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Richards nonlinear growth model, which is a generalization of the well-known logistic and Gompertz
models, generally provides a realistic description of many phenomena. However, this model is very
rarely used as it is extremely difficult to fit it by employing nonlinear estimation procedures. To this
end, utility of using a very powerful optimization technique of genetic algorithm is advocated. Parametric
bootstrap methodology is then used to obtain standard errors of the estimates. Subsequently, bootstrap
confidence-intervals are constructed by two methods, viz. the Percentile method, and Bias-corrected
and accelerated method. The methodology is illustrated by applying it to India’s total annual foodgrain
production time-series data.

Keywords: Richards growth model; genetic algorithm; simulated binary crossover; mutation operator;
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1. Introduction

Nonlinear growth models play a very important role in getting an insight into the underlying mech-
anism. These models are generally ‘mechanistic’ and the parameters have meaningful biological
interpretation [10]. Richards four-parameter nonlinear growth model, which is a generalization
of the well-known logistic and Gompertz models, generally provides a realistic description of
many phenomena. In respect of Richards model in discrete time, Loibel et al. [8] tackled the
identifiability problem by employing the Box–Cox transformation. In order to ensure better inter-
val estimation for the parameters, the approach is complemented with the profile maximum
likelihood estimate combined with bootstrap technique. For fitting nonlinear growth models in
continuous time, nonlinear estimation procedures, like Levenberg–Marquardt procedure are gen-
erally employed. Recently, Iquebal et al. [7] made attempts to apply Richards model to describe
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India’s annual foodgrain production time-series data. The SAS, Ver. 9.0 software package was
used for data analysis. Several initial values for the parameters were tried. However, global con-
vergence did not take place. Thus, Richards model could not be fitted to given data by employing
‘Nonlinear estimation procedures’.

Fortunately, during the last few years, a very powerful and versatile stochastic search and opti-
mization technique of genetic algorithm (GA), which is based on the principles of genetics and
natural selection, has been proposed [1–3]. Ghosh et al. [6] used this methodology to develop
GA-based estimators of ordinary least squares (OLS) variance–covariance matrix for the linear
regression model under heteroscedasticity and showed that the proposed estimators perform better
than the corresponding existing estimators in terms of their capability to reduce the total rela-
tive bias and the total root mean square error. In order to fit Richards nonlinear growth model,
Iquebal et al. [7] demonstrated that, for the data under consideration, the GA-methodology was
successful, despite failure of nonlinear estimation procedures. However, authors obtained only the
parameter estimates and, in the absence of computation of corresponding standard errors, it was
not possible to assess the efficiency of the parameter estimates. The present paper is an extension
of this work in the sense that, not only standard errors of estimates are computed by Parametric
bootstrap technique, but bootstrap confidence-interval of the parameters are also constructed by
two methods, viz. Percentile method and Bias-corrected and accelerated (BCa) method.

The organization of the present paper is as follows. In Section 2, a brief description of Richards
nonlinear growth model is provided. Section 3 is concerned with the bootstrap study of stan-
dard errors of parameter estimates along with construction of bootstrap confidence-intervals by
percentile and BCa methods. Finally, an illustration of the methodology for India’s foodgrain
production time-series data is discussed in Section 4.

2. Richards nonlinear growth model

The model is defined as
dX

dt
= r X (Km − Xm)

m Km
, (1)

where X(t) is the population-size or biomass at time t , r is intrinsic growth rate, K is the carrying
capacity, and m is an additional parameter. The ranges of all the parameters are positive except
m ≥ −1, because m < −1 is non-physiological, giving infinite growth rate as t → 0. To solve
Equation (1), let y = X−m, then

dy

dt
+ ry = rK−m (2)

which is a linear differential equation. Solving it, we get

X(t) = KX0

[Xm
0 + (Km − Xm

0 )e−rt ]1/m
(3)

2.1 Some particular cases

(i) When m = −1, Equation (1) reduces to

dX

dt
= r(K − X) (4)

which is a monomolecular model.
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(ii) When m = 1, Equation (1) reduces to the following logistic growth rate form:

dX

dt
= rX

(
1 − X

K

)
(5)

(iii) When m = 0, Equation (1) becomes an indeterminate form and the following Gompertz growth
rate form is obtained by applying the L’ Hospital rule:

dX

dt
= r X log

(
K

X

)
(6)

2.2 Point of inflexion

The point of inflexion of Richards model, obtained by solving d2X/dt2 = 0, for which d3X/dt3 �=
0, is given by

X = K

(m + 1)1/m
, m �= −1 (7)

and it occurs at time

t = 1

r
log

(
Km − Xm

0

m Xm
0

)
, m �= −1 (8)

It may be noted that the point of inflexion for Richards model is very flexible as it is not fixed,
but can occur at any fraction of carrying capacity, K .

