ICAR-NBSS&LUP Sujala MWS Publ.438

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

BELANALU (4D3A9C1a) MICRO WATERSHED

Koppal Taluk and District, Karnataka

Karnataka Watershed Development Project – II

SUJALA – III

World Bank funded Project

ICAR – NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT GOVT. OF KARNATAKA, BANGALORE

About ICAR - NBSS&LUP

The ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS&LUP), Nagpur, a premier Institute of the Indian Council of Agricultural Research (ICAR), was set up during 1976 with the objective to prepare soil resource maps at national, state and district levels and to provide research inputs in soil resource mapping and its applications, land evaluation, land use planning, land resource management, and database management using GIS for optimising land use on different kinds of soils in the country.

The Bureau has been engaged in carrying out soil resource survey, agro-ecological and soil degradation mapping at the country, state and district levels for qualitative assessment and monitoring the soil health towards viable land use planning. The research activities have resulted in identifying the soil potentials and problems, and the various applications of the soil surveys with the ultimate objective of sustainable agricultural development. The Bureau has the mandate to correlate and classify soils of the country and maintain a National Register of all the established soil series. The Institute is also imparting in-service training to staff of the soil survey agencies in the area of soil survey, land evaluation and soil survey interpretations for land use planning. The Bureau in collaboration with Panjabrao Krishi Vidyapeeth, Akola is running post-graduate teaching and research programme in land resource management, leading to M.Sc. and Ph.D. degrees.

Citation: Rajendra Hegde, Ramesh Kumar, S.C., K.V. Niranjana, S. Srinivas, M.Lalitha, B.A. Dhanorkar, R.S. Reddy and S.K. Singh (2019). "Land resource inventory and socioeconomic status of farm households for watershed planning and development of Belanalu (4D3A9C1a) Microwatershed, Koppal Taluk and District, Karnataka", ICAR-NBSS&LUP Sujala MWS Publ.438, ICAR – NBSS & LUP, RC, Bangalore. p.135 & 30.

TO OBTAIN COPIES,

E-Mail

:

Please write to: Director, ICAR - NBSS & LUP,				
Amaravati Road	d, NAGP	PUR - 440 033, India		
Phone	:	(0712) 2500386, 2500664, 2500545 (O)		
Telefax	:	0712-2522534		
E-Mail	:	director@nbsslup.ernet.in		
Website URL	:	nbsslup.in		
Or				
Head, Regional Centre, ICAR - NBSS&LUP, Hebbal, Bangalore - 560 024				
Phone	:	(080) 23412242, 23510350 (O)		
Telefax	:	080-23510350		

nbssrcb@gmail.com

ICAR-NBSS&LUP Sujala MWS Publ.438

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

BELANALU (4D3A9C1a) MICRO WATERSHED

Koppal Taluk and District, Karnataka

Karnataka Watershed Development Project – II

Sujala-III

World Bank funded Project

ICAR – NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT, GOVT. OF KARNATAKA, BANGALORE

PREFACE

In Karnataka, as in other Indian States, the livelihoods of rural people are intertwined with farming pursuits. The challenges in agriculture are seriously threatening the livelihood of a large number of farmers as they have been practicing farming in contextual factors beyond their control. Climatic factors are the most important ones and have become much more significant in recent times due to rapid climate changes induced by intensive anthropogenic activities affecting our ecosystem in multiple ways. Climate change has become the reality, it is happening and efforts to evolve and demonstrate climate resilient technologies have become essential. Due to the already over stressed scenario of agrarian sector, the climate change is resulting in manifold increase in the complexities, pushing the rural mass to face more and more unpredictable situations. The rising temperatures and unpredictable rainfall patterns are going to test seriously the informed decisions farmers have to make in order to survive in farming and sustain their livelihood.

It is generally recognized that impacts of climate change shall not be uniform across the globe. It is said that impact of climate change is more severe in South Asia. Based on the analysis of meteorological data, it is predicted that in India, there will be upward trend in mean temperature, downward trend in relative humidity, annual rainfall and number of wet days in a year. Also, in general, phenomena like erratic monsoon, spread of tropical diseases, rise in sea levels, changes in availability of fresh water, frequent floods, droughts, heat waves, storms and hurricanes are predicted. Each one of these adverse situations are already being experienced in various parts of India and also at the global level. Decline in agricultural productivity of small and marginal farmers becoming more vulnerable is already witnessed.

In Karnataka, more than 60 per cent of the population live in rural areas and depend on agriculture and allied activities for their livelihood. Though the state has achieved significant progress in increasing the yield of many crops, there is tremendous pressure on the land resources due to the growing and competing demands of various land uses. This is reflected in the alarming rate of land degradation observed. Already more than 50 per cent of the area is affected by various forms of degradation. If this trend continues, the sustainability of the fragile ecosystem will be badly affected. The adverse effects of change in the climatic factors are putting additional stress on the land resources and the farmers dependent on this.

The natural resources (land, water and vegetation) of the state need adequate and constant care and management, backed by site-specific technological interventions and investments particularly by the government. Detailed database pertaining to the nature of the land resources, their constraints, inherent potentials and suitability for various land based rural enterprises, crops and other uses is a prerequisite for preparing locationspecific action plans, which are in tune with the inherent capability of the resources. Any effort to evolve climate resilient technologies has to be based on the baseline scientific database. Then only one can expect effective implementation of climate resilient technologies, monitor the progress, make essential review of the strategy, and finally evaluate the effectiveness of the implemented programs. The information available at present on the land resources of the state are of general nature and useful only for general purpose planning. Since the need of the hour is to have site-specific information suitable for farm level planning and detailed characterization and delineation of the existing land resources of an area into similar management units is the only option.

ICAR-NBSS&LUP, Regional Centre, Bangalore has taken up a project sponsored by the Karnataka Watershed Development Project-II, (Sujala-III), Government of Karnataka funded by the World Bank under Component -1 Land Resource Inventry. This study was taken up to demonstrate the utility of such a database in reviewing, monitoring and evaluating all the land based watershed development programs on a scientific footing. To meet the requirements of various land use planners at grassroots level, the present study on "Land Resource Inventory and Socio-Economic Status of Farm Households for Watershed Planning and Development of for Belanalu microwatershed in Koppal Taluk, Koppal District, Karnataka" for integrated development was taken up in collaboration with the State Agricutural Universities, IISC, KSRSAC, KSNDMC as Consortia partners. The project provides detailed land resource information at cadastral level (1:7920 scale) for all the plots and socio-economic status of farm households covering thirty per cent farmers randomely selected representing landed and landless class of farmers in the micro-watershed. The project report with the accompanying maps for the microwatershed will provide required detailed database for evolving effective land use plan, alternative land use options and conservation plans for the planners, administrators, agricutural extention personnel, KVK officials, developmental departments and other land users to manage the land resources in a sustainable manner

It is hoped that this database will be useful to the planners, administrators and developmental agencies working in the area in not only for formulating location specific developmental schemes but also for their effective monitoring at the village/watershed level.

Nagpur Date: 22-10-2019 S.K. SINGH Director, ICAR - NBSS&LUP Nagpur

Contributors

Dr. Rajendra Hegde	Dr. S.K.Singh
Principal Scientist, Head &	Director, ICAR-NBSS&LUP
Project Leader, Sujala-III Project	Coordinator, Sujala-III Project
ICAR-NBSS&LUP, Regional Centre, Bangalore	Nagpur
Soil Survey, Mapping a	& Report Preparation
Dr. K.V. Niranjana	Sh. R.S. Reddy
Dr. B.A. Dhanorkar	Smt. Chaitra, S.P.
	Dr. Gopali Bardhan
	Mr. Somashekar T.N
	Ms. Arpitha G.M
	Dr. Mahendra kumar M.B
T ² -1-1 1	(¥7)
Field Sh. C. Bache Gowda	
Sh. Somashekar	Sh. Mayur Patil Sh. Arun Kumar, S.
Sh. M. Jayaramaiah	Sh. Sunil Raj
	Sh. Yogesh Kumar, B.
	Sh. Vikas, N.K.
	Sh. Arun Kumar, S.G.
	Sh. Umesh Jadiyappa Madolli Sh. Praveen Kumar P. Achalkar
	Sh. Veerabhadraswamy
	Sh. Vinay
	Sh. Shankarappa, K.
	Sh. Lankesh, R.S.
	Sh. Appanna B. Hattigoudar Sh. Maharudra
GIS V	
Dr. S.Srinivas	Sh. A.G.Devendra Prasad
Sh. D.H.Venkatesh	Sh. Abhijith Sastry, N.S.
Smt. K.Sujatha	Sii. Abiijitii Sasti y, N.S. Smt. Shyla, B.
Smt. K.V.Archana	Smt. Swetha ,K.
Sh. N.Maddileti	Ms. Vidya, P.C.
	Sh. Deepak, M.J.
	Sn. Deepak, M.J. Smt. K.Karunya Lakshmi
	•
	Ms. Seema, K.V.

Dr. M. Lalitha Sh. Vindhya, N.G. Smt. Arti Koyal Ms. P. Pavanakumari, P. Smt. Parvathy, S. Ms. Rashmi, N. Ms. Leelavathy, K.U. Smt. Usha Kiran, G. Socio-Economic Analysis Dr. S.C. Ramesh Kumar Sh. M.K. Prakashanaik, Mr. Sowmya A.N, Sh. Vinod R, Sh. Vinod R, Sh. Vinod R, Sh. Vijay Kumar Lamani, Mrs. Pathibha, D.G, Sh. Sunil P. Maske Matershed Development Department, GoK, Bangalore Sh. Rajeev Ranjan IFS Project Director & Commissioner, WDD NRM Consultant, Sujala-III Project Dr. S.D. Pathak IFS Executive Director & Chief Conservator of Forests, WDD	Laborat	tory Analysis	
Smt. Parvathy, S. Ms. Rashmi, N. Ms. Leelavathy, K.U. Smt. Usha Kiran, G. Smt. Usha Kiran, G.	Dr. M. Lalitha	Sh. Vindhya, N.G.	
Ms. Leelavathy, K.U. Smt. Usha Kiran, G. Socio-Economic Analysis Dr. S.C. Ramesh Kumar Sh. M.K. Prakashanaik, Ms. Karuna V. Kulkarni, Mrs. Sowmya A.N, Sh. Vinod R, Sh. Vinod R, Sh. Basavaraja, Sh. Vijay Kumar Lamani, Ms. Sowmya K.B, Mrs. Prathibha, D.G, Sh. Rajendra,D, Soil & Water Conservation Sh. Sunil P. Maske Watershed Development Department, GoK, Bangalore Sh. Rajeev Ranjan IFS Project Director & Commissioner, WDD Dr. S.D. Pathak IFS Executive Director &	Smt. Arti Koyal	Ms. P. Pavanakumari, P.	
Smt. Usha Kiran, G. Socio-Economic Analysis Dr. S.C. Ramesh Kumar Sh. M.K. Prakashanaik, Ms. Karuna V. Kulkarni, Mrs. Sowmya A.N, Sh. Vinod R, Sh. Vinod R, Sh. Vinod R, Sh. Vijay Kumar Lamani, Mrs. Sowmya K.B., Mrs. Prathibha, D.G, Sh. Rajendra,D, Soil & Water Conservation Sh. Sunil P. Maske Watershed Development Department, GoK, Bangalore Sh. Rajeev Ranjan IFS Dr. A. Natarajan Project Director & Commissioner, WDD NRM Consultant, Sujala-III Project Dr. S.D. Pathak IFS Executive Director &	Smt. Parvathy, S.	Ms. Rashmi, N.	
Socio-Economic Analysis Dr. S.C. Ramesh Kumar Sh. M.K. Prakashanaik, Ms. Saruna V. Kulkarni, Ms. Karuna V. Kulkarni, Mrs. Sowmya A.N, Sh. Vinod R, Sh. Vinod R, Sh. Basavaraja, Sh. Vijay Kumar Lamani, Ms. Sowmya K.B., Mrs. Prathibha, D.G, Sh. Rajendra,D, Soil & Water Conservation Sh. Sunil P. Maske Watershed Development Department, GoK, Bangalore Sh. Rajeev Ranjan IFS Sh. Rajeev Ranjan IFS Dr. A. Natarajan Project Director & Commissioner, WDD NRM Consultant, Sujala-III Project Dr. S.D. Pathak IFS Executive Director &		Ms. Leelavathy, K.U.	
Dr. S.C. Ramesh KumarSh. M.K. Prakashanaik,Ms. Karuna V. Kulkarni,Mrs. Sowmya A.N,Sh. Vinod R,Sh. Vinod R,Sh. Basavaraja,Sh. Vijay Kumar Lamani,Ms. Sowmya K.B.,Mrs. Prathibha, D.G,Soil & Water ConservationSh. Sunil P. MaskeVatershed Development Department, GoK, BangaloreSh. Rajeev Ranjan IFSProject Director & Commissioner, WDDNRM Consultant, Sujala-III ProjectDr. S.D. Pathak IFSExecutive Director &		Smt. Usha Kiran, G.	
Dr. S.C. Ramesh KumarSh. M.K. Prakashanaik,Ms. Karuna V. Kulkarni,Mrs. Sowmya A.N,Sh. Vinod R,Sh. Vinod R,Sh. Basavaraja,Sh. Vijay Kumar Lamani,Ms. Sowmya K.B.,Mrs. Prathibha, D.G,Soil & Water ConservationSh. Sunil P. MaskeVatershed Development Department, GoK, BangaloreSh. Rajeev Ranjan IFSProject Director & Commissioner, WDDNRM Consultant, Sujala-III ProjectDr. S.D. Pathak IFSExecutive Director &			
Ms. Karuna V. Kulkarni, Ms. Karuna V. Kulkarni, Mrs. Sowmya A.N, Sh. Vinod R, Sh. Basavaraja, Sh. Vijay Kumar Lamani, Ms. Sowmya K.B., Mrs. Prathibha, D.G, Sh. Rajendra,D, Soil & Water Conservation Sh. Sunil P. Maske Mrs. Prathibha, D.G, Sh. Rajendra,D, Sh. Rajendra,D, Sh. Rajendra,D, Dr. S.D. Pathak IFS Executive Director & Commissioner, WDD NRM Consultant, Sujala-III Project			
Mrs. Sowmya A.N,Sh. Vinod R,Sh. Basavaraja,Sh. Basavaraja,Sh. Vijay Kumar Lamani,Ms. Sowmya K.B.,Mrs. Prathibha, D.G,Sh. Rajendra,D,Soil & Water ConservationSh. Sunil P. MaskeUter Soil & Water ConservationSh. Sunil P. MaskeDr. S.D. Pathak IFSExecutive Director & Commissioner, WDDNRM Consultant, Sujala-III Project	Dr. S.C. Ramesh Kumar		
Sh. Vinod R,Sh. Basavaraja,Sh. Basavaraja,Sh. Vijay Kumar Lamani,Ms. Sowmya K.B.,Mrs. Prathibha, D.G,Soil & Water ConservationSoil & Water ConservationSh. Sunil P. MaskeMaskeSh. Rajeev Ranjan IFSProject Director & Commissioner, WDDDr. A. NatarajanProject Director & Commissioner, WDDDr. S.D. Pathak IFSExecutive Director &		Ms. Karuna V. Kulkarni,	
Sh. Basavaraja,Sh. Vijay Kumar Lamani,Sh. Vijay Kumar Lamani,Ms. Sowmya K.B.,Mrs. Prathibha, D.G,Sh. Rajendra,D,Soil & Water ConservationSh. Sunil P. MaskeVatershed Development DevervationSh. Rajeev Ranjan IFSProject Director & Commissioner, WDDDr. A. NatarajanProject Director & Commissioner, WDDNRM Consultant, Sujala-III ProjectDr. S.D. Pathak IFSExecutive Director &		Mrs. Sowmya A.N,	
Image: Constraint of the constra	Sh. Vinod R,		
Ms. Sowmya K.B.,Mrs. Prathibha, D.G,Sh. Rajendra,D,Soil & Water ConservationSh. Sunil P. MaskeMatershed Development Department, GoK, BangaloreWatershed Development Department, GoK, BangaloreSh. Rajeev Ranjan IFSProject Director & Commissioner, WDDDr. A. NatarajanProject Director & Commissioner, WDDNRM Consultant, Sujala-III ProjectDr. S.D. Pathak IFSExecutive Director &		Sh. Basavaraja,	
Mrs. Prathibha, D.G,Soil & Water ConservationSoil & Water ConservationSh. Sunil P. MaskeMaskeWatershed Development Department, GoK, BangaloreSh. Rajeev Ranjan IFSProject Director & Commissioner, WDDDr. A. NatarajanProject Director & Commissioner, WDDNRM Consultant, Sujala-III ProjectDr. S.D. Pathak IFSExecutive Director &		Sh. Vijay Kumar Lamani,	
Soil & Water ConservationSoil & Water ConservationSh. Sunil P. MaskeWatershed Development Development Development Oevelopment Development Oevelopment Oevelopment Oevelopment Or. A. NatarajanSh. Rajeev Ranjan IFSDr. A. NatarajanProject Director & Commissioner, WDDNRM Consultant, Sujala-III ProjectDr. S.D. Pathak IFSExecutive Director &		Ms. Sowmya K.B.,	
Soil & Water Conservation Sh. Sunil P. Maske Image: Conservation Watershed Development Department, GoK, Bangalore Watershed Development Department, GoK, Bangalore Dr. A. Natarajan Project Director & Commissioner, WDD NRM Consultant, Sujala-III Project Dr. S.D. Pathak IFS Executive Director &		Mrs. Prathibha, D.G,	
Sh. Sunil P. Maske Watershed Development Department, GoK, Bangalore Watershed Development Department, GoK, Bangalore Watershed Development Department, GoK, Bangalore Sh. Rajeev Ranjan IFS Project Director & Commissioner, WDD Dr. A. Natarajan Dr. S.D. Pathak IFS Executive Director &		Sh. Rajendra,D,	
Watershed Development Department, GoK, Bangalore Sh. Rajeev Ranjan IFS Dr. A. Natarajan Project Director & Commissioner, WDD NRM Consultant, Sujala-III Project Dr. S.D. Pathak IFS Executive Director &	Soil & Wat	er Conservation	
Sh. Rajeev Ranjan IFSDr. A. NatarajanProject Director & Commissioner, WDDNRM Consultant, Sujala-III ProjectDr. S.D. Pathak IFSExecutive Director &	Sh. Sunil P. Maske		
Sh. Rajeev Ranjan IFSDr. A. NatarajanProject Director & Commissioner, WDDNRM Consultant, Sujala-III ProjectDr. S.D. Pathak IFSExecutive Director &			
Project Director & Commissioner, WDDNRM Consultant, Sujala-III ProjectDr. S.D. Pathak IFSExecutive Director &			
Dr. S.D. Pathak IFS Executive Director &	Sh. Rajeev Ranjan IFS	Dr. A. Natarajan	
Executive Director &	Project Director & Commissioner, WDD	NRM Consultant, Sujala-III Project	
	Dr. S.D. Pathak IFS		
Chief Conservator of Forests, WDD	Executive Director &		
	Chief Conservator of Forests, WDD		

