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We propose a parametric nonlinear time-series model, namely the Autoregressive-Stochastic volatility
with threshold (AR-SVT) model with mean equation for forecasting level and volatility. Methodology for
estimation of parameters of this model is developed by first obtaining recursive Kalman filter time-update
equation and then employing the unrestricted quasi-maximum likelihood method. Furthermore, optimal
one-step and two-step-ahead out-of-sample forecasts formulae along with forecast error variances are
derived analytically by recursive use of conditional expectation and variance. As an illustration, volatile
all-India monthly spices export during the period January 2006 to January 2012 is considered. Entire
data analysis is carried out using EViews and matrix laboratory (MATLAB) software packages. The AR-
SVT model is fitted and interval forecasts for 10 hold-out data points are obtained. Superiority of this
model for describing and forecasting over other competing models for volatility, namely AR-Generalized
autoregressive conditional heteroscedastic, AR-Exponential GARCH, AR-Threshold GARCH, and AR-
Stochastic volatility models is shown for the data under consideration. Finally, for the AR-SVT model,
optimal out-of-sample forecasts along with forecasts of one-step-ahead variances are obtained.

Keywords: AR-SV model; AR-SVT model; asymmetric volatility; Kalman filter; optimal out-of-
sample forecasts; UQML method

1. Introduction

Linear Gaussian models [5] are not able to capture the realistic feature of changing condi-
tional variance due to heteroscedastic errors. To handle such a situation, the Autoregressive
conditional heteroscedastic (ARCH) nonlinear time-series model was introduced [8], in which
squared residual series is significantly autocorrelated. The zero conditional mean process {εt}
is said to follow ARCH(q), if conditional distribution of {εt} given available information
ψt−1 = {εs, s ≤ t − 1} is

εt|ψt−1 ∼ f (0, ht) ,

*Corresponding author. Email: hghosh@gmail.com

c© 2014 Taylor & Francis
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Journal of Applied Statistics 493

where f (·) is the probability density function of a zero-mean random variable and ht satisfies the
variance equation given by

ht = a0 +
q∑

i=1

aiε
2
t−i,

a0 > 0, ai ≥ 0 for all i and
∑q

i=1 ai < 1. Then, the process {xt} defined by

xt = ϕ0 + ϕ1xt−1 + · · · + ϕpxt−m + εt

is said to follow AR(m)-ARCH(q) model if the residual series {εt} is ARCH(q). In [9], this model
was applied to study volatility present in some onion prices data. The fitted model provided
a good description of underlying mechanism in terms of significant ARCH parameters due to
squared residual series and exogenous variable as well as changing forecast intervals for hold-out
data. The AR-ARCH model has also been used as basic ‘building blocks’ for Markov switching
and mixture models [14]. However, the ARCH model has the drawback that, when its order is
very large, estimation of a large number of parameters is required which reduces their efficiency.
Even if q is moderate, variance equation of the ARCH(q) model is only capable of capturing
short-range dependence of squared residuals in the form of rapid decay of their autocorrelation
functions (ACF).

To overcome above difficulties, the AR-Generalized ARCH (GARCH) model was proposed
[4] in which conditional variance of the residual series is a linear function of its own lags,
given by

εt = ξth
1/2
t , ht = a0 +

q∑
i=1

aiε
2
t−i +

p∑
j=1

bjht−j,

where

ξt ∼ IID (0, 1) , a0 > 0, ai ≥ 0, i = 1, 2, . . . , q. bj ≥ 0, j = 1, 2, . . . , p.

It can be shown that the squared residuals of a GARCH model follow the Autoregressive moving
average (ARMA) model with parameters (p, q), i.e. the ARMA (p, q) model of the form

ε2
t |ψt−1 = a0 +

Max(p,q)∑
i=1

(ai + bi) ε
2
t−i +

p∑
j=i

bjνt−j + νt,

where ai = 0 if i > q, bj = 0 if j > p and νt = ε2
t |ψt−1 − ht. Generally, in the AR(m)-GARCH

(p, q) model, values of p and q are considered as unity. In [1], performance of the GARCH
model was evaluated for modelling daily value-at-risk (VaR) of perfectly distributed portfolios
in five stock indices using a number of distributional assumptions and sample sizes. However, a
serious limitation of this model is that the residual series cannot capture in an appropriate way
the asymmetric effects of past on future volatility, also known as ‘leverage effects’ in financial
literature.

Accordingly, several extensions in the variance equations for modelling heteroscedastic resid-
ual series, such as Exponential GARCH (EGARCH) and Threshold GARCH (TGARCH),
have been proposed in the literature. The variance equation of residual series of the AR(m)-
EGARCH(p, q) model is given by

εt = ξtσt = ξtexp

(
ht

2

)
, ht = a0 +

q∑
i=1

ai (|εt−i| + γiεt−i)

σt−i
+

p∑
j=1

bjht−j.

