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 2006, Volume 68, Part 1, pp. 111-129
 ? 2006, Indian Statistical Institute

 On Mixture Nonlinear Time-series Modelling and
 Forecasting for ARCH Effects

 Himadri Ghosh, M.A. Iquebal and Prajneshu
 Indian Agricultural Statistics Research Institute, New Delhi

 Abstract

 In the class of Nonlinear time-series models, Gaussian mixture transition dis
 tribution (GMTD) and Mixture autoregressive (MAR) models may be em
 ployed to describe those data sets that depict sudden bursts, outliers and flat
 stretches at irregular time-epochs. In order to capture volatility explicitly,
 recently a new family, viz. M AR-Autoregressive conditional heteroscedastic
 (MAR-ARCH) has been introduced in the literature. In this paper, these
 three families are studied by considering weekly wholesale onion price data
 during April, 1998 to March, 2002. Presence of ARCH in detrended and de
 seasonalised series is tested by Naive-Lagrange multiplier (Naive-LM) test.
 Estimation of parameters is done using Expectation-Maximization (EM) al
 gorithm and best model from each family is selected on basis of Bayesian
 information criterion (BIC). The salient feature of work done is that, for
 selected models, formulae for carrying out out-of-sample forecasting up to
 three-steps ahead have been obtained theoretically, perhaps for the first
 time, by recursive use of conditional expectation and conditional variance.
 In respect of out-of-sample data, results derived enable us to compute best
 predictor, prediction error variance, and predictive density. It is concluded
 that a two-component MAR-ARCH provides best description of the data for
 modelling as well as forecasting purposes.

 AMS (2000) subject classification. Primary 62J02; Secondary 62P20.
 Keywords and phrases. Autoregressive conditional heteroscedasticity, GMTD
 model, MAR model, MAR-ARCH model, EM algorithm, volatility, stochas
 tic trend, BIC, out-of-sample forecasting

 1 Introduction

 Box-Jenkins Autoregressive integrated moving average (ARIMA) mod
 els have dominated analysis of time-series data since last six decades or so.
 However, there are many instances in which such models are not appropri
 ate. For example, Le et al. (1996) indicated their inadequacy for hourly
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 viscosity readings in a chemical process due to frequent flat stretches with
 bursts. Recently Ghosh et al. (2006) have shown that India's marine prod
 ucts export data contains shocks at irregular time-epochs and fitted bilinear
 time series model to data. Given time-series data {Y\, Y2,... ,Yn}, autoco
 variance function, jj = cov(Yt, Yt+j);j = 0,1,2,... used in linear time-series
 are only one aspect of joint distribution of {Y\,Y2,... ,Yn}; other aspects
 may contain vital information missed by the jj. For example, when stock
 market becomes volatile in certain periods, it is expected that stock prices
 would rise or decline sharply and hence presence of bimodal conditional dis
 tribution is observed (Wong and Li, 2000). The volatility is described by
 presence of conditional heteroscedastic errors (Engle, 1982) and hence study
 of autocorrelation of squared series is required, unlike linear ARIMA models.
 Main limitation of ARIMA methodology is that these yield "Linear" models.
 Fortunately, during last two decades or so, a number of "Nonlinear" time
 series models have been developed. Many such models can be shown to have

 marginal and conditional distributions to be multimodal due to presence of
 ARCH errors. The zeroth-order self-exciting threshold autoregressive model
 (Tong, 1995) with all lag 1 coefficients being zero, has been shown to have
 a mixture of Gaussian distribution marginally and hence may exhibit mul
 timodality. Jalali and Pemberton (1995) extended the class of zeroth-order
 threshold autoregressive models to a much richer class of mixture models.
 Amongst their many properties, we observe that their autocovariance struc
 ture has the same form as that of linear ARMA models although we only
 get a subset of possible autocovariance functions from such models.

 In this paper, an attempt has been made to study the performance of
 mixture time-series models, viz. GMTD, MAR and M AR- ARCH models. As
 an illustration, these models have been applied to weekly onion price data
 during April, 1998 to March, 2002. Tests for presence of unit root have been
 made before fitting trend followed by seasonal adjustment through correlo
 gram analysis. The detrended and deseasonalised series have shown presence
 of volatility due to the fact that chance of a sharp increase or decrease at
 some points is higher than that of a moderate change at some other point.
 This fact is explained through within and out-of-sample predictive density
 which shows multimodality of predictive distribution and nonconstancy of
 volatility functions. Also Naive-LM test, when the conditional mean is un
 specified, is applied for testing presence of ARCH leading to volatility in
 data set. The best models from each of GMTD, MAR, and MAR-ARCH
 families are selected on the basis of BIC criterion. Subsequently, for selected

