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Summary Molecular markers, viz. microsatellites and single nucleotide polymorphisms, have

revolutionized breed identification through the use of small samples of biological tissue or

germplasm, such as blood, carcass samples, embryos, ova and semen, that show no evident

phenotype. Classical tools of molecular data analysis for breed identification have

limitations, such as the unavailability of referral breed data, causing increased cost of

collection each time, compromised computational accuracy and complexity of the

methodology used. We report here the successful use of an artificial neural network

(ANN) in background to decrease the cost of genotyping by locus minimization. The

webserver is freely accessible (http://nabg.iasri.res.in/bisgoat) to the research community.

We demonstrate that the machine learning (ANN) approach for breed identification is

capable of multifold advantages such as locus minimization, leading to a drastic reduction

in cost, and web availability of reference breed data, alleviating the need for repeated

genotyping each time one investigates the identity of an unknown breed. To develop this

model web implementation based on ANN, we used 51 850 samples of allelic data of

microsatellite-marker-based DNA fingerprinting on 25 loci covering 22 registered goat

breeds of India for training. Minimizing loci to up to nine loci through the use of a

multilayer perceptron model, we achieved 96.63% training accuracy. This server can be an

indispensable tool for identification of existing breeds and new synthetic commercial breeds,

leading to protection of intellectual property in case of sovereignty and bio-piracy disputes.

This server can be widely used as a model for cost reduction by locus minimization for

various other flora and fauna in terms of variety, breed and/or line identification, especially

in conservation and improvement programs.
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For successful conservation and long-term sustainability of

existing breeds or extant populations, identification of pure

breeds is imperative. When two breeds resemble each other

phenotypically, identification of the breed becomes sub-

jective. Poor reproductive performance with a high mortal-

ity rate is evident when native goats are cross-bred with

exotic goat breeds, viz. Alpine, Saanen and Boer (Rai et al.

2005), necessitating selective breeding of the true-to-breed-

type animals and making breed identification using molec-

ular tools a critical requirement. In cases when the degree of

breed admixture is not conspicuously visible, it is hard to

differentiate between true-to-breed type and an ‘admixtured

breed’. In such situations, microsatellites and SNPs are

strong molecular markers for breed identification. Molecu-

lar-marker-based identification of breed is possible even

from small amounts of biological tissue or germplasm, such

as ova and semen, that show no evident phenotype. Breed

identification through markers is one of the promising

means of establishing genetic identity, kinship of an animal
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and product traceability (Dalvit et al. 2007). Microsatellite-

DNA-marker-based breed assignments has been reported in

various domestic animals such as cattle (Blott et al. 1999;

Maudet et al. 2002), sheep (Arranz et al. 2001; Niu et al.

2011), goat (Serrano et al. 2009; Hoda et al. 2011), pig

(Fan et al. 2005), horse (Bjornstad & Roed 2001), dog

(Toskinen & Bredbadka 1999), poultry and rabbit (Gotz &

Thaller 1998). Although recent server-based reported breed

prediction (Iquebal et al. 2013) has reduced the cost of

reference data through its online availability, the method

described, especially for less differentiated populations,

needs a larger number of loci. We report here the successful

use of an ANN approach, which is a nonparametric

technique, along with the server for further drastic cost

reductions by locus minimization without compromising

the accuracy of identification.

In general, a simple ANN model consists of three layers of

nodes, viz. input, hidden and output layers. It allows for the

connection of each node in one layer with every other node

in the next layer. Training of the network is accomplished

using several algorithms that estimate the functional

relationship between inputs and outputs using supervised

learning and by means of estimating the weights associated

between the nodes at all iterations to minimize the sum of

squared errors. Important activation functions, such as

identity, tanh, logistic, exponential and sine, are used. The

most popular form of ANN architecture is the multilayer

perceptron (MLP), which is a generalization of the single-

layer perceptron. MLP is a feed-forward neural network

architecture with unidirectional full connections between

successive layers. It consists of a set of source nodes that

constitute the input layer, one or more hidden layers of

computation nodes and an output layer. The input signal

propagates through the network in a forward direction on a

layer-by-layer basis. Further, in general, learning is used to

describe the process of finding values of weights. A learning

algorithm adjusts connection weights until the system

converges to approximately reproduce the output. Optimal

weights may be obtained by using a gradient descent

algorithm (GDA), the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm or a conjugate gradient descent algorithm

(CGDA) with a view toward minimizing the sum of the

squared error function of network output (Hassoun 2003;

Yegnanarayama 2006).

To achieve locus minimization using ANN methodology,

we used 51 850 samples of allelic data of microsatellite-

marker-based DNA fingerprinting on 25 loci covering 22

registered goat breeds of India. We report locus minimiza-

tion, using this novel computational approach, which was

not possible using earlier reported methods (Dixit et al.

2012; Iquebal et al. 2013).