Note that when εt−i is positive or there is ‘good news’, total effect of εt−i is (1 + γi) |εt−i|,
whereas when εt−i is negative or there is ‘bad news’, total effect of εt−i is (1 − γi) |εt−i|. As γi is
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494 H. Ghosh et al.

expected to be negative, ‘bad news’ would have a larger impact on volatility. Another advantage
of this model over the GARCH model is that the conditional variance σ 2

t here is guaranteed
to be positive regardless of the values of the coefficients because log

(
σ 2

t

)
rather than σ 2

t is
modelled. Another variant of the GARCH model, which is capable of modelling leverage effect
of heteroscedastic errors is the AR(m)-TGARCH(p, q) model, whose variance equation is given
by Goudarzi and Ramanarayanan [11]:

εt = ξth
1/2
t , ht = a0 +

q∑
i=1

aiε
2
t−i +

q∑
i=1

γis
∗
t−iε

2
t−i +

p∑
j=1

bjht−j,

where

s∗
t =

{
1 if εt < 0,
0 otherwise.

That is, depending on whether εt−i is above or below the threshold value of zero, ε2
t−i has different

effects on the conditional variance ht. Here also, γi is expected to be negative for ‘bad news’ in
order to have larger impact. This model is also known as the GJR-GARCH model as Glosten,
Jagannathan, and Runkle proposed essentially the same model. The EGARCH and TGARCH
models have been applied to describe asymmetric volatility in the Indian stock market [11].
Furthermore, the GJR-GARCH model was employed for modelling asymmetry and persistence
under impact of sudden changes in volatility of the Indian stock market [13].

In [18], an alternate family of models for describing heteroscedastic errors, called the
stochastic volatility (SV) model, was proposed in which the underlying conditional variance
is represented by an unobserved stochastic process. A heartening aspect of this model is that it is
capable of modelling asymmetric volatility as it can capture one-step-ahead conditional variance
based on sign of past observation. However, in the SV model, conditional mean of the series
is assumed as zero, which is not realistic. So, an attempt was made in [18] by taking it to be
some non-zero known constant δ. Since asymmetric effect of present level of the series on one-
step-ahead volatility should be controlled by unknown threshold parameter, therefore for a more
realistic regime-specific modelling of asymmetric volatility, δ is unknown and so should be esti-
mated. Furthermore, in all the work related to SV models done so far, the series was not taken as
correlated.

Accordingly, in this article, we propose a modification of the SV model by incorporating both
the above aspects and the new model will be called the Autoregressive-SV with threshold (AR-
SVT) model. Furthermore, methodology for estimation of parameters of the AR-SVT model
would be developed by first obtaining recursive Kalman filter (KF) time-update equation, along
similar lines as [12]. Subsequently, the unrestricted quasi-maximum likelihood (UQML) method
in conjunction with trial and error approach would be adopted for estimation of parameters.
Optimal one-step and two-step-ahead out-of-sample forecasts formulae along with forecast error
variances would also be derived analytically by recursive use of conditional expectation. Finally,
the methodology would be illustrated on volatile all-India monthly spices export data and its
superiority over other competing models would be shown.

2. Description of the AR-SVT model

Although the EGARCH model is capable of describing the asymmetric effects of ‘returns’ on
volatility in finance market [3], yet this model has the limitation that it is not able to specify
the underlying volatility, which depends on continuous information in the past driven by a pro-
cess separate from ‘returns’ per se. Accordingly, there should be two error processes, which
are contemporaneously correlated, but having their marginal distributions as independently and
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identically distributed. To this end, univariate discrete-time SV model for a zero-mean process
{yt} is given by Taylor [18]:

yt = εtexp

(
h∗

t

2

)
, t = 1, . . . , T , (1)

h∗
t = α + ϕh∗

t−1 + ηt−1, (2)

where εt, ηt are symmetrically distributed white noise processes with variances σ 2
ε and σ 2

η ,
respectively. The parameter ϕ measures persistence of shocks to volatility, where |ϕ| < 1. When
ϕ is close to unity and σ 2

η is close to 0, evolution of volatility over time is very smooth. Since εt

and ηt−1 are independent, conditional variance of yt given information up to time t − 1, namely
ψt−1, depends on past observations by the contemporaneous dependence present in (εt−1, ηt−1)

′.
Using Equations (1) and (2), it may be noted that

cov(y2
t , yt−1) = E{ε2

t exp(h∗
t )εt−1exp(0.5h∗

t−1)}
= E[exp{α + (ϕ + 0.5)h∗

t−1}E{εt−1exp(ηt−1)}],

which is not zero due to dependence between εt−1 and ηt−1. Therefore, the SV model is also
capable of modelling volatility y2

t with respect to ‘return’ yt−1. It may be noted that Equation
(2) may be rewritten as

(
h∗

t+1 − α∗) = ϕ
(
h∗

t − α∗) + ηt, where α∗ = α/ (1 − ϕ), which leads
to rescaled SV model given by

yt = σ∗ exp

(
ht

2

)
εt, (3)

ht+1 = ϕht + ηt, (4)

where σ∗ = exp (α∗/2) and ht = h∗
t − α∗. Therefore, estimate of σ 2

∗ may be used to estimate
α∗, which gives estimate of α in Equation (2). A good description of SV models is given in [2,6].