 models, formulae for carrying out out-of-sample forecasting up to three-steps
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 Mixture nonlinear time-series modelling 113

 ahead have been obtained theoretically, perhaps for the first time, by recur
 sive use of conditional expectation and conditional variance. In respect of
 out-of-sample data, the results derived enable us to compute best predictor,
 prediction error variance, and predictive density for the data. Forecast in
 tervals are computed and it may be noticed that these depend on changing
 conditional variance. Through simulation, up to three-step ahead predic
 tive densities based on estimated conditional expectation and conditional
 variance have been computed for these models. This, in turn, explains ap
 propriateness of mixture modelling for data depicting varying behaviour of
 densities at future time-epochs. Finally, it is concluded that, for data under
 consideration, a two-component MAR-ARCH provides best description of
 the data for modelling as well as forecasting purposes.

 2 Some Preliminaries

 In this section, we discuss briefly three mixture nonlinear time-series
 models as well their estimation procedures.

 2.1. Mixture nonlinear times-series models. The GMTD model, given
 by Le et al. (1996), is defined as

 p v

 F(yt\yt~1) = aoHivt - Yl <t>*jyt-j)/?o} + ? a^{(y* - <t>iyt-i)/?i} (2.1)
 ?=1 ?=i

 where $(.) is c.d.f. of standard Gaussian var?ate. This model can accom
 modate the situation where series is reasonably well approximated by an
 AR model and has occasional bursts and outliers. In this case, main AR
 component of series would be captured by first term of (2.1), and additional
 components, such as outliers and bursts, would be captured by other terms.
 For instance, occasional outliers may be captured by a term in the model
 with a large variance, a2, and a small a?, and bursts can be accommodated
 with a large a?. Flat stretches can be captured with a very small variance.

 The ?T-component MAR model, denoted as MAR (K;pi,p2,... ,px), is
 (Wong and Li, 2000):

 K

 F(yt\yl~l) = Y^akH(vt - 4>ko - fam-i-4>kpkvt-Pk)/<Tk}.
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 Its conditional distribution can be multimodal. The conditional expectation
 of yt is

 K K

 ^(ytly*-1) = ^2^k{<?ko + (?kiyt-i + - - + hpkyt-pk) = Eafc/i^ (2.2)
 A;=l k=l

 where
 Pkt = (?ko + 4>k\yt-i + - + 4>kPkyt-pk, 1,2,..., K.

 The conditional variance of yt, which is dependent on conditional means of
 components, is given by

 K K / K \2
 Vastly'-1) = Y<<*k4 + ?<*fc/4,t - Ylak^t - (2.3) k=\ fe=l \A:=1 /

 Since ]Cfc=ia^/ifc? ? {^2k=iakljLkit) is non-negative, conditional variance
 will be large when /ifc/s differ greatly and smallest conditional variance

 is J2k=i akal- Fourth order moment of {Yt} is greater than three unless
 v\ - 02 = = ?K and ?iit = /?2,t = = HKj- This is certainly a
 desirable property in modelling of economic time-series as empirical distri
 bution of economic data usually exhibits a thicker tail than that of a Gaus
 sian distribution. Although MAR models are able to capture conditional
 heteroscedasticity (Engle, 1982), recently another family which explicitly in
 volves presence of ARCH errors in individuals mixtures, called MAR-ARCH
 models, has been introduced by Wong and Li (2001). The model, denoted
 as MAR-ARCH (K;pi,p2,... ,px; <?i, <?2, , Qk), is defined by

 K

 F (^|y?_1) = E a*$ [eM(M~V2] (2-4) k=l

 where

 e*,t = Vt - (?>m - <t>kiVt-i-<t>kpkyt-pk, hk,t

 = ?ko + ?kiel,t-i + -- + ?kPkel,t-qk

 Here ct\ + - - + ocr = 1, a* > 0(k = 1,2,..., K). To avoid possibility of
 zero or negative conditional variance, following condition of ?^s must be
 imposed:

 ?k0>0,k = l,2,...,K; ?ki>0, i = l,2,...,qk, k = l,2,...,K.
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 Mixture nonlinear time-series modelling 115

 Shape of conditional distribution of series changes over time as conditional
 means and variances of components, which depend on past values of time
 series in different ways, differ. Conditional variance of yt is given by

 K K / K \ 2

 Var (yt|yi_1) = Yla^t + Ylak^h ~ ( ^2ak?k,t J k=l k=l \k=l J
 The first term allows modelling of dependence of conditional variance on past
 'errors', while second and third terms model change of conditional variance
 due to difference in conditional means in the components.