PART-A

LAND RESOURCE INVENTORY

Contents

Preface		
Contributo	rs	
Executive	Summary	
Chapter 1	Introduction	1
Chapter 2	Geographical Setting	3
2.1	Location and Extent	3
2.2	Geology	3
2.3	Physiography	4
2.4	Drainage	5
2.5	Climate	5
2.6	Natural Vegetation	6
2.7	Land Utilization	7
Chapter 3	Survey Methodology	11
3.1	Base maps	11
3.2	Image Interpretation for Physiography	11
3.3	Field Investigation	14
3.4	Soil mapping	16
3.5	Land Management Units	16
3.5	Laboratory Characterization	17
Chapter 4	The Soils	21
4.1	Soils of Granite Gneiss Landscape	21
4.2	Soils of Alluvial Landscape	26
Chapter 5	Interpretation for Land Resource Management	35
5.1	Land Capability Classification	35
5.2	Soil Depth	37
5.3	Surface Soil Texture	38
5.4	Soil Gravelliness	39
5.5	Available Water Capacity	40
5.6	Soil Slope	41
5.7	Soil Erosion	42
Chapter 6	Fertility Status	45
6.1	Soil Reaction (pH)	45
6.2	Electrical Conductivity (EC)	45
6.3	Organic Carbon (OC)	45
6.4	Available Phosphorus	46
6.5	Available Potassium	46
6.6	Available Sulphur	48
6.7	Available Boron	48
6.8	Available Iron	48
6.9	Available Manganese	48
6.10	Available Copper	48

6.11	Available Zinc	48
Chapter 7	Land Suitability for Major Crops	53
7.1	Land suitability for Sorghum	53
7.2	Land suitability for Maize	54
7.3	Land suitability for Bajra	55
7.4		56
7.5	Land suitabilitry for Bengalgram	57
7.6	Land suitability for Groundnut	58
7.7	Land suitability for Sunflower	59
7.8	Land suitability for Cotton	60
7.9	Land suitability for Chilli	61
	Land suitability for Tomato	62
7.11	Land suitability for Brinjal	63
7.12	Land suitability for Onion	64
7.12	Land suitability for Bhendi	65
7.14	Land suitability for Drumstick	66
7.15	Land suitability for Mulberry	67
7.16		68
7.17	Land Suitability for Sapota	69
7.18	Land suitability for Pomegranate	70
7.19	Land suitability for Guava	71
7.20	Land Suitability for Jackfruit	72
7.21	Land Suitability for Jamun	73
7.22	Land Suitability for Musambi	74
7.23	Land Suitability for Lime	75
7.24	Land Suitability for Cashew	76
7.25	Land Suitability for Custard apple	77
7.26	Land suitability for Amla	78
7.27	Land suitability for Tamarind	79
7.28	Land suitability for Marigold	80
7.29	Land suitability for Chrysanthemum	81
7.30	Land suitability for Jasmine	82
7.31	Land suitability for Crossandra	83
7.32	Land Management Units	117
7.33	Proposed Crop Plan	118
Chapter 8	Soil Health Management	121
Chapter 9	Soil and Water conservation Treatment Plan	127
9.1	Treatment Plan	127
9.2	Recommended Soil and Water Conservation measures	131
9.3	Greening of microwatershed	132
	References	135
	Appendix I	I-V
	Appendix II	VII-XI
	Appendix III	XII-XVI

LIST OF TABLES

	Mean Monthly Rainfall, PET, 1/2 PET at Koppal Taluk and	
2.1	District	5
2.2	Land Utilization in Koppal District	7
3.1	Differentiating Characteristics used for Identifying Soil Series	15
3.2	Soil map unit description of Belanalu microwatershed	17
4.1	Physical and chemical characteristics of soil series identified in Dombarahalli-1microwatershed	27
7.1	Soil-Site Characteristics of Belanalu microwatershed	85
7.2	Land suitability for Sorghum	86
7.3	Land suitability for Maize	87
7.4	Land suitability for Bajra	88
7.5	Land suitability for Redgram	89
7.6	Land suitability for Bengalgram	90
7.7	Land suitability for Groundnut	91
7.8	Land suitability for Sunflower	92
7.9	Land suitability for Cotton	93
7.10	Land suitability for Chilli	94
7.11	Land suitability for Tomato	95
7.12	Land suitability for Brinjal	96
7.13	Land suitability for Onion	97
7.14	Land suitability for Bhendi	98
7.15	Land suitability for Drumstick	99
7.16	Land suitability for Mulberry	100
7.17	Land suitability for Mango	101
7.18	Land Suitability for Sapota	102
7.19	Land suitability for Pomegranate	103
7.20	Land suitability for Guava	104
7.21	Land suitability for Jackfruit	105
7.22	Land suitability for Jamun	106
7.23	Land Suitability for Musambi	107
7.24	Land Suitability for Lime	108
7.25	Land Suitability for Cashew	109
7.26	Land Suitability for Custard apple	110

7.27	Land Suitability for Amla	111
7.28	Land Suitability for Tamarind	112
7.29	Land Suitability for Marigold	113
7.30	Land Suitability for Chrysanthemum	114
7.31	Land suitability for Jasmine	115
7.32	Land suitability for Crossandra	116
7.33	Proposed Crop Plan for Belanalu Microwatershed	119

2.1	Location map of Belanalu Microwatershed	3
2.2a	Granite and granite gneiss rocks	4
2.2b	Alluvial rocks	4
2.3	Rainfall distribution in Koppal Taluk, Koppal District	6
2.4	Natural vegetation of Belanalu microwatershed	6
2.5	Different crops and cropping systems in Belanalu Microwatershed	7
2.6	Current Land use – Belanalu Microwatershed	9
2.7	Location of Wells- Belanalu Microwatershed	9
3.1	Scanned and Digitized Cadastral map of Belanalu Microwatershed	13
3.2	Satellite image of Belanalu microwatershed	13
3.3	Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Belanalu Microwatershed	14
3.4	Location of profiles in a transect	15
3.5	Soil phase or management units of Belanalu Microwatershed	19
5.1	Land Capability Classification of Belanalu Microwatershed	36
5.2	Soil Depth map of Belanalu Microwatershed	37
5.3	Surface Soil Texture map of Belanalu Microwatershed	39
5.4	Soil Gravelliness map of Belanalu Microwatershed	40
5.5	Soil Available Water Capacity map of Dombarahalli- 1Microwatershed	41
5.6	Soil Slope map of Belanalu Microwatershed	42
5.7	Soil Erosion map of Belanalu Microwatershed	43
6.1	Soil Reaction (pH) map of Belanalu Microwatershed	46
6.2	Electrical Conductivity (EC) map of Belanalu Microwatershed	47
6.3	Soil Organic Carbon (OC) map of Belanalu Microwatershed	47
6.4	Soil Available Phosphorus map of Belanalu Microwatershed	49
6.5	Soil Available Potassium map of Belanalu Microwatershed	49
6.6	Soil Available Sulphur map of Belanalu Microwatershed	50
6.7	Soil Available Boron map of Belanalu Microwatershed	50
6.8	Soil Available Iron map of Belanalu Microwatershed	51
6.9	Soil Available Manganese map of Belanalu Microwatershed	51
6.10	Soil Available Copper map of Belanalu Microwatershed	52
6.11	Soil Available Zinc map of Belanalu Microwatershed	52

LIST OF FIGURES

7.1	Land suitability map of Sorghum	54
7.2	Land suitability map of Maize	55
7.3	Land suitability map of Bajra	56
7.4	Land suitability map of Redgram	57
7.5	Land suitability map of Bengalgram	58
7.6	Land suitability map of Groundnut	59
7.7	Land suitability map of Sunflower	60
7.8	Land suitability map of Cotton	61
7.9	Land suitability map of Chilli	62
7.10	Land suitability map of Tomato	63
7.11	Land suitability map of Brinjal	64
7.12	Land suitability map of Onion	65
7.13	Land suitability map of Bhendi	66
7.14	Land suitability map of Drumstick	67
7.15	Land suitability map of Mulberry	68
7.16	Land suitability map of Mango	69
7.17	Land Suitability map of Sapota	70
7.18	Land suitability for Pomegranate	71
7.19	Land suitability map of Guava	72
7.20	Land Suitability map of Jackfruit	73
7.21	Land Suitability map of Jamun	74
7.22	Land Suitability map of Musambi	75
7.23	Land Suitability map of Lime	76
7.24	Land Suitability map of Cashew	77
7.25	Land Suitability map of Custard apple	78
7.26	Land suitability map of Amla	79
7.27	Land suitability map of Tamarind	80
7.28	Land suitability map of Marigold	81
7.29	Land suitability map of Chrysanthemum	82
7.30	Land suitability map of Jasmine	83
7.31	Land suitability map of Crossandra	84
7.32	Land Management Units map of Belanalu microwatershed	118
9.1	Soil and water conservation map of Belanalu microwatershed	132

EXECUTIVE SUMMARY

The land resource inventory of Belanalu microwatershed was conducted using village cadastral maps and IRS satellite imagery on 1:7920 scale. The false colour composites of IRS imagery were interpreted for physiography and these physiographic delineations were used as base for mapping soils. The soils were studied in several transects and a soil map was prepared with phases of soil series as mapping units. Random checks were made all over the area outside the transects to confirm and validate the soil map unit boundaries. The soil map shows the geographic distribution and extent, characteristics, classification, behavior and use potentials of the soils in the Microwatershed.

The present study covers an area of 547 ha in Koppal taluk and district, Karnataka. The climate is semiarid and categorized as drought - prone with an average annual rainfall of 662 mm, of which about 424 mm is received during south –west monsoon, 161 mm during north-east and the remaining 77 mm during the rest of the year. An area of about 85 per cent is covered by soil, 3 per cent by rockout crops and 12 per cent by habitation, water bodies and settlements. The salient findings from the land resource inventory are summarized briefly below.

- The soils belong to 8 soil series and 17 soil phases (management units) and 5 land management units.
- The length of crop growing period is <90 days and starts from 2^{nd} week of August to 2^{nd} week of November.
- From the master soil map, several interpretative and thematic maps like land capability, soil depth, surface soil texture, soil gravelliness, available water capacity, soil slope and soil erosion were generated.
- Soil fertility status maps for macro and micronutrients were generated based on the surface soil samples collected at every 320 m grid interval.
- Land suitability for growing 31 major agricultural and horticultural crops were assessed and maps showing the degree of suitability along with constraints were generated.
- *Entire area is suitable for agriculture.*
- ✤ About 6 per cent of the soils are shallow (25-50 cm), 13 per cent moderately shallow (50-75 cm), 55 per cent moderately deep (75-100 cm), and 11 per cent is deep (100-150cm) soils.
- About 6 per cent is sandy (loamy sand), 58 per cent loamy (sandy loam and sandy clay loam) and 21 per cent has clayey (sandy clay and clay) soils at the surface.
- ✤ About 20 per cent of the area has non-gravelly (<15%) soils, 59 per cent has gravelly (15-35 % gravel) and 6 per cent has very gravelly (35-60%) soils.

- ✤ With respect to available water capacity 73 per cent of the area has very low (<50mm/m), 10 per cent of the area has low (51-100 mm/m) and 2 per cent area is very high (151>200mm/m) in available water capacity.
- An area of about 1 per cent has nearly level (0-1%) and 83 per cent has very gently sloping (1-3%) lands.
- An area of about 2 per cent is slightly eroded (e1) and 82 per cent is moderately eroded (e2).
- ★ An area of about 3 per cent is slightly acid (pH 6.0 to 6.5), 41 per cent is neutral (pH 6.5 to 7.3), 26 per cent is slightly alkaline (pH 7.3 to 7.8), 13 per cent is moderately alkaline (pH 7.8 to 8.4), 2 per cent strongly alkaline (pH 8.4 to 9.0) and <1 per cent very strongly alkaline (pH >9.0).
- The Electrical Conductivity (EC) of the soils are <2 dsm⁻¹ indicating that soils are non saline.
- Organic carbon is medium (0.5-0.75%) in 2 per cent and high (>0.75%) in 82 per cent area of the microwatershed.
- Available phosphorus is medium (23-56 kg/ha) in 81 per cent and high (>57 kg/ha)
 4 per cent area of the soils.
- Available potassium is low (<145 kg/ha) in 7 per cent, medium (145-337 kg/ha) in 48 per cent and high (>337 kg/ha) in 30 per cent area of the soils.
- Available sulphur is low (<10 ppm) in 46 per cent, medium (10-20 ppm) in 26 per cent and high (>20 ppm) in 13 per cent area of the soils.
- Available boron is low (<0.5 ppm) in 6 per cent and medium (0.5-1.0 ppm) in 79 per cent area of the microwatershed.
- Available iron is deficient (<4.5ppm) in 18 per cent and sufficient (>4.5 ppm) in 66 per cent of the area.
- Available zinc is deficient (<0.6 ppm) in <1 per cent and sufficient (>0.6 ppm) in 84 per cent of the microwatershed.
- Available manganese and copper are sufficient in the entire area.
- The land suitability for 31 major agricultural and horticultural crops grown in the microwatershed was assessed and the areas that are highly suitable (class S1) and moderately suitable (class S2) are given below. It is however to be noted that a given soil may be suitable for various crops but what specific crop to be grown may be decided by the farmer looking to his capacity to invest on various inputs, marketing infrastructure, market price, and finally the demand and supply position.

	Suitability Area in ha (%)			Suitability Area in ha (%)	
Crop	Highly suitable (S1)	Moderately suitable (S2)	Сгор	Highly suitable (S1)	Moderately suitable (S2)
Sorghum	45(8)	5(<1)	Sapota	35(6)	257(47)
Maize	35(6)	16(3)	Pomegranate	35(6)	268(49)
Bajra	35(6)	338(62)	Guava	-	292(53)
Redgram	35(6)	11(2)	Jackfruit	35(6)	257(47)
Bengal gram	11(2)	105(19)	Jamun	35(6)	268(49)
Groundnut	-	347(63)	Musambi	45(8)	257(47)
Sunflower	45 (8)	-	Lime	45(8)	257(47)
Cotton	45(8)	5(<1)	Cashew	-	337(61)
Chilli	35(6)	5(<1)	Custard apple	45(8)	387 (71)
Tomato	35 (6)	5(<1)	Amla	35(6)	398(73)
Brinjal	-	111(20)	Tamarind	35(6)	13 (2)
Onion	-	100(18)	Marigold	35(6)	16(3)
Bhendi	-	111(20)	Chrysanthemum	35(6)	16(3)
Drumstick	35(6)	26(5)	Jasmine	35(6)	5(<1)
Mulberry	35(6)	328(60)	Crossandra	35(6)	5(<1)
Mango	35(6)	-	-	-	-

Land suitability for various crops in the microwatershed

- Apart from the individual crop suitability, a proposed crop plan has been prepared for the 5 identified LMUs by considering only the highly and moderately suitable lands for different crops and cropping systems with food, fodder, fibre and other horticulture crops.
- Maintaining soil-health is vital for crop production and conserve soil and land resource base for maintaining ecological balance and to mitigate climate change. For this, several ameliorative measures have been suggested to these problematic soils like saline/alkali, highly eroded, sandy soils etc.,
- Soil and water conservation and drainage line treatment plans have been prepared that would help in identifying the sites to be treated and also the type of structures required.
- As part of the greening programme, several tree species have been suggested to be planted in marginal and submarginal lands, field bunds and also in the hillocks, mounds and ridges. That would help in supplementing the farm income, provide fodder and fuel, and generate lot of biomass which in turn would help in maintaining the ecological balance and contribute to mitigating the climate change.

