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Abstract : Maximum likelihood estimator of R = P(Y < X)) is derived when all the parameters of Gompertz distribution for X and Y
are unknown and unequal. Maximum likelihood estimator for estimating ‘R’ is also derived, when one parameter is known (and
equal), but other parameter is unknown for X and Y. Uniformly minimum variance unbiased estimator (UMVUE) of P(Y < X) is also
derived for the case when one parameter is known (and unequal), but other parameter is unknown for both X and Y. A new
approach has been applied for deriving the UMVUE of R using estimator of power of unknown parameter. Performance of the
estimators have been examined using bootstrap technique.
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1. Introduction

In statistical literature, the quantity P(Y< X) is
typically referred to as stress strength reliability. P(Y<X)
determines the reliability of a system of strength X
subjected to stress Y. For several distributions estimation
of P(Y <X) are discussed by Chao (1982) for the family
of exponential distributions. Kotz et al. (2003) have
reviewed work done on estimation of stress strength
reliability over the last four decades [Church and Harris
(1970), Downton (1973), Woodward and Kelly (1973),
Tong (1974, 1975a, 1975b), Awad and Gharraf (1986)]
for the family of Burr XII distributions [Constantine et
al. (1986) and Ismail et al. (1986)] for the family of
gamma distributions [Surles and Padgett (1998, 2001),
Ragab and Kundu (2005)] for the family of Burr X
distributions [Kundu and Gupta (2005)] for the family of
generalized exponential distributions [Ali and Woo (20054,
2005b)] for the family of burr III distributions. Hardly
any work on estimation of P(Y< X) for Gompertz
distribution is available in literature. The Gompertz
distribution was formulated by Gompertz (1825) to fit
mortality tables. This distribution does not seem to have
received enough attention, possibly because of its
complicated form. Recently, many authors have
contributed to the statistical methodology and
characterization of Gompertz distribution. For example

[Read (1983), Downton (1973), Makany (1991), Rao and
Damaraju (1992), Franses (1994) and Wu and Lee
(1999)]. Garg et al. (1970) studied the properties of the
Gompertz distribution and obtained the MLEs for the
parameters. Chen (1997) developed an exact confidence
interval and an exact joint confidence region for the
parameters of the Gompertz distribution under type II
censoring. Saracoglu et al. (2009) have discussed on
comparative study on estimators for stress strength
reliability in the Gompertz case, when one parameter is
known.

In Section 2, we have derived maximum likelihood
estimator of P(Y< X) when all parameters of Gompertz
distribution for X and Y are unknown and unequal. In
Section 3, we have derived maximum likelihood estimator
of P(Y< X), when one parameter is known (and equal),
but other parameter is unknown for X and Y. In Section
4, we have derived UMVUE of P(Y< X) when one
parameter is known (and unequal), but other parameter
1s unknown for both X and Y. In Section 5, simulation
results have been discussed.

2. Maximum Likelihood Estimation of P(Y<X),
when (c, A)) and (c,, A,) are Unknown and
Unequal

Let X be the strength of a system and Y be the stress
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acting on it. Then X and Y will be random variables from
Gompertz with parameters (¢, A,) and (c,, ),
respectively. That is, the probability density functions (pdf)
and the cumulative distribution functions of X and Y are,
respectively.

f(X) = }“1 eclxe[’?\.lcf' {eclx,l}}; X>0, Cl> 0, }\,l> 0, (1)

P@%Wﬂ} 2

F(x)=1-e

and

f(y) — )\‘zeczye['lzcil{el'z.“,l}]; y > 0, C2> 0, }\,2> 0, (3)

e

Let, X, X,, ..., X and Y, Y,, ..., Y _ be the two
independent random samples taken from the Gompertz
distribution with parameters (c,, A,) and (c,, X)),
respectively. Then, likelihood and log-likelihood function
based on the above samples are given as follows.