It may be pointed out that the SV model has generally been applied without modelling its
conditional mean equation. Furthermore, it has been highlighted in [16] that differencing does not
necessarily transform non-stationary data into an independent process. Therefore, it is desirable
to consider the Autoregressive-SV (AR-SV) model given by

�xt − ρ�xt−1 = yt, (5)

where

yt = σ∗ exp

(
ht

2

)
εt, (6)

ht+1 = ϕht + ηt. (7)

In [12], mean of yt in Equations (3) and (4) has been taken to be a known constant, say δ.
However, this is not appropriate as δ should be looked upon as a threshold value of the point of
asymmetry due to volatility and therefore estimated from the data. Thus, we propose an extension
of the above AR-SV model by modifying Equation (6) as

yt − δ = σ∗ exp

(
ht

2

)
εt. (8)

The model given by Equations (5), (7), and (8) will be called as the AR-SVT model.
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496 H. Ghosh et al.

When εt is symmetrically distributed around zero, ACF of squared residuals y2
t of the AR-SV

model [10] is given by

ρ(2)τ = ρh,τ
exp

(
σ 2

h

) − 1

κ2exp
(
σ 2

h

) − 1
, τ ≥ 1, (9)

where σ 2
h = σ 2

η /
(
1 − ϕ2

)
, ρh,τ = ϕτ , and κ2 is kurtosis of εt. Evidently, Equation (9) also holds

for squared residuals (yt − δ)2 of the AR-SVT model.

3. Estimation of parameters of the AR-SVT model

We proceed along similar lines as [12]. However, it may be pointed out that there is an error
in Equation (7) of Harvey and Shephard [12]. Furthermore, there is also an error in deriving the
expression for filtered log-volatility estimate ĥt+1|t in Section 2.2.1 of Harvey and Shephard [12].
Therefore, for the benefit of readers, brief details of the methodology are given below.

A straightforward algebra using Equations (5), (7), and (8) gives the conditional linear state
space form with uncorrelated measurement and transition equation errors for the AR-SVT model
as

Zt = log (yt − δ)2 = ω + ht + ξt, (10)

ht+1 =
(
ϕ − γ ∗st

σ 2
ξ

)
ht + st

[
μ∗ + γ ∗ {

log(yt − δ)2 − ω
}

σ 2
ξ

]
+ η+

t , (11)

(
ξt

η+
t

)
|st ∼ ID

((
0
0

)
,

(
σ 2
ξ 0

0 σ 2
1 It + σ 2

2 (1 − It)− γ ∗2/σ 2
ξ

))
, (12)

where

ω = log σ 2
∗ + E

{
log

(
ε2

t

)}
, μ∗ = E+ (ηt) = E (ηt|st = 1) = −E− (ηt) ,

ξt = log
(
ε2

t

) − E
{
log

(
ε2

t

)}
, γ ∗ = Cov+ (ηt, ξt) = −Cov− (ηt, ξt) ,

σ 2
η = 0.5

(
σ 2

1 + σ 2
2

) + μ∗2, st =
{

−1 if yt − δ < 0,

+1 otherwise.

Notice that Equation (12) is not the same as Equation (7) of Harvey and Shephard [12]. This
is due to the fact that the authors had inadvertently considered the unconditional variance of η+

t

instead of its conditional variance.
Referring to Equations (5)–(8) and (10)–(12), it may be pointed out that the number of parame-

ters to be estimated in our model is 11, namely σ 2
∗ ,ϕ, σ 2

ε , ρ, δ,ω,μ∗, γ ∗, σ 2
ξ , σ 2

1 , σ 2
2 . All of them,

except σ 2
∗ and σ 2

ε , can be estimated using the UQML method, along similar lines as [12]. To this
end, recursive KF equation of an unobserved log-volatility process ht may be obtained as follows
[7]: Let Zt = log (yt − δ)2 and let ψ sq

t be the information set of squared observations up to time
epoch t. Initialize E

[
h0|ψ sq

−1, s0
] = 0 and

Var
{
h0|

(
ψ

sq
−1, s0

)} = σ 2
η

1 − ϕ2
= p0|−1. (13)

Then, using the fact that ξ0 and s0 are independently distributed in Equation (12), best predictor
of Z0 conditional on

(
ψ

sq
−1, s0

)
, denoted by Ẑ0|ψ sq

−1,s0
, is

Ẑ0|ψ sq
−1,s0

= E
[
Z0|

(
ψ

sq
−1, s0

)] = E
[
ω + h0 + ξ0|

(
ψ

sq
−1, s0

)] = ω. (14)
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Therefore, joint distribution of (h0, Z0) has mean (0,ω), where

q0(ψ sq
−1,s0) = Var

[
Z0|

(
ψ

sq
−1, s0

)] = p0|−1 + σ 2
ξ , (15)

Cov
{
h0, Z0|

(
ψ

sq
−1, s0

)} = Var
{
h0|

(
ψ

sq
−1, s0

)} = p0|−1. (16)

Using Equations (13)–(16), given
(
ψ

sq
0 , s0

)
, best linear predictor of h0 which reduces to quasi-

conditional mean of h0 is

ĥ0|0 = p0|−1

p0|−1 + σ 2
ξ

(Z0 − ω) (17)

and the corresponding prediction error variance of h0 is

p0|0 = p0|−1 − p2
0|−1

p0|−1 + σ 2
ξ

. (18)