 Before applying GMTD, MAR and MAR-ARCH families to data, it has
 to be ensured that stationarity conditions given respectively in Le et al.
 (1996), Wong and Li (2000), and Wong and Li (2001) are satisfied.

 2.2. Estimation of parameters. The EM algorithm, which is most read
 ily available procedure for estimating mixture models, is employed for esti
 mation of parameters. Suppose that observation Y ? (y\,... ,yn) is gener
 ated from MAR-ARCH model (2.4). Let Z = (Z\,...,Zn) be unobserved
 random variable, where Zt is a if-dimensional vector with component k
 equal to one, if yt comes from kth component of conditional distribution
 function, and zero otherwise. Denote kth component of Zt as Zk,t- Let a =
 (oLi,a2,...,aK), 0k = (4>k^AkU'"Akpk)' ?k = (?kQi?kii--->?kqky, k =
 1,2,..., K and 0 = (a1,0[, ?[,..., 0'K, ?'K)' where / denotes transpose of a
 vector or a matrix. Further, let p = m&x(pi,p2,... ,Pk), Q ? max(gi, q2,...,
 qx)- The (conditional) log-likelihood is given by

 n

 n ( K K K \

 t=p+q+l Kk=l k=l k=l J
 (2.5)

 where N = n?p ? q. First order derivatives of log-likelihood with respect to
 6 were derived by Wong and Li (2001). Iterative EM procedure estimates
 parameters by maximizing log-likelihood function (2.5). It comprises an
 E-step and an M-step described as follows:

 E-Step. Suppose that 0 is known. The missing data Z are replaced by
 their conditional expectation, conditional on the parameters and on observed
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 116 H. Ghosh, M.A. Iquebal and Prajneshu

 data Y. In this case, conditional expectation of kth component of Zt is
 just conditional probability that observation Y% comes from fcth component
 of mixture distribution, conditional on 0 and Y. Let rk? be conditional
 expectation of Zk t. Then E-step equations are:

 Tk,t = afe(M~1/:VK((M~1/2]
 K

 ^^(hi^MeiAh^)-1/2}
 li=i

 where ip is the p.d.f. of a standard normal variate.

 M-Step. Suppose missing data are known. The estimates of parameters
 0 can be obtained by maximizing log likelihood /. This can be done on
 replacing Zk,t by rk)t in first order derivatives of log-likelihood (2.5). The
 parameter estimates of a are

 ? = l/(n-p-g) Yl rk?',k = \,.
 t=p+q+l

 ,K.

 Newton-Raphson method is used for parameter estimates of 0ks and jS^'s.

 Starting with initial values 0? ' and ?\ '. values of 0k and ?k in subsequent
 iterations are given by

 +1) = '?0 +  de? 0(0^(0
 and

 ?t1] = ?f +  d?l
 \ dl

 fl(i+i)/3(0j d?k

 fl(0y3(?)

 ^(i+O^Cf)

 (2.6)

 (2.7)

 The above particular M-step is obtained by iterating (2.6) and (2.7) until
 convergence is achieved. Final estimates of parameter vector 0 are obtained
 by iterating E-steps and M-steps until convergence is achieved. The standard
 errors of parameter estimates can be computed by Missing information prin
 ciple (Louis, 1982). The observed information matrix, /, can be computed
 from complete information matrix, Ic, and missing information matrix, Jm,
 with the relation:

 d2l
 I = Ic-Im = E{-N?  0,Y  VarlN dl_

 80 0,Y

 The formulae for computing Ic and Im are given in Wong (1998). The
 dispersion matrix of estimates 0 is given by inverse of observed information
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 Mixture nonlinear time-series modelling 117

 matrix, i". It should be noted that EM estimation procedure may also be
 employed in a similar manner for estimating parameters for GMTD and
 MAR models. Since there is no software package available for execution of
 EM algorithm and for estimating information matrices, relevant computer
 programs are developed in MATLAB, Ver. 5.3 and can be obtained from
 first author on request.

 3 An Illustration

 The above methodology is applied to weekly wholesale onion price data
 of Nasik variety at Azadpur Mandi, New Delhi, India during the period
 from first week of April, 1998 to first week of November, 2001 comprising
 172 observations. Weekly onion price showed marked volatility by touching
 value of Rs.4000 per quintal in October, 1998. It remained stable in range
 of Rs.450 to Rs.700 depicting flat stretches with occasional bursts of large
 amplitude to tune of Rs.850 to Rs.900 during October, 1999. In subsequent
 year, price remained on an average of Rs.350 in first half whereas it remained

 above Rs. 500 for second half exhibiting another phase of flat stretches.

