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Abstract

The present study evaluated the soil-moisture deficit stress tolerance of AtDREB1A transgenic

peanut lines during reproductive stages using lysimetric system under controlled glasshouse

conditions. The antioxidant activities of AtDREB1A transgenic lines were measured by bio-

chemical assays. The transgenic peanut lines recorded significantly lower accumulation of mal-

ondialdehyde and hydrogen peroxide than the wild-type. Whereas, specific activity of catalase,

guaiacol peroxidase, ascorbate peroxidase, glutathione reductase and ascorbic acid were

found to be significantly higher in transgenic lines than in the wild-type line under drought

stress. The results showed that the transgenic lines expressed lower oxidative damage than

wild-type and could protect themselves from the elevated levels of reactive oxygen species

under drought stress. This could be attributed to the regulation of various stress-inducible

genes by AtDREB1A transcription factor. Improved photosynthetic and growth parameters

were also recorded in transgenic lines over wild-type under drought stress. Improved physio-

biochemical mechanisms in transgenic peanut lines might have resulted in improved growth-

related traits as significant correlations were observed between physio-biochemical parame-

ters and growth-related traits under drought stress. The potential target genes of AtDREB1A

transcription factor in transgenic peanut lines during drought stress were identified, which

helped in understanding the molecular mechanisms of DREB-regulated stress responses. The

transgenic line D6 reported the best physio-biochemical mechanisms and growth-related

parameters under drought stress over other transgenic lines and wild-type, suggesting it may

be used to develop high yielding and terminal drought-tolerant peanut varieties.

Introduction

Peanut (Arachis hypogaea L.) is a legume crop that serves as an important oilseed resources. It

is also a rich source of dietary vitamin E and phytosterols and ranks third as the source of vege-

table protein to human beings [1]. The crop is widely grown in tropical and semi-arid tropical
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regions that contribute to nearly 90% of the global peanut production [2, 3]. Various abiotic

stresses, such as low and high temperatures, soil-moisture deficit or drought stress (DS), salin-

ity stress and heavy metal stress, adversely affect plant growth and productivity, including the

overall peanut production [4, 5, 6]. DS is the primary abiotic stress that is more prevalent com-

pared to other abiotic stresses in different parts of the world and limits global agricultural pro-

duction [7]. Approximately 20% of the land is under DS, at a given point of time across the

globe, hence, considered as one of the most important environmental constraints to crop pro-

ductivity. Annually, peanut productivity incurs a loss of around 6 million tons due to drought

alone, across various parts of the world [8]. Harmful effects of DS are manifested by increased

membrane permeability, which, in turn, results in altered water relations, mineral nutrition,

and plant metabolism [9]. It also has a negative impact on the photosynthetic elements, such

as thylakoid electron transport, phosphorylation, and carboxylation, thus affecting the overall

yield of the peanut crop [10].

Tolerance to DS is provided by complex physio-biochemical pathways that are regulated by

multiple genes [9, 11]. Very less information is available about the QTLs controlling DS toler-

ance in peanut. Hence, conventional breeding approach is not very successful in the develop-

ment of drought tolerant peanut varieties [12]. Although the marker-assisted breeding

approach has been adopted, but the results are not very encouraging and satisfactory as the DS

tolerance is reportedly governed by a few rare alleles present in the existing peanut germplasm

[1]. To surmount these limitations, various researchers are now exploiting the transgenic

approach to achieve desired improvements in peanut crop toward various abiotic stress toler-

ances including DS [8, 13].

Development of transgenic (T) peanut lines using various transcription factors (TFs),

which regulate the expression of diverse stress-responsive genes, is an effective method to

improve DS tolerance [1, 14]. In this regard, dehydration responsive element binding (DREB)

(belonging to ethylene-responsive element binding factors (ERF) family) has been found to

effectively modify the expression of numerous stress-inducible genes, thereby imparting toler-

ance to DS in peanut [14, 15]. The DREB, upon binding to the DRE/CRT cis-acting elements of

promoter regions of several stress-related genes, induces the expression of these genes and

thereby imparting increased tolerance to DS [16]. Heterologus expression of DREB1 gene in

transgenic rice [17, 18], wheat [19], chickpea [20, 21], sweet potato [22] and tomato [23]

showed tolerance to DS, salinity and low-temperature stress with improved physio-biochemi-

cal and growth-related traits, yield and yield-components.

Overexpression of AtDREB1A gene in T peanut (cv. JL 24) provides enhanced tolerance to

DS by improving its transpiration efficiency, reducing lipid peroxidation levels and increasing

biosynthesis of antioxidant enzymes and proline [12, 15, 24]. In addition, AtDREB1A trans-

genic peanut (cv. JL 24) lines are characterised by improved growth-related traits, such as har-

vest index, root length, root to shoot ratio and relatively less reduction in pod-yield over wild-

type (WT) under DS [25, 26, 27].

The DREB1A transgenic peanut (cv. JL 24) lines developed extensive root system upon

exposure to terminal DS. Such a root system is more effectively able to trap the available soil-

moisture content from its vicinity [28]. Lysimetric system is a preferred method for screening

of plants for soil-moisture deficit stress tolerance at the adult stage, as it simulates the field-

type conditions and provides the desired space for the plant canopy and roots to grow in con-

trolled conditions. AtDREB1A transgenic peanut lines were developed, in our laboratory, with

a genetic background of GG20 cultivar, which is high yielding, bold seeded, ruling and very

popular in western parts of India [8, 10, 15]. In the present study, AtDREB1A transgenic pea-

nut (cv. GG20) lines were evaluated for their performance under progressive soil-moisture def-

icit stress in lysimeters system, simulating the field-like conditions.