" C gxi o ;(ecle —1)

Lx = (7\’1 ) e ! e

and 5)
L,=(A,)e ™ e *~

Now,

i=1

logL, =nlogh, +¢, 3 x, — Ac;’ Z(ec'xi - 1)
=1

and

(6)
logL, = mlog Ay +e, ,'Z=1yj - ?uzcgl /Zz‘,l(eczyf - 1)

From (5), we have

dlogL, _n _ ;(6% _1)

T S

Q)

¢,
A,
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alggl‘xzzxi_ nz:l 4+ —
c i=1 €x 91
e —1
(e 1)
Hence. dlogL,
ac,
= S ®)
: c
e —1 1
X[e 1)
Similarly for Y,
Ay = ©)
e —1
Sfe )
and
iyieczy, 1
=y-— +—=0 (10)
e"zyz -1 Gy
Se

Through iterative procedures, we can solve ¢, and

from (8) and (10) and thereby, we can estimate A ,and

from (7) and (9), respectively.
From (5), we have
R = P(Y<X) = [ P(Y < X) f(x)dx
0

From (4), we have

R= J [l - e[w;{ECZX_IH}%eC‘xe[M'I{ECIX_IHaIx
0

[—AQC; (€2 =1)=Rye;" (e —1)]

:1_]‘: Aee dx
0

Putting klcl'lec‘x =t

ol ool P ol
Rzl_exl 1 +7“2 2 J. e )\‘262 (tcl/)“l) letdt (11)
7‘1"171

If we write the following identity

k ¢, /¢,
k (7‘262_1) (tcl/}"l)k g
k!

(12)

S
k=0
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The final form of (11) is regarded as follows:

-1 a4 A C_l)k(c /7\, )kcz/cl
R=1- e}‘lcl +hac, -1 k ( 272 1 1
kg()( ) k!

oo klcl_l
x | [f 9 eTdr— 140 e dt
0 0

_1\k kcz/c1
_1- eklc('ﬂ»zc;l i(_l)k (kzczl) (Cl/}\‘l)
k=0 k!

Mep!

x |Dlkeyer +1)= [ e™dr |, (13)
0

Where, I'(.) is a gamma function.
If we write the identity

it
=i

(14)

From (14), we can write (13) as

0 ) e k o ke, /e,
R:l_ehl('] +7L202 ;0(_1)1{( 2%2 ) (ki/ 1)

~ i i (7\‘16’171)
x F(kclcll+1)—§;(_l) (keyer +i+1)ir |

kcchl +i+l

From one to one property of MLE, we get MLE of
R as

() e/

k=0 k!

. )kézéfl +i+1

(M

X r(kézé;lﬂ)—i(—l)im (15)
1= 241 :

3. Maximum Likelihood Estimation of P(Y<X),
when ¢, = ¢, = ¢ and are known but A, and A,
are unknown

We have
pP= T{l - ehzvil{eu_l}} } 7»16'”6'“167l {ecx_l}}dx
0

et el
0

Putting e — 1 = z, we get

R=1-A,c" J'ef(k”mcilzdx
0

=1- A
A +A,
A,
= 16
A +A, (16)
From (7) and (9), we get
Xl = ne and 7:.2 = e

e
j=1

From one to one property of MLE, we get MLE of
R from (16) as
po o (17)
A +A,

4. UMVUE:s of P(Y<X) when ¢, # ¢, and are
known, but A, and A, are unknown

Throughout this section, we assume that A is
unknown, but ¢, is known. Let X, X, ...., X be arandom
sample of size n from (1).

Lemma 4.1 : Let, S= C1_1 Z(ec"‘f - 1), then S is
i=I
complete and sufficient for the distribution (1). Moreover,
the pdf of S is

A N
—L_ gl 550, A, >0

[(n)

Proof : From (1), the joint pdf of X, X,

(18)
o X 18

F(xn 2, x5h,0)=(4,) e IE e (19
It follows from (19) and Fisher-Nayman factorization
theorem [Rohatgi (1976), pp. 346] that S is sufficient for
the distribution (1). From the additive property of
exponential distribution, S has Gamma distribution with
parameters (n, A ). Since the distribution of S belongs to
exponential family of distributions, it is also complete.

The following lemma provides the UMVUES of the
powers (positive, as well as negative) of A .

Lemma 4.2 : For q € (-0, o), the UMVUES of
A" and A are given, respectively, by
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>y ) T) |,
A —{F(n+q)}s,(n+q)20 (20)
and
)
~ | =——2=S8"% (n—-q)=0
M =1T(n-q) 9> 1)

0, otherwise

Proof : From Lemma 4.1, we have

E(Sq) = %Isw_le'x” ds

_F(n+q) .
- I['(n) o

and (20) follows from Lehmann-Scheffé theorem
[Rohatgi (1976), pp. 357]. Similarly, from Lemma4.1,

B(S™)=1

]: exp ds

0

:—F(n_q)kq q<n
C(n)

and (21) follows.

In the following lemma, variance of }:? and 711“1 are

derived.

Lemma 4.3 : For }:? and 711“1 derived in Lemma 4.2.