INTRODUCTION

Land is a scarce resource and basic unit for any material production. It can support the needs of the growing population, provided they use the land in a rational and judicious manner. But what is happening in many areas of the state is a cause for concern to everyone involved in the management of land resources at the grassroots level. The area available for agriculture is about 51 per cent of the total area and more than 60 per cent of the people are still dependant on agriculture for their livelihood. The limited land area is under severe stress and strain due to increasing population pressure and competing demands of various land uses. Due to this, every year there is significant diversion of farm lands and water resources for non-agricultural purposes. Apart from this, due to lack of interest in farmers for farming, large tracts of cultivable lands are turning into fallows in many areas and this trend is continuing at an alarming rate.

Further, land degradation has emerged as a serious problem which has already affected about 38 lakh ha of cultivated area in the state. Soil erosion alone has degraded about 35 lakh ha. Almost all the uncultivated areas are facing various degrees of degradation, particularly soil erosion. Salinity and alkalinity has emerged as a major problem in more than 3.5 lakh ha in the irrigated areas of the state. Nutrient depletion and declining factor productivity is common in both rainfed and irrigated areas. The degradation is continuing at an alarming rate and there appears to be no systematic effort among the stakeholders to contain this process. In recent times, an aberration of weather due to climate change phenomenon has added another dimension leading to unpredictable situations to be tackled by the farmers.

In this critical juncture, the challenge before us is not only to increase the productivity per unit area which is steadily declining and showing a fatigue syndrome, but also to prevent or at least reduce the severity of degradation. If the situation is not reversed at the earliest, then the sustainability of the already fragile crop production system and the overall ecosystem will be badly affected in the state. The continued neglect and unscientific use of the resources for a long time has led to the situation observed at present in the state. It is a known fact and established beyond doubt by many studies in the past that the cause for all kinds of degradation is the neglect and irrational use of the land resources. Hence, there is urgent need to generate a detailed site-specific farm level database on various land resources for all the villages/watersheds in a time bound manner that would help to protect the valuable soil and land resources and also to stabilize the farm production.

Therefore, the land resource inventory required for farm level planning is the one which investigates not only the surface but also consider the other parameters which are critical for productivity *viz.*, soils, climate, water, minerals and rocks, topography, geology, hydrology, vegetation, crops, land use pattern, animal population, socio-

economic conditions, infrastructure, marketing facilities and various schemes and developmental works of the government etc. From the data collected at farm level, the specific problems and potentials of the area can be identified and highlighted, conservation measures required for the area can be planned on a scientific footing, suitability of the area for various uses can be worked out and finally viable and sustainable land use options suitable for each and every land holding can be prescribed.

The Land Resource Inventory is basically done for identifying potential and problem areas, developing sustainable land use plans, estimation of surface run off and water harvesting potential, preparation of soil and water conservation plans, land degradation/desertification etc. The Bureau is presently engaged in developing an LRI methodology using high resolution satellite remote sensing data and Digital Elevation Model (DEM) data to prepare Landscape Ecological Units (LEU) map representing agro-ecosystem as a whole. The LEU is preferred over landform as the base map for LRI. LEU is the assemblage of landform, slope and land use. An attempt was made to upscale the soil resource information from 1:250000 and 1:50000 scale to the LEU map in Goa and other states.

The land resource inventory aims to provide site-specific database for Belanalu Microwatershed in Koppal Taluk, Koppal District, Karnataka State for the Karnataka Watershed Development Department. The database was generated by using cadastral map of the village as a base along with high resolution IRS LISS IV and Cartosat-1 merged satellite imagery. Later, an attempt will be made to uplink this LRI data generated at 1:7920 scale under Sujala-III Project to the proposed Landscape Ecological Units (LEUs) map.

The study was organized and executed by the ICAR- National Bureau of Soil Survey and Land Use Planning, Regional Centre, Bangalore under Generation of Land Resource Inventory Data Base Component-1 of the Sujala-III Project funded by the World Bank.

GEOGRAPHICAL SETTING

2.1 Location and Extent

The Belanalu micro-watershed is located in the central part of Karnataka in Koppal taluk and district (Fig 2.1). It lies between $15^{0}19$ ' and $15^{0}20$ ' North latitudes and $76^{0}10$ ' and $76^{0}12$ East longitudes and covers an area of about 547 ha. It comprises parts of Huvinala,, Koppal and Kidadhala villages. It is about 4.5 km from Koppal town and is bounded by Koppal on the east and west, Kidadhala on the north and Huvinala on the southern side of the microwatershed.

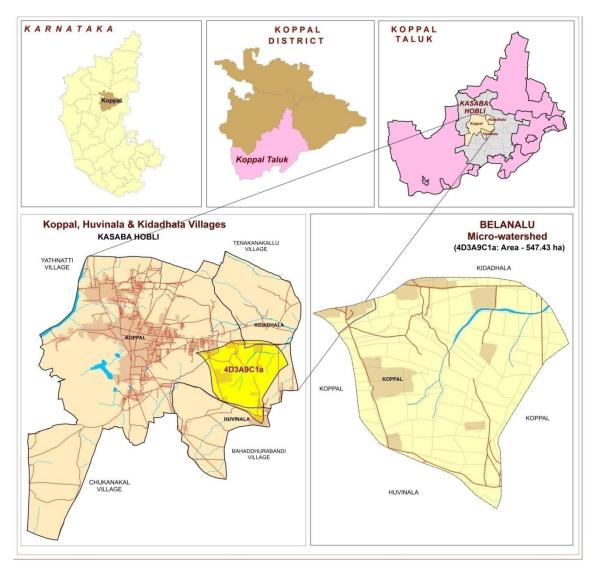


Fig.2.1 Location map of Belanalu Microwatershed

2.2 Geology

Major rock formations observed in the microwatershed are granite gneiss and alluvium (Fig.2.2 a and b). Granite gneisses are essentially pink to gray and are coarse to medium grained. They consist primarily of quartz, feldspar, biotite and hornblende. The

gray granite gneisses are highly weathered, fractured and fissured upto a depth of about 10 m. Dolerite dykes and quartz veins are common with variable width and found to occur in Belanalu village. The thickness of the alluvium generally is limited to less than a meter, except in river valleys where it is very deep extending to tens of meters. Such soils are transported and represent paleo black soils originally formed at higher elevation, but now occupying river valleys.

Fig.2.2 a Granite and granite gneiss rocks

Fig.2.2 b Alluvium

2.3 Physiography

Physiographically, the area has been identified as Granite gneiss and Alluvial landscapes based on geology. The microwatershed area has been further divided into mounds/ridges, summits, side slopes and very gently sloping uplands and nearly level plains based on slope and its relief features. The elevation ranges from 516 to 525 m in the gently sloping uplands. The mounds and ridges are mostly covered by rock outcrops.

2.4 Drainage

The area is drained by several small seasonal streams that join Hire *halla* and Chenna *halla* along its course. Though, the streams are not perennial, during rainy season they carry large quantities of rain water. The microwatershed has only few small tanks which are not able to store the water flowing during the rainy season. Due to this, the ground water recharge is very much affected in the villages. This is reflected in the failure of many bore wells in the villages. If the available rain water is properly harnessed by constructing tanks and recharge structures at appropriate places in the villages, then the drinking and irrigation needs of the area can be easily met. The drainage network is dendritic to sub parallel.

2.5 Climate

The district falls under semiarid tract of the state and is categorized as drought prone with total annual rainfall of 662 mm (Table 2.1). Of this, a maximum of 424 mm precipitation is received during south–west monsoon period from June to September, north-east monsoon contributes about 161 mm and prevails from October to early December and the remaining 77 mm is received during the rest of the year. The winter season is from December to February. During April and May, the temperatures reach up to 45°C and in December and January, the temperatures will go down to 16°C. Rainfall distribution is shown in Figure 2.3. The average Potential Evapo Transpiration (PET) is 145 mm and varies from a low of 101 mm in December to 193 mm in the month of May. The PET is always higher than precipitation in all the months except in the month of September. Generally, the Length of crop Growing Period (LGP) is <90 days and starts from 2nd week of August to 2nd week of November.

Sl. no.	Months	Rainfall	РЕТ	1/2 PET
1	January	1.60	116.70	58.35
2	February	1.50	129.20	64.60
3	March	14.10	169.80	84.90
4	April	18.10	180.60	90.30
5	May	41.60	193.50	96.75
6	June	85.80	167.90	83.95
7	July	72.10	156.20	78.10
8	August	110.50	152.50	76.25
9	September	155.60	138.50	69.25
10	October	116.30	122.30	61.15
11	November	36.00	106.40	53.20
12	December	9.10	101.00	50.50
	TOTAL	662.30	144.55	

Table 2.1 Mean Monthly Rainfall, PET, 1/2 PET at Koppal Taluk and District

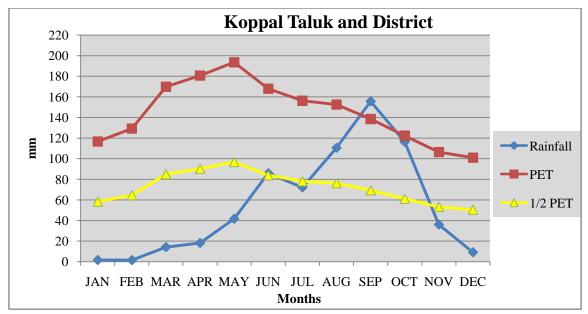


Fig. 2.3 Rainfall distribution in Koppal Taluk and District

2.6 Natural Vegetation

The natural vegetation is sparse comprising few tree species, shrubs and herbs. The mounds, ridges and boulders occupy sizeable areas which are under thin to moderately thick forest vegetation. Still, there are some remnants of the past forest cover which can be seen in patches in some ridges and hillocks in the microwatershed (Fig 2.4).

Apart from the continuing deforestation, the presence of large population of goats, sheep and other cattle in the microwatershed is causing vegetative degradation of whatever little vegetation left in the area. The uncontrolled grazing has left no time for the regeneration of the vegetative cover. This leads to the accelerated rate of erosion on the hill slopes, resulting in the formation of deep gullies in the foot slopes and eventually resulting in the heavy siltation of few tanks and reservoirs in the microwatershed.

Fig 2.4 Natural vegetation of BelanaluMicrowatershed

2.7 Land Utilization

About 91 per cent area (Table 2.2) in Koppal district is cultivated at present and about 17 per cent of the area is sown more than once. An area of about 3 per cent is currently barren. Forests occupy a small area of about 5 per cent and the tree cover is in a very poor state. Most of the mounds, ridges and boulder areas have very poor vegetative cover. Major crops grown in the area are sorghum, maize, bajra, cotton, safflower, sunflower, red gram, horse gram, onion, mulberry, pomegranate, sugarcane, bengalgram and groundnut (Fig 2.5 a and b). While carrying out land resource inventory, the land use/land cover particulars are collected from all the survey numbers and a current land use map of the microwatershed is prepared. The current land use map prepared shows the arable and non-arable lands, other land uses and different types of crops grown in the area. The current land use map of Belanalu Microwatershed is presented in Fig.2.6. Simultaneously, enumeration of existing wells (bore wells) is made and their location in different survey numbers is marked on the cadastral map. Map showing the location of wells in Belanalu is given in Fig 2.7.

Sl. No.	Agricultural land use	Area (ha)	Per cent
1	Total geographical area	552495	
2	Total cultivated area	500542	90.6
3	Area sown more than once	92696	16.8
4	Trees and groves	210	0.04
5	Cropping intensity	-	118
6	Forest	29451	5.33
7	Cultivable wasteland	2568	0.46
8	Permanent Pasture land	14675	2.66
9	Barren land	16627	3.01
10	Non agricultural land	40591	7.35
11	Current fallow	19660	3.56

Table 2.2 Land Utilization in Koppal District

Fig.2.5 (a) Different crops and cropping systems in Belanalu Microwatershed

Fig.2.5 (b) Different crops and cropping systems in Belanalu Microwatershed

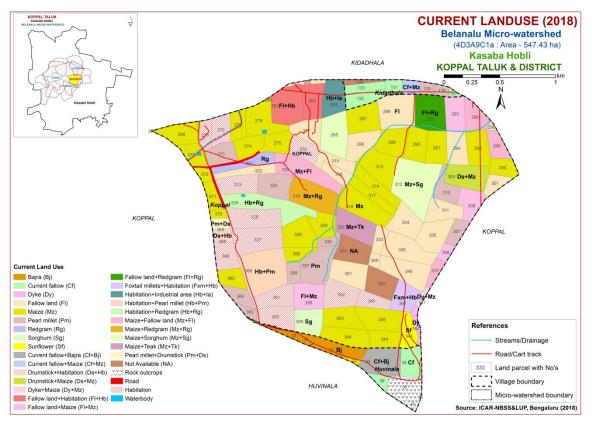


Fig.2.6 Current Land Use - Belanalu Microwatershed

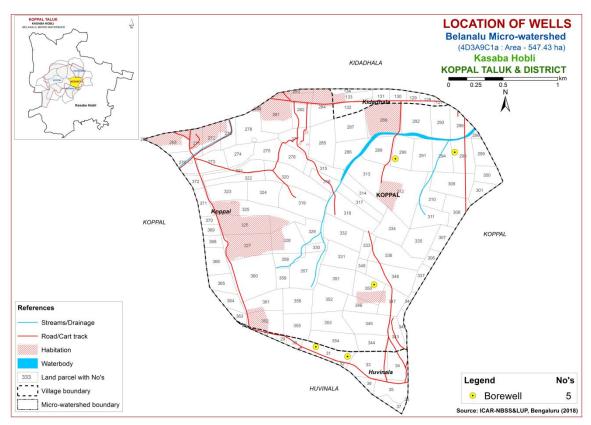


Fig.2.7 Location of wells- Belanalu Microwatershed

SURVEY METHODOLOGY

The purpose of land resource inventory is to delineate similar areas (soil series and phases), which respond or expected to respond similarly for a given level of management. This was achieved in Belanalu microwatershed by the detailed study of all the soil characteristics (depth, texture, colour, structure, consistence, coarse fragments, porosity, soil reaction, soil horizons etc.) and site characteristics(slope, erosion, drainage, occurrence of rock fragments etc.) followed by grouping of similar areas based on soil-site characteristics into homogeneous (management units) units and showing their extent and geographic distribution on the microwatershed cadastral map. The detailed soil survey at 1:7920 scale was carried out in 547 ha area. The methodology followed for carrying out land resource inventory was as per the guidelines given in Soil Survey Manual (IARI, 1971; Soil Survey Staff, 2006; Natarajan *et al.*, 2015) which is briefly described below.

3.1 Base Maps

The detailed survey of the land resources occurring in the microwatershed was carried out by using digitized cadastral map and satellite imagery as base supplied by the KSRSAC. The cadastral map shows field boundaries with their survey numbers, location of tanks, streams and other permanent features of the area (Fig. 3.1). Apart from the cadastral map, remote sensing data products from Cartosat-1 and LISS IV merged at the scale of 1:7920 were used in conjunction with the cadastral map to identify the geology, landscapes, landforms and other surface features. The imagery helped in the identification and delineation of boundaries between hills, uplands and lowlands, water bodies, forest and vegetated areas, roads, habitations and other cultural features of the area (Fig.3.2). The cadastral map was overlaid on the satellite imagery (Fig.3.3) that helps to identify the parcel boundaries and other permanent features. Apart from cadastral maps and images, toposheets of the area (1:50,000 scale) were used for initial traversing, identification of geology, landscapes and landforms, drainage features, present land use and also for selection of transects in the microwatershed.

3.2 Image Interpretation for Physiography

False Colour Composites (FCC) of Cartosat-I and LISS-IV merged satellite data covering the microwatershed area was visually interpreted using image interpretation elements and all the available collateral data with local knowledge. The delineated physiographic boundaries were transferred on to a cadastral map overlaid on satellite imagery. Physiographically, the area has been identified as granite gneiss and alluvial landscapes and is divided into landforms such as ridges, mounds and uplands based on slope. They were further subdivided into physiographic/ image interpretation units based on image characteristics. The image interpretation legend for physiography is given below.