3. Bootstrap study

As mentioned in the Introduction section, the estimation of parameters for nonlinear Richards
growth model may be carried out by applying the GA optimization technique with a view to
minimizing the fitness value, which is the residual sum of squares [7]. The efficiency of the
parameter estimates is now studied by the Bootstrap methodology [5]. It consists of generating
samples from the estimated Richards model F(X, θ̂) along with bootstrapped residuals from
the population of empirical errors. The bootstrapped generated samples (1000, in our case) are
denoted by X∗ (b), b = 1, 2, . . . , B. Parameter estimate of each component of θ̂ , denoted as θ̂ ,
from each sample is computed using GA and is denoted by θ̂∗(b), b = 1, 2, . . . , B. The estimated
bias of θ̂ , denoted by B̂B , is obtained as

B̂B = bias (θ̂∗) = θ̂∗(·) − θ̂

where

θ̂∗(·) =
∑B

b=1 θ̂∗(b)

B
(9)

The estimated standard error (ŝB) of θ̂ is obtained as

ŝB =
[∑B

b=1 {θ̂∗(b) − θ̂∗(·)}2

(B − 1)

]1/2

(10)

The point and interval estimates taken together give an idea about the error in estimating true
parameter θ . The bootstrap confidence-interval is based on bootstrap standard error estimate.
The ideal bootstrap estimate limB→∞ ŝB = sF̂ = sF̂ (θ̂∗) considers B = ∞, in which case, the
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plug-in estimate ŝ∞ equals sF̂ (θ̂∗). The rule of thumb, as mentioned in Efron and Tibshirani [5],
is to take B = 200 for estimating the standard error, while a much larger value of B is required
for computation of bootstrap confidence intervals. The bootstrap standard errors for parameter
estimates may be used to assign approximate confidence intervals to parameter θ . Most commonly
used confidence interval, i.e. standard confidence interval under large sample size is

[θ̂ − z(1−α)sF̂ , θ̂ − z(α)sF̂ ], (11)

where z(α) is the 100 αth percentile point of the N (0, 1) distribution.

3.1 Percentile-method

Let θ̂ be the usual plug-in estimate of a parameter θ and sF̂ be its estimated standard error. The end
points of standard confidence interval [θ̂ − z(1−α)sF̂ , θ̂ − z(α)sF̂ ] can be described in a way that
is particularly convenient for bootstrap calculations. Particularly, if we assume that θ̂∗ indicates
a random variable drawn from the normal distribution N(θ̂, s2

F̂
), then θ̂lo = θ̂ − z(1−α)sF̂ and

θ̂up = θ̂ − z(α)sF̂ are the 100 αth and 100 (1 − α)th percentiles of θ̂∗. This suggests use of the
percentiles of bootstrap histogram to define confidence-limits. A bootstrap dataset X∗ is generated
from F(X, θ̂) and bootstrap replications θ̂∗ = s(X∗) are computed. Let Ĝ be the cdf of θ̂∗. The
(1 − 2α) percentile interval is defined by the α and (1 − α) percentiles of Ĝ:

(θ̂%,lo, θ̂%,up) = (Ĝ−1(α), Ĝ−1(1 − α)) (12)

The percentile interval is connected with the bootstrap t-interval if we approximate the distribution
of (θ̂ − θ) by (θ̂∗ − θ̂ ) and it can be shown that the resulting interval is

(2θ̂ − Ĝ−1(1 − α), 2θ̂ − Ĝ−1(α)) (13)

The percentile method can be thought of as an algorithm for automatically incorporating transfor-
mation so that the transformed statistic follows normal distribution without any need to know the
correct transformation. Also the percentile interval is the transformation respecting in the sense
that, for any (monotone) parameter transformation φ = g(θ), it is simply the percentile interval
for θ mapped by g(θ), i.e.