Now, given
(
ψ

sq
0 , s0

)
, using Equations (17) and (18), and observing independence of η+

0 and
ξ0 except on s0 in Equation (12), the best linear predictor of h1 is

ĥ1|0 = E [h1|ψ0] = E

[(
ϕ − γ ∗s0

σ 2
ξ

)
h0 + s0

{
μ∗ +

(
γ ∗

σ 2
ξ

)
(Z0 − ω)

}
+ η+

0 |ψ0

]

=
(
ϕ − γ ∗s0

σ 2
ξ

)
h0|0 + s0

{
μ∗ +

(
γ ∗

σ 2
ξ

)
(Z0 − ω)

} (19)

and the corresponding error variance of h1 is

p1|0 = p0|0

(
ϕ − γ ∗s0

σ 2
ξ

)2

+ σ 2
1 I0 + σ 2

2 (1 − I0)−
(
γ ∗2

σ 2
ξ

)
. (20)

Using Equations (19) and (20), the best predictor of Z1 conditional on
(
ψ

sq
0 , s1

)
, denoted by

Ẑ0|(ψ sq
0 , s1), is

Ẑ1|ψ sq
0 , s1

= ω + ĥ1|0, (21)

where the error variance of Z1 is given by

q1|(ψ sq
0 , s1) = p1|0 + σ 2

ξ . (22)

Now, given
(
ψ

sq
1 , s1

)
, to obtain measurement equation ĥ1|1 and p1|1 of KF, note that covari-

ance between h1 and Z1 is obtained as p1|0. Therefore, from Equations (19)–(22), the best linear
predictor of h1 which reduces to quasi-conditional mean of h1 is

ĥ1|1 = ĥ1|0 + p1|0
p1|0 + σ 2

ξ

{
Z1 − ω − ĥ1|0

}
, (23)

p1|1 = p1|0 − p2
1|0

p1|0 + σ 2
ξ

. (24)
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Using Equations (23) and (24), given
(
ψ

sq
1 , s1

)
, a straightforward but lengthy algebra yields

the best linear predictor of h2 given ψ1as

ĥ2|1 = E

[(
ϕ − γ ∗s1

σ 2
ξ

)
h1 + s1

{
μ∗ + γ ∗

σ 2
ξ (Z1 − ω)

}
+ η+

1 |ψ sq
1

]

=
(
ϕ − γ ∗s1

σ 2
ξ

) (
σ 2
ξ

p1|0 + σ 2
ξ

)
ĥ1|0 + Z1 − ω

p1|0 + σ 2
ξ

{
γ ∗s1 + ϕp1|0

} + s1μ
∗.

In general, filtered estimate of log-volatility, ĥt+1|t, is given by the time-update equation as

ĥt+1|t = (
pt|t−1 + σ 2

ξ

)−1
[ϕ{σ 2

ξ ĥt|t−1 + pt|t−1 (Zt − ω)} +
(
Zt − ω − ĥt|t−1

)
γ ∗st] + stμ

∗, (25)

where

pt|t−1 = pt−1|t−1

(
ϕ − γ ∗s0

σ 2
ξ

)2

+ σ 2
1 It−1 + σ 2

2 (1 − It−1) −
(
γ ∗2

σ 2
ξ

)
,

pt|t = pt|t−1 − p2
t|t−1(

pt|t−1 + σ 2
ξ

) .

It may be noted that the filtered estimate in Equation (25) behaves similarly to that of the
EGARCH model. If γ ∗ is negative, then larger negative value of yt − δ (less bad news) imputes
smaller sensitivity of ĥt+1|t in the same direction as compared with smaller negative value (more
bad news), which will cause larger sensitivity of ĥt+1|t in the opposite direction. Similarly, smaller
positive value of yt − δ (less good news) imputes smaller sensitivity of ĥt+1|t in the same direction
as compared with larger positive value (more good news), which may cause larger sensitivity of
ĥt+1|t in the opposite direction.

In order to apply the UQML method for estimation of parameters of AR-SV and AR-SVT
models, time-update equation of state given in Equation (25) is used to construct the likelihood
function of Zt. To this end, using Equations (21) and (22), it may be noted that the mean and
variance of Zt are, respectively, Ẑt|(ψ sq

t−1,st) = ω + ĥt|t−1 and qt|(ψ sq
t−1,st) = pt|t−1 + σ 2

ξ , where con-

ditioning set is taken to be
(
ψ

sq
t−1, st

)
to make inference on {yt}. It may be pointed out that all the

11 parameters of our model, except σ 2
∗ and σ 2

ε , could be estimated using the UQML method on
Equation (25). The parameters σ 2

∗ and σ 2
ε cannot be estimated as these are subsumed in Equation

(10). Thus, α also cannot be estimated directly as α = (1 − ϕ) log
(
σ 2

∗
)
. One way out is to

employ a trial-and-error approach, where various choices of σ 2
∗ in Equation (8) are used to com-

pute the unobserved series εt. An estimate of E
{
log

(
ε2

t

)}
is the observed mean of log

(
ε2

t

)
.