 3.1. Modelling trend and seasonal fluctuations. A formal test procedure
 for testing presence of stochastic trend in case of an integrated process,
 proposed by Dickey and Fuller (1979), is based on the model

 yt = fi + ?t + pyt-i + e*t, (3.1)
 where e\ is a stationary process with mean zero and variance a2. The null
 hypothesis fio : p = 1 in (3.1) is tested based on statistic analogous to
 regression statistic fT and is given by ?1.84, which is not significant at 5%
 level. Substituting p = 1 in (3.1), model to be considered reduces to

 Regressing Ai yt on linear trend, least square estimates of p and ? are
 computed as 6.06 and ?0.04 respectively. Then estimated model is

 Ai yt = 6.06 -0.04? + et*. (3.2)
 It may be noted that trend coefficient in above equation involving growth
 rate, viz. ? is negative. Negative value of ?, in turn, ensures that deter
 ministic part of Ai yt series is capable of taking both positive as well as
 negative values. This implies that the original series yt may increase or de
 crease according as above deterministic part is positive or negative. This,
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 as is desirable, is in consonance with onion price data which exhibits similar
 pattern (Fig. 1).

 We now consider Estimated autocorrelation function (EACF) of residual
 time-series {??} and compare it with that of ARMA-type models for sea
 sonal time-series. Here we considered correlation around 5,2s,..., where s
 denotes number of "Seasons per year". As we are considering weekly data,
 "Season" represents "Week". Further, duration of onion crop is 3 months
 and so "Year" represents "3 Months". Since there would be 3 x 4, i.e. 12
 observations per onion crop, therefore, in present illustration, s ? 12. The
 four relevant EACF's, viz. e\, Aie?, (Aie?)c (when Ai e? is corrected on
 12 dummy variables corresponding to 12 seasons) and AiA^?* for iden
 tifying appropriate seasonal models have been computed. The significant
 EACF values o? i\\l\\2e\ at lags 1,11,12 and 13 suggest parsimonious model
 structures, known as 'Box-Jenkins airline model', given by

 Ai A*e* = (1 + QXL)(\ + esLs)et, t = s + 2, s + 3,.. :. (3.3)

 Estimated parameters 9\ and 62 are computed as ?0.17 and 0.15 respectively
 using SAS, version 8.1. The tests for presence of nonseasonal and seasonal
 stochastic trends and appropriateness of double filter AiAs described above
 has also been performed using OSCB auxiliary regression, proposed by Os
 born et al. (1988) which confirms that presence of seasonal and nonseasonal
 unit root cannot be rejected.

 3.2. Testing for ARCH. One method of testing for presence of ARCH
 in estimated residual series {et} in (3.3) is based on the statistic TR2, where

 T is total number of observations and R2 is multiple correlation coefficient
 between squared residual, f?2 (fjt obtained after fitting et on its conditional
 mean p?) and p of its lags. Assuming that conditional mean is correctly
 specified, Engle (1982) showed that TR? is asymptotically equivalent to an
 LM test and is distributed asymptotically as a x2(p) random variable under
 fio. For present data, TR? and LM values are computed as 14.87 and 26.47
 respectively, which are significant at 5% level. Lumsdaine and Ng (1999)
 suggested 'naive' approach of approximating unknown conditional mean by
 computing 'recursive residuals' wt, which contain true conditional mean not
 captured by usual regression function. The final model to be estimated is

 et = Z'a + g(wt-i) + vt (3.4)
 where Tit is vector of lagged values of ??, 7 is vector of regression coefficients,
 g(wt-i) is a (possibly nonlinear) function of the recursive residuals Wt-i and
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 vt is the error term. The quantity, v2, is used for testing ARCH effect by
 TR2 and LM statistics and the values obtained, using (3.4), are 7.40 and
 20.01 which are significant at 5% level.

 3.3. Fitting of models. We consider two-component and three-compo
 nent GMTD models for detrended and deseasonalised weekly onion price
 series. The order selection criterion followed here is BIC as, unlike other
 criteria, viz. Akaike information criterion and Final prediction error, it leads
 to a consistent order selection (Fan and Yao, 2003). The best GMTD model
 defined by (2.1) is found to be

 F(?t\?t-i) = 0.11${(s?+0.28eVi-0.29??_2)/0.54}
 + 0.58$ {(?t-0.61?t-i)/0M} + 0.31$ {(?t-0.U?t-2)/3.U}.