Image Interpretation Legend for Physiography

G- Granite gneiss landscape

- G11 Summits
- G12 Side slopes
 - G121 Side slopes with dark grey tones
- G2

Uplands

- G21 Summits
- G22 Gently sloping uplands
 - G221 Gently sloping uplands, yellowish green (eroded)
 - G222 Gently sloping uplands, yellowish white (severely eroded)
- G23 Very gently sloping uplands
 - G231 Very gently sloping uplands, yellowish green
 - G232 Very gently sloping uplands, medium green and pink
 - G233 Very gently sloping uplands, pink and green (scrub land)
 - G234 Very gently sloping uplands, medium greenish grey
 - G235 Very gently sloping uplands, yellowish white (eroded)
 - G236 Very gently sloping uplands, dark green
 - G237 Very gently sloping uplands, medium pink (coconut garden)
 - G238 Very gently sloping uplands, pink and bluish white (eroded)

DSe -Alluvial landscape

DSe1 Summit

- DSe 11 Nearly level Summit with dark grey tone
- DSe 12 Nearly level Summit with medium grey tone
- DSe 13 Nearly level Summit with whitish grey tone
- DSe 14 Nearly level Summit with whitish tone (Calcareousness)
- DSe 15 Nearly level Summit with pinkish grey tone
- DSe 16 Nearly level Summit with medium pink tone
- DSe 17 Nearly level Summit with bluish white tone
- DSe 18 Nearly level Summit with greenish grey tone

DSe 2 Very genetly sloping

- DSe 21 Very gently sloping, whitish tone
- DSe 22 Very gently sloping, greyish pink tone
- DSe 23 Very gently sloping, whitish grey tone
- DSe 24 Very gently sloping, medium grey tone
- DSe 25 Very gently sloping, medium pink tone
- DSe 26 Very gently sloping, dark grey tone
- DSe 27 Very gently sloping, bluish grey tone
- DSe 28 Very gently sloping, greenish grey tone
- DSe 29 Very gently sloping, Pinkish grey

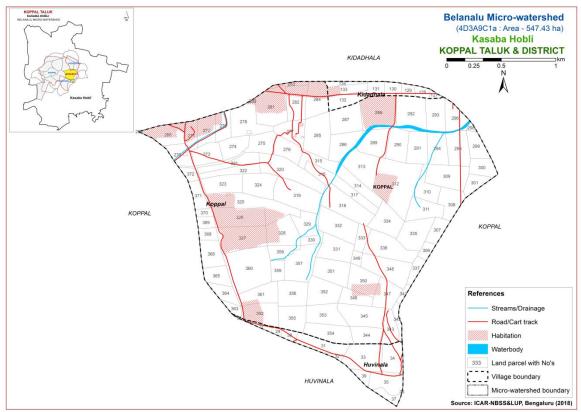


Fig 3.1 Scanned and Digitized Cadastral map of Belanalu Microwatershed

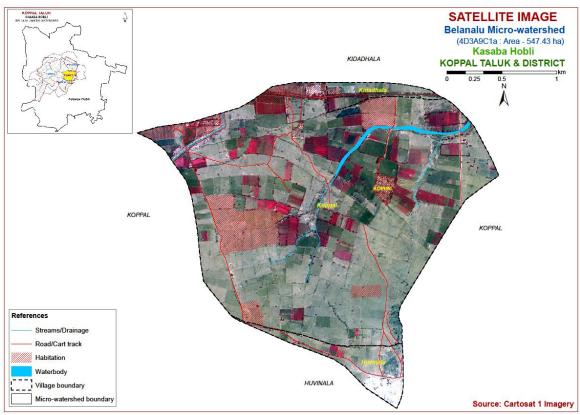


Fig.3.2 Satellite Image of Belanalu Microwatershed

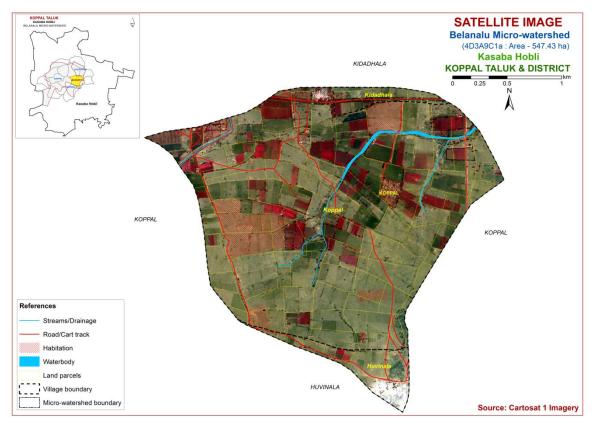
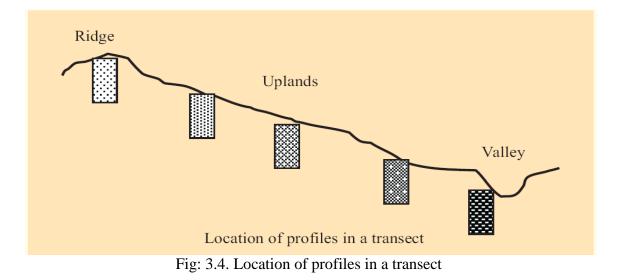



Fig.3.3 Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Belanalu Microwatershed

3.3 Field Investigation

The field boundaries and survey numbers given on the cadastral sheet were located on the ground by following permanent features like roads, cart tracks, *nallas*, streams, tanks etc., and wherever changes were noticed, they were incorporated on the microwatershed cadastral map. Preliminary traverse of the microwatershed was carried out with the help of cadastral map, imagery and toposheets. While traversing, landforms and physiographic units identified were checked and preliminary soil legend was prepared by studying soils at few selected places. Then, intensive traversing of each physiographic unit like hills, ridges, uplands and plains was carried out. Based on the variability observed on the surface, transects (Fig 3.4) were selected across the slope covering all the landform units in the microwatershed (Natarajan and Dipak Sarkar, 2010).

In the selected transect, soil profiles (Fig.3.4) were located at closely spaced intervals to take care of any change in the land features like break in slope, erosion, gravel, stones etc. In the selected sites, profiles (vertical cut showing the soil layers from surface to the rock) were opened upto 200 cm or to the depth limited by rock or hard substratum and studied in detail for all their morphological and physical characteristics. The soil and site characteristics were recorded for all profile sites on a standard proforma as per the guidelines given in USDA Soil Survey Manual (Soil Survey Staff, 2012). Apart from the transect study, profiles were also studied at random, almost like in a grid pattern, outside the transect areas to validate the soil map unit boundaries.

Based on the soil characteristics, the soils were grouped into different soil series. Soil series is the most homogeneous unit having similar horizons and properties and behaves similarly for a given level of management. Soil depth, texture, colour, kind of horizon and horizon sequence, amount and nature of gravel present, calcareousness, nature of substratum etc, were used as the major differentiating characteristics for identifying soil series occurring in the area. The differentiating characteristics used for identifying the soil series are given in Table 3.1. Based on the above characteristics, 8 soil series were identified in Belanalu microwatershed.

Soils of Granite Gneiss Landscape												
Sl. No	Soil Series	Depth (cm)	Colour (moist)	Texture	Gravel (%)	Horizon sequence	Calcareo- usness					
1	Abbigeri (ABR)	25-50	2.5YR 3/3, 3/4	gsc	>35	Ap-Bt-Cr	-					
2	Kethanapura (KTP)	50-75	2.5YR3/4, 3/6	sc	15-35	Ap-Bt-Cr	-					
3	Lakkur (LKR)	50-75	2.5YR 2.5/3, 2.5/4, 3/4, 3/6	gsc	40-60	Ap-Bt- Bc-Cr	-					
4	Hooradhahalli	75-100	2.5YR2.5/4,3/4, 3/6	gsc-gc	>35	Ap-Bt-Cr	-					

 Table 3.1 Differentiating Characteristics used for identifying Soil Series

 (Characteristics are of Series Control Section)

	(HDH)								
5	Bidanagere (BDG)	75-100	5YR3/3,3/4,4/3,5/4 2.5YR3/4	gc	35-60	Ap-Bt-Cr	-		
6	Balapur (BPR)	100-150	2.5YR2.5/4,3/4	gsc-gc	>35	Ap-Bt-Cr	-		
7	Giddadapalya (GDP)	100-150	2.5YR3/4, 3/6	gsc-gc	35-60	Ap-Bt-Cr	-		
Soils of Alluvial Landscape									
8	Gatareddihal (GRH)	100-150	10YR 2/1, 3/1, 2.5Y 4/3, 5/4	с	<15	Ap-Bss- BC-C	es		

3.4 Soil Mapping

The area under each soil series was further separated into soil phases and their boundaries delineated on the cadastral map based on the variations observed in the texture of the surface soil, slope, erosion, presence of gravel, stoniness etc. A soil phase is a subdivision of soil series based mostly on surface features that affect its use and management. The soil mapping units are shown on the map (Fig.3.5) in the form of symbols. During the survey many soil profile pits, few mini pits and a few auger bores representing different landforms occurring in the microwatershed were studied. In addition to the profile study, spot observations in the form of mini pits, road cuts, terrace cuts etc., were studied to validate the soil boundaries on the soil map.

The soil map shows the geographic distribution of 17 mapping units representing 8 soil series occurring in the microwatershed. The soil map unit (soil legend) description is presented in Table 3.2. The soil phase map (management units) shows the distribution of 17 phases mapped in the microwatershed. Each mapping unit (soil phase) delineated on the map has similar soil and site characteristics. In other words, all the farms or survey numbers included in one soil phase will have similar management needs and have to be treated accordingly.

3.5 Land Management Units

The 17 soil phases identified and mapped in the microwatershed were regrouped into five Land Management Units (LMU's) for the purpose of preparing a Proposed Crop Plan for sustained development of the microwatershed. The database (soil phases) generated under LRI was utilized for identifying Land Management Units (LMU's) based on the management needs. One or more than one soil site characteristic having influence on the management have been chosen for identification and delineation of LMUs. For Dombarahalli-1microwatershed, five soil and site characteristics, namely the soil depth, soil texture, slope, erosion and gravel content have been considered for defining LMUs. The land management units are expected to behave similarly for a given level of management.

3.5 Laboratory Characterization

Soil samples for each soil series soil were collected from representative master profiles for laboratory characterization by following the methods outlined in the Laboratory Manual (Sarma *et al*, 1987). Surface soil samples collected in the year 2018 from farmer's fields in Belanalu microwatershed (55 samples) for fertility status (major and micronutrients) at 320 m grid interval were analyzed in the laboratory (Katyal and Rattan, 2003). By linking the soil fertility data to the survey numbers through GIS, soil fertility maps were generated using Kriging method for the microwatershed.

Soil map unit No*	Soil Series	Soil Phase Symbol	Mapping Unit Description	Area in						
unit NO.	Series	·	 ranite gneiss Landscape	ha (%)						
			shallow (25-50 cm), well drained, have							
	ABR	e	n, red gravelly sandy clay soils occurring	30						
	IDR		ping uplands under cultivation.	(5.52)						
			Loamy sand surface, slope 1-3%,	30						
470		ABRbB2g2	moderate erosion, very gravelly (35-60%)	(5.52)						
		Kethanapura soils	are moderately shallow (50-75 cm), well							
	KTP	drained, have dark	reddish brown, red gravelly sandy clay	5						
	KIF	Ű	very gently sloping uplands under	(0.97)						
		cultivation								
74		KTPiB1g1	Sandy clay surface, slope 1-3%, slight erosion, gravelly (15-35%)	5 (0.97)						
	LKR LKR Lakkur soils are moderately shallow (50-75 cm), well drained, have dark reddish brown to dark red, gravelly solar soils accurring on very gently, to moderately slopi									
	IVD	drained, have dark	ned, have dark reddish brown to dark red, gravelly sand							
	LKK	clay soils occurrin	soils occurring on very gently to moderately sloping							
		uplands under cult	soils occurring on very gently to moderately sloping ands under cultivation							
452		LKRhB2g1	Sandy clay loam surface, slope 1-3%,	35						
		LIXIND2g1	moderate erosion, gravelly (15-35%)	(6.35)						
47		LKRhB2g2	Sandy clay loam surface, slope 1-3%,	3 (0.5)						
.,		2111012-92	moderate erosion, very gravelly (35-60%)	5 (0.5)						
54		LKRiB2g1	Sandy clay surface, slope 1-3%, moderate	28						
			erosion, gravelly (15-35%)	(5.04)						
			ls are moderately deep (75-100 cm), well	255						
	HDH		k red to dark reddish brown, red gravelly	257 (46.96)						
			andy clay to clay soils occurring on nearly level to							
		moderately slopin	g uplands under cultivation							
106		HDHcA1g1	Sandy loam surface, slope 0-1%, slight	7 (1.27)						
			erosion, gravelly (15-35%) Sandy loam surface, slope 1-3%,	(1.27)						
111		HDHcB2g1	moderate erosion, gravelly (15-35%)	(12.86)						
122		HDHhB2	Sandy clay loam surface, slope 1-3%,	56						

Table 3.2 Soil map unit description of Belanalu Microwatershed

Soil map unit No*	Soil Series	Soil Phase Symbol	Mapping Unit Description	Area in ha (%)				
			moderate erosion	(10.31)				
123		HDHhB2g1	Sandy clay loam surface, slope 1-3%, moderate erosion, gravelly (15-35%)	63 (11.45)				
128		HDHiB2g1	Sandy clay surface, slope 1-3%, moderate erosion, gravelly (15-35%)	61 (11.07)				
	BDG	drained, have dark	re moderately deep (75-100 cm), well reddish brown, red gravelly clay soils y level to gently sloping uplands under	45 (8.18)				
187		BDGhB2	Sandy clay loam surface, slope 1-3%, moderate erosion	7 (1.29)				
188		BDGhB2g1	Sandy clay loam surface, slope 1-3%, moderate erosion, gravelly (15-35%)	38 (6.89)				
	BPR	reddish brown to d	leep (100-150 cm), well drained, have dark lark red, gravelly sandy clay to clay soils y level to gently sloping uplands under	15 (2.78)				
221		BPRcA1g1	Sandy loam surface, slope 0-1%, slight erosion, gravelly (15-35%)	1 (0.16)				
231		BPRhB2g1	Sandy clay loam surface, moderate erosion, gravelly (15-35%)	2 (0.36)				
459		BPRmB2g1	Clay surface, slope 1-3%, moderate erosion, gravelly (15-35%)	12 (2.26)				
	GDP	have dark reddish	s are deep (100-150 cm), well drained, brown to dark red, gravelly sandy clay to g on very gently sloping uplands under	35 (6.35)				
267		GDPcB2	Sandy loam soils, slope 1-3%, moderate erosion	35 (6.35)				
		Soils o	f alluvial Landscape					
	GRH	drained, have light black sodic crackin	Soils of alluvial LandscapeSatareddihal soils are deep (100-150 cm), moderately wellrained, have light olive brown to very dark gray, calcareouslack sodic cracking clay soils occurring on nearly level toery gently sloping plains under cultivation					
373		GRHmB2	Clay surface, slope 1-3%, moderate erosion	11 (1.93)				
999		Rock outcrops	Rock lands, both massive and bouldery with little or no soil	18 (3.24)				
1000		Others	Habitation and water body	67 (12.19)				

*Soil map unit numbers are continuous for the taluk, not the microwatersheds

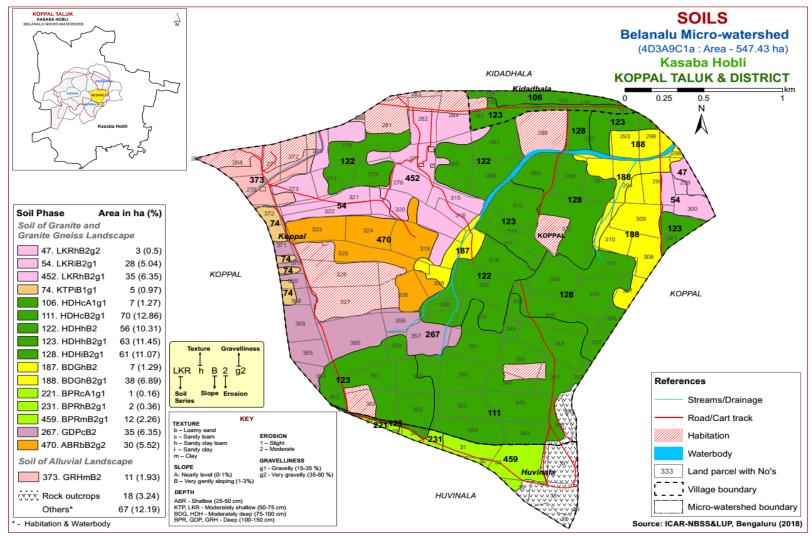


Fig 3.5 Soil Phase or Management Units- Belanalu Microwatershed

THE SOILS

Detailed information pertaining to the nature, extent and distribution of different kinds of soils occurring in Belanalu microwatershed is provided in this chapter. The microwatershed area has been identified as granite gneiss and alluvial landscapes based on geology. In all, 8 soil series were identified. Soil formation is the result of the combined effect of environmental and terrain factors that are reflected in soil morphology. The soil formation is dominantly influenced by the parent material, climate, time and relief.

A brief description of each of the 8 soil series identified followed by 17 soil phases (management units) mapped (Fig. 3.5) are furnished below. The physical and chemical characteristics of soil series identified in Belanalu microwatershed are given in Table 4.1 along with soil classification. The soils in any one map unit differ from place to place in their depth, texture, slope, gravelliness, erosion or any other site characteristic that affect management. The soil phase map can be used for identifying the suitability of areas for growing specific crops or for other alternative uses and also for deciding the type of conservation structures needed. The detailed information on soil and site-characteristics like soil depth, surface soil texture, slope, erosion, gravelliness, AWC, LCC etc, with respect to each of the soil phase identified is given village/survey number wise for the microwatershed in Appendix-I.

4.1 Soils of Granite gneiss Landscape

In this landscape, seven soil series were identified and mapped. Of these series, Hooradhahalli (HDH) series occupies maximum area of 257 ha (47%) followed by Lakkur (LKR) 66 ha (12 %) and others occupy minor area. The brief description of the soil series along with the soil phases identified and mapped is given below.