Var(i?) = {% }Mq 2q<n
and
Varfi)= {—”;{frﬂf‘:q 0. l}w

Proof : We know that
var(A)=E[is - 20|

Which on using Lemma 4.2, gives

Varli) = E[fs - 13] - {r e

I'(n
(n) E(S™).
I(n-q)
Hence, the first assertion, similarly, we can prove
the second assertion.
In the following lemma, we provide the UMV UE of
the sampled pdf (1) at a specified point ‘x’

Lemma 4.4 : The UMVUE of f(x; ¢, A)) at a
specified point ‘x’ is

XE(S79)+ A" — 21

A P l_eclx_l n=2
flxeh)=1s B((n-1).) ¢S ; cl"{e” —1}<S

0, otherwise

Proof : Since S is complete and sufficient for the
distribution f(x; ¢ , A,), any function H(S) of S satisfying
E [H(S)] = f(x; c,, X)) will be the UMVUE of f(x;c,A,).
To this end, from (1) and Lemma 4.1.

1 n-1 n ox ‘[klcf {"(TIX_IH
() .([H(s) s"exp(—\,s) ds=Nee

or
?i:) :H(s) s"_lexp[—lls + A {ec'x - 1}] ds=e"
or

5 e el

x exp[—Au] du= e
(22) is satisfied and the lemma will hold, if we choose
H(u +c {eﬁx - 1}) accordingly.

Remark 4.1 : We can write (1) as

(_1)l e —1 lki+1
i/ C re

Using Lemma 2.1 of Chaturvedi and Tomer (2002)
and lemma 4.2, the UMVUE of f(x; ¢, 7»1) at a specified
point ‘X’ is

™M s

Flxier )= exple,v)

i=0

.;.(X;Cl’kl)z
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c X

x n-2
e'! 1_ e“ _1 : o o _1
=15 B((n_l),l){ cs | ferr -1}

0, otherwise

Hence, the Lemma 4.4 follows.

Theorem 4.1 : The UMVUE of R is given by

. 1 n—llin—li_j
P_(n—l)B((n—l), 1) B((m—1), 1)%[&}[ i ]Z( !

] .CI/CZ j ((CIS"'I)CZ/CI_])/CZT
x[z]fz (JCI/CZJ(CZT)k_ [ ) du
=R !

Proof :

points ‘x’ and ‘y’, respectively, are

eCix | n-2
1- ;
S B((n-1), 1){ ¢,S }

fl(x;cl,).l)= (23)
;' {ecl" - 1} <S
0, otherwise
and
m-2
eczy eCzY -1
1_ ’
T B((m -1), 1) c,T
f(yicsh,)= 24)
-1 c,y
c, {e 2 }
0, otherwise

It can be shown that the UMVUE of R is given by

‘[J'flxck

y=0x=y

which on using (23) and (24) gives that

(x;¢,.0,)dx dy,

(‘El log

. 1
R S B((=0), 0T B((m=1.1)

n-2 : m—2
e l—el —1 e 1—62’_1 dx dy
S c,T

2

erT+1) ¢ log(e;S+1)

It follows from Lemma 4.4 that the
UMVUEs of f (x; ¢, A) and f(y; c,, 1)) at specified

271
. af —1
Putting, z=1- , we get
¢
min{c3' log(e,T+1).¢7 Tog(e,5+1)}
R= 1 J
(n—1)B((n—1), 1) B((m-1), T
¢y 1 n—1 ey 1 m—2
e 1 — oy e 2 —
1= e 11— dy (25)
¢S c, T
Let us first consider the

case, when
¢, log(c,T+1) < c;" log(c,S+1). In this case, from (25)

;' log

(c,T+1
L

)

— dy = du,
e =1+uc,T
log(1+c,Tu

and y = o8 +e.Tw)

¢,

¢ n-1
—Llog(1+¢,Tu)
02 -

e -1
(n=1)B((n—1), 1)B((m-1), 1)TJ s

T[l—u] du
_ 1 I ) (I+c Tu)cl -1 -
"~ (n=1)B((n-1), 1)B((m~1) 1){ ¢S
[l—u]mizdu
1 Lyt ; n—1
 (n=1)B((n—1),1) B((m-1), 1)5,-:0('1)( i )
(1+ CzCTll;)c2 ! [1- ll]m2 du
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_ ! 5L
 (n=1)B((n—1),1) B(m—-1),1) ! ,Zo:(clSj i