AtDREB1A transgenic peanut showed improved drought tolerance in the lysimetric system
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Further, various characteristics of AtDREB1A transgenic lines were studied including their

performance at reproductive growth stages, such as flowering, pegging and pod-formation, for

various physio-biochemical and growth parameters along with yield components. Moreover,

this study is the maiden attempt to understand the expression pattern of various stress-induc-

ible genes involved in DS signalling pathways and are regulated by AtDREB1A gene in T pea-

nut lines grown under lysimetric system. It was hypothesised that the better activation of

various antioxidant enzymatic systems in the AtDREB1A transgenic peanut lines over WT,

helps to improve the oxidative stress caused by the DS.

Materials and methods

Plant material and creation of soil-moisture deficit stress in the lysimeter

Eight AtDREB1A transgenic peanut (cv. GG20) lines (D1 to D8) that were earlier developed

and confirmed in our laboratory were used for this study. These lines are previously character-

ised at seedling and flowering stages (T2) in hydroponic solution and soil-containing pots,

respectively under DS and salinity stresses [8, 15]. These T peanut lines (T3) were used for the

evaluation of DS response through soil dry-down experiments using the lysimeter at adult

plant stage.

A total of 18 plants (45 days old) of each T line along with 3 WT were grown individually in

the lysimeter which consisted of PVC tubes (1.0 m long and 20.0 cm wide), containing soil

mixture (42.0 kg) having soil, sand and farmyard manure (FYM) in the ratio 1:2:0.1. All exper-

iments were performed at the ICAR-Directorate of Groundnut Research, Gujarat, India in a

glasshouse with 16 hours of light at 35±2˚C for 120 days. At day 45 after germination (DAG),

all 8 T lines were grouped into two treatments, namely well-watered (WW) and drought-

stressed (DS) with three replications. First, the soils of both WW and DS were irrigated till

field-capacity [29], followed by covering of soil surface with plastic beads (500 g per lysimeter)

to prevent the evaporation. The mass of each lysimeter was then measured at a 3-day interval

from 09:00 to 10:00 am throughout the experiment.

The WW plants were supplemented with the same volume of water that was lost via transpi-

ration to maintain the water level at nearly 80% of its field capacity. However, the DS condition

was created by withholding the irrigation until the appearance of wilting symptoms. For the

physio-biochemical and molecular analysis, the leaf samples were collected at 0 (flowering

stage/control condition/initial stage), 10 (pegging stage) and 25 (pod formation stage) days of

DS imposition from both WT and T lines. During termination of DS experiment, stressed

plants were also irrigated using 200 mL of water for 3 d for 24 h for their recovery.

DNA extraction and homozygosity confirmation of transgenics

The polymerase chain reaction (PCR)-confirmed homozygous T2 plants [8] were grown in the

glasshouse to obtain the T3 generation. Total genomic DNA was isolated from the young leaves

of T3 and WT plants using the cetyltrimethylammonium bromide (CTAB) method [30]. Fol-

lowing this, all T plants were screened by PCR using AtDREB1A transgene-specific primers.

Physiological and biochemical analysis

Soil moisture content and hydrogen peroxide (H2O2) measurement. Soil samples were

collected from 30 to 45 cm of depth of lysimeters using an auger screw and fresh mass (FM)

was measured. The soil samples were then dried at 72˚C for 2-days, following which dry mass

(DM) was measured [31]. The soil moisture content was estimated from each lysimeter at

AtDREB1A transgenic peanut showed improved drought tolerance in the lysimetric system
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various plant growth stages, i.e., flowering, pegging and pod formation using the formula: (FM

−DM)/DM × 100.

For H2O2 estimation, approximately 1.0 g of leaf tissue was macerated in 10 mL of chilled

acetone and filtered using Whatman no. 1 paper. To this 5 mL extract, 2 mL of titanium

reagent and 2.5 mL of concentrated ammonium solution were added. The mixture was then

centrifuged at 10,000×g for 5 min. The peroxide–titanium complex so obtained was then dis-

solved in 2M H2SO4 (5 mL) and absorbance was measured against the blank at 415 nm [32].

The H2O2 content was determined by plotting a standard curve with known concentrations of

H2O2.

Relative water content (RWC), chlorophyll content and malondialdehyde content mea-

surement. The RWC was calculated in the leaf discs (1 cm in diameter) taken from T and

WT plants. The initial mass was measured as FM and subsequently, these discs were hydrated

for 8 h in a Petri plate and weighed to get the turgid mass (TM). These discs were then dried at

80˚C for 72 hours in a hot-air oven and weighed till a constant DM was reached. The RWC

was measured using the formula: (TM–DM)/(FM–DM) × 100 [33].

The chlorophyll content was measured (n = 3) using a chlorophyll meter (SPAD-502 Plus,

Konica Minolta, Japan) from the peanut leaflets by measuring the absorbance in the red and

near-infrared regions. The lipid peroxidation level was measured using thiobarbituric acid

(TBA) method and expressed as malondialdehyde (MDA) content [34]. One gram of leaf tis-

sue was first crushed in 10 mL of trichloroacetic acid (TCA, 0.1%; m/v) and centrifuged at

15,000×g for 15 min. To 1 mL of supernatant, 4 mL of TBA reagent (0.5%, m/v TBA in 20%,

w/v TCA) was added and mixture was heated (95˚C for 30 minutes) and the reaction was

blocked by placing it on ice. The mixture was again centrifuged at 10,000 ×g for 10 min and

absorbance was measured (532 nm) and the amount of MDA was calculated using the extinc-

tion coefficient of 155 mM–1cm–1 and expressed as μmol g–1 FW.