 (3.5)

 with BIC value as 386.72. The standard errors for (?o,?n, ?2,?q,?i,?2, (foi,
 ?02,01,^2) are (0.09, 1.28, 2.1, 1.24, 2.05, 0.95, 2.56, 1.65, 0.98, 2.45) re
 spectively. It is observed that occasional outliers in time-period July, 1998
 and August, 1998, October, 1999 and November, 2001 is captured by large
 a\ with small a2 and bursts can be accommodated with a larger ai during
 October, 1998. The mixture containing AR part captures flat stretches by
 small variance <5q. Also it represents pure replacement type outlier since
 coefficients are opposite in sign but same in magnitude during period of flat
 stretches. The three-component GMTD model has been found to be inferior
 as its BIC value is computed as 474.11. As ?o is close to zero, it is found that
 best GMTD(2) model satisfies first and second order stationarity conditions.

 In case of MAR model also, we consider two and three component models
 for detrended and deseasonalised weekly onion price series. The best two
 component MAR model, defined by (2.2) with <f>ko = 0, k = 1,2 is found to
 be MAR (2; 2, 1) having a BIC value of 521.63. The model is given by

 F(?t\?t-i) = 0.27$ {(?t - 0.434 ?t-i-0.38ft_2)/6.34}

 + 0.73$ {(et + 0.27 sVi)/0.24} .

 Standard errors for (0:1,0:2,?\,?2,^11,^12^21) are (0.05, 0.20, 1.71, 0.04,
 0.20, 0.16, 0.04) respectively. The best three-component MAR model is a
 MAR (3; 2, 2, 1) with ^0 = 0, k = 1,2,3 and the model is given by

 F(et\?t-i) = 0.33$ {(?t - 0.56 ?t-x - 0.36 ft-2)/2.08}
 + 0.64$ {(?t + 0.26 ?t-i + 0.13 ?t-2)/0.19}
 + 0.03$ {(?t + 5.72et-i)/9.44} . (3.6)
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 Figure 1: Fitted MAR-ARCH (2; 0, 1; 1, 1) model along with data points
 and error series

 with BIC value as 383.84, which is less than that for the best GMTD
 model (386.72). The standard errors for (?i,?2,as,?i,a2,?^,^ii,4>i2,4>2i,
 ?22, <fei) are (0.06, 0.06, 0.11, 0.47, 0.04, 9.44, 0.11, 0.09, 0.03, 0.05, 1.63)
 respectively. Here, third component is non-stationary AR process, but fitted

 MAR (3; 2, 2,1) model satisfies first and second order stationarity conditions.

 We now consider fitting of two-component and three-component MAR
 ARCH models. The best two-component MAR-ARCH model, defined by
 (2.4) with <?>k0 = 0, k = 1,2 is found to be MAR-ARCH (2; 0, 1; 1, 1) having
 BIC value of 307.98. The model is given by

 F(?t\?t-i) = 0.75$ {{^t/y/h^} + 0.25$ {(4,t/V^} (3-7)

 where e'lt = ft,/ii,t = 0.14 + 0.38e! ?..^e^t = h + 0.84e?_i and h2? ?
 1.61 + 1.54e2t_i- The standard errors for (ai,a2,(/)2i,?io,?ii,?2o,?2i), are
 (0.08, 0.03, 0.29, 0.04, 0.16, 0.61, 0.83) respectively. It is observed that
 occasional outliers in time-period July, 1998 and August, 1998, October 1999
 and November, 2001 are captured by large h2? with small a2 and bursts can
 be accommodated with a larger ?\ during October, 1998. Flat stretches
 during April, 1999 to June, 1999 are captured by low value of Var(yt\yl~l)>
 The best three-component model is a MAR-ARCH (3; 1, 1, 0; 2, 0, 1) with
 <l>ko = 0, fc = 1,2,3 having BIC value of 442.05. The parameter estimates and
 standard errors of (?i,?2,?3,^n,^2i,?io,?n,?n,?2o,$30,?si), are (0.44,
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 Figure 2: Volatility from fitted MAR-ARCH (2; 0, 1; 1, 1) model in season
 ally adjusted onion price series

 0.48, 0.09, 0.41, -0.27, 0.13, 0.37, 1.35, 0.19, 5.54, 0.42) and (0.11, 0.13,
 0.20, 0.21, 0.04, 0.09, 0.26, 0.91, 0.05, 3.56, 1.13) respectively. It is noticed
 that best MAR-ARCH (2; 0, 1; 1, 1) model satisfies first and second order
 stationarity conditions. The fitted MAR-ARCH (2; 0, 1; 1, 1) model along
 with data points and residuals is depicted in Figure 1.

 Further, one-step and two-step ahead predictive distributions from fitted
 three models are computed. It is observed that predictive densities exhibit
 unimodaiity or bimodality according as volatility (conditional variance) is
 low or high. This implies that future values have small or large probabili
 ties of taking extreme values according as conditional variances are low or
 high. To save space, volatility function for fitted MAR-ARCH model only is
 depicted in Figure 2.