Then, estimate of σ 2
∗ would be that value which matches log

(
σ 2

∗
) + E

{
log

(
ε2

t

)}
and ω. Note

that estimate of α is α̂ = (
1 − ϕ̂

)
log

(
σ̂ 2

∗
)
. Thereafter, using estimate of ht from Equation (25)

and estimate of α∗, i.e. α̂∗ = log
(
σ̂ 2

∗
)
, estimate of h∗

t is obtained. This gives the estimated unob-
served series εt which is used to obtain the kernel estimate of its distribution and its variance
σ 2
ε . The goodness of fit of AR-SV and AR-SVT models is examined by computing the Akaike

information criterion (AIC) and Bayesian information criterion (BIC) values, where

AIC = L
(
θ̂
)

+ 2 (Number of parameter + 1) , (26)

BIC = L
(
θ̂
)

+ (Number of parameter + 1) log (T + 1) , (27)
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where

L
(
θ̂
)

= 2
∑

t

⎡⎣log

{
σ̂∗σ̂εexp

(
ĥt|t−1

2

)}
+ 1

2

⎛⎝ yt − δ

σ̂∗σ̂εexp
(
ĥt|t−1/2

)
⎞⎠2⎤⎦ .

The performance of a fitted model is compared on the basis of one-step-ahead mean square
prediction error (MSPE), mean absolute prediction error (MAPE), and relative mean absolute
prediction error (RMAPE) criteria, where

MSPE = 1

N

N−1∑
i=0

{
YT+i+1 − ŶT+i+1

}2
, (28)

MAPE = 1

N

N−1∑
i=0

{∣∣∣YT+i+1 − ŶT+i+1

∣∣∣} , (29)

RMAPE = 1

N

N−1∑
i=0

⎧⎨⎩
∣∣∣YT+i+1 − ŶT+i+1

∣∣∣
YT+i+1

⎫⎬⎭ × 100. (30)

4. Development of out-of-sample forecast formulae

We now develop optimal k-step-ahead forecasts of xt along with their forecast error variances for
the AR-SVT model. To this end, optimal one-step-ahead forecast of xT+1, denoted by x̂T+1|T , is
obtained by taking conditional expectation of xT+1 given ψT . Note that

xT+1 = xT +�xT+1, (31)

which implies that

x̂T+1|T = xT + �̂xT+1,

where �̂xT+1 is the conditional expectation of �xT+1 given ψT . For AR-SVT model of xt writ-
ten in terms of yt in Equation (5), note from Equation (8) that conditional mean of yT+1 − δ is
independent of ψT , which leads to �̂xT+1 = δ + ρ�xT . Therefore, using Equation (31), optimal
one-step-ahead forecast of xT+1 reduces to

x̂T+1|T = δ + xT + ρ�xT . (32)

One-step-ahead forecast error variance of xT+1 given ψT , denoted by σ 2
T+1|T , is its con-

ditional variance. This is obtained by taking repeated expectation on (yT+1 − δ)2 leading to
σ 2

∗ σ
2
ε E {exp (hT+1) |ψT }, which can be approximated by

σ 2
T+1|T = σ 2

∗ σ
2
ε exp

(
ĥT+1|T

)
. (33)

For obtaining optimal two-step-ahead forecast of xT+2 given ψT , denoted by x̂T+2|T , note that

x̂T+2|T = E {(ExT+2|ψT+1) |ψT } , (34)

where E (xT+2|ψT+1) may be written in terms of xT+1 and �xT+1. In evaluation of the second
stage of conditional expectation in Equation (34), optimal two-step-ahead forecast of xT+2, using

D
ow

nl
oa

de
d 

by
 [

In
di

an
 A

gr
ic

ul
tu

ra
l S

ta
tis

tic
s 

R
es

ea
ch

 I
ns

tit
ue

] 
at

 2
1:

51
 2

4 
M

ar
ch

 2
01

5 



500 H. Ghosh et al.

Equations (8) and (32), reduces to

x̂T+2|T = x̂T+1|T + (1 + ρ) δ + ρ2�xT . (35)

Two-step-ahead forecast error variance of xT+2 given ψT , denoted by σ 2
T+2|T , is its conditional

variance, which is derived by repeated expectation and variance approach. Thus

σ 2
T+2|T = σ 2

∗ σ
2
ε E

{
exp

(
ĥT+2|T+1

)
|ψT

}
+ (1 + ρ)2σ 2

∗ σ
2
ε exp

(
ĥT+1|T

)
. (36)

Now, put t = T + 1 in Equation (25) and note that ZT+1 − ω − ĥT+1|T ≈ ξt is independent
of sT+1. Also note that the conditional distribution of (ξT+1, sT+1)

′ is independent of ψT due
to the fact that distribution of εt is symmetric and independently and identically distributed.
Furthermore, estimating ZT+1 − ω by ĥT+1|T , Equation (36) reduces to

σ 2
T+2|T = σ 2

∗ σ
2
ε

[
exp

{
E

(
ĥT+2|T+1

)
|ψT

}
+ (1 + ρ)2σ 2

∗ σ
2
ε exp

(
ĥt+1|t

)]
= σ 2

∗ σ
2
ε

[
exp

{
1

pT+1|T + σ 2
ξ

[ϕ{σ 2
ξ ĥT+1|T + pT+1|t

(
ĥT+1|T

)
}]

}

+ (1 + ρ)2σ 2
∗ σ

2
ε exp

(
ĥT+1|T

) ]
.