(φ̂%,lo, φ̂%,up) = (g(θ̂%,lo), g(θ̂%,up)) (14)

3.2 Bias-corrected with acceleration constant (BCa)-method

The percentile method can be thought of as a straightforward computational algorithm for extend-
ing the effectiveness of standard confidence intervals. The Bias-corrected (BC) approach of
interval estimation, although more complicated to define than the percentile method, is almost as
easy to use as the percentile method. The BC method, introduced by Efron [4], assumes normality
and constancy of the standard error for construction of confidence intervals. It can be achieved
by some transformation φ̂ = g(θ̂), φ = g(θ), say, where

φ̂ − φ

τ
∼ N(−z0, 1) (15)

τ being the standard error of φ̂. Allowing the bias constant z0 considerably improves the approxi-
mation in many cases. The confidence interval (φ̂ + τ z0) ± τ z(α) for φ can be converted back to a
confidence interval for θ by the inverse transformation θ = g−1(φ). The advantage of BC method



Journal of Applied Statistics 495

is that all of these are done automatically from bootstrap calculation, without requiring to know the
correct transformationg. The improved bootstrap method, called BC with the acceleration constant
(BCa) method [5], makes one further generalization of the BC method. It can be demonstrated
that the BCa interval gives the second-order correct interval of θ under reasonable condition and
takes care of major adjustments of exact confidence limit, which is typically of the form [4]:

θ̂ + σ̂

(
z(α) + A(α)

n√
n

+ B(α)
n

n
+ · · ·

)
, (16)

where n is sample size. The asymptotic property of the BCa interval adheres to the asymptotic
property of the confidence interval based on the maximum likelihood estimator. Let θ̂∗(α) indi-
cate the 100 αth percentile of B bootstrap replications θ̂∗(1), θ̂∗(2), . . . , θ̂∗(B). The BCa interval
endpoints are also given by percentiles of the bootstrap distribution, but are not necessarily the
same as the percentiles of bootstrap t-distribution. It is assumed that for some monotone transfor-
mation g, the bias constant z0, and acceleration constant a, the transformation φ̂ = g(θ̂), results
in φ̂ − φ = σφ(Z − z0), where φ = g(θ), and σφ = 1 + aφ. It is not difficult to find the correct
interval for φ which has α-level endpoints:

φ[α] = φ̂ + σφ̂

z0 + z(α)

1 − a(z0 + z(α))
(17)

In terms of the inverse of bootstrap cdf Ĥ of φ̂∗, it is easy to show that

φ[α] = Ĥ−1(�(z[α])), (18)

where

z[α] = z0 + z0 + z(α)

1 − a(z0 + z(α))
. (19)

Using the relationship Ĥ−1(α) = g(Ĝ−1(α)), where Ĝ is the bootstrap cdf of θ̂∗, it can be shown
that the correct central BCa confidence interval of level (1 − 2α) for θ is

(
Ĝ−1(�(z[α])), Ĝ−1(�(z[1 − α]))). (20)

The percentiles �(z[α]), �(z[1 − α]) depend on two vectors a and z0, which are to be estimated.
The value of the bias-correction z0 is obtained from the proportion of bootstrap replications less
than the original estimate θ̂ by the equation

z0 = �−1

(
#{θ̂∗(b) < θ̂}

B

)
(21)

The estimate of a, given by Miller [9], is in terms of the jackknife values of a statistic θ̂ =
s(x1, x2, . . . , xn). To this end, let x(i) = (x1, x2, . . . , xi−1, xi+1, . . . , xn)

′ be the original data with
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observation at the ith time point deleted and let θ̂(i) = s(xi). Defining

θ̂(·) =
n∑

i=1

θ̂(i)

n
, (22)

a simple expression for the acceleration is

â =
∑n

i=1 (θ̂(·) − θ̂i )
3

6
{∑n

i=1 (θ̂(·) − θ̂i )2
}3/2 (23)

It is to be noted that the parameter θ is vector valued for the underlying probability set up guided
by the Richards model. Subsequently, the bias and acceleration estimates are also vector valued
with four components each and Equations (22) and (23) should be read accordingly.

The confidence interval (θ̂lo, θ̂up), based on the percentile and BCa methods, for each parameter
is described by its ‘Length’ and ‘Shape’, where

Length = θ̂up − θ̂lo and Shape = θ̂up − θ̂

θ̂lo − θ̂
(24)

When these exist, exact confidence intervals, are often quite asymmetric. Shapes of the BCa

intervals usually come out to be greater than one, implying thereby that these are asymmetric.
Thus, the condition of exact intervals by the bootstrap methodology is satisfied. On the contrary,
a serious error in terms of good theoretical coverage properties is committed by the percentile
method, whose shape being close to unity, reflects the symmetric nature of confidence intervals.

