
Value of yield and Fertilizer (Rs)					
Additional Cost (Rs/ha)	5780	6676	6199		
Additional Benefits (Rs/ha)	8363	41756	21313		
Net change Income (Rs/ha)	2583	35081	15113		

 Table 19: Economic land evaluation and bridging yield gap for different crops in

 Padsavli-2 Microwatershed

Economic valuation of Ecosystem Services (ES) was aimed at combining use and non-use values to determine Total Economic Value (TEV) of ES. Ecosystem Services (ES) were valued based on their annual flow or utilization in common monetary units, Rs/year. The valuation of ES was based on market price in 2017 or market cost approaches whichever is applicable, and in other cases on value or benefit transfer from previous valuation studies.

The onsite cost of different soil nutrients lost due to soil erosion is given in Table 20 and Figure 9. The average value of soil nutrient loss is around Rs 1364 per ha/year. The total cost of annual soil nutrients is around Rs 893286 per year for the total area of 666.62 ha.

Particulars	Quantity(kg)		Value (Rs)	
raruculars	Per ha	Total	Per ha	Total
Organic matter	189.02	123807	1190.81	779981
Phosphorous	0.13	83	5.57	3650
Potash	2.54	1661	50.72	33220
Iron	0.12	78	5.69	3729
Manganese	0.22	146	61.25	40120
Cupper	0.08	51	43.73	28645
Zinc	0.01	5	0.33	215
Sulpher	0.13	87	5.30	3469
Boron	0.01	6	0.39	258
Total	192.25	125924	1363.80	893286

Table 20: Estimation of onsite cost of soil erosion in Padsavli-2 micro-watershed

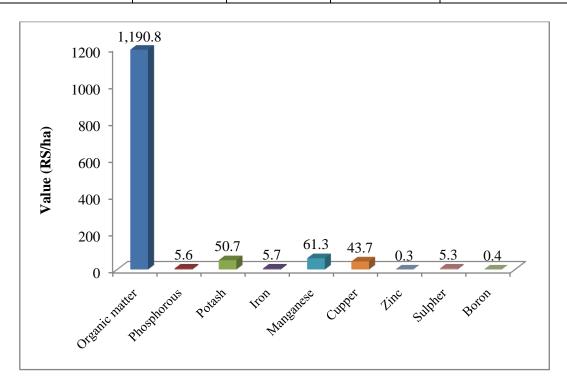


Figure 9: Estimation of onsite cost of soil erosion in Padsavli-2 micro-watershed

The average value of ecosystem service for food grain production is around Rs 14165/ ha/year (Table 21). Per hectare food grain production services are maximum in sunflower (Rs. 15850) and redgram (Rs.12479).

Production items	Crops	Area in ha	Yield (Qtl/ha)	Price (Rs/Qtl)	Gross Returns (Rs/ha)	Cost of Cultivation (Rs/ha)	Net Returns (Rs/ha)
Cereals	Redgram	30.1	9.0	3556	32419	19940	12479
Oil seeds	Sunflower	3.2	7.0	4500	31956	16105	15850
Average value		33.3	8.0	4028	32188	18023	14165

Table 21: Ecosystem services of food grain production in Padsavli-2 Microwatershed

The water demand for production of different crops was worked out in arriving at the ecosystem services of water support to crop growth. The data on water requirement for producing one quintal of grain is considered for estimating the total value of water required for crop production. The per hectare value of water used and value of water was maximum (Table 22) in redgram (Rs. 496378) and sunflower (Rs. 23903).

Table 11. Facarrater	active of motor	a ann an les in Da da	ard: 2 Mignary tangkad
I ADIE 22: ECOSVSIEM	services of water	r shiddiv in Paos	avli-2 Microwatershed

Crops	YieldVirtual water(Qtl/ha)(cubic meter) per h		Value of Water (Rs/ha)	Water consumption (Cubic meters/Qtl)	
	(Qu/na)	(cubic meter) per na	(N 5/11a)	(Cubic meters/Qu)	
Redgram	9.1	4964	49638	544	
Sunflower	7.1	2390	23903	337	
Average value	8.9	4706	47064	440	

Table 23: Farming constraints related land resources of sample households in
Padsavli-2 Microwatershed

Sl.No	Particulars	Per cent
1	Less Rainfall	10.0
2	Lack of good quality seeds	20.0
3	Non availability Fertilizers	30.0
6	Lack of transportation	70.0
7	Lack of storage	90.0
8	Damage of crops by Wild Animals	100.0
9	Non availability of Plant Protection Chemicals	100.0
	Source of loan	
10	Bank	80.0
	Money Leander	20.0
11	Market for selling	
	Regulated	70.0
	Village market	30.0
12	Sources of Agri-Technology information	
	Television	100.0

The main farming constraints in Padsavli-2 Microwatershed to be found are less rainfall, lack of good quality seeds, non availability fertilizers, lack of storage, damage of crops by wild animals and non availability of plant protection chemicals. Majority of farmers depend up on bank and money lender of the sources of loan for purpose of crop production. Farmers to sell the agriculture produce through regulated, village market and the farmers getting the agriculture related information on television. Farmers reported that they are not getting timely support/extension services from the concerned development department (Table 23).

The findings of the study would be very much useful to the planners and policy makers of the study area to identify the irrationality in the existing production pattern and to suggest appropriate production plans for efficient utilization of their scarce resources resulting in increased net farm incomes and employment. The study also throws light on future potentialities of increasing net farm income and employment under different situations *viz.*, with existing and recommended technology.