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Abstract : The present study deals with study of inheritance of mastitis disease in Sahiwal breed of cows. As suggested by

Kleinman (1973) two moment estimators $ρKEQ and $ρKEQ

*  are used for the estimation of the heritability of mastitis disease from live

data through calculation of intra-class correlation coefficient. Bootstrap technique is used for estimation of standard error of

heritability as direct formula for the same is not available in literature. The findings are then compared with the results of

analysis of variance (ANOVA) method. The method based on ANOVA estimator showed better performance as compared to

the moment estimators $ρKEQ and $ρKEQ

*  for the estimation of heritability of mastitis disease.
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1. Introduction

Mastitis or inflammation of the mammary gland, is

the most common and most expensive disease of dairy

cattle throughout most of the world. There are many

characters of economic importance in animal and plant

breeding, which are polygenic in inheritance, but their

phenotypic expressions show discontinuities. The

characters are expressed in 'all or none' fashion.

Although, lacking a continuous distribution, such

characters are known to be multifactorial in their

inheritance. The relationship between polygenes and

the expression of such characters comes about through

the establishment of 'thresholds'. Thus, there are two

separate scales for the description of the phenotypic

values. The underlying polygenic distribution, which is

continuous and the visible phenotypic distribution, which

is discontinuous and the two scales are connected by

the 'threshold' a point of discontinuity. Heritabilities of

these important traits are thus to be obtained by

technique other than classical methods employed for

continuous trait.

Dempster and Lerner (1950) and Bhatia et al.

(1992) developed an algorithm for calculating the

heritability of such binary traits and further Gianola

(1979) generalized it. Van Vleck (1980) used the

algorithm in a simulation study of sib and parent

offspring analysis of binary trait. Magnusen and Kremer

(1995) considered the beta-binomial model for

estimating heritability of binary trait in plant breeding

using the concept of selection response and realized

heritability. Ridout et al. (1999) reviewed different

estimators of intraclass correlation for binary data and

compared them in an extensive simulation study. Carlén

et al. (2004) estimated heritability of clinical mastitis in

Holstein cows as 0.035 using the method of AI-REML.

A simulation study for Genetic evaluation of mastitis in

dairy cattle using linear models, threshold models and

survival analysis was done by Carlén et al. (2006).

Vazquez et al. (2009) reported the heritability estimates

for US Holstein as 0.061 for mastitis measured as a

binary trait in the probit model and 0.085 for the number

of mastitis cases in the ordinal threshold model.

Gernand et al. (2012) applied threshold methodology

for binary distributed health disorders including mastitis

and found their genetic parameters. Behera et al. (2010)

estimated heritability of mastitis disease using ANOVA

method through intraclass correlation. Here, in the

present investigation live data is used for estimation of

heritability of mastitis disease in case of Sahiwal breed

of cows through estimation of intraclass correlation

coefficient. The intraclass correlation coefficient
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provides a quantitative measure of similarity between

individuals within groups.

2. Materials and Methods

The data for present study has been taken from

breeding records of Sahiwal cattle from the Breeding

Farm, N.D.R.I., Karnal in 2007-2008. The data is having

86 sires, 1422 progenies and number of progenies

affected by mastitis in terms of 0 and 1. Here, 0 indicates

resistance to the disease and 1 indicates the appearance

of disease. Out of 1422 progenies 474 are affected by

mastitis. The methods used for estimation of heritability

of mastitis disease are described below.

Moment Estimators

Let us suppose that there are k groups of

individuals. The ith group having n
i
 individuals with each

having a binary response X
ij
 (i = 1, …, k; j = 1, …, n

i
).

We refer to the two possible values of X
ij
 as success

and failure and coded them as one and zero, respectively.

Also, let Y
i
 = Σ

j
 X

ij
 denote the total number of success

in the ith group.

The probability of success is assumed to be the

same for all individual's group; specifically, Pr(X
ij
=1)=π

for all i, j. Furthermore, the responses of individuals

from different groups are assumed to be independent.

Within each group, the correlation between any pair of

responses (X
i j
, X

i l
) (j ≠ l) is ρ. In particular, the

correlation is assumed not to vary with group size.