4.1.1 Abbigere series (ABR): Abbigere soils are shallow (25-50 cm), well drained, have dark reddish brown red gravelly sandy clay soils. They have developed from weathered granite gneiss and occur on very gently sloping uplands under cultivation. The Abbigere series has been classified as a member of the clayey- skeletal, mixed, isohyperthermic (Paralithic) family of Rhodustalfs

The thickness of the solum ranges from 28 to 48 cm. The thickness of A-horizon ranges from 12 to 17 cm. Its colour is in 5YR and 2.5 YR hue with value 3 to 4 and chroma 3 to 4. The texture is sandy clay with 20 to 35 per cent gravel. The thickness of B-horizon ranges from 16 to 32 cm. Its colour is in 2.5 YR and 5 YR hue with value 2.5 to 4 and chroma 2 to 3. Its texture is sandy clay to clay with gravel content of more than 35 per cent. The available water capacity is very low (<50 mm/m). One soil phase was identified and mapped.

4.1.2 Kethanapura (KTP) Series: Kethanapura soils are moderately shallow (50-75cm), well drained, have dark reddish brown sandy clay soils. They are developed from weathered granite gneiss and occur on very gently to gently sloping uplands. The Kethanapura series has been classified as a member of the fine, mixed, isohyperthermic family of Rhodic Paleustalfs .

The thickness of the solum ranges from 53 to 72 cm. The thickness of Ahorizon ranges from 11 to 16 cm. Its colour is in 5YR and 2.5 YR hue with value 3 to 4 and chroma 3 to 6. The texture varies from loamy sand to sandy clay loam with 15 to 40 per cent gravel. The thickness of B-horizon varies from 41 to 56 cm. Its colour is in 2.5 YR hue with value 3 to 4 and chroma 4 to 6. Texture is dominantly sandy clay loam with 15 to 35 per cent gravel. The available water capacity is medium (101-150 mm/m). One soil phase was identified and mapped.

Landscape and soil profile characteristics of Kethanapura (KTP) Series

4.1.3 Lakkur (LKR) Series: Lakkur soils are moderately shallow (50-75cm), well drained, have reddish brown to dark red gravelly sandy clay soils. They have developed from weathered granite gneiss and occur on nearly level to very gently and gently sloping uplands. The Lakkur series has been classified as a member of the clayey-skeletal, mixed, isohyperthermic family of Typic Rhodustalfs.

The thickness of the solum ranges from 51 to 74 cm. The thickness of A horizon ranges from 12 to 18 cm. Its colour is in 5YR and 2.5 YR hue with value 3 to 4 and chroma 4 to 6. The texture varies from loamy sand to sandy clay loam with 15 to 50 per cent gravel. The thickness of B horizon ranges from 39 to 58 cm. Its colour is in 2.5 YR hue with value 3 to 4 and chroma 4 to 6. Texture is sandy clay with 40 to 60 per cent gravel. The available water capacity is low (50-100 mm/m). Three soil phases were identified and mapped.

Landscape and soil profile characteristics of Lakkur (LKR) Series

4.1.4 Hooradhahalli (HDH) Series: Hooradhahalli soils are moderately deep (75-100 cm), well drained, have red to dark red and reddish brown gravelly sandy clay to clay soils. They are developed from weathered granite gneiss and occur on very gently to gently sloping uplands. The Hooradhahalli series has been classified as a member of the clayey-skeletal, mixed isohyperthermic family of Rhodic Paleustalfs.

The thickness of the solum ranges from 76 to 100 cm. The thickness of A horizon ranges from 11 to 19 cm. Its colour is in 5 YR and 2.5 YR hue with value 3 to 4 and chroma 3 to 6. The texture varies from loamy sand to sandy clay with 15 to 50 per cent gravel. The thickness of B horizon varies from 65 to 83 cm. Its colour is in 2.5 YR hue with value 2.5 to 3 and chroma 4 to 6. Texture is sandy clay to clay with 35 to 50 per cent gravel. The available water capacity is low (50-100mm/m). Five soil phases were identified and mapped.

Landscape and soil profile characteristics of Hooradhahalli (HDH) Series

4.1.5 Bidanagere (BDG) Series: Bidanagere soils are moderately deep (75-100 cm), well drained, have dark reddish brown gravelly clay soils. They have developed from weathered granite gneiss and occur on very gently sloping uplands under cultivation. The Bidanagere series has been classified as a member of the clayey-skeletal, mixed, isohyperthermic family of Rhodic Paleustalfs.

The thickness of the solum ranges from 78 to 99 cm. The thickness of A-horizon ranges from 12 to 19 cm. Its colour is in 2.5 YR and 5 YR hue with value 2 to 3 and chroma 3 to 4. The texture varies from sandy clay loam to sandy clay with 10 to 20 per cent gravel. The thickness of B-horizon ranges from 68 to 85 cm. Its colour is in 5 YR and 2.5 YR hue with value 3 to 5 and chroma 3 to 4. Its texture is gravelly clay with gravel content of 35-60 per cent. The available water capacity is very low (<50 mm/m). Two soil phases were identified and mapped.

Landscape Soil Profile Characteristics of Bidanagere (BDG) Series

4.1.6 Balapur (BPR) Series: Balapur soils are deep (100-150 cm), well drained, have dark reddish brown to dark red, gravelly sandy clay to clay soils. These soils are developed from weathered granite gneiss and occur on very gently to gently sloping uplands. The Balapur series has been classified as a member of the clayey-skeletal, mixed, isohyperthermic family of Typic Rhodustalfs.

The thickness of the solum ranges from 102 to 147 cm. The thickness of A horizon ranges from 12 to 17cm. Its colour is in 5 YR and 2.5 YR hue with value and chroma 3 to 4. The texture ranges from loamy sand to sandy clay with 15 to 50 per cent gravel. The thickness of B horizon ranges from 90 to 132 cm. Its colour is in 2.5 YR hue with value 2.5 to 3 and chroma 4 to 6. Texture is sandy clay to clay with 35 to 50 per cent gravel. The available water capacity is medium (100-150 mm/m).Three soil phases were identified and mapped.

Landscape and soil profile characteristics of Balapur (BPR) Series

4.1.7 Giddadapalya (GDP) Series: Giddadapalya soils are deep (100-150 cm), well drained, have dark reddish brown to dark red, gravelly sandy clay to clay soils. They are developed from weathered granite gneiss and occur on very gently sloping uplands under cultivation. The Giddadapalya series has been classified as a member of the fine, mixed, isohyperthermic family of Rhodic Paleustalfs.

The thickness of the solum ranges from 106 to 145 cm. The thickness of Ahorizon ranges from 12 to 13 cm. Its colour is in 5 YR hue with value and chroma 3 to 4. The texture ranges from sandy loam with 10 to 15 per cent gravel. The thickness of Bhorizon ranges from 106 to 123 cm. Its colour is in 2.5 YR hue with value 3 to 4 and chroma 3 to 6. Texture is sandy clay to clay with 35 to 75 per cent gravel. The available water capacity is low (51-100 mm/m). One soil phases were identified and mapped.

Landscape and soil profile characteristics of Giddadapalya (GDP) Series

4.2 Soils of Alluvial Landscape

In this landscape, only one soil series were identified and mapped. The brief description of the soil series along with the soil phases identified and mapped is given below.

4.2.1 Gatareddihal (GRH) Series: Gatareddihal soils are deep (100-150 cm), moderately well drained, have black or dark grey to light olive brown, sodic clay soils. They are developed from alluvium and occur on nearly level to very gently sloping plains under cultivation. The Gatareddihal series has been classified as a member of the very fine, smectitic, isohyperthermic (calc) family of Sodic Haplusterts.

The thickness of the solum ranges from 102 to 149 cm. The thickness of Ahorizon ranges from 12 to 19 cm. Its colour is in 7.5 YR, 10 YR hue with value 3 to 4 and chroma 1 to 6. The texture is sandy clay loam to clay. The thickness of B-horizon ranges from 86 to 117 cm. Its colour is in 10 YR and 7.5 YR hue with value 3 and chroma 2 to 6. Texture is clay with less than 15 per cent gravel. The available water capacity is very high (>200 mm/m). One soil phase was identified and mapped.

Landscape and soil profile characteristics of Gatareddihal (GRH) Series

Table: 4.1 Physical and Chemical Characteristics of Soil Series identified in Dombarahalli-1microwatershed

Series Name: Abbigeri (ABR), **Pedon:** R-11 **Location:** 15⁰26'14.0"N, 76⁰16'39.0"E Abbigeri village, Koppal taluk and district

Analysis at: NBSS&LUP, Regional Centre, Bangalore. Classification: Clayey- skeletal, mixed, isohyperthermic (Paralithic) Rhodustalfs

				Size clas	s and par	ticle diam	eter (mm)					0/ Ma	• a4 a
			Total				Sand			Coarse	Texture	% Mo	oisture
Depth (cm)		Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0- 0.5)	Medium (0.5- 0.25)	Fine (0.25- 0.1)	Very fine (0.1- 0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-10	Ар	81.18	8.29	10.53	24.31	11.90	19.33	16.07	9.56	20	ls	7.13	3.91
10-25	Bt1	54.32	7.39	38.29	26.64	11.34	5.83	6.24	4.27	40	sc	14.71	11.30
25-40	Bt2	53.84	7.99	38.17	22.10	14.32	6.43	6.85	4.15	50	sc	16.45	12.00

Depth		oH (1:2.5		E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases		CEC	CEC/ Clay	Base	ESP
(cm)	ł)11 (1.2.3)	(1:2.5)	0.0.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	LSI
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%			cm	ol kg ⁻¹				%	%
0-10	6.13	-	-	0.02	0.81	-	1.56	0.50	0.04	0.01	2.12	3.60	0.34	58.76	0.36
1025	6.32	-	-	0.03	0.79	-	5.63	2.41	0.12	0.01	8.17	10.60	0.28	77.07	0.10
25-40	6.27	-	-	0.03	0.64	-	5.41	2.24	0.08	0.01	7.74	12.40	0.32	62.44	0.09

Series Name:Kethanapura (KTP), Pedon: R-9Location:15°25'28.81"N, 76°22'00.76" E Jabbaragudda village, Koppal taluk and districtAnalysis at:NBSS&LUP, Regional Centre, BangaloreClassification:Fine, mixed, is

Classification: Fine, mixed, isohyperthermic Rhodic Paleustalfs

	Depth Horizon (cm)			Size clas	s and par	ticle diam	eter (mm)		21			0/ Ma	
_			Total				Sand			Coarse	Texture	% Mo	oisture
Depth (cm)	em)	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0- 0.5)	Medium (0.5- 0.25)	Fine (0.25- 0.1)	Very fine (0.1- 0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-18	Ap	83.64	10.52	5.84	25.61	22.36	15.24	13.52	6.91	10	ls	7.92	2.58
18-38	Bt1	46.06	5.63	48.31	21.58	9.54	3.53	4.15	7.26	30	sc	19.62	14.48
38-73	Bt2	52.31	6.91	40.78	24.56	12.74	5.96	5.55	3.49	30	sc	17.73	11.95

Depth	r	oH (1:2.5		E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases		CEC	CEC/ Clay	Base satura	ESP
(cm)	ł)11 (1.2.3)	(1:2.5)	0.0.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	tion	LSI
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%			cm	ol kg ⁻¹				%	%
0-18	6.42	-		0.07	1.24	-	2.95	0.93	0.57	0.02	4.48	4.41	0.75	100.00	0.05
18-38	6.63	-	_	0.09	0.70	-	11.71	3.53	0.98	0.08	16.31	16.59	0.34	98.30	0.50
38-73	6.88	-	-	0.15	0.48	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					15.75	0.39	98.42	0.80

Soil Series: Lakkur (LKR), **Pedon:** RM-8. **Location:** 15⁰04'26.3"N, 75⁰37'84.1"E, (4D4A3I1f), Belhatti village, Shirahatti taluk, Gadag district

Classification: Clayey-skeletal, mixed, isohyperthermic Typic Rhodustalfs Analysis at: NBSS&LUP, Regional Centre, Bengaluru

				Size clas	s and par	ticle diam	eter (mm)					0/ N /a	:
			Total				Sand			Coarse	Texture	% Mo	isture
Depth (cm)		Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0- 0.5)	Medium (0.5- 0.25)	Fine (0.25- 0.1)	Very fine (0.1- 0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-21	Ар	74.00	8.34	17.66	9.62	11.57	15.76	23.13	13.92	20	sl	-	-
21-35	Bt	54.37	10.48	35.14	16.33	8.64	9.69	11.59	8.11	40	sc	-	-
35-56	Bc	48.37	13.46	38.17	10.96	7.69	9.17	11.28	9.27	60	sc	-	-

Depth	r	oH (1:2.5		E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases		CEC	CEC/ Clay	Base	ESP
(cm)	ł)11 (1.2.3)	(1:2.5)	0.0.	CaCO3	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	LSI
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%	cmol kg ⁻¹							%	%
0-21	8.18	-	-	0.30	0.56	0.94	0.31 0.55 0.86					12.19	0.69	100.00	4.51
21-35	8.17	-	_	0.30	0.52	1.29	-	-	0.19	0.84	1.03	22.18	0.63	100.00	3.79
35-56	7.95	-	-	0.46	0.48	1.99	-	-	0.24	0.58	0.82	22.94	0.60	100.00	2.53

Soil Series: Hooradhahalli (HDH), Pedon: RM-69 Location: 13⁰24'31''N, 76⁰33'41''E, (4D3D8G2d), Hesarahalli village, Chikkanayakanahalli taluk, Tumukura district Analysis at: NBSS&LUP, Regional Centre, Bengaluru Classification: Clayey-skeletal, mixed isohyperthermic RI **Classification:** Clayey-skeletal, mixed isohyperthermic Rhodic Paleustalfs

				Size clas	s and par	ticle diam	eter (mm)					0/ N.	•
			Total				Sand			Coarse	Texture	% N10	oisture
Depth (cm)	(cm)	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0- 0.5)	Medium (0.5- 0.25)	Fine (0.25- 0.1)	Very fine (0.1- 0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-18	Ар	72.56	15.17	12.27	4.57	8.33	17.38	23.88	18.39	35	sl	-	-
18-33	Bt1	56.29	10.75	32.96	7.88	10.24	13.41	14.43	10.34	55	scl	-	-
33-58	Bt2	46.66	10.79	42.55	10.79	9.87	8.43	9.04	8.53	55	SC	-	-
58-90	Bt3	43.09	13.63	43.27	9.90	8.25	7.32	8.76	8.87	45	с	-	-

Depth		oH (1:2.5		E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases		CEC	CEC/ Clay	Base	ESP
(cm)	4)II (1.2.3 _.)	(1:2.5)	0.0.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	LSI
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%	cmol kg ⁻¹							%	%
0-18	6.54	-	-	0.07	0.60	0.00	2.68 1.38 0.44 0.42 4.91						0.48	84.07	7.11
18-33	5.90	-	-	0.07	0.52	0.00	3.99	1.27	0.09	0.37	5.71	8.61	0.26	66.32	4.29
33-58	6.16	-	-	0.07	0.44	0.00	4.92	1.67	0.08	0.55	7.22	10.00	0.24	72.23	5.50
58-90	6.39	-	-	0.06	0.40	0.00	4.30	2.02	0.08	0.46	6.87	9.21	0.21	74.61	5.05

Series: Bidanagere (BDG), Pedon: RM-3 Location: 13⁰22'11"N, 76⁰38'03"E, (4D3D8G1a), Tharabenahalli village, Chikkanayakanahalli taluk, Tumakuru district. Analysis at: NBSS&LUP, Regional Centre, Bengaluru Classification: Clavey-skeletal, mixed, isohyperthermic Rhodic, Paleustalfs

				Size clas	s and par	ticle diam	eter (mm)					0/ N/-	•
			Total				Sand			Coarse	Texture	% MI0	oisture
Depth (cm)	Horizon	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0- 0.5)	Medium (0.5- 0.25)	Fine (0.25- 0.1)	Very fine (0.1- 0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-20	Ар	81.19	11.25	7.56	12.54	15.07	17.90	21.94	13.75	50	ls	-	-
20-35	Bt1	57.45	11.45	31.10	12.76	11.02	10.92	12.45	10.31	50	scl	-	-
35-92	Bt2	44.63	7.85	47.52	12.40	9.61	8.37	7.75	6.51	60	с	-	_

Depth		oH (1:2.5		E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases		CEC	CEC/ Clay	Base	ESP
(cm)	ł)11 (1.2.3)	(1:2.5)	0.0.	CaCO3	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%	cmol kg ⁻¹							%	%
0-20	6.24	-	-	0.06	0.60	0.00	1.61	0.26	0.10	0.01	1.98	3.76	0.50	52.56	0.35
20-35	5.99	-	_	0.02	0.40	0.00	4.25	0.46	0.08	0.28	5.07	8.02	0.26	63.18	3.46
35-92	6.70	-	-	0.03	0.20	0.00	5.45	0.31	0.10	0.22	6.09	9.90	0.21	61.48	2.24