4. An illustration

India’s annual foodgrain production data for the post-Green revolution era, viz. 1966–1967 to
2004–2005 obtained from various issues of ‘Agricultural Statistics at a Glance’, published by the
Directorate of Economics and Statistics, Ministry of Agriculture, India, are considered for the
present study. The same are reproduced in the second column of Table 1 for ready reference. After
reparameterization, Equation (3) becomes

X(t) = a

[1 + exp(b − ct)]1/d
+ ε(t) (25)

where a = K , b = log(Km/Xm
0 − 1), c = r , d = m, and ε(t) is a random error term assumed to

be independently and identically distributed. In order to fit Equation (3) to data through GA, the
objective function to be minimized is

T∑
t=1

[
X(t) − a

[1 + exp(b − ct)]1/d

]2

(26)

Computer programs for data analysis were developed using C-language in Microsoft visual C++
compiler. The GA parameters, viz. population size, crossover probability, and mutation probability
for minimization of Equation (26) are, respectively, 40, 0.9, 0.01 with number of generations as
100. Using above parameter set up, GA has terminated with accuracy level (η = 10−3) in 99 out
of 100 runs, in general [7]. The parameter estimates along with estimated bias and standard error
obtained through GA are reported in Table 2. It may be noted that the percentage standard errors
throughout are generally quite low, indicating thereby that the parameters are estimated efficiently.
The fitted values along with residuals are then computed and reported respectively in third and
fourth columns of Table 1.
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Table 1. Fitting of Richards nonlinear growth model to India’s foodgrain
production data (million tonnes) using GA.

Year Observed Fitted Residuals

1966–1967 74.23 94.72 −20.49
1967–1968 95.05 97.00 −1.95
1968–1969 94.01 99.32 −5.31
1969–1970 99.50 101.70 −2.20
1970–1971 108.42 104.13 4.29
1971–1972 105.17 106.62 −1.45
1972–1973 97.03 109.16 −12.13
1973–1974 104.67 111.76 −7.09
1974–1975 99.83 114.42 −14.59
1975–1976 121.03 117.13 3.90
1976–1977 111.17 119.90 −8.73
1977–1978 126.41 122.73 3.68
1978–1979 131.90 125.62 6.28
1979–1980 109.70 128.57 −18.87
1980–1981 129.59 131.57 −1.98
1981–1982 133.30 134.64 −1.34
1982–1983 129.52 137.76 −8.24
1983–1984 152.37 140.94 11.43
1984–1985 145.54 144.18 1.36
1985–1986 150.44 147.48 2.96
1986–1987 143.42 150.83 −7.41
1987–1988 140.35 154.23 −13.88
1988–1989 169.92 157.69 12.23
1989–1990 171.04 161.19 9.85
1990–1991 176.39 164.74 11.65
1991–1992 168.38 168.34 0.04
1992–1993 179.48 171.97 7.51
1993–1994 184.26 175.65 8.61
1994–1995 191.50 179.35 12.15
1995–1996 180.42 183.09 −2.67
1996–1997 199.44 186.84 12.60
1997–1998 192.26 190.61 1.65
1998–1999 203.61 194.39 9.22
1999–2000 209.80 198.17 11.63
2000–2001 196.81 201.95 −5.14
2001–2002 212.85 205.71 7.14
2002–2003 174.77 209.46 −34.69
2003–2004 213.19 213.17 0.02
2004–2005 198.36 216.85 −18.49

Table 2. Parameter estimates along with bias and % standard error.

Parameter Estimate Bias % Standard error

a 290.26281 0.793 4.17
b 4.76365 0.013 7.14
c 0.09995 −0.007 11.11
d 4.17308 0.084 6.95

4.1 Residual analysis

In order to assess as to whether or not the Richards model is fitted properly, it is important to
carry out the ‘Residual analysis’. The main assumption regarding independence of error terms
is first examined through the ‘Run test’ on residuals. The calculated value of |Z| is obtained as
0.970,which being less than 1.96, indicates that the assumption of independence of errors is not
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violated at 5% level. Subsequently, the Durbin–Watson test, which is more efficient than the Run
test, is applied on residuals {et}. To this end, in the first instance, the assumption of normality of
errors is examined. The Shapiro–Wilk test statistic value of 0.961 indicates that the assumption of
normally distributed errors is not violated at 5% level. The Durbin–Watson test statistic given by

d =
∑n

t=2 (et − et−1)
2∑n

t=1 e2
t

.

is computed as 1.805. The tabulated values for n = 39 at 5% level are dL = 1.435 and dU = 1.540.
As d > dU , there is no statistical evidence that the error terms are positively autocorrelated.
Further, 4 − d > dU , thus there is no statistical evidence that the error terms are negatively auto-
correlated. Thus, by the Durbin–Watson test also, the assumption of independence of error terms
is not violated at 5% level. For visual inspection, the graph of residuals is exhibited in Figure 1.