Let, $π i i iY n=  denote the observed proportion of

successes in the ith group and define
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Where, the w
i
 are the weights summing to one. By

equating ~πw
 and S

w
 to their expected values under the

common-correlation model [Kleinman (1973)] derived

a class of estimators of the form
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He considered two specific estimators, one with

equal weights (w
i
 = 1/k) and label the estimator $ ,ρKEQ

which is given as

$
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Where, w
i
 = 1/k.

Kleinman (1973) also proposed slight variants of

the above stated estimator by replacing S
w
 by

S k S kw
*

w= − 1b g  and label the estimator $ ,ρKEQ
*

 which

is given as
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Where, w
i
 = 1/k.

Analysis of Variance (ANOVA) Estimator

Suppose a set of n
i
 dams selected at random and

mated with ith sire (i = 1, 2, …, k) giving rise to one

progeny each. Considering the random linear model

X
ij
 = µ  + s

i
 + e

ij

Where, X
ij
 is the observation on the progeny of jth

(j = 1, 2, …, n
i
) dam mated to the ith sire (i = 1,2,…,k),

µ  is the general mean, s
i
 is the effect of the ith sire and

e
i j
 is the uncontrolled environmental and genetic

deviations attributable to individuals within sire groups.

All effects are assumed random with

E s E e E si ij i sb g d i d i= = =0 2 2, σ  and E eij e
2 2d i = σ .

The analysis of variance based on this model is

shown in Table 1.

The estimator is given by

$ρ
λ

AOV
b w

b w

MS MS

MS MS
=

−

+ −1b g
Where, MS

b
 and MS

w
 are respectively, the

between-group and within-group mean squares from a

one-way analysis of variance of the binary data X
ij
 and

where
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For binary data, explicit formulas for MS
b
 and MS

w

are
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Fleiss (1981) used a modification of this estimator,

which is denoted by $ ,ρAOV
*  in which the divisor of MS

b

is k rather than (k-1). So,

$ρ
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Estimation of Heritability and its Standard Error

The half-sib heritability estimate is obtained by the

formula

$ $h
2 4= × ρ

Where, $ρ  is the estimated intra-class correlation

coefficient.

According to Falconer (1998), Standard Error for

half-sib heritability estimate can be obtained by the

formula

Standard Error = 32
2$h

T

Where, T = nN and n is average half sib family

size, N is the number of half-sib family. For Analysis of

Variance estimators, we have used the above formula

for estimation of standard error.

Bootstrap technique is used for estimation of

standard error of estimation of heritability by moment

estimators. The bootstrap is a computer based technique

for estimating the standard errors, biases, confidence

interval and other measures of statistical accuracy with

just a sample in hand. Here, the objective was to find

the standard error of the statistic, just based on the

sample values; in other words we are expected to study

the sampling distribution of the estimator. As our original

data itself is a sample, the regrouping can be statistically

termed as “resampling”. Here a type of resampling is

done in which, we are selecting a group of the same

size as that of the mother sample randomly from the

mother sample itself with replacement, then the resultant

group gave some information about the sample and in

turn about the population.

There are number of ways in which the bootstrap

samples can be obtained in order to get the bootstrap

estimates of the parameters, variance, standard error

and confidence intervals. The present sampling

procedure is based on the resampling from levels of

the sires family directly from the data. In case of half

sib family model the sires were resampled based on

the resampling directly from the master sample. The

bootstrap algorithm used can be described as follows:

1. Divide the whole data material into K classes

corresponding to the sire families. Let $F's stand for

multivariate empirical distribution, where each family

has mass 1/K.

2. Draw a random sample with replacement of K

classes from $F's.

3. Then select all the progenies in the sire family or

choose the progenies randomly with replacement from

the progenies in that family fixed size p.

4. Analyze the data according to the model under

study.

5. Estimate the parameters h2 as desired.

Go back to 2 and draw a fresh sample from the

data and the same procedure is repeated N times such

that we get N estimates of h2.

We shall discuss the one sample situation in which

a random sample of size n is observed from a completely

unspecified probability distribution F.

X
i
 = X

i
,  X

i
 ~ ind F,  i = 1, 2, …, n.

Where, F is a distribution on either the real line or

plane. Let, X = (X
1
, X

2
, …, X

n
) and X = (X

1
, X

2
, …, X

n
)

denote the random sample and its observed realization,

respectively.