From 22 goat breeds, that is, Blackbengal, Ganjam,

Gohilwari, Jharkhandblack, Attapaddy, Changthangi,

Kutchi, Mehsana, Sirohi, Malabari, Jamunapari, Jhakarana,

Surti, Gaddi, Marwari, Barbari, Beetal, Kanniadu, Sangam-

nari, Osmanabadi, Zalawari and Chegu, selected from

diverse geographical regions, a total of 1037 blood samples

were collected from genetically unrelated animals. The

number of samples from each breed was 48, except for

Kutchi, Chegu and Zalawari, where samples numbered 46,

43 and 36 respectively. From each animal, 5–6 ml of blood

were obtained by jugular venipuncture using vacuum tubes

treated with 1.5% ethylene diamine tetra acetic acid (EDTA)

as an anticoagulant. Genomic DNA was isolated as per the

method described by Sambrook et al. (1989) with minor

modifications whereby isolated DNA pellets were resus-

pended in 150 ml of TE buffer (10 mM Tris-HCl, pH 8.0;

1 mM of EDTA and 50 mg/ml of RNAse). After checking the

quality and quantity of the DNA, it was diluted to a final

concentration of 50 ng ll/1 in water and stored at 4 °C.
Twenty-five primers were used for data generation, viz.

ILST008, ILSTS059, ETH225, ILSTS044, ILSTS002, Oar-

FCB304, OarFCB48, OarHH64, OarJMP29, ILSTS005, ILS-

TS019, OMHC1, ILSTS087, ILSTS30, ILSTS34, ILSTS033,

ILSTS049, ILSTS065, ILSTS058, ILSTS029, RM088, ILS-

TS022, OarAE129, ILSTS082 and RM4. Only forward

primers at the 50 end of each pair were labeled with one of

the four fluorophores, that is, FAM (Blue), VIC (Green), NED

(Yellow) and PET (red).

For allele data generation, polymerase chain reaction

(PCR) was carried out on 50 ng of genomic DNA in a 25-ll
reaction volume. The reaction mixture consisted of 200 lM
of each dNTP, 50 nM of KCL, 10 mM of Tris-HCL (pH 9.0),

0.1% Triton X-100, 2.0 mM of MgCl2, 0.75 unit of Taq DNA

polymerase and 4 ng/ll of each primer, and a PTC-200 PCR

machine (MJ Research) was used. The ‘touchdown’ PCR

protocol used was an initial denaturation of 95 °C for

3 min, three cycles of 95 °C for 45 s and 60 °C for 1 min,

three cycles of 95 °C for 45 s and 57 °C for 1 min, three

cycles of 95 °C for 45 s and 54 °C for 1 min and 20 cycles of

95 °C for 45 s and 51 °C for 1 min with a final extension at

72 °C for 5 min. PCR products were checked for amplifica-

tion in 2% agarose gel by electrophoresis followed by UV

light visualization in ethidium bromide staining. After

determining the optimal pooling ratio and dilution ratio

for a set of primers, the PCR products were mixed in a ratio

of 1:1.5:2:2 of FAM (blue), VIC (green), NED (yellow) and

PET (red) labels respectively. Further, 0.5 ll of this mixture

was combined with 0.3 ll of Liz 500 as an internal lane

standard (Applied Biosystems) size calibrator and 9.20 ll of
Hi-Di Formamide per sample. This mixture was denatured

at 95 °C for 5 min. All denatured samples were run on an

ABI 3100 Avant automated DNA sequencer (Applied

Biosystems). Microsatellite allele size data were generated

by GENEMAPPER software (version 3.0; Applied Biosystems)

using electropherograms, which were drawn by the GENE-

SCAN software of the automated DNA sequencer (Kumar

et al. 2009).

It was observed that, for the Indian goat dataset, the 25

loci were imperative to reach 99% accuracy by the Bayesian
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method using GENECLASS2 (Piry et al. 2004). The mean

number of alleles and effective number of alleles were

obtained using POPGENE (Yeh et al. 1999), and FST values for

each locus were computed using FSTAT (Goudet 2002).

Henceforth, the ANN approach was applied to build an

accurate model for the classification of goat breeds. Both

types of network – MLP and radial basis function (RBF) –

were trained using 51 850 samples of microsatellite data on

25 loci to develop the best model for breed identification.

The training was performed using STATISTICA ver. 6. Before

training, available data from 1037 observations were

divided into two subsets randomly: (i) a training set

comprising 831 (80%) observations, to be used for com-

puting and updating the network weight and biases, and (ii)

a test set comprising the remaining 206 (20%) observa-

tions. The MLP and RBF networks were trained using GDA,

BGFS algorithm and CGDA with a view to minimize entropy

as an error function of the network output. Several learning

rate values for training the networks and activation

functions, viz. identity, tanh, logistic, exponential and sine,

for hidden units and output units were tried. A feature

selection technique was applied to minimize the number of

loci to decrease the genotyping cost. Fivefold cross-valida-

tion was implemented to estimate the error rate.