 4 Best Multistep Ahead Predictors

 It has been shown above that onion price data shows seasonal fluctuations
 with stochastic trend. Accordingly, /i-step ahead forecast, yx+h ls given by

 VT+h = TT+h + eT+h + eT+h\T.  (4.1)

 where Tr+hi ?T+h and ?x+h\T indicate respectively /i-step ahead forecasts of
 trend value, seasonal value and residual series. Using (3.2) and (3.3):

 TT+h = VT+h-x + 6.06 - 0.04(T + h)  (4.2)
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 and

 eT+h = eT+h-l + eT+/i-12 ~ eT+/i-13 + #l?T+/i-l

 + 0l2?r+h-l2 - 01#12?T+/i-137 (4.3)

 /va ~*

 where 6\ = ?0.17, #12 = 0.15, T = 172. In order to compute ?r+/l as a

 function of ?T+h_j, forecast values of yT+h-j are Tt+h-j are used. The
 expression for ?r+/i|T can be obtained for fitted MAR, GMTD, and MAR
 ARCH models by using (3.6), (3.5), and (3.7) respectively. It may be noted
 that detrended-deseasonalized onion price series {et} exhibits presence of
 ARCH effects. Recursive conditional expectation is employed for obtaining
 best predictor, prediction error variance, and /i-step ahead predictive density
 as discussed below. In our future discussion, we confine ourselves to com
 puting only up to three-step ahead forecasts. However, the same procedure
 can easily be followed to obtain more than three-step ahead forecasts. But,
 from practical point of view, such forecasts are generally not very reliable
 due to large mean square prediction error.

 We now derive best predictors for mixture nonlinear time-series models.
 To this end, first consider MAR model. Introduce an additional parame
 ter </>32 in this model which would enable us to obtain, as particular cases,
 relevant results for both MAR and GMTD models. One-step ahead best
 predictor of error series is ?t+i|t> where

 ?r+i|T = #[?t+i|?t,?t-i,-.-]- (4.4)

 Using (2.2), we get

 ey+iir =oli ((?ner + (?>i2?t-i) + 0:2 (</>2i?r + ?fea?r-i)

 + a3(03i?T + 032?T-l) (4-5)

 Further, two-step ahead best predictor of error series, ?r+2|T+i? is giyen by

 ?r+2|r = E [E {eT+2|?r+i> ?r, } l^r, ?r-i, ]

 This, on using (4.4) and simplifying, yields

 ?t+2\t = (ai^ii + a2 021 + a3 $31) eT+i|T
 + (?1012 + OI2022 + a3 </>32) er- (4.6)
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 Proceeding along similar lines, three-step best predictor of error series can
 easily be seen to be

 ?t+3|T = (?1011 + Oi2 021 + C*3 03i) ?T+2|T

 + (?1012 + ol2 022 + a3 032) ?T+1|T. (4.7)

 Forecasts for best MAR (3; 2, 2, 1) and GMTD(2) models can be obtained
 from (4.5)-(4.7) on putting 032 = 0 and 022 = 03i = 0 respectively.

 For best fitted MAR-ARCH model, viz. MAR-ARCH (2; 0, 1; 1, 1), the
 first three-steps ahead best predictors of error series are:

 ?T+i\T = E[?T+\\?T,?T-u..] = ?202i?T, (4.8)
 ?t+2|t = E [er+2|?r? ?r-i, ] = ?202i?t+i|t (4.9)

 and ?T+3|T = E[?t+3|?t,?t-i, ] = ?202i?T+2|T- (4.10)

 5 Evaluation of Forecasting Performance

 We now study forecasting performance of above fitted mixture nonlinear
 time-series models for hold-out weekly onion price data from second week of
 November, 2001 to fourth week of March, 2002 comprising nineteen obser
 vations. To this end, one-step and two-step forecasts for various models are
 first computed using (4.1), (4.2), (4.3), (4.5), (4.6), (4.8) and (4.9). Then,
 two statistics, viz. Root mean square errors and Mean absolute errors are
 evaluated and the same are reported in Table 1. A perusal indicates that,
 for hold-out data, performance of M AR-ARCH model is best, followed by
 MAR, and then followed by GMTD models in respect of one-step as well
 as two-step ahead forecasting. In other words, capability of MAR-ARCH
 model to describe and forecast onion price data is clearly demonstrated.

 Table 1. Forecasting performance for hold-out weekly
 onion price data from second week of november, 2001

 to fourth week of march, 2002 (rs. per quintal).