Soil Series: Balapur (BPR), **Pedon**: RM-78 **Location:** 13⁰26'39"N, 76⁰35'03"E, (4D3D8G2c), Kasaba, Chikkanayakanahalli taluk, Tumakuru district **Analysis at:** NBSS&LUP, Regional Centre, Bengaluru **Classification:** Clavey-skeletal, mixed, isohyperthermic, Typic Rhodustalfs

			<i>, с</i>	Size clas	U	ticle diam	eter (mm)	5	, ,		, , , , , , , , , , , , , , , , , , , 	% Moisture	
			Total				Sand		Coarse	Texture	76 MOISture		
Depth (cm)	Horizon	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0- 0.5)	Medium (0.5- 0.25)	Fine (0.25- 0.1)	Very fine (0.1- 0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-12	Ap	65.66	18.66	15.68	4.14	6.16	13.33	21.82	20.20	-	sl	-	-
12-34	Bt1	61.91	11.52	26.57	2.36	6.78	12.53	21.36	18.89	-	scl	-	-
34-60	Bt2	51.81	11.24	36.94	4.66	5.70	12.23	15.96	13.26	30	sc	-	-
60-84	Bt3	46.61	9.02	44.37	14.70	6.88	7.51	8.97	8.55	55	sc	_	_
84-112	Bt4	48.75	12.92	38.33	15.73	8.13	6.87	8.23	9.79	60	sc	-	-
112-127	Bc	50.98	24.74	24.28	5.25	4.63	5.15	10.92	25.03	50	scl	-	-

Depth	pH (1:2.5)			E.C. (1:2.5)	0.C.		Exchangeable bases						CEC/	Base	ESP
(cm)						CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%	cmol kg ⁻¹							%	%
0-12	6.64	-	-	0.03	0.56	0.00	1.90	1.32	0.21	0.03	3.46	5.45	0.35	63.48	0.51
12-34	6.99	-	-	0.02	0.48	0.00	3.66	1.90	0.07	0.08	5.70	7.82	0.29	72.93	0.96
34-60	7.29	-	-	0.02	0.40	0.00	5.13	2.08	0.11	0.20	7.52	11.19	0.30	67.18	1.75
60-84	7.50	-	-	0.02	0.32	0.00	5.83	6.36	0.13	0.23	12.55	12.38	0.28	101.43	1.83
84-112	7.54	-	-	0.02	0.24	0.00	6.02	6.59	0.11	0.25	12.96	12.77	0.33	101.49	1.97
112-127	7.90	-	-	0.02	0.20	0.00	8.04	3.62	0.07	0.32	12.04	12.47	0.51	96.56	2.55

Series Name: Giddadapalya (GDP), **Pedon:** R-8 **Location:** 15⁰25'26"N, 76⁰10'59"E, Kalakeri village, Koppal taluk and district **Analysis at:** NBSS&LUP, Regional Centre, Bangalore. Classification: Fine Classification: Fine, mixed, isohyperthermic Rhodic Paleustalfs

				Size clas	s and par	ticle diam	eter (mm)					% Moisture	
			Total				Sand		Coarse	Texture	70 WOISture		
Depth (cm)	Horizon	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0- 0.5)	Medium (0.5- 0.25)	Fine (0.25- 0.1)	Very fine (0.1- 0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-16	Ар	74.95	9.24	15.81	18.43	18.94	13.85	14.97	8.76	-	sl	11.88	5.09
16-43	Bt1	41.69	13.89	44.42	9.84	10.90	7.41	7.62	5.93	-	с	23.13	14.53
43-61	Bt2	47.67	6.13	46.19	21.14	10.15	5.29	6.45	4.65	-	SC	21.60	11.87
61-83	Bt3	52.52	7.10	40.38	24.42	10.59	5.66	7.55	4.30	40	sc	19.51	11.35
83-119	Bt4	43.76	11.59	44.65	20.15	7.56	5.77	5.46	4.83	60	с	20.80	12.06
119-139	Bt5	54.93	9.84	35.23	29.70	10.49	5.50	5.92	3.32	50	sc	15.24	11.97

Depth	pH (1:2.5)			E.C. (1:2.5)	0.C.	C- CO	Exchangeable bases						CEC/	Base	ESP
(cm)						CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	LSP
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%	cmol kg ⁻¹							%	%
0-16	7.88	-	-	0.103	0.79	-	5.98	1.35	0.05	0.22	7.60	7.8	0.49	97	2.87
16-43	7.81	-	-	0.117	0.66	-	13.99	1.97	0.08	0.46	16.50	16.9	0.38	98	2.74
43-61	7.74	-	-	0.132	0.51	-	12.70	2.18	0.08	0.69	15.64	15.9	0.34	98	4.36
61-83	7.72	-	-	0.142	0.39	-	11.46	2.22	0.08	0.66	14.41	14.6	0.36	99	4.53
83-119	7.58	-	-	0.115	0.22	-	11.30	2.70	0.09	0.73	14.82	15.3	0.34	97	4.79
119-139	7.50	-	-	0.113	0.22	-	10.03	2.19	0.07	0.65	12.95	13.2	0.37	98	4.89

Series Name: Gatareddihal (GRH) Pedon: R-7 **Location:** 15⁰14'20.8''N, 76⁰04'28.4'' E Gudlanur village, Koppal taluk and district **Analysis at:** NBSS&LUP, Regional Centre, Bangalore. **Classification:** Very **Classification:** Very fine, smectitic (calc), isohyperthermic Sodic Haplusterts

				Size clas	s and par	ticle diam	eter (mm)					0/ Ma	•
			Total				Sand		Coarse	Texture	% Moisture		
Depth (cm)	Horizon	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0- 0.5)	Medium (0.5- 0.25)	Fine (0.25- 0.1)	Very fine (0.1- 0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-18	Ар	20.07	19.71	60.23	1.76	3.75	3.64	3.42	7.50	-	с	41.70	29.56
18-51	Bss1	15.11	17.47	67.42	3.16	3.04	2.25	3.38	3.27	-	с	59.43	38.52
51-80	Bss2	13.19	18.74	68.07	1.80	2.93	2.37	3.04	3.04	-	с	60.69	40.91
80-107	Bss3	17.54	19.50	62.96	2.46	4.13	3.24	4.25	3.46	-	с	57.25	37.31
107-131	BC	9.42	17.48	73.10	1.48	1.82	1.36	1.93	2.84	-	с	64.62	43.98

Depth	- DH(1:2.5)			E.C.	0.C.	CaCO ₃ -		Exch	angeabl	e bases	CEC	CEC/ Clay	Base satura	ESP	
(cm)				(1:2.5)			Ca	Mg	K	Na	Total	CEC	Clay	tion	LSI
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%	cmol kg ⁻¹							%	%
0-18	9.08	-	-	0.23	0.33	6.89	-	-	0.70	6.36	-	63.21	1.05	100.00	7.11
18-51	9.19	-	-	0.61	0.49	9.10	-	-	0.54	14.20	-	66.05	0.98	100.00	15.98
51-80	9.27	-	-	0.56	0.29	9.36	-	-	0.49	14.75	-	65.63	0.96	100.00	17.07
80-107	9.28	-	_	0.57	0.39	9.62	-	-	0.44	14.64	_	63.95	1.02	100.00	17.49
107-131	9.04	-	_	1.08	0.31	8.32	_	-	0.52	16.40	_	68.36	0.94	100.00	17.30

INTERPRETATION FOR LAND RESOURCE MANAGEMENT

The most important soil and site characteristics that affect the land use and conservation needs of an area are land capability, land irrigability, soil depth, soil texture, coarse fragments, available water capacity, soil slope, soil erosion, soil reaction etc. These are interpreted from the data base generated through land resource inventory and several thematic maps are generated. These would help in identifying the areas suitable for growing crops and, soil and water conservation measures and structures needed thus helping to maintain good soil health for sustained crop production. The various thematic maps generated are described below.

5.1 Land Capability Classification

Land capability classification is an interpretative grouping of soil map units (soil phases) mainly based on inherent soil characteristics, external land features and environmental factors that limit the use of land for agriculture, pasture, forestry, or other uses on a sustained basis (IARI, 1971). The land and soil characteristics used to group the land resources in an area into various land capability classes, subclasses and units are *Soil characteristics*: Soil depth, soil texture, coarse fragments, soil reaction, available water capacity, calcareousness, salinity/alkali *etc*.

Land characteristics: Slope, erosion, drainage, rock outcrops.

Climate: Total rainfall and its distribution, and length of crop growing period.

The Land Capability Classification system is divided into land capability classes, subclasses and units based on the level of information available. Eight land capability classes are recognized. They are

- *Class I*: They are very good lands that have no limitations or very few limitations that restrict their use.
- *Class II*: They are good lands that have minor limitations and require moderate conservation practices.
- *Class III*: They are moderately good lands that have severe limitations that reduce the choice of crops or that require special conservation practices.
- *Class IV*: They are fairly good lands that have very severe limitations that reduce the choice of crops or that require very careful management.
- *Class V*: Soils in these lands are not likely to erode, but have other limitations like wetness that are impractical to remove and as such not suitable for agriculture, but suitable for pasture or forestry with minor limitations.
- *Class VI*: The lands have severe limitations that make them generally unsuitable for cultivation, but suitable for pasture or forestry with moderate limitations.
- *Class VII*: The lands have very severe limitations that make them unsuitable for cultivation, but suitable for pasture or forestry with major limitations.

Class VIII: Soil and other miscellaneous areas (rock lands) that have very severe limitations that nearly preclude their use for any crop production, but suitable for wildlife, recreation and installation of wind mills.

The land capability subclasses are recognized based on the dominant limitations observed within a given land capability class. The subclasses are designated by adding a lower case letter like 'e', 'w', 's', or 'c' to the class numeral. The subclass "e" indicates that the main hazard is risk of erosion, "w" indicates drainage or wetness as a limitation for plant growth, "s" indicates shallow soil depth, coarse or heavy textures, calcareousness, salinity/alkalinity or gravelliness and "c" indicates limitation due to climate.

The land capability subclasses have been further subdivided into land capability units based on the kinds of limitations present in each subclass. Ten land capability units are used in grouping the soil map units. They are stony or rocky (0), erosion hazard (slope, erosion) (1), coarse texture (sand, loamy sand, sandy loam) (2), fine texture (cracking clay, silty clay) (3), slowly permeable subsoil (4), coarse underlying material (5), salinity/alkali (6), stagnation, overflow, high ground water table (7), soil depth (8) and fertility problems (9). The capability units thus identified have similar soil and land characteristics that respond similarly to a given level of management. The soils of the microwatershed have been classified upto land capability subclass level.

The 17 soil map units identified in the Belanalu Microwatershed are grouped under two land capability classes and four land capability subclasses (Fig. 5.1).

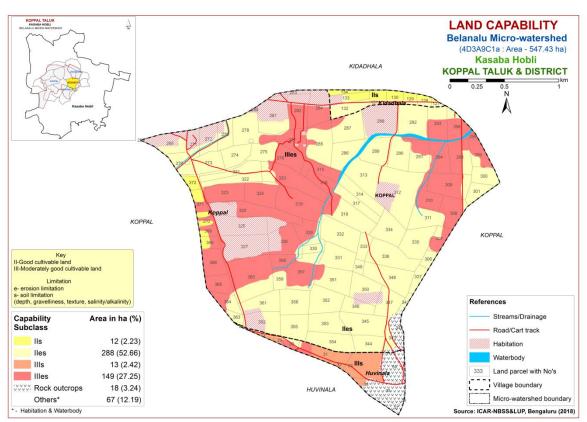


Fig. 5.1 Land Capability map of Belanalu Microwatershed

Entire cultivated area in the microwatershed is suitable for agriculture. Good lands (Class II) cover an area of about 300 ha (55%) and distributed in the major part of the microwatershed with minor problems of soil and erosion. Moderately good lands (Class III) occupy an area of about 162 ha (30%) and distributed in the western and northeastern part of the microwatershed with severe limitations of soil and erosion. An area of about 18 ha (3%) is covered by rock out crops and 67 ha (12%) is under habitation and water body.

5.2 Soil Depth

Soil depth refers to the depth of the soil occurring above the parent material or hard rock. The depth of the soil determines the effective rooting depth for plants and in accordance with soil texture, mineralogy and gravel content, the capacity of the soil column to hold water and nutrient availability. Soil depth is one of the most important soil characteristic that is used in differentiating soils into different soil series. The soil depth classes used in identifying soils in the field are very shallow (<25 cm), shallow (25-50 cm), moderately shallow (50-75 cm), moderately deep (75-100 cm), deep (100-150 cm) and very deep (>150 cm). They were used to classify the soils into different depth classes and a soil depth map was generated (Fig. 5.2). The area extent and their geographical distribution in the microwatershed is given in Fig. 5.2.

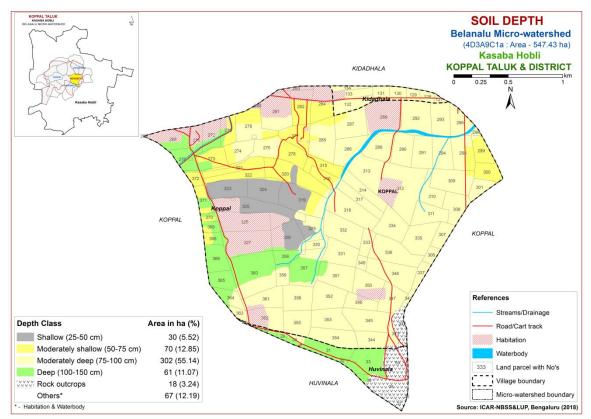


Fig. 5.2 Soil Depth map of Belanalu Microwatershed

Shallow soils (25-50 cm) cover an area of about 30 ha (6%) and distributed in the western part of the microwatershed. Moderately shallow (50-75 cm) soils cover an area of

about 70 ha (13%) and distributed in the northwestern part of the microwatershed. Maximum area of about 302 ha (55%) is moderately deep soils (75-100 cm) and distributed in the major part of the microwatershed. Deep (100- 150 cm) soils occupy an area of about 61 ha (11%) and distributed in the western part of the microwatershed.

The most productive lands cover about 61 ha (11%) where all climatically adopted long duration crops be grown. The problem lands cover about 30 ha (6%) where only short duration can be grown. The probability of crop failure is very high.

5.3 Surface Soil Texture

Texture is an expression to indicate the coarseness or fineness of the soil as determined by the relative proportion of primary particles of sand, silt and clay. It has a direct bearing on the structure, porosity, adhesion and consistence. The surface layer of a soil to a depth of about 25 cm is the layer that is most used by crops and plants. The surface soil textural class provides a guide to understanding soil-water retention and availability, nutrient holding capacity, infiltration, workability, drainage, physical and chemical behavior, microbial activity and crop suitability. The textural classes used for LRI were used to classify and a surface soil texture map was generated. The area extent and their geographical distribution in the microwatershed is shown in Fig 5.3.

An area of about 30 ha (6%) is sandy (loamy sand) at the surface and distributed in the western part of the microwatershed. Maximum area of about 316 ha (58%) is loamy (sandy loam and sandy clay loam) and distributed in the major part of the microwatershed. Clayey (sandy clay and clay) soils cover about 117 ha (21%) and are distributed in the northwestern and southern part of the microwatershed.

The most productive lands with respect to surface soil texture are clayey soils that (21%) have high potential for soil-water retention and availability and nutrient retention and availability, but have more problems of drainage, infiltration, workability and other physical problems. The other productive lands are loamy (58%) soils which also have high potential for soil- water retention and nutrient availability but have no drainage or other physical problems. The problem soils are sandy covering 6 per cent area that have , moisture and nutrient constraints.

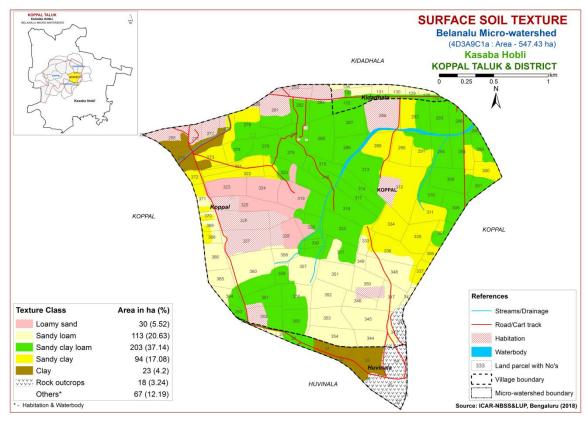


Fig. 5.3 Surface Soil Texture map of Belanalu Microwatershed

5.4 Soil Gravelliness

Gravel is the term used for describing coarse fragments between 2 mm and 7.5 cm diameter and stones for those between 7.5 cm and 25 cm. The presence of gravel and stones in soil reduces the volume of soil responsible for moisture and nutrient storage, drainage, infiltration and runoff, and hinders plant growth by impeding root growth and seedling emergence, intercultural operations and farm mechanization. The gravelliness classes used in LRI were used to classify the soils and using these classes a gravelliness map was generated. The area extent and their geographic distribution in the microwatershed is shown in Fig. 5.4.