Estimation of ascorbic acid. For the ascorbic acid (AsA) estimation, 250 mg of the leaf

was ground in 10.0 mL of TCA (6%, m/v). The extract (2.0 mL) was mixed thoroughly after

adding 1.0 mL of dinitrophenyl hydrazine (2%, m/v) and 1 drop of thiourea solution. After-

ward, it was boiled for 15 min, cooled to room temperature and 5.0 mL of H2SO4 (80%, v/v)

was added to obtain hydrazone complex. The absorbance was measured at 530 nm, and the

AsA content was derived from the standard curve prepared through known AsA concentra-

tions [35].

Antioxidant enzymatic activity. For the estimation of catalase (CAT), guaiacol peroxi-

dase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR) enzyme extracts, 1.0

g of leaf was macerated in liquid nitrogen. To this, 10 mL of ice-cold 100 mM potassium phos-

phate extraction buffer (pH 7.5) containing 5.0 mM EDTA was added. For the estimation of

APX, ascorbic acid (1.0 mM) was mixed with extraction buffer and the homogenate was cen-

trifuged at 15,000 ×g for 20 min. The supernatant was stored as aliquots at −20˚C till final

analysis.

For CAT estimation, the reaction was completed in a 3.0-mL mixture containing 50 mM

phosphate buffer (pH 7.0), 12.5 mM H2O2 and 50 μL extract. Decomposition of H2O2 was

measured as a reduction in the absorbance at 240 nm for 2.0 min at 10 s of the time gap. The

CAT activity was presented as μmol of H2O2 reduced mg–1protein min–1 [36].

For POD estimation, the reaction was completed in a 3.0-mL mixture containing 50 mM

potassium phosphate buffer (pH 6.1), 16 mM guaiacol, 2 mM H2O2 and 25 μL enzyme extract.

After the addition of 2 mM H2O2, the oxidation of guaiacol to tetraguaiacol was monitored by

measuring the absorbance at 470 nm for 1 min at a 15-second interval. The POD activity was

estimated using tetraguaiacol (26.6 mM–1cm–1) extinction coefficient and presented as mmol

tetraguaiacol formed mg–1 protein min–1 [37].

AtDREB1A transgenic peanut showed improved drought tolerance in the lysimetric system
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For APX activity, the reaction was performed in a 3.0-mL solution having potassium phos-

phate buffer (50 mM; pH 7.0), EDTA (0.1 mM), ascorbate (0.5 mM), H2O2 (0.1 mM) and

enzyme extract (0.1 mL). The oxidation rate of ascorbate was calculated by measuring the reduc-

tion in absorbance at 290 nm for 2 minutes at a 10-second interval. Further, the APX activity

was derived by estimating the reduction in AsA content through the standard curve [38].

For GR activity, the reaction was performed in a 3.0-mL mixture containing potassium phos-

phate buffer (100 mM; pH 7.5), 5,5-dithiobis-2-nitrobenzoic acid (0.5 mM; DTNB), NADPH

(66 μM), oxidised glutathione (GSSG; 0.66 mM) and extract (0.1 mL). The increase in absorbance

at 412 nm was measured for 2 min at the 10-s interval and GR activity was expressed as μmol

GSSG reduced mg–1 protein min–1 [39]. In all enzymatic preparations, the protein content was

measured through Lowry’s method using bovine serum albumin (BSA) as the standard [40].

Yield and growth components under well-watered and drought-stressed

conditions

Various growth parameters including root length, shoot length, pod mass, and root volume

were measured in WT and T lines at the time of maturity (day 120). Subsequently, the plants

were dried in the oven (70˚C for 72 h) and the traits such as root dry mass and shoot dry mass

were measured [8].

Isolation of RNA and reverse transcription polymerase chain reaction

(RT-PCR)

Total RNA was extracted from the leaves of T lines D3, D6, and WT that were collected at day

25 of DS imposition. The lysimeter recorded the soil-moisture content between 5.1 and 7.59%

at the time of leaf collection in WT and T lines under DS. The T lines D3 and D6 showed the

best performance under DS in terms of improved physio-biochemical, growth and yield

parameters. The same parameters determined the stress-responsive regulatory mechanism of

AtDREB1A gene in the T peanut under DS. Total RNA was isolated from the young leaves of

all eight T lines along with the WT from both WW and the DS treatment [8]. The cDNAs were

synthesised using the first-strand cDNA synthesis kit (Fermentas, United States). These were

then reverse transcribed from three independent biological replicates. Expression levels were

measured using a StepOne Real-Time PCR system (Applied Biosystems, United States) and

SYBR Green qPCR Master Mix (Qiagen, GmbH, Germany). The PCR amplification was per-

formed in a reaction mixture (20 μL) containing master mix (10 μL), forward and reverse

primers (0.8 μL; 10 μM), cDNA (2 μL) and double-distilled water (ddH2O, 6.4 μL). The PCR

amplification programme included a pre-denaturation step at 95˚C for 5 min; 40 cycles of

95˚C for 10 s and 60˚C for 30 s; and a melting curve step at 95˚C for 15 s, 60˚C for 1 min and

95˚C for 15 s. The 18S RNA was used as the reference, and 2−ΔΔCT methods were applied to

calculate relative expression levels [41,42].