 Root mean square errors of various models
 Number of steps GMTD MAR MAR-ARCH

 One- 116.17 113.47 97.65
 step (81.95) (77.40) (66.91)
 Two- 148.76 143.71 123.23
 step_(111.62) (106.36)_(90.48)_

 Note: Figures with brackets ( ) indicate corresponding mean absolute errors of forecasts.
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 We shall now confine our attention to studying two aspects concerning
 out-of-sample forecasting, viz. variances of forecast errors, and predictive
 density. This would enable us to forecast a few steps ahead unobserved data
 points.

 5.1. Variances of forecast errors. It may be mentioned that, unlike
 well-known Box-Jenkins Autoregressive integrated moving average method
 ology, variances of forecast errors for mixture nonlinear time-series models
 depend on information up to present time-epochs. For MAR model with an

 additional parameter 032, one-step ahead forecast error variance, o\+\, is
 given by

 <4+i = V [?r+i|?r, *t-i, ]

 This, on using (2.3), can be written as

 - (?l/il,T+l + ?!2/l2,r+l + ?3/^3,T+l) (5.1)
 ?T+l =?1^1 + a'2<72 + Oi3<72 + ai/i? T+1 + ?2/4t+1 + a3A*3,T+l

 where

 Wk,T+i = 0fci?T+?-i + 0fc2?r+?-2, k = 1,2,3; ? = 1,2,.

 Now, two-step ahead forecast error variance, o\+2, is given by

 aT+2 = V [?T^T, St-U ]

 which can be expressed as

 ?\+2 =v [F {?r+2|?r+i,er, . ,} \?r,?r-i, ]
 + E[V {er+2|?r+i??r, ,} \?r, ?r-i, ]

 Using (2.2) and (2.3), we get

 / 3 \ 2 3
 GT+2 = 1 Yl ^kl 1 ?T+l + XI ak(7k \k=l ) k=l

 3

 + ^2 akF [(0jbi ?r+i + 0fc2^T)2 |er, ?t-i, -J ' i

 \ ( 2Zafc^1 ) ?^+i+ ? Ylafc^2 )?? f  ?t,?t-i,
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 Expressing conditional expectation of e|i+1 in terms of conditional expecta
 tion and variance of e^+i, a straightforward algebra yields

 aT+2 = (?1011 + ?2021 + ?303l) <*\+\

 + ol\<j\ + a2a2 + 0:3(73

 + { (?1011+?2021+?3031 ) - (?1011+?2021+?303l)2|?r+l|T
 + 2 {(?1011012 + ?2021022 + ?3031032)

 - (?1011+?2021 + ?3031 ) (?1012 + ?2022 + ?3032)} ?T+1|T ?T

 + { (?1012+?2022+?3032) ~ (?1012+?2022+?3032)2j ?T' (5*2)

 Expression for three-step prediction error variance o^-f 3 is more involved
 due to the presence of conditional covariance between er+i and eT+2- This
 has been taken care of by systematic conditioning principle. After lengthy
 algebra, the following final expression is obtained:

 3 3

 aT+3=^2ak^k + ^2oik
 ?fe=i *=i  01b 1 [aT+2 + ?t+2\TJ

 + 0fc2 (aT+l + ?T+l|T)

 + 20ibl0jb2 \ I Yl a^k^ ) \aT+l + ?T+l|r)

 + ( 51 ak$k2 1 ?t+i\t er >

 - ? Y, ak<t>kl ) ?T+2\T ~ ( S tt*^*2 j 4+l|T

 ~~ 2 ( 5Za^0^i ) ( Xja*0*2 ) ?r+i|r ?r+2|r- (5-3) ^/f=l / \fc=l

 Prediction error variances for best MAR (3; 2, 2, 1) and GMTD(2) models
 can be obtained from (5.1), (5.2), and (5.3) on putting 032 = 0 and 022 =
 031 = 0 respectively.
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 For best fitted MAR-ARCH model, viz. MAR-ARCH (2; 0, 1; 1, 1), the
 first three steps ahead forecast error variances are:

 ^r+i = ?i (?io+?nir) +a2 {/320+#2i (?r-^i?r-i)2} +<*2(l-a2)02i?r
 ?t+2 = ?i^ii^r+i + ai \?io + ?n (ctt+i + <4+1|TJ }

 + a2 [?M+J?21 { (<4+1+4+1|t) +<l>2l?T-2<t>2l?T+l\T ?t}]

 + <*2<t>2l i1 - ?2) (<4+1 + 4+l|r)
 cr|,+3 = Gt\<t>2\OT+2 + al |/3l0 + loll \Ot+2 + ?T+2\T) }