The soils that are non-gravelly (<15% gravel) cover an area of about 109 ha (20%) and distributed in the western and central part of the microwatershed. Maximum area of about 321 ha (59%) is covered by gravelly (15-35% gravel) soils and are distributed in the major part of the microwatershed. Very gravelly soils (35-60%) cover about 33 ha (6%) and distributed in the western part of the microwatershed (Fig. 5.4).

The most productive lands with respect to gravelliness are found to be 20 per cent. They are non-gravelly with less than 15 per cent gravel and have potential for growing both annual and perennial crops. The problem soils that are very gravelly (35-60%) cover about 6 per cent where only short duration crops can be grown.

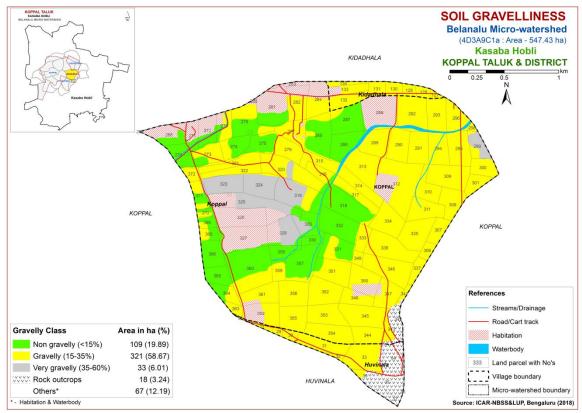


Fig. 5.4 Soil Gravelliness map of Belanalu Microwatershed

5.5 Available Water Capacity

The soil available water capacity (AWC) is estimated based on the ability of the soil column to retain water between the tensions of 0.33 and 15 bar in a depth of 100 cm or the entire solum if the soil is shallower. The AWC of the soils (soil series) as estimated by considering the soil texture, mineralogy, soil depth and gravel content (Sehgal *et al.*, 1990) and accordingly the soil map units were grouped into five AWC classes *viz*, very low (<50 mm/m), low (50-100 mm/m), medium (100-150 mm/m), high (150-200 mm/m) and very high (>200 mm/m) and using these values, an AWC map was generated. The area extent and their geographic distribution of different AWC classes in the microwatershed is shown in Fig. 5.5.

An area of about 397 ha (73%) in the microwatershed has soils that are very low (<50 mm/m) in available water capacity and are distributed in the major part of the microwatershed. An area of about 55 ha (10%) has soils that are low (51 to 100 mm/m) in available water capacity and are distributed in the western part of the microwatershed. An area of about 11 ha (2 %) is very high (>200 mm/min) in available water capacity and distributed in the northwestern part of the microwatershed.

An area of about 397 ha (73%) in the microwatershed has soils that are problematic with regard to available water capacity. Here, only short duration crops can be grown and the probability of crop failure is very high. These areas are best put to other alternative uses. An area of about 11 ha (2%) has soils that have high potential (151->200

mm/m) with regard to available water capacity where all climatically adapted long duration crops can be grown successfully.

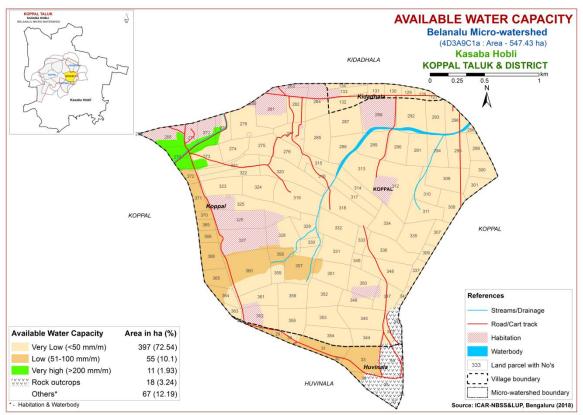


Fig. 5.5 Soil Available Water Capacity map of Belanalu Microwatershed

5.6 Soil Slope

Soil slope refers to the inclination of the surface of the land. It is defined by gradient, shape and length, and is an integral feature of any soil as a natural body. Slope is considered important in soil genesis, land use and land development. The length and gradient of slope influences the rate of runoff, infiltration, erosion and deposition. The soil map units were grouped into two slope classes and a slope map was generated showing the area extent and their geographic distribution of different slope classes in the microwatershed (Fig. 5.6).

Nearly level (0-1%) lands cover an area of about 8 ha (1%) and distributed in the northern part of the microwatershed. Very gently sloping (1-3%) lands cover a maximum area of about 455 ha (83%) and distributed in the major part of the microwatershed. In all these areas, all climatically adapted annual and perennial crops can be grown without much soil and water conservation and other land development measures.

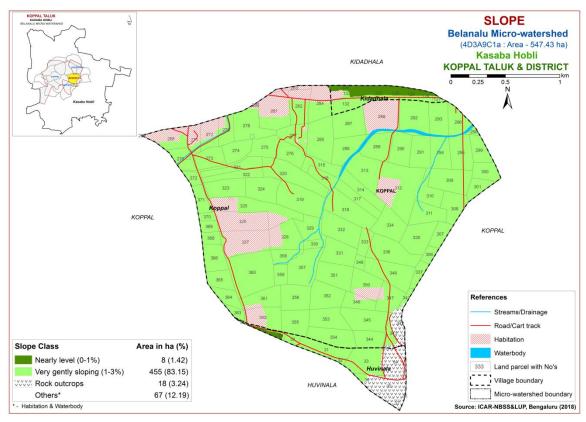


Fig. 5.6 Soil Slope map of Belanalu Microwatershed

5.7 Soil Erosion

Soil erosion refers to the wearing away of the earth's surface by the forces of water, wind and ice involving detachment and transport of soil by raindrop impact. It is used for accelerated soil erosion resulting from disturbance of the natural landscape by burning, excessive grazing and indiscriminate felling of forest trees and tillage, all usually by man. The erosion classes showing an estimate of the current erosion status as judged from field observations in the form of rills, gullies or a carpet of gravel on the surface are recorded. Four erosion classes, viz, slight erosion (e1), moderate erosion (e2), severe erosion (e3) and very severe erosion (e4) are recognized. The soil map units were grouped into different erosion classes and a soil erosion map generated. The area extent and their spatial distribution in the microwatershed is given in Figure 5.7.

Slightly eroded lands cover an area of about 13 ha (2 %) and distributed in the western and northern part of the microwatershed. Maximum area of about 450 ha (82 %) is moderately eroded (e2 class) and distributed in the major part of the microwatershed. Moderately eroded lands are problematic and need appropriate soil and water conservation and other land development measures.

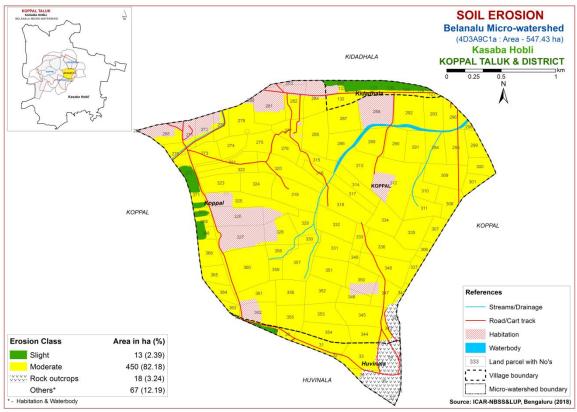


Fig. 5.7 Soil Erosion map of Belanalu Microwatershed

FERTILITY STATUS

Soil fertility plays an important role in increasing crop yield. The adoption of high yielding varieties that require high amounts of nutrients has resulted in deficiency symptoms in crops and plants due to imbalanced fertilization and poor inherent fertility status, as these areas are characterized by low rainfall and high temperatures. Hence, it is necessary to know the fertility (macro and micro nutrients) status of the soils of the watersheds for assessing the kind and amount of fertilizers required for each of the crop intended to be grown. For this purpose, the surface soil samples collected from the grid points (one soil sample at every 320 m grid interval) all over the microwatershed through land resource inventory in the year 2017 were analyzed for pH, EC, organic carbon, available phosphorus and potassium, and for micronutrients like zinc, boron, copper, iron and manganese, and secondary nutrient sulphur.

Soil fertility data generated has been assessed and individual maps for all the nutrients for the microwatershed have been generated by using the Kriging method under GIS. The village/survey number wise fertility data for the microwatershed is given in Appendix-II.

6.1 Soil Reaction (pH)

The soil analysis of the Belanalu microwatershed for soil reaction (pH) showed that slightly acid (pH 6.0-6.5) soils cover an area of about 17 ha (3%) and are distributed in the northern part of the microwatershed. Neutral soils (pH 6.5-7.3) cover an area of about 225 ha (41%) and distributed in the major part of the microwatershed. Slightly alkaline soils (pH 7.3-7.8) cover about 141 ha (26%) and distributed in the western and central part of the microwatershed. Moderately alkaline (pH 7.8-8.4) soils cover an area of about 70 ha (13%) and distributed in the northwestern and eastern part of the microwatershed. An area of about 11 ha (2%) is strongly to very strongly alkaline (pH 8.4->9.0) and is distributed in the eastern and northwestern part of the microwatershed. (Fig.6.1). An area of about 17 ha (3%) is acid, 225 ha (41%) is neutral and 222 ha (40%) is alkaline in reaction.

6.2 Electrical Conductivity (EC)

The Electrical Conductivity of the soils of the entire microwatershed area is $<2 \text{ dSm}^{-1}$ (Fig 6.2) and as such the soils are non-saline.

6.3 Organic Carbon

An area of about 13 ha (2%) is medium (0.5-0.75%) and distributed in the northern part of the microwatershed. An area of about 450 ha (82%) is high (>0.75%) and distributed in the major part of the microwatershed (Fig.6.3).

6.4 Available Phosphorus

Maximum area of about 442 ha (81%) is medium (23-57 kg/ha) and distributed in the major part of the microwatershed. An area of about 21 ha (4 %) is high (>57 kg/ha) and distributed in the southern part of the microwatershed. The areas with high phosphorus content reduce 25 per cent from the recommended dose to avoid the excess application of fertilizer. Apply additional 25% phosphorus in areas where it is medium (Fig 6.4).

6.5 Available Potassium

Available potassium is low (<145 kg/ha) in 37 ha (7%) and distributed in the western part of the microwatershed. Maximum area of about 262 ha (48%) is medium (145-337 kg/ha) and distributed in the major part of the microwatershed. An area of about 164 ha (30%) is high (>337 kg/ha) and distributed in the major part of the microwatershed. The areas with high potassium content reduce 25 per cent from the recommended dose to avoid the excess application of fertilizer. Apply additional 25% potassium in areas where it is medium (Fig 6.5).

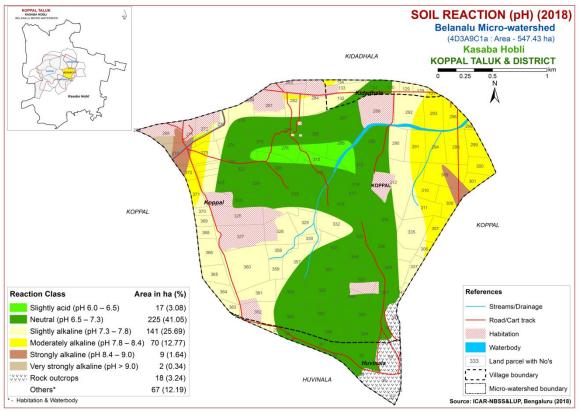


Fig.6.1 Soil Reaction (pH) map of Belanalu Microwatershed

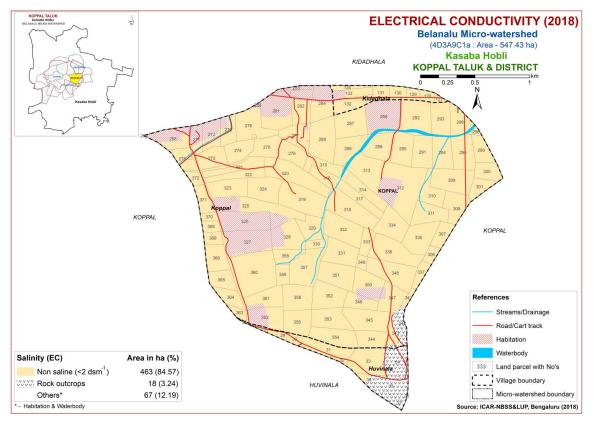


Fig.6.2 Electrical Conductivity (EC) map of Belanalu Microwatershed

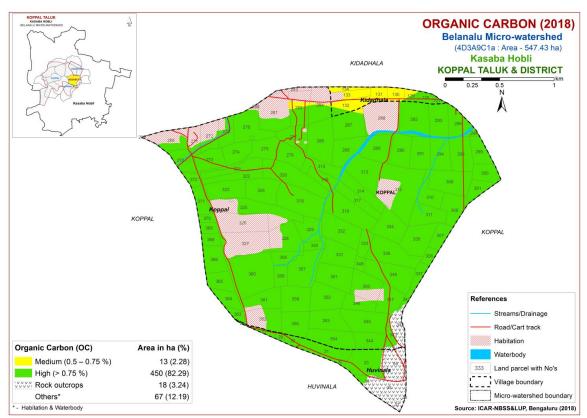


Fig.6.3 Soil Organic Carbon map of Belanalu Microwatershed

6.6 Available Sulphur

Soil analysis of available sulphur content in Belanalu microwatershed showed that a maximum area of about 253 ha (46%) is low and distributed in the major part of the microwatershed. An area of about 141 ha (26%) is medium (10-20 ppm) in available sulphur content and distributed in the northern part of the microwatershed. An area of about 69 ha (13%) is high (>20 ppm) and distributed in the northern part of the microwatershed (Fig.6.6). The areas that are low and medium in available sulphur need to be applied with magnesium sulphate or gypsum or factomphos (p) fertilizer (13% sulphur) for 2-3 years for the deficiency to be corrected.

6.7 Available Boron

An area of about 31 ha (6%) is low (< 0.5ppm) in available boron and distributed in the northern and eastern part of the microwatershed. Maximum area of about 432 ha (79%) is medium (0.5-1.0 ppm) and distributed in the major part of the microwatershed (Fig.6.7).

6.8 Available Iron

Available iron content in the soils of the Belanalu microwatershed is deficient (<4.5 ppm) in an area of about 100 ha (18%) and distributed in the western and eastern part of the microwatershed. Maximum area of about 363 ha (66 %) showed sufficiency (>4.5 ppm) with respect to iron content and distributed in the major part of the microwatershed (Fig 6.8).

6.9 Available Manganese

Available manganese content is sufficient (>1.0 ppm) in the entire microwatershed area (Fig 6.9).

6.10 Available Copper

Available copper content is sufficient (>0.2 ppm) in the entire microwatershed area (Fig 6.10).

6.11 Available Zinc

Available zinc content is deficient (<0.6 ppm) in an area of about 2 ha (<1%) and distributed in the southern part of the microwatershed. Maximum area of about 461 ha (84%) is sufficient (>0.6 ppm) and distributed in the major part of the microwatershed (Fig 6.11).