The problem to be solved is that given a specified

random variable R(X, F) with possible dependence on
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both X and the unknown distribution F, to estimate the

sampling distribution of unknown parameter on the basis

of the observed data x.

Let θ (F) be some parameter of interest of F and

$θ  be an estimator of θ(F) based on the sample.
Bootstrap requires us to calculate the sample analogue

estimator $θ a large number of times (say N), each of

which is based on a sample of size 'n' obtained by either

sampling with replacement from the original n

observations or by generating samples from the

population inferred from the data sample.

Let us see Bootstrap procedure

1. Obtain an estimate $θ from the original sample

values (x
1
, ..., x

n
).

2. For i = 1, 2, …, N, obtain an estimate $ *θi
 from

the ith sample of size n obtained by sampling with

replacement from the original sample values x xn1 ,..., .d i
The expected value of $θ will be estimated by

$ . $*θ θb g b g= ∑
1

N
i

*

The bias correction is estimated by

$ $ $
.

*
Bθ θ θ= −b g

The sample standard deviation of the $
.

*θb g is then

$ $ $*

.

*
SD

N

* =
−

−
L
NM

O
QP∑

1

1

1 2

θ θ
ib g b ge j

3. Results and Discussion

The collected dataset was analyzed by SAS 9.3.

The analysis of variance estimator method provides the

value of $ρAOV
*  as 0.0061 and its corresponding value of

$h
2 is 0.0244 with estimated standard error equals to

0 . 0

35. By the method given by Fleiss (1981) the $ρAOV
*

value is found to be 0.0253 and the corresponding value

of $h2 is 0.0213 with its standard error equals to 0.034.

Nevertheless, bootstrap technique provides the

estimated standard error of $h2 for $ρAOV
*  as 0.0549 and

0.0545 for the sample sizes 500 and 1000, respectively.

Likewise, the bootstrap standard error of $h
2 for $ρAOV

*  is

obtained as 0.0537 and 0.0537 for sample size 500 and

1000, respectively. Following the methods given by

Kleinman (1973), $ρKEQ value was found to be 0.0143

and the corresponding $h
2 value is 0.0573. Also $ρKEQ

value is found to be 0.013 and corresponding $h2 value

is 0.0523. Again bootstrap technique provides the

estimated standard error of $h2 for $ρKEQ as 0.0251 and

0.0235 for the sample sizes 500 and 1000, respectively.

Likewise, the bootstrap standard error of $h2 for $ρKEQ

is obtained as 0.0283 and 0.0258 for sample size 500

and 1000, respectively. Thus, the above results affirmed

that the standard errors of heritability estimates in case

of $ρKEQ and $ρKEQ
*  estimators are slightly decreasing as

the sample size increased from 500 to 1000. Weller et

al. (1997) reported heritability estimates of mastitis

disease to be in the range from 0.02 to 0.04. The

heritability estimates obtained in case of $ρKEQ and $ρKEQ
*

Table 1 : Form of analysis of half-sib families.

S.V. d.f. S.S. M.S. E(M.S.)

Between sires k-1 SS
b

MS
b σ λσe s

2 2+

Within sires N-k SS
w

MS
w σe

2

Table 2 : ANOVA and Moment Estimators.

Estimators $ρρρρ  value $h
2  value Standard Error by

Sample Sample approximate formula

size=500 size=1000

ρ
AQV

0.0061 0.0244 0.0549 0.0545 0.0005

ρAOV
* 0.0053 0.0213 0.0537 0.0537 0.0004

ρ
KEQ

0.0143 0.0573 0.0251 0.0235 _

ρKEQ
* 0.0130 0.0523 0.0283 0.0258 _

Bootstrap Standard Error
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lies outside this range. Hence, it can be concluded that

method based on moment estimators $ρKEQ and $ρKEQ
*

are biased for heritability estimation of mastitis disease.

Since the direct formula of standard error for estimate

of heritability by moment estimators is not available,

the bootstrap technique is advantageously used. The

standard errors of ANOVA estimators estimated by

bootstrap technique are found larger as compared to

the $ρKEQ and $ρKEQ
*  estimators. From all the results

obtained, it can be concluded that ANOVA estimators

are better than moment estimators $ρKEQ and $ρKEQ
*  for

the estimation of heritability of mastitis disease.
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