The peanut ESTs (expressed sequence tag), assembled into unigenes by Bosamia et al. [43],

were used to design the primers (S1 Table) for real-time analysis. Based on the functional

annotation, the unigenes associated with plant’s DS response were selected for deciphering the

regulatory function of AtDREB1A regulons on the expression of selected downstream stress-

inducible genes through quantitative real-time PCR (qRT-PCR).

Statistical analysis

Analysis of variance (ANOVA) and Tukey’s multiple range tests (LSD p� 0.05) were used to

calculate the significance of variation between the WT and T lines. All the assays were

AtDREB1A transgenic peanut showed improved drought tolerance in the lysimetric system
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performed in triplicate and the data were analysed using software DSAASTAT version 1.1

[44]. The correlation coefficient of all physiological and biological data was derived using the

PAST (Paleontological Statistics, version 1.89).

Results and discussion

Molecular characterisation

Fifty-four homozygous T plants (T3) derived from the confirmed T2 plants were selected for

further study. These plants were again confirmed for homozygosity via AtDREB1A transgene-

specific PCR assay (Fig 1).

Physiological and biochemical attributes

Soil moisture content. Significant variation in the soil-moisture content of WT and T

lines was recorded at day 25 after DS imposition. The control plants were irrigated at regular

time intervals. However, with the progression of DS, a gradual reduction in soil-moisture con-

tent was observed in both WT and T lines. We also observed a significant difference in the

soil-moisture content from a lower 5% in WT to a maximum of 7.59% in the D6 transgenic

line (Fig 2A). Soil-moisture content was reduced by 2.75 fold in WT, while in D3 line the

reduction was 1.78 fold. Further, the T lines produced more fine roots, which could have

helped in mining more moisture in the root zone. Also, the low transpiration rate of the T

lines also helped in efficient water conservation over WT [8, 15, 45].

Estimation of hydrogen peroxide and malondialdehyde content. Among the eight T

lines, D1, D2 and D6 reported significantly lower H2O2 accumulation when compared to WT

at day 15 and 25 of DS, thus suggesting D1, D2 and D6 to have better DS tolerance. Further,

most T lines accumulated a lower quantity of H2O2 compared to WT under DS (Fig 2B) as

also reported inMentha arvensis under cadmium induced oxidative stress [46]. Similarly,

lower level of H2O2 was also recorded in SbDREB2A-tobacco than the WT under polyethylene

glycol (PEG) induced dehydration stress [47].

Abiotic stress causes peroxidation of cell membrane lipids, resulting in a significant increase

in MDA content, which is indicative of enhanced toxic oxygen species synthesis [48]. The

MDA levels serve as an indicator for lipid peroxidation which results from the oxidative stress

and generation of ROS [49]. The MDA content in T lines and WT did not change significantly

Fig 1. PCR screening of transgenic lines (T3) using AtDREB1A transgene-specific primers with expected

amplification size of 442 bp. Lanes–M: 100bp marker; P: Plasmid positive control (pCAMBIA2300 having

AtDREB1A gene); WT: Non-transformed control; 1–8: Transgenic lines (D1-D8).

https://doi.org/10.1371/journal.pone.0216706.g001
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prior to the stress, but a significant difference was observed between T peanut lines and WT at

day 15 of DS. The maximum MDA content was recorded at day 25 of DS (Fig 2C) and all T

lines except D4, D7 and D8 accumulated lower MDA content than WT. Similarly, significantly

lower MDA accumulation was noticed in OsAP21 Arabidopsis than its WT under both DS and

salinity stress conditions [50]. The AtDREB1A gene in the T peanut was found conferring

enhanced ability to eliminate oxygen and H2O2, thereby inhibiting ROS accumulation. This,

in turn, protected the T plants from lipid peroxidation and oxidative damage under DS. There-

fore, when compared to T line, more MDA was found to be accumulated in WT under DS.

These results are in agreement with the previous reports on pepper [51] and Thomson navel

orange [52].

Relative water content and chlorophyll colour index. Both chlorophyll content and

RWC of plant are generally considered as indicators for measuring the degree of DS tolerance.

The RWC of any plant under DS reflects the metabolic activities of its tissues [13]. A consider-

ably higher RWC and chlorophyll colour index (CCI) was recorded in T lines D6 and D3,

respectively, over WT lines under DS (Fig 3A and 3B). It was observed that under WW condi-

tions, the RWC was almost similar (p� 0.05) in both T lines and WT. The chlorophyll content

decreased in T lines and WT with an increase in exposure to DS; however, it was considerably

Fig 2. Changes in the (A). Soil moisture content, (B). H2O2 content, (C). MDA contents of WT and T lines at 0, 15

and 25 days after stress imposition in the lysimeter.

https://doi.org/10.1371/journal.pone.0216706.g002
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more in T lines (except D1 and D6), over WT after 25 days of DS (Fig 3B). Moreover, the

decrease in RWC was not significant in control samples, and also at day 15 of DS imposition

in both T lines and WT. After 25 days of DS, WT reported 47.1% RWC, whereas the content

varied from a low of 39.8% in D7 to a high of 57.6% in D6 line (Fig 3A). This difference could

be attributed to the enhanced membrane integrity that helps to control water efflux and retain

water more efficiently under DS condition [53]. The T lines containing AtDREB1A gene might

also shows improved osmotic adjustment, resulting in higher water retention capacity and

minimised rate of water loss compared to WT, as reported in an earlier study [53].