The prediction quality of the model was examined

through evaluation measures such as accuracy, Mathew’s

correlation coefficient (MCC), sensitivity, specificity, positive

predictive value (PPV) and negative predictive value (NPV)

(Hamada et al. 2010). The values were estimated by

constructing a 22 9 22 confusion matrix (contingency

table). The server was developed using ASP.NET with C#

code at the back end, which was generated using STATISTICA.

HTML. Java scripts were used and this was implemented as

a webserver.

We used the well-established statistical tool GENECLASS2 for

breed prediction. We found the maximum accuracy of 99%

using the Bayesian approach, but locus minimization could

not be achieved due to poor FST values of the loci. Using the

same dataset, we found the ANN approach to be much

superior in terms of locus minimization up to nine loci.

Artificial neural network methodology was applied very

successfully over the 51 850 allelic data points of Indian

goat breeds. It was observed that the MLP neural network

(MLP 355-18-22) outperformed other methods (Table 1)

with fivefold cross-validation. The training and testing

performance reported were 96.63% and 94.17% respec-

tively with the BFGS training algorithm, Tanh hidden

activation function and Softmax output activation function.

The overall performance of the model was 96.14%. Of the

several tried learning rate values, the best result was

obtained at 0.1. The computed average values for sensitiv-

ity, specificity, PPV, NPV, accuracy and MCC were 96.2%,

99.8%, 96.3% and 99.8%, 99.6% and 96.0% respectively.

The numbers of loci were optimized to nine from 25 (Fig. 1).

There are even cases of domestic animal breed predictions

using three loci in horse (Bjornstad & Roed 2002). A

minimum number of loci with high accuracy is always

desirable, and such success comes when loci are highly

differentiated, that is, high FST values; for example, in the

case of horse, FST is 0.2–0.25. The maximum individual

assignment success with FST of 0.18 across 10 loci has been

reported in dog (Koskinen 2003). In our case, the FST values

for all the 25 loci were observed to lie between 0.049 and

0.394 with overall genetic differentiation of 16.48%. Our

reported nine loci were re-evaluated by the Bayesian

method using GENECLASS2. It was found that nine breeds

Table 1 Training and testing performances of various models.

Models

Training

performance

Testing

performance

Hidden

activation

Output

activation

MLP 355-18-22 96.63 94.17 Tanh Softmax

MLP 355-19-22 97.25 78.06 Tanh Logistic

RBF 355-22-22 93.64 64.94 Gaussian Softmax

RBF 355-18-22 92.15 61.26 Gaussian Softmax

MLP 355-17-22 95.21 88.06 Tanh Softmax

MLP 355-15-22 87.21 76.13 Identity Tanh
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Figure 1 FST, mean number of alleles and

effective number of alleles values based on 25

loci of Indian goat breeds (circled loci were

selected for breed prediction).
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showed <90% accuracy, some of them as low as 42%.

Applying ANN methodology clearly resolves the accuracy

issue with a minimum number of markers. Further, the

mean number of alleles and effective number of alleles were

obtained using POPGENE (Fig. 1).

An interesting observation was found between FST and

accuracy. We found the best signature ability in nine loci

(represented by the circle in Fig. 1) having higher FST
values (>0.1) with one exception, that is, 29 OarFCB304,

which had a FST of <0.1. This one locus having a lower FST
still contributed to breed ‘signature ability’ due to informa-

tiveness compensation by a higher number of observed and

effective number of alleles. Contrary to this, we found that,

of 25, only one locus, that is, OarJMP29, had a relatively

high FST value (>0.1) but did not contribute to the signature
ability of breeds. FST is relative loci differentiation, and

when two populations or breeds have exactly same allelic

frequency, then FST is zero. When all loci in both breeds

(populations) have unique private alleles, then the FST
equals one, which is just a theoretical situation (Weir &

Cockerham 1984). In reality, the value is always between

zero and one for every locus. In our case, only one locus,

OarJMP29 (with higher FST), was not able to differentiate,

which is a situation specific for our dataset only. Such an

observation is very much expected, especially when the

number of breeds in the data panel is on the higher side (we

were comparing 22 breeds/population). Moreover, the DNA

signature of breeds is a ‘statistical signature’ based on allele

type, relative frequency and its relative distribution; thus,

one or two such loci will not ‘dilute’ the signature ability of

the set of loci finally selected (MacHugh et al. 1998;

Bjornstad & Roed 2002; and Koskinen 2003).

Our analysis also adds a new dimension, such that in the

rare case when high FST is not supported by a higher

effective number of alleles, then the breed signature-making

ability of locus is lost. We found that both FST and the

effective number of alleles have threshold value (as shown

in Fig. 1) to be fit for ‘signature loci’ in breed prediction.

We report the successful use of an ANN for locus

minimization up to nine loci drastically reduces the cost of

genotyping of an unknown sample threefold without

compromising the prediction accuracy of more than 96%

for 22 goat breeds.
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