 + <*2 [?iO+?u |(^T+2+4+2|t) +021 (?f+l + ^T+1\t)
 0 0 II 0/ \ i O O 1

 -2a202i?T+i|T|j + ?2021 i1 - ?2) ^r+2 + ?r+2|rj

 For out-of-sample forecasting of weekly onion price data, parameters of all
 the three mixture nonlinear time-series models are taken as fixed. Computed
 values of best predictor and prediction error variance for 2nd, 3rd and 4th
 weeks of November, 2001 based on GMTD, MAR and MAR-ARCH models
 along with actual values are reported in Table 2. A perusal indicates that,
 in case of interval forecasts, for both MAR and MAR-ARCH models, all the
 forecast values lie within one standard error of forecasts. However, forecast
 values for MAR-ARCH model are much closer to true values than those
 for MAR model. Further, performance of GMTD model in out-of-sample
 forecasting is found to be inferior to other two models.

 Table 2. Out-of sample forecasting of weekly onion price data
 (Rs. per quintal)

 Week/Month/Year Actual

 Value
 Forecast value by

 GMTD MAR MAR-ARCH

 2nd/November/2001 1050

 3rd/November/2001 1180

 4th/November/2001 825

 1137.69
 (55.90)

 1052.09
 (87.14)

 1193.33
 (98.35)

 1039.80
 (120.21)

 1117.93
 (125.70)

 905.19
 (103.59)

 1051.71
 (108.27)

 1147.78
 (115.30)

 870.01
 94.82)

 Note: Figures with brackets ( ) indicate corresponding standard errors of forecasts.
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 5.2. Predictive density. Here, predictive density for the three mixture
 nonlinear time-series models, viz. GMTD, MAR, and, MAR-ARCH are
 studied. This gives a much more comprehensive description of the underly
 ing phenomenon as compared to mean and variance of future observations
 discussed earlier. However, to save space, we give below details only about
 MAR-ARCH model.

 One-step ahead predictive density of ?r+i given ?t, ?t-i? is a mixture
 of two Gaussian distributions with mixture coefficients 0.75 and 0.25. Means

 and variances of individual components are (0, 0io +0ii?x) and (02i?T, 020 +
 Ai(er ? 02i?T-i)2) respectively. Further, to study two-step ahead predictive
 density of ?r+2 given ?7^?t-i, , we follow the naive approach given in

 Wong and Li (2001) for computing within sample predictive density. Since
 means and variances of mixture components are functions of unobserved
 ?t+i> these are estimated by their conditional expectations given ex> ?r-i>
 Finally, means and variances of individual components are obtained as:

 (o, fro + 0n (<4+i + ?r+i|r))
 and

 (02l?T+l|T,#2O + Ai |(?t+i + ?t+i|t) + ^21^T ~ 202i?T?r+i|r })
 Proceeding along similar lines, means and variances of individual compo
 nents of three-step ahead predictive density of ??t+3 given er, er-it , are

 (0, 010 + 011 (<4+2 + 4+2|t))
 and

 (021&T+2IT, ?20 + 021 { (<4+2 + ?T+2|t) + ^21 (aT+l + ^T+1|t) ?1 ~" 2a<*) }) "
 Predictive densities are computed through simulation based on 200 realiza
 tions and using standard uniform and standard normal vari?tes for selecting

 mixture and drawing actual observations from corresponding mixture distri
 bution and the same are exhibited in Figs. 3(a)-3(c). A perusal indicates
 presence of high volatility at future time-epoches 173 and 174 leading to
 bimodality in one- and two-step ahead predictive densities. High volatility
 at these time-epoches is also reflected by large one and two-step ahead pre
 diction error variances given in last column of Table 2. Further, from Fig.
 3(c), volatility for three-step ahead predictive density is not very prominent
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 y?ii ym ym yns ym ym yns ym ym

 (a) (b) (c)

 Figure 3: One, two and three-step ahead predictive densities at time-epoch
 172

 as it is unimodal, which is also reflected by a corresponding smaller value of
 prediction error variance, as mentioned in last column of Table 2.

 To sum up, two-component MAR-ARCH model is found to be best for
 modelling and forecasting of weekly wholesale onion price data.

 6 Conclusion

 In this paper, we consider mixture nonlinear time-series models for ana
 lyzing onion price data. Generally, in studying price phenomenon over time,
 it is required to standardize prices prevailing during various time-epochs
 with respect to some standard price index. However, in present instance,
 discussions with subject matter specialists suggested that there was no need
 to do this. The models studied in this paper are of particular importance in
 those situations in which the data depicts sudden bursts, flat stretches and
 outliers. Work is in progress to investigate some other possible extensions of
 ARCH modelling, like GARCH, EGARCH and TARCH, in the framework of
 mixture distribution and shall be reported separately in due course of time.

 Acknowledgement. Authors are grateful to the referee for valuable com
 ments.
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