Another feature that was affected under DS is the chlorophyll content of leaves (Fig 3B)

and the reduction is CCI is attributed to the formation of ROS [54]. The photosynthetic per-

formance of AtDREB1A expressing T peanut plants was analysed under WW and DS condi-

tions. A progressive increase in soil-moisture deficit stress has led to the further reduction in

CCI values in both WT and T lines. However, the rate of reduction was recorded to be higher

in WT compared to T lines (except D3 and D6). Thus, DS has led to a significant increase in

CCI in T lines over WT (Fig 3B). Here, at days 15 and 25 after DS imposition, when compared

to WT, the T line D3 had reported a significantly higher SPAD value (24.7%). Moreover, the

same line demonstrated significantly enhanced CCI under both DS and WW conditions. Simi-

larly, Sarkar et al. [8] observed better leaf water and chlorophyll retention capacity in T lines

(D3 and D6) than WT under DS condition.

A significant reduction in the loss of chlorophyll content in T lines clearly indicated that

the photosynthetic apparatus is safeguarded from the lethal effects of soil-moisture deficit

stress. It can be stated that the improved chlorophyll maintenance in D3 line over WT and

other T lines under DS might have resulted from increased biosynthesis of osmolytes, such as

Fig 3. Changes in the (A). RWC, (B). Chlorophyll colour index in leaves, (C). Ascorbic acid content of WT and T lines

at 0, 15 and 25 days after stress imposition.

https://doi.org/10.1371/journal.pone.0216706.g003
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proline, as reported earlier [8]. Proline helps to retain membrane stability and chlorophyll con-

tent owing to its osmoprotective nature [55]. Also, it is known to be associated with antioxi-

dant mechanisms to overcome the harmful effects of multiple stresses [15, 55].

Antioxidant metabolites and antioxidant enzyme activities. The T peanut lines showed

a significantly higher antioxidant enzyme activity than WT when exposed to DS. Abiotic stress

leads to altered cellular homeostasis and enhanced ROS synthesis in plants. The ROS, in turn,

disturbs the cell membrane properties, causing oxidative damage to lipids, proteins, chloro-

phylls and nucleic acids [56, 57]. Plants, therefore, should have mechanisms to counter and

minimise the effects of DS and evade the build-up of free oxygen radicals when encounters

various stresses [58]. The antioxidant enzymatic detoxification mechanism present in the

plants involves different ROS scavenging enzymes, such as CAT, APX, POD and GR, which

are part of the antioxidative defence system [6, 14, 59]. The components of the antioxidant

defence systems include low-molecular mass molecules that mainly consist of non-enzymatic

antioxidants (e.g. ascorbic acid, glutathione) and antioxidants enzymes such as CAT, GR and

APX. For instance, these antioxidants are part of the Halliwell–Asada and ascorbate–glutathi-

one cycles that function to increase the total antioxidant activity under various stresses includ-

ing DS [46, 56, 58].

Ascorbic acid (AsA) or Vitamin C is a secondary metabolite that acts as a key player in the

detoxification of ROS [60]. It is a component of various enzymatic and non-enzymatic antioxi-

dant defence mechanisms, thereby contributing to ROS neutralisation and better photosyn-

thetic rate, transpiration rate, and oxidative defence potential [59]. Moreover, AsA activity is

also used as a reference in various studies related to stress tolerance in plants [61]. Increase in

AsA content during DS is indicative of improved growth and enhanced activities of other anti-

oxidant enzymes, such as SOD, POD and CAT [24, 62]. When compared with WT, we found

significantly more AsA content in the leaf tissues of DS exposed AtDREB1A peanut lines (Fig

3C).

The AsA content in the leaf tissue of D6 line was higher at day 15 and 25 of DS (Fig 3C).

Moreover, AsA was accumulated at significantly higher levels in T and WT plants at day 25 of

DS over control conditions, except for D1 line (Fig 3C). However, variable results of D4 line

could be due to the poor expression of AtDREB1A, which is responsible for its uneven perfor-

mance. This phenomenon is also accounted in other crops such asmtlD peanut [63] and

DHAR tomato [64] under salinity stress.

The CAT acts as a dismutase that converts H2O2 into H2O and O2, whereas POD decom-

poses H2O2 by oxidation of co-substrates including phenolic compounds and/or antioxidants

[65]. An increase in CAT activity was measured at day 15 of DS in both T and WT peanut

plants, followed by a gradual increase at day 25 of DS (Fig 4A). At day 25 of DS, the peanut

lines D1, D3, D5 and D6 showed significantly higher activities of CAT, POD, APX and GR

over WT (Fig 4B–4D). The specific activity of POD increased in both T lines and WT with an

increase in DS at day 25 of DS. A wide variability was recorded among T lines for POD activity

and a lower activity was recorded in various T lines except D1, at day 15 of DS, whereas T lines

D1, D3, D5 and D6 showed an increased activity at day 25 of DS (Fig 4B).