; (-1)j 3 (1+02Tu)%[1—u]mfzdu
=0
“n—1

_ ! 5L
 (n=1)B((n—1),1) B(m—-1),1) ! ;(qu i

: (czTu)k[l - u]mf2 du
i=0 j) k=0 k

“wma i E)

u [1 — u]m_z du

—_
)
N
~
~—
~
oct—

k=0 k
! L) My
~ (n=)B((n=11) B(m-1, ) S\ S )\ i J=
jer/ea jCl/C2 X
(e,T) B(k+1, m—1) (26)
k=0 k
Now, we consider the case, when
¢;'log(c,S+1)<c;' log(c,T+1).
In this case, from (25)
R 1 ¢ log(c,S+1)
R=
(n-D)B((n=1), 1) B((m=1). T %
oy _1 n—1 e, _1 m—2
><|:1—e } e('”{l—e } dy
c c,T
2y _
Putting =u,

¢,

Table 1 : Simulation results.

Ay Ay, 0)
nm (12.5,0.8) | (1,1.5,0.8) | (1,7,0.8) | (5,5,0.8)
0.0453 0.05 0.0341 0.0118
0.7593 0.65 0.9091 0.5118
10,10 0.0094 0.0115 0.0018 0.0127
0.3382 0.3813 0.139 0.4548
94.695 94.39 92.7822 95.5923
0.0507 -0.0169 0.0272 -0.0125
0.7647 0.5831 0.9022 0.4875
10,20 0.0081 0.0122 0.0022 0.0099
0.2887 0.4414 0.1429 0.3768
92.4941 95.2823 91.7897 94.201
-0.0456 -0.0162 0.0162 -0.0057
0.731 0.5838 0.8912 0.4943
10,30 0.009 0.01 0.0016 0.0088
0.3626 0.3818 0.1391 0.3602
92.8182 93.2301 91.9317 93.7076
-0.0072 -0.0059 0.0115 -0.0182
0.7068 0.5941 0.8865 0.4818
15,15 0.0052 0.0069 0.0016 0.0084
0.2765 0.3137 0.1434 0.3412
94.1822 94.0804 92.9904 94.1586
0.0525 0.0021 0.0073 -0.0326
0.7665 0.6021 0.8823 0.4674
15,25 0.007 0.0067 0.0011 0.0057
0.1896 0.2938 0.1211 0.2785
92.4059 92.4626 93.2789 95.9025
0.043 0.0419 0.0254 0.0014
0.757 0.6419 0.9004 0.5014
25,25 0.004 0.0072 0.0013 0.0055
0.1731 0.2848 0.1033 0.2902
93.6482 94.5628 93.7842 94.9233
0.0372 0.0397 0.0101 0.0227
0.7512 0.6397 0.8851 0.5227
40,40 0.0037 0.0047 6e-04 0.0037
0.17 0.2125 0.0955 0.219
93.0661 94.1963 95.309 94.7133

Estimates in order are bias, bootstrap estimate, MSE, confidence
length and coverage percentage.

¥

e
dy =du,
T y

e =1+uc,T

log(1+uc,T)

¢,

and y =
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~ 1 ((qS+l)‘2‘1 —1)/52T
G o P e R

C—'log(lJrczTu) "
e” -1 m-

x|1- T1-u]" du
¢S

| u¥[1-u]"du (27)

0

c2/c|
ie/es (e /e ((ei5+1) —1)/02T
xS [J ! zj(czT)k

k=0

5. Simulation Study

To study the performance of the estimator developed
when all the parameters are unknown, we simulated from
the Gompertz distribution with the values of the
parameters (7Ll, Cs 7L2, ¢,) =(2,0.5, 3,1) for sample size
(n, m) = (15,15). The simulated data are X : 0.3488,
0.0444,0.5277,0.0554,0.4027,0.2053, 0.0701,0.2139,
0.3790,0.1909, 1.0587,0.2164,0.7535, 0.0306, 0.0231.
Y:0.2371,0.1836,0.0050,0.1107,0.0033, 0.0853,0.4173,
0.0378,0.6579,0.2541,0.0790, 0.4696, 0.1402, 0.0513,
0.3414.

R (Actual) = 0.6206.
R =0.6425

To study the performance of R developed, when
¢, =c¢,=c and are known, 500 bootstrap samples are
simulated from the Gompertz distribution with the values
of parameters (A, A, ¢) as (1,2.5,0.8), (1,1.5,0.8),
(1,7,0.8) and (5,5,0.8) over different samples of sizes
(n,m)=(10,10), (10,20), (10,30), (15,15), (15,25), (25,25)
and (40,40). Bootstrap estimates of bias, mean, MSE,
confidence length and coverage percentage are given in
Table 1.
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