(37)

Finally, the model describing log-volatility process {ht} may be used to generate k-step-ahead
forecasts of one-step-ahead log-volatility h∗

t in Equations (1) and (2). Note that, here, log-
volatility process of the AR-SVT model is taken as logarithm of squared value of σ∗ exp (ht/2),
that is, h∗

t , which unlike ht in Equation (8), follows the non-zero mean process. Therefore, from
the autoregressive equation followed by ht in Equation (7) and the fact that ht = h∗

t − α∗, optimal
k-step-ahead forecast of one-step-ahead log-volatility h∗

T+k is obtained as

ĥ∗
T+k = α∗ + ϕkĥT |T−1. (38)

5. An illustration

Spices have great medicinal value and India ranks first in the world in their production, consump-
tion, and export. In [15], the GARCH model was applied for investigating volatility in prices of
spices. This model was also applied in [17] for modelling and forecasting of India’s volatile
spices export data. In the present illustration, all-India data of monthly export of spices during
the period January 2006–2012, obtained from Indiastat (www.indiastat.com), are considered. Out
of total 73 data points, first 63 data points corresponding to the period January 2006–March 2011
are used for model building and remaining 10 data points, that is, from April 2011 to January
2012, are used for validation purpose. Perusal of the data indicates high volatility in March 2007
when export suddenly jumped almost 140% to the level of Rs. 402 crores (Rs. 1 crore = Rs. 10
million) and then abruptly dipped in the very next month to Rs. 301 crores. Volatility can also be
seen in many other time points, such as August 2007, March 2008, October 2009, March 2010,
and December 2010.

As the data {xt} indicate the presence of trend, first-order differenced series {�xt} is considered
to detrend it and the resultant series is seen to be stationary. In our subsequent data analysis,
various models would be fitted to the series {�xt}. The EViews, Ver. 5 software package is
employed for fitting the ARIMA model as well as the GARCH model and its variants. The only
significant autocorrelation is observed at lag one. On the basis of minimum AIC and BIC criteria,
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Table 1. Estimates of parameters along with their standard
errors for the fitted ARIMA (1,1,0) model to {xt}.

Parameter Estimate Standard error

Intercept 11.56 6.51
AR1 − 0.25 0.12

Table 2. Specification test of mean and variance equations for the fitted AR-SVT model.

Standardized residuals Squared standardized residuals
Lags ACF Q-Statistics Probability ACF Q-Statistics Probability

1 0.097 4.760 0.093 − 0.074 2.694 0.101
2 − 0.025 4.805 0.187 0.029 2.752 0.253
3 0.064 5.093 0.278 − 0.007 2.755 0.431
4 0.034 5.178 0.395 − 0.063 3.035 0.552
5 0.158 7.023 0.319 0.028 3.089 0.686
6 0.031 7.094 0.419 0.128 4.268 0.640
7 − 0.115 8.102 0.424 0.172 6.460 0.487
8 − 0.222 11.947 0.216 − 0.231 10.478 0.233
9 0.170 14.252 0.162 − 0.142 12.032 0.212
10 − 0.085 14.843 0.190 0.202 15.229 0.124
11 0.008 14.849 0.250 − 0.061 15.527 0.160
12 − 0.081 15.400 0.283 0.087 16.141 0.185
13 0.189 18.493 0.185 − 0.159 18.246 0.148
14 − 0.023 18.541 0.235 0.042 18.395 0.189
15 − 0.082 19.141 0.261 0.112 19.493 0.192
16 − 0.103 20.120 0.268 − 0.046 19.678 0.235
17 − 0.074 20.634 0.298 − 0.119 20.979 0.227
18 − 0.061 20.995 0.337 0.035 21.094 0.275
19 − 0.113 22.259 0.327 0.021 21.135 0.329
20 − 0.017 22.288 0.383 − 0.057 21.460 0.371

the best selected model is also found to be the ARIMA(1,1,0) model and estimates of parameters
along with their standard errors are reported in Table 1.

In order to assess the presence of volatility, in the first instance, ACF of squared residuals of
fitted ARIMA(1,1,0) model is computed as − 0.22 at lag 6, which is reasonably high. There-
fore, proceeding along similar lines as [17], ARCH-Lagrange Multiplier test statistic at lag 6 is
computed as 1.90, which is found to be significant at 5% level. This indicates the presence of
heteroscedasticity of errors. Therefore, GARCH family of models along with its variants are fit-
ted to the differenced series {�xt}. The minimum AIC and BIC values for GARCH, EGARCH,
and TGARCH families are reported in Table 2. The best fitted AR(1)-GARCH (1,1) model using
Gaussian maximum likelihood estimation procedure is computed as

�xt = 593.75 + 0.91�xt−1 + εt,

ht = 14683.53 + 0.31ε2
t−1 − 1.02ht−1.