With increasing DS duration, a significant increase in GR activity was noted in T and WT

lines, with maximum value quantified at day 15 of DS. GR activity increased by 1.22, 2.03 and

2.38 fold in D6 compared to WT under control conditions at day 15 and 25 of DS, respectively

(Fig 4C). The POD activity increased by 1.76 fold at day 25 of DS, this activity was recorded at

par at day 15 and 25 of DS. Some of the T lines exhibited POD and GR activities at par with

the WT at day 15 and 25 of DS. In general, APX and CAT activity in T lines was in the order of

D6> D3; these were significantly higher than the WT.
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A significant boost in the APX and GR activities was observed in T peanut lines over WT,

with increasing DS (Fig 4B). However, at 25 day of DS, there was a decrease in GR activity.

Similar to many other parameters, T lines D3 and D6 also expressed better APX and GR activi-

ties over other T lines. Enhanced APX and GR activities were also observed in different T pea-

nuts expressingmtlD [63] and AtDREB1A [24] genes and also showing tolerance to various

abiotic stresses.

APX is associated with the ascorbate-glutathione antioxidant cycle that is involved in the

scavenging of H2O2 [66]. However, GR counters the oxidative stress by creating a reduced state

of glutathione, thereby maintaining the AsA pool [62]. Under WW conditions, the GR activity

in T lines was found to be significantly different than the WT (Fig 4D). The main function of

GR is to convert the oxidised glutathione disulfide (GSSG) to glutathione (GSH) using NADPH

as a cofactor [67]. Different H2O2 levels in the cell influence the GSH:GSSG ratio; moreover, the

interaction between H2O2/GSH/GR redox system assists in managing various abiotic stresses in

the plants [68]. Upon imposition of 25 days of DS, we noted a significant boost in the GR activ-

ity in the T lines over WT peanut lines, which could be the result of a change in gene expression

regulating its synthesis. These results indicated that the T peanut lines can better tolerate the DS

over WT through the abundant synthesis of various antioxidant enzymes.

Fig 4. Comparison of various antioxidant enzymatic activities including (A) Catalase, (B) Guaiacol peroxidase, (C)

Ascorbate peroxidase and (D) Glutathione reductase in WT and T lines at 0, 15 and 25 days after stress imposition.

https://doi.org/10.1371/journal.pone.0216706.g004
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The antioxidant enzymes act as ROS quenchers and their relative content determines the

plants’ sensitivity to lipid peroxidation [69]. The POD activity in Arabidopsis accounts for

nearly 50% of H2O2 production during oxidative burst. In addition to alleviating H2O2, it also

functions in cell growth and lignin formation by involving a number of substrates [70]. There-

fore, POD alone cannot be considered the sole player in plant defence under stress as its func-

tions are considerably different from that of APX and CAT. Present results indicated a

significantly high activity of APX, CAT and POD on day 25 of DS (Fig 4A–4C). Antioxidant

enzymatic activity is a powerful indicator of DS whose accumulation is considered vital to pre-

vent the dehydration of plant cells by balancing the osmotic strength of cytoplasm with the

changing environmental conditions [58].

Formation of ROS is considered a threat to any cell as it may cause lipid peroxidation and

membrane injury along with damage to the proteins and nucleic acids [6, 71]. These are

formed either as a by-product of various metabolic pathways or through the leakage of elec-

trons from the electron transport system [14, 57]. The innate defence system in plants reacts

with oxygen to keep the ROS at a lower level. Also, plants possess antioxidant enzymes to

quench the ROS, thereby keeping their levels low [69, 71]. SOD converts the superoxide radical

to H2O2, which is then reduced to water and oxygen either by APX through the ascorbate-glu-

tathione cycle or by POD and CAT in the cytoplasm or other cell compartments [72].

With increasing DS, a significant increase in specific antioxidant enzymatic activities was

recorded in both WT and T lines. This in turn, resulted in an efficient detoxification of super-

oxide radicals and lesser oxidative stress in T peanut lines over WT. On the similar note,

improved antioxidant mechanisms showed better survival ability in AtDREB1A tomato under

DS [56].

Yield and growth components under well-watered and drought stress

conditions

Considering that the peanut yield gets significantly reduced under DS [2], reports of better

growth parameters of various peanut T lines over-expressing AtDREB1A [15] andmtld [5, 63]

genes under various abiotic stresses are of great significance. T lines grown under DS was

observed performing better than the WT in terms of various growth parameters. For instance,

the shoot length was significantly more in T over WT plants, particularly in the D6 line, which

showed 10.80% and 17.10% increase in the length under DS and WW conditions, respectively

(Fig 5B). Moreover, for root length, D6 line showed 40.96% more growth over WT under DS.

The T line D8 showed 18.61% higher root length when compared to WT in WW conditions

(Fig 5B). Also, the T lines D3 and D6 showed an overall superior performance over WT under

DS. Other T lines were found at par with WT for shoot length and root length. Under DS, the

root mass and shoot mass of WT were found to be significantly less than the T lines, similar to

that reported for OsSNAC1 transgenic cotton [45].

A significantly better root dry mass was recorded in the T lines D3, D6 and D1 than WT

(Fig 5C), indicating efficient root architecture for absorbing more water from the deeper soil

layers as also reported by Jagana et al. [26] in peanut. Similarly, the shoot dry mass of WT was

found significantly lower than the T lines D2, D3, D6 and D1 (Fig 5C and 5D). We reported a

notable increase in pod mass in all T lines, except D2 over WT (Fig 5E). Whereas, significantly

increased root volume was observed in T lines D6, D1 and D8 over WT (Fig 5F). The root vol-

ume in other the T lines D4, D2, D5, D3 and D8 was found at par with those of WT (Fig 5F).