4.2 Goodness-of-fit

Goodness-of-fit measures, viz. mean absolute error (MAE), root mean squared error (RMSE),
percentage forecast error (PCFE) are computed and are reported in Table 3, which indicate that
the Richards model provides a good fit to data.

From the fitted model, the point of inflexion is calculated as t = 33. Thus, the maximum growth
rate is achieved in 1999, implying thereby that India’s foodgrain production for subsequent years
would take place at a retarded pace; this result may have serious implications from the policy
point of view.

Figure 1. Graph of residuals.

Table 3. Various measures of goodness of fit.

Measures Calculated values

MAE 8.32
RMSE 10.77
PCFE 5.69
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4.3 Lengths and shapes of confidence-intervals

Lengths and shapes of confidence intervals constructed by percentile and BCa methods are exhib-
ited in Table 4. A perusal shows that lengths of the BCa intervals are shorter for parameters a and
b compared with those for percentile intervals whereas for the other two parameters, viz. c and
d, these are only slightly longer. Further, in view of their shape values around one, the percentile
intervals are generally symmetric in nature, which does not guarantee the existence of exact 95%
confidence intervals. On the other hand, the BCa intervals have shape values greater than one for
all the parameter estimates, indicating thereby that these give exact 95% confidence intervals. To
sum up, it may be concluded that, for present data, the BCa method has performed better than the
percentile method.

4.4 Forecast performance

The forecast performance of the fitted Richards model is studied by computing the bootstrap
estimate of the mean square prediction error (MSPE). To this end, we generate 1000 samples each
of size 41 using the Richards model, where the estimated parameters from outset data are taken as
true parameter values. The errors are independently and identically distributed random variables
from the population of observed errors due to fitting the Richards model to data. In each of the
1000 samples, GA was performed to estimate the parameters as well as to find the one-step ahead
forecast error. The MSPE, computed by the formula

∑1001
i=1 R2

i

1001
, (27)

where R2
i denote the one-step ahead squared forecast error in the ith bootstrap sample, is merely

4.35. Further, forecasting of India’s foodgrain production on the basis of fitted Richards nonlinear
growth model is carried out from 2005–2006 till 2008–2009 and the results are reported in Table 5.
A perusal shows that the observed and fitted values are quite close to each other.

Hence, it may be concluded that the Richards model is successful in modelling and forecasting
of India’s annual foodgrain production data.

Table 4. Lengths and shapes of confidence-intervals.

Percentile method BCa-method

Parameter Interval Length Shape Interval Length Shape

a [278.45, 302.16] 23.71 1.01 [280.34, 301.24] 20.90 1.11
b [4.39, 5.28] 0.89 1.41 [4.57, 5.13] 0.56 1.95
c [0.07, 0.11] 0.04 1.00 [0.07, 0.12] 0.05 1.50
d [3.84, 4.41] 0.57 0.73 [3.90, 4.50] 0.60 1.22

Table 5. Forecasting of India’s foodgrain production (million tonnes).

Year Observed Fitted Difference

2005–2006 208.60 220.48 −11.88
2006–2007 217.28 224.05 −6.77
2007–2008 230.78 227.57 3.21
2008–2009 233.88 231.00 2.88
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5. Conclusion

In this paper, utility of GA for fitting of Richards nonlinear growth model is highlighted. The
proposed procedure is successfully applied for modelling and forecasting of India’s annual
foodgrain production data. The importance of this work is that this methodology is applicable
even in those cases in which ‘Nonlinear estimation procedures’ fail to converge. The methodology
has been put on a sound statistical footing by computation of confidence intervals through two
methods. This, in turn, would go a long way in building of various scenarios for forecasting
purposes. It is hoped that, applied statisticians would also start employing the GA for fitting other
similar nonlinear growth models. Work is in progress to extend the methodology applicable when
the errors are not independent but follow AR(1) errors and shall be reported separately in due
course of time.
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