Furthermore, the best fitted AR(1)-EGARCH(1,1) model with t-distributed errors is obtained as

�xt = 689.88 + 0.92�xt−1 + εt,

ht = 1.79 − 0.58ht−1 + 0.33 (|εt−1| + 2.55εt−1)

σt−1
,
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502 H. Ghosh et al.

while the best fitted AR(1)-TGARCH(1,1) model with normally distributed errors is computed as

�xt = 562.20 + 0.91�xt + εt,

ht = 45102.94 + 0.63ε2
t−1 − 0.27s∗

t−1ε
2
t−1 − 0.92ht−1.

We now fit the AR-SV and AR-SVT models to the series {�xt} using MATLAB, Ver. 7.2 soft-
ware package. To this end, σ 2

η is estimated from Equation (12) and α∗ or equivalently σ 2
∗ is

estimated by the trial-and-error approach described in Section 3. In case of kernel estimate of
error distribution, parameter α in the basic form of the SV model for AR-SV and AR-SVT mod-
els is estimated using the relation α = (1 − ϕ) α∗. The fitted AR-SV model given by Equations
(1), (2), and (5) is obtained as

�xt − 0.33�xt−1 = yt,

where

yt = εtexp

(
h∗

t

2

)
, σ̂ 2

ε = 3734.93,

h∗
t = −0.05 + 0.49h∗

t−1 + ηt−1, σ̂ 2
η = 0.2209.

Furthermore, the fitted AR-SVT model given by Equations (2), (5), and (8) is computed as

�xt − 0.27�xt−1 = yt,

where

yt − 36.54 = εtexp

(
h∗

t

2

)
, σ̂ 2

ε = 3450.53,

h∗
t = 0.155 + 0.097h∗

t−1 + ηt−1, σ̂ 2
η = 1.9729.

In order to examine whether the underlying condition for AR-SV and AR-SVT models that the
distribution of standardized residuals {εt} is symmetric around zero is satisfied, graphs of their
kernel density estimates are drawn and are exhibited in Figure 1(a) and 1(b). The former figure
indicates that the condition of symmetry is not satisfied for fitted AR-SV model, implying thereby
that this model may not be very proper for describing given data. On the other hand, in view of
symmetry, Figure 1(b) indicates that the AR-SVT model may be appropriate.

Another desirable feature is that estimate of parameter ϕ should be close to ϕR, which is the
one estimated from filtered value of ht, given in Equation (7). Under regression set up, the time-
update and measurement-update of ht are respectively considered as dependent and independent
variables. Estimate of regression coefficient, ϕR, is computed as 0.093, which is very close to
estimate of parameter ϕ, namely 0.097. Furthermore, using Equation (11), two regime-specific
dynamic systems are constructed to obtain regime-specific error variances and are computed as
0.623 and 0.129, which are found to be quite close to the estimated values of

(
σ 2

1 − γ ∗2/σ 2
ξ

)
,

that is, 0.71 − (−0.54)2/4.79, that is, 0.65 and
(
σ 2

2 − γ ∗2/σ 2
ξ

)
, that is, 0.21 − (−0.54)2/4.79,

that is, 0.15. All this implies that the UQML method of estimation based on the conditional state
space model with conditional transition error variance is appropriate for fitting the AR-SVT
model to given data.

Furthermore, in order to assess appropriateness of correct specification of the mean and vari-
ance equations of the fitted AR-SVT model, ACF of standardized residuals {εt} and squared
standardized residuals

{
ε2

t

}
respectively need to be computed to test the null hypotheses that

the series {εt} and
{
ε2

t

}
are independent and are reported in Table 2. Using Box–Ljung statis-

tics based on ACF values at various lags, it is found that, in both situations, null hypotheses of
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(a)

(b)

Figure 1. Kernel density of standardized residuals of fitted (a) AR-SV model and AR-SVT model.

Table 3. Goodness of fit of models.

Model
Criterion AR-GARCH AR-TGARCH AR-EGARCH AR-SV AR-SVT

AIC 536.30 532.33 536.18 522.20 517.21
BIC 547.01 543.05 547.03 526.48 521.50

their independence are not rejected at the 5% level, thereby implying that the mean and variance
equations of the fitted AR-SVT model are correctly specified.

The AIC and BIC values for the fitted AR-SV and AR-SVT models are computed using Equa-
tions (26) and (27) and are reported in Table 3. A perusal of this table indicates that the AR-SVT
model performs best, followed by AR-SV model and then by AR-Threshold GARCH (AR-
TGARCH) model so far as modelling of the data is considered. Another heartening aspect of the
fitted AR-SVT model is that it is able to identify the underlying correlation structure in a satis-
factory manner as shown by the closeness of observed ACF of squared residuals {(yt − δ)2} with
theoretical autocorrelations computed using Equation (9) and the same are reported in Table 4.
This implies that the stochastic variance equation assumed in the AR-SVT model is able to
identify volatility present in the data.
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504 H. Ghosh et al.

Table 4. ACF of squared residuals of the AR-SVT model.

Lags Empirical Theoretical

1 0.832 0.831
2 0.737 0.738
3 0.624 0.626
4 0.552 0.551
5 0.499 0.500
6 0.454 0.455
7 0.457 0.459
8 0.428 0.426
9 0.391 0.393
10 0.290 0.293
11 0.230 0.232
12 0.215 0.213
13 0.163 0.165
14 0.157 0.158
15 0.128 0.130
16 0.119 0.121
17 0.057 0.058
18 0.011 0.012
19 − 0.012 − 0.011
20 − 0.017 − 0.016

Figure 2. Fitted AR-SVT model along with data points.