Thus, the present findings validated the outcomes of an earlier study where T lines D3 and D6

showed better expression than WT in terms of pod yield and growth-related parameters under

DS [8].
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Correlation analysis of physio-biochemical and growth-related parameters

Linear correlation analysis identified the relationship among key biochemical, physiological

and growth parameters under DS at pod formation stage of peanut plant (Table 1). The anti-

oxidant enzymes showed significant correlations among each other (strong correlation

between APX and CAT, r = 0.843��; APX and GR, r = 0.862��; GR and CAT, r = 0.835��; mod-

erate correlation between APX and POD, r = 0.758��; POD and GR = 0.768��).

In general, moderate correlations have been recorded between antioxidant enzymes with

growth and other physio-biochemical parameters (Table 1). H2O2 and MDA depicted a mod-

erately negative correlation with antioxidant enzymes. H2O2 was found negatively correlated

with CAT (r = −0.690��), POD (r = −0.705��), APX (r = −0.633��) and GR (r = −0.415��) activ-

ities. These results indicate a strong participation of various ROS-scavenging enzymes in scav-

enging the H2O2 and thereby minimised membrane damage. RWC had a positive and

statistically significant correlation with four (CAT, APX, GR and AsA) of the five antioxidant

traits studied. Further, various other growth parameters were found moderately correlated

with each other. The shoot dry mass (SD) and root dry mass (RD) showed significant positive

Fig 5. Comparison of various growth parameters in WT and T lines under DS (after 25 days of DS imposition)

and WW conditions. Where (A) Root-length, (B) Shoot-length, (C) Root-mass, (D) Shoot-mass, (E) Pod-mass, (F)

Root-volume, from WT (GG 20) and eight independent T lines (D1-D8) after harvesting (120 day old plants with

maturity).

https://doi.org/10.1371/journal.pone.0216706.g005
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correlation with other growth parameters. A positive correlation was also observed between

root dry mass and pod mass (r = 0.658��) under DS, indicating that improved root trait in T

lines contributed to enhancing the productivity under DS [8].

The enhanced tolerance under DS might be associated with stress-inducible expression of

AtDREB1A gene in T peanut lines [8]. The expression of AtDREB1A in T peanut lines resulted

in the up-regulation of downstream genes, responsible for biosynthesis of these antioxidant

enzymes. On the similar note, up-regulation of antioxidant-producing genes under DS is also

reported in tomato expressing AtDREB1A [56] and peanut expressingmtlD [63].

Expression analysis of downstream abiotic stress-inducible genes

Expression analyses of downstream inducible genes of DREB regulon in various cops have

helped in understanding the molecular mechanisms of signal transduction pathways involving

various abiotic stress responses [73, 74]. The candidate genes selected for the expression stud-

ies using q-PCR were categorised into (1) Abiotic stress-inducible genes (ABARP17-ABA

responsive protein abr17; ERDEHYFP- Early dehydration family protein; LEAP-Late-embryo-

genesis protein; LEAE2- Late embryogenesis abundant2), (2) Ion transporter gene (AQA-
P1-ISO1-Aaquaporin pip2–1-like isoform1, and (3) Membrane protein gene (ANNEX1-
Aannexin) [43]. These target genes are known players in providing tolerance to different abi-

otic stresses, however, their precise role and cross-talk possibilities with other stress pathways

are not yet deciphered [43].

Abscisic acid induces leaf stomata closure to reduce transpiration, thereby improving water

use efficiency (WUE) of plants [8, 75]. The ABARP17 gene expression showed 4.69 and 1.81

fold increases in T lines D3 and D6, respectively over WT (Fig 6A). The promoter sequences

of several genes, regulated by AtDREB1A, have a number of putative stress-related cis-acting

elements, namely DRE/CRT,MYBRS,MYCRS and ABRE, which seem responsible for DS

Table 1. Correlation between key growth and physio-biochemical parameters at day 25 of DS (pod formation stage).

GR CAT APX POD AsA MDA H2O2 RWC PDM RL SL RDM SDM

GR 1

CAT 0.835�� 1

APX 0.862�� 0.843�� 1

POD 0.768�� 0.859�� 0.758�� 1

AsA 0.668�� 0.778�� 0.729�� 0.803�� 1

MDA -0.626�� -0.691�� -0.710�� -0.645�� -0.770�� 1

H2O2 -0.415� -0.690�� -0.633�� -0.705�� -0.680�� 0.575�� 1

RWC 0.735�� 0.753�� 0.701�� 0.580�� 0.553�� -0.654�� -0.432� 1

PDM 0.414� 0.310 0.281 0.442� 0.388� -0.182 -0.172 0.078 1

RL 0.712�� 0.705�� 0.670�� 0.646�� 0.806�� -0.648�� -0.331 0.522�� 0.470� 1

SL 0.352 0.445� 0.293 0.424� 0.372 -0.292 -0.326 0.342 0.055 0.375 1

RDM 0.246 0.243 0.184 0.187 0.250 0.060 -0.062 -0.045 0.658�� 0.453�� 0.274 1

SDM 0.097 0.328 0.109 0.220 0.384� -0.487� -0.418� 0.367 -0.127 0.302 0.415� 0.121 1

Correlation between key growth and physio-biochemical parameters, average values of eight T lines along with WT were used for correlation analysis. Where: GR-

glutathione reductase, CAT- catalase, APX- ascorbate peroxidase, POD- guaiacol peroxidase, AsA- Ascorbate, MDA- malondialdehyde, H2O2- hydrogen peroxide,

RWC- relative water content, PDM- Pod dry mass, RL- Root length, SL- Shoot length, RDM-Root dry mass and SDM- Shoot dry mass. (�) represent significant

correlation:

�P� 0.05, and

��P � 0.01.

https://doi.org/10.1371/journal.pone.0216706.t001
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responsiveness [76]. The DREB gene mainly plays an important role in the ABA-independent

pathways for stress tolerance by inducing the expression of various genes in plants. However,

some DRE/CRTmotifs themselves [77] or in combination with ABRE (abscisic acid response

element) [78] can respond to an ABA-dependent pathway. The significant differences

observed in ABARP17 expressions between WT and T peanut plants might be indicative of

AtDREB1A-regulated cross-talk between ABA-dependent and independent pathways [79].

The over-expressed DREBs/CBFs are known to enhance the expression of LEA gene [79] in

response to drought and cold stresses, with an active expression in tissues containing high

ABA [80]. Further, cross-talks have been noted between different abiotic stress signalling path-

ways during adaptation of plants.

The LEAP is known to act as a desiccation protectant and is associated with the protection

of macromolecules, including enzymes and lipids [81,82]. The current study showed 20.39 and

33.05 fold expression of LEAP (Fig 6B), while LEAE2 expressed 4.87 and 4.41 fold expression

in D3 and D6 transgenic lines, respectively, over WT (Fig 6C). This high level of expression of

LEA proteins in T lines might be responsible for the better retention of chlorophyll pigments

and membrane stability than WT peanut as indicated in ZmLEA3 and AdLEA tobacco lines

[83, 82]. Early responsive to dehydration (ERD) genes gets rapidly activated during DS [84]

and it triggers the programmed cell death signals and function as ‘connector’ for multiple

stress response pathways [84]. Further, the ERDEHYFP gene expression analysis showed 1.91

and 2.90 fold increase in T lines D3 and D6, respectively, over WT under DS (Fig 6D). This

increased expression in T lines indicates that the ERDEHYFP may act as a connector in the

cross-talk among various signalling pathways under DS.

We also found up-regulation of the activity ANNEX–1 gene by 1.37 and 2.09 folds in the T

lines D3 and D6, respectively over WT (Fig 6E). Annexins are known to counteract the oxida-

tive stress, maintain the cell redox homeostasis and retain the membrane stability, thereby

imparting DS tolerance [85, 86]. Further, ectopic expression of Annexin gene of Brassica jun-
cea has also been known to develop tolerance to abiotic stress in tobacco [85].

Aquaporin is known to transport water and other small molecules through cell membranes,

and it also enhances plants’ ability to tolerate abiotic stress by improving WUE, hydraulic con-

ductivity and by retaining better water status [87]. We observed a significant up-regulation of

AQAP1-ISO1 (aquaporin pip2-1-like isoform 1) gene with a fold change of up to 1.73 and 4.36

in T lines D3 and D6, respectively (Fig 6F). The improved cell water status, as indicated by the

high level of RWC, might have resulted from up-regulation of AQAP1-ISO1 gene by

AtDREB1A gene in T lines under DS. The regulation of multiple aquaporin genes by DREB
gene is also reported in Arabidopsis [87]. Furthermore, over-expression of a native aquaporin

gene (MusaPIP2;6) in banana has also showed improved tolerance to salt and DS [88].

The qPCR assay of target genes provided evidence that AtDREB1A in T peanut acts as a

‘master regulator’ by modulating the expression of several stress-inducible genes including

those involved in cross-talks among signalling pathways, water transport, molecular chaperone

function (protection of cellular macromolecules) and detoxification under DS.

Conclusion

DS has a profound and deleterious effect on the peanut yield, especially at reproductive stages

when flowering, pegging and pod development occurs. In this study, eight stable AtDREB1A
gene T peanut lines (D1–D8) were thoroughly characterised under soil-moisture deficit stress

at reproductive stage, in lysimeteric system. Although, all the T lines showed improved antioxi-

dant and physiological parameters but, D6 line outperformed others for most of the evaluation

parameters. Thus, the line D6 could serve as a potential candidate cultivar for the drought-
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affected areas [8]. In addition, the T line D6, could also be used as valuable pre-breeding

resource in back-cross breeding programmes to develop drought-tolerant, high-yield peanut

varieties for commercial cultivation in drought-prone areas/hotspots, not only in India but

across the world [13]. Moreover, the qPCR-based validation of stress-inducible and novel

genes has opened new avenues in functional genomics and cisgenic approaches for the peanut

crop. Also, the qPCR assay confirmed the cross-talk between ABA-dependent and indepen-

dent signalling pathways through interactions with other stress-inducible proteins/TFs under

DS. Thus, this investigation provides evidence that the heterologous expression of AtDREB1A
gene in T peanut has led to an enhanced antioxidant mechanism, improved membrane stabil-

ity, and higher chlorophyll retention capacity. Further, better cellular water status could be

attributed to the efficient water-mining and conservation mechanisms, which are positively

associated with improved terminal DS tolerance and growth-related parameters, including

yield gain, under DS.
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Fig 6. Relative fold change in (A) ABARP17, (B) LEAP, (C) LEAE2, (D) ERDEHYFP, (E) ANNEXIN, and (F) AQAP
gene expressions in two selected AtDREB1A transgenic peanut lines at WW and after 25 days of DS imposition.
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