In view of all the above, the AR-SVT model is found to be quite appropriate for modelling
volatile data under consideration. To get a visual insight, graph of the fitted AR-SVT model along
with data points is exhibited in Figure 2.

5.1 Forecasting performance for hold-out data

All-India monthly exports of spices from April 2011 to January 2012 are considered as 10 hold-
out data points. For all the fitted 05 models, one-step-ahead forecasts along with corresponding
forecast standard errors in brackets () are computed and the same are reported in Table 5. It
may be pointed out that, for the fitted AR-SVT model, all actual values lie within the predic-
tion intervals corresponding to ‘Forecast ± Standard error’. However, this desirable feature
does not hold for any of the other four models, namely AR-Generalized autoregressive condi-
tional heteroscedastic (AR-GARCH), AR-Exponential GARCH (AR-EGARCH), AR-TGARCH
and AR-SV models. The MAPE, RMSE, and RMAPE criteria are computed for all fitted mod-
els using, respectively, Equations (28)–(30), and the results are reported in Table 6. Evidently,
the AR-SVT model is found to be the best as all the three criteria have minimum values for
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Table 5. One-step-ahead forecasts of spices export data (in Rs. Crores).

Months Actual AR-GARCH AR-EGARCH AR-TGARCH AR-SV AR-SVT

April, 2011 758.45 733.03 (72.47) 742.05 (85.86) 729.31 (164.77) 801.72 (65.94) 762.14 (65.88)
May 2011 890.10 743.83 (118.21) 752.98 (103.04) 740.07 (140.12) 872.83 (67.21) 837.18 (69.37)
June 2011 876.86 863.82 (99.55) 874.13 (104.31) 859.39 (143.75) 903.91 (74.88) 894.93 (94.13)
July 2011 1007.94 851.74 (96.89) 861.94 (123.98) 847.39 (160.66) 998.92 (77.00) 959.97 (59.81)
August 2011 1222.66 971.20 (121.62) 982.57 (124.29) 966.20 (118.41) 1040.95 (84.93) 1116.98 (110.72)
September 2011 1248.52 1166.89 (137.33) 1180.16 (113.40) 1160.81 (118.23) 1225.94 (99.33) 1208.46 (88.99)
October 2011 1266.68 1190.44 (23.03) 1203.96 (123.83) 1184.25 (173.18) 1297.28 (106.30) 1252.94 (70.46)
November 2011 1160.27 1207.00 (137.53) 1220.67 (134.99) 1200.71 (123.92) 1229.62 (109.83) 1198.28 (71.89)
December 2011 1256.98 1110.03 (58.56) 1122.75 (125.65) 1104.27 (171.30) 1179.96 (105.07) 1201.72 (57.34)
January 2012 1071.73 1198.15 (137.76) 1211.75 (127.44) 1191.92 (106.83) 1158.72 (108.84) 1193.57 (129.47)
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Table 6. Performance of one-step-ahead forecasts.

Model
Criterion AR-GARCH AR-EGARCH AR-TGARCH AR-SV AR-SVT

MAPE 116.40 100.80 109.71 114.25 96.60
MSPE 19,607.29 14,790.87 16,909.37 17,405.27 12,914.47
RMAPE 10.55 9.14 9.99 10.42 8.65

this model. This indicates superiority AR-SVT model over the other competing models for
forecasting purpose also.

The best-fitted model, namely the AR-SVT model, is now used for generating up to two-
step-ahead forecasts of India’s spices exports along with forecasts of conditional variances.
Using Equations (32) and (33), one-step-ahead out-of-sample forecast for February 2012 and
its conditional variance are obtained as Rs. 1185.34 crores and 59.94 (Rs. crores)2, respectively.
Equations (35) and (37) give the two-step-ahead out-of-sample forecast for March 2012 and its
conditional variance as Rs. 1201.20 crores and 84.21 (Rs. crores)2, respectively. Finally, out-
of-sample forecasts of log-volatility h∗

t are computed as Rs. 12.54, 1.36, 0.27, 0.17, 0.16 (Rs.
crores)2, respectively. It may be noted that these values are converging to 0.155, which is the esti-
mate of parameter α, implying thereby that the realistic feature that impact of present volatility
should decrease with increase in the forecast period is also satisfied.

To sum up, it may be concluded that the AR-SVT model has performed best for modelling as
well as forecasting of the volatile data under consideration.

6. Concluding remarks

In this article, univariate SV with threshold (SVT) model was proposed. As an illustration, its
superiority over other competing models for describing and forecasting purposes for the data
under consideration is clearly demonstrated. As future work, the exact analytical expression for
k-step-ahead forecast of volatility needs to be derived. Further, attempts may be made to extend
the developed methodology for fitting Stochastic volatility model with long-memory. Efforts
may be directed towards generalizing these results for multivariate situations. Finally, the pos-
sibility of application of particle-filtering approach using Monte Carlo technique may also be
explored for parameter estimation.
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