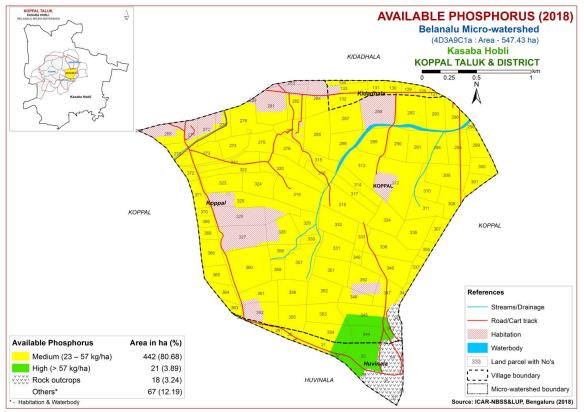


Fig.6.4 Soil Available Phosphorus map of Belanalu Microwatershed

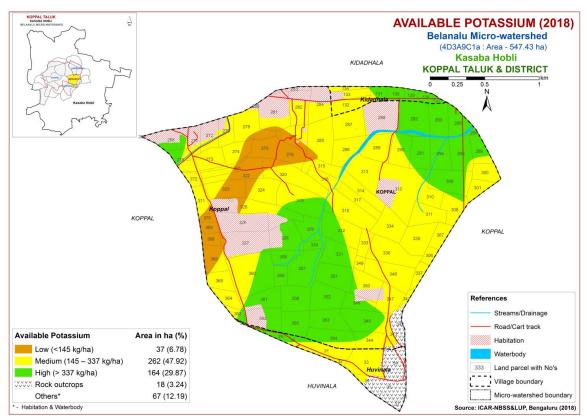


Fig.6.5 Soil Available Potassium map of Belanalu Microwatershed

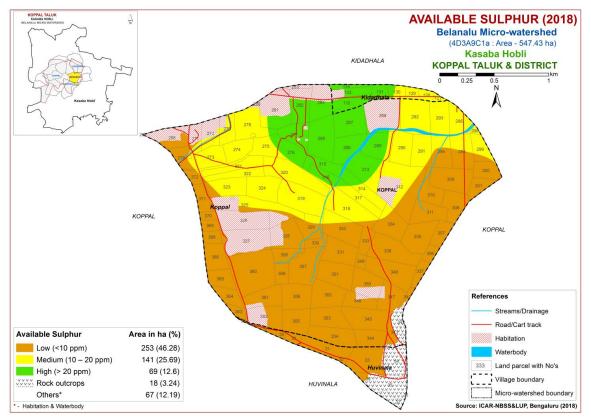


Fig.6.6 Soil Available Sulphur map of Belanalu Microwatershed

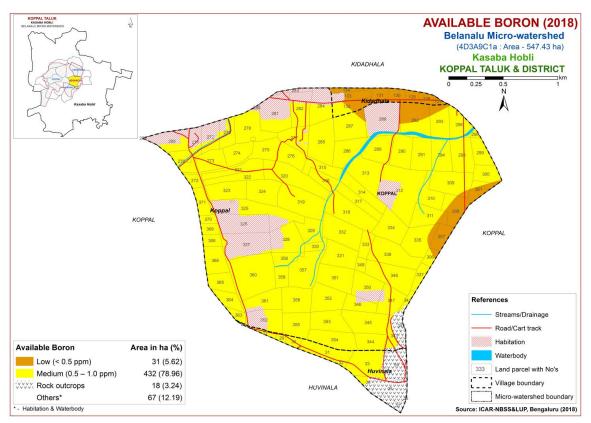


Fig.6.7 Soil Available Boron map of Belanalu Microwatershed

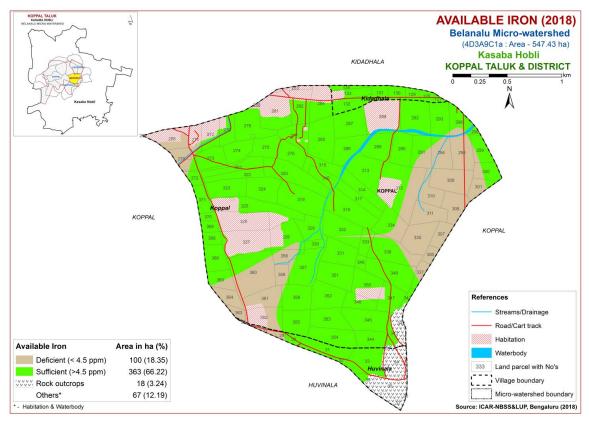


Fig.6.8 Soil Available Iron map of Belanalu Microwatershed

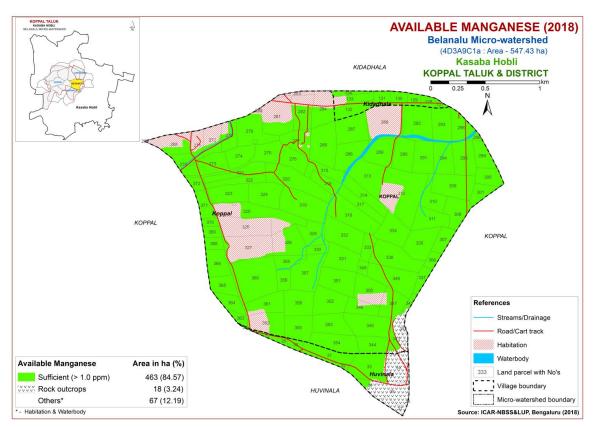


Fig.6.9 Soil Available Manganese map of Belanalu Microwatershed

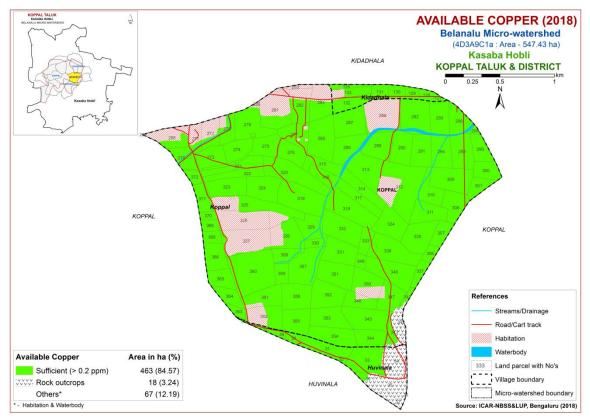


Fig.6.10 Soil Available Copper map of Belanalu Microwatershed

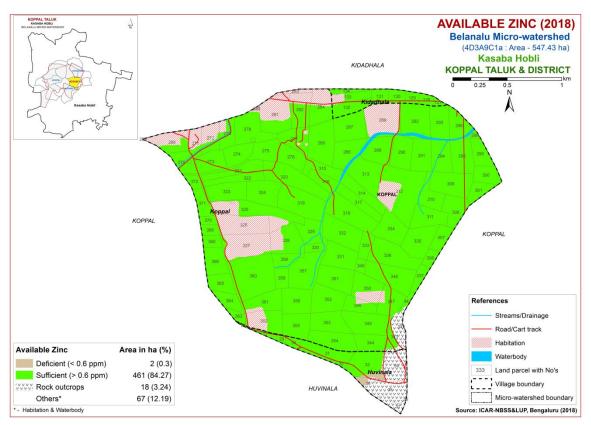


Fig.6.11 Soil Available Zinc map of Belanalu Microwatershed

LAND SUITABILITY FOR MAJOR CROPS

The soil and land resource units (soil phases) of Belanalu Microwatershed were assessed for their suitability for growing food, fodder, fibre and other horticulture crops by following the procedure as outlined in FAO, 1976 and 1983. Crop requirements were developed for each of the crop from the available research data and also by referring to Naidu et. al. (2006) and Natarajan et. al (2015). The soil and land characteristics were matched with the crop requirements to arrive at the crop suitability. The soil and land characteristics table (Table 7.1) were matched with the crop requirements (Tables 7.2-7.32) to arrive at the crop suitability and the crop requirement tables are given at the end of the chapter. In FAO land suitability classification, two orders are recognized. Order S-Suitable and Order N- Not suitable. The orders have classes, subclasses and units. Order-S has three classes, Class S1- Highly Suitable, Class S2- Moderately Suitable and Class S3- Marginally Suitable. Order N has two Classes, N1- Currently not Suitable and N2-Permanently not Suitable. There are no subclasses within the Class S1 as they will have very minor or no limitations for crop growth. Classes S2, S3 and N1 are divided into subclasses based on the kinds of limitations encountered. The limitations that affect crop production are 'c' for erratic rainfall and its distribution and length of growing period (LGP), 'e' for erosion hazard, 'r' for rooting condition, 't' for lighter or heavy texture, 'g' for gravelliness or stoniness, 'n' for nutrient availability, 'l' for topography, 'm' for moisture availability, 's' for sodium 'z' for calcareousness and 'w' for drainage. These limitations are indicated as lower case letters to the class symbol. For example, moderately suitable lands with the limitations of soil depth and erosion are designated as S2re. For the microwatershed, the soil mapping units were evaluated and classified up to subclass level.

Using the above criteria, the soil map units of the microwatershed were evaluated and land suitability maps for 31 major agricultural and horticultural crops were generated. The detailed information on the kind of suitability of each of the soil phase for the crops assessed are given village/ survey number wise for the microwatershed in Appendix-III.

7.1 Land Suitability for Sorghum (Sorghum bicolor)

Sorghum is one of the major food crop grown in Karnataka in an area of 10.47 lakh ha in Bijapur, Gulbarga, Raichur, Bidar, Belgaum, Dharwad, Bellary, Chitradurga, Mysore and Chamarajnagar districts. The crop requirements for growing sorghum (Table 7.2) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing sorghum was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.1.

Highly suitable (Class S1) lands occupy an area of about 45 (8%) for growing sorghum and occur in the western part of the microwatershed. An area of about 5 ha (<1%) is moderately suitable (Class S2) for growing sorghum and distributed in the western part of the microwatershed with minor limitations of gravelliness and rooting depth. Maximum area of about 412 ha (75%) is marginally suitable for growing sorghum and distributed in the major part of the microwatershed. They have moderate limitations of gravelliness and rooting depth.

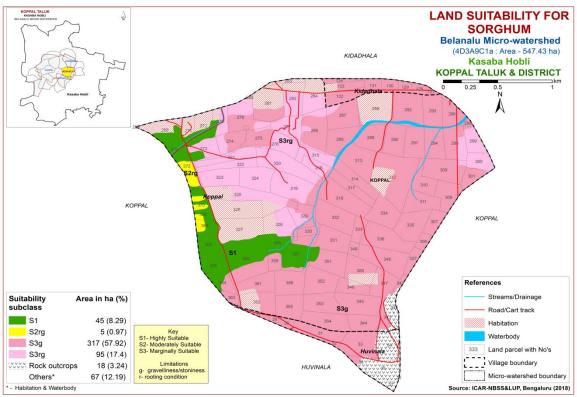


Fig. 7.1 Land Suitability map of Sorghum

7.2 Land Suitability for Maize (Zea mays)

Maize is one of the most important food crop grown in an area of 13.37 lakh ha in almost all the districts of the State. The crop requirements for growing maize (Table 7.3) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing maize was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.2.

An area of about 35 ha (6%) is highly suitable (Class S1) and distributed in the western part of the microwatershed. Moderately suitable (Class S2) lands cover an area of about 16 ha (3%) and distributed in the western part of the microwatershed with minor limitations of texture, gravelliness and rooting depth. Marginally suitable (Class S3) lands cover a maximum area of about 412 ha (75%) and occur in the major part of the microwatershed. They have moderate limitations of gravelliness and rooting depth.

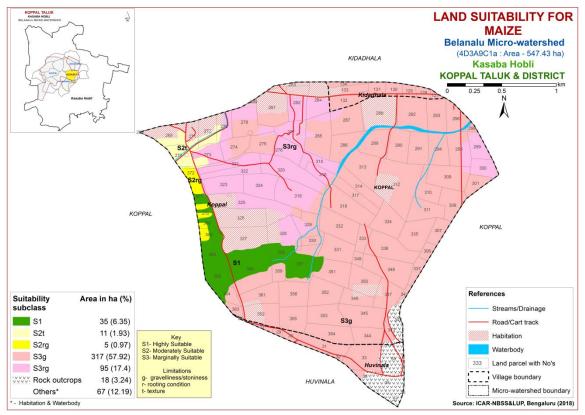


Fig. 7.2 Land Suitability map of Maize

7.3 Land Suitability for Bajra (Pennisetum glaucum)

Bajra is one of the major food crop grown in an area of 2.34 lakh ha in Karnataka in the northern districts. The crop requirements (Table 7.4) for growing bajra were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing bajra was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.3.

Highly suitable (Class S1) lands occupy an area of about 35 ha (6 %) for growing bajra and occur in the western part of the microwatershed. Maximum area of about 338 ha (62%) is moderately suitable (Class S2) for growing bajra and distributed in the major part of the microwatershed with minor limitations of texture, rooting depth and gravelliness. Marginally suitable (Class S3) lands cover an area of about 90 ha (16%) and occur in the western, northern and southern part of the microwatershed. They have moderate limitations of gravelliness and rooting depth.

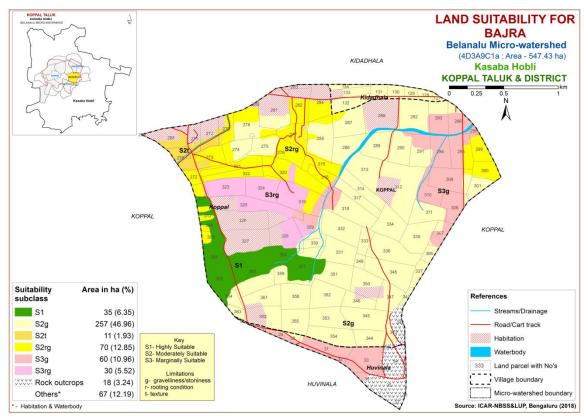


Fig. 7.3 Land Suitability map of Bajra

7.4 Land Suitability for Redgram (*Cajanus cajan*)

Redgram is one of the most important pulse crop grown in an area of 7.28 lakh ha in almost all the districts of the State. The crop requirements for growing redgram (Table 7.5) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing redgram was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.4.

Highly suitable (Class S1) lands occupy an area of about 35 ha (6%) for growing redgram and occur in the western part of the microwatershed. An area of about 11 ha (2%) is moderately suitable (Class S2) for growing redgram and distributed in the western part of the microwatershed. They have minor limitation of texture. Marginally suitable lands (Class S3) occupy an area of about 387 ha (71%) and occur in the major part of the microwatershed. They have moderate limitations of rooting depth and gravelliness. Area currently not suitable (Class N1) cover about 30 ha (6%) and distributed in the western part of the microwatershed with severe limitation of rooting depth.

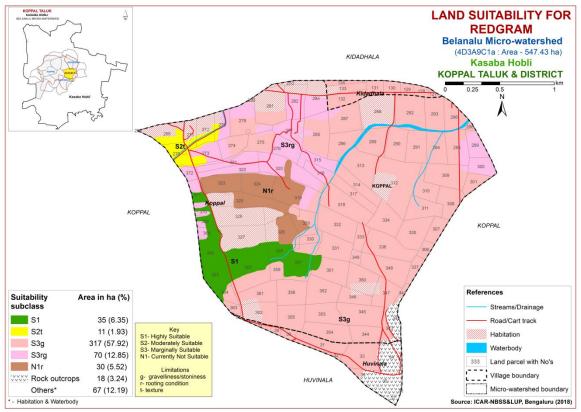


Fig. 7.4 Land Suitability map of Redgram

7.5 Land Suitability for Bengal gram (Cicer arietinum)

Bengal gram is one of the major pulse crop grown in an area of 9.39 lakh ha in northern Karnataka in Bijapur, Gulbarga, Raichur, Bidar, Belgaum, Dharwad and Bell ary districts. The crop requirements for growing Bengal gram (Table 7.6) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing Bengal gram was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.5.

Highly suitable (Class S1) lands occupy an area of about 11 ha (2%) for growing Bengal gram and occur in the northwestern part of the microwatershed. An area of about 105 ha (19%) is moderately suitable (Class S2) for growing bengalgram and are distributed in the western part of the microwatershed. They have minor limitations of texture and rooting depth. Marginally suitable (Class S3) lands cover a maximum area of about 347 ha (63%) and are distributed in the major part of the microwatershed. They have moderate limitations of gravelliness, rooting depth and texture.

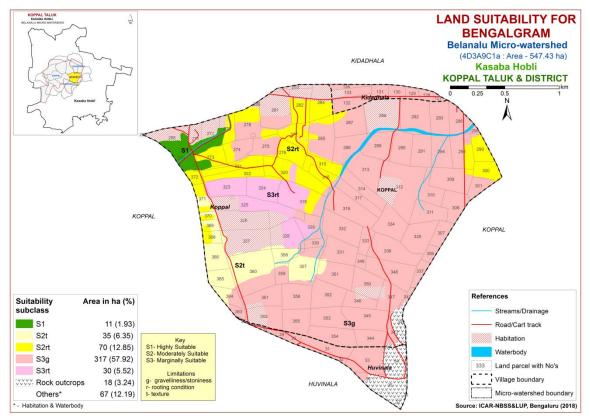


Fig. 7.5 Land Suitability map of Bengal gram

7.6 Land Suitability for Groundnut (Arachis hypogaea)

Groundnut is one of the major oilseed crop grown in an area of 6.54 lakh ha in Karnataka in most of the districts either as rainfed or irrigated crop. The crop requirements for growing groundnut (Table 7.7) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing groundnut was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.6.

Maximum area of about 347 ha (63%) is moderately suitable (Class S2) for growing groundnut and distributed in the major part of the microwatershed. They have minor limitations of gravelliness, rooting depth and texture. An area of about 116 ha (21%) is marginally suitable (Class S3) for growing groundnut and are distributed in the western and eastern part of the microwatershed with moderate limitations of texture, gravelliness and rooting depth.

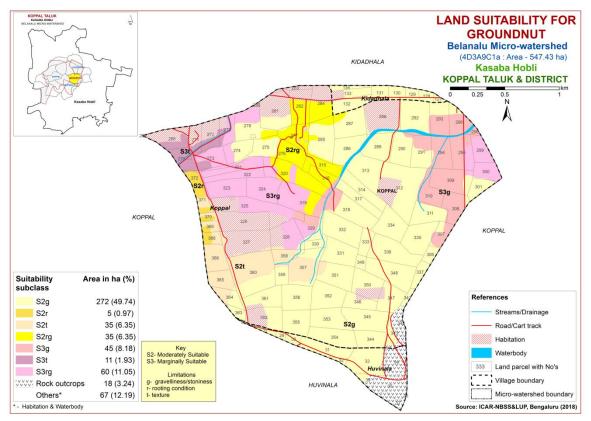


Fig. 7.6 Land Suitability map of Groundnut

7.7 Land Suitability for Sunflower (Helianthus annus)

Sunflower is one of the most important oilseed crop grown in an area of 3.56 lakh ha in the State in all the districts. The crop requirements for growing sunflower (Table 7.8) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sunflower was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.7.

An area of about 45 ha (8%) is highly suitable (Class S1) for growing sunflower and are distributed in the eastern part of the microwatershed. Marginally suitable (Class S3) lands occupy a maximum area of about 387 ha (71%) and are distributed in the major part of the microwatershed with moderate limitations of rooting depth and gravelliness. Area currently not suitable (Class N1) cover about 30 ha (6%) and distributed in the western part of the microwatershed with severe limitation of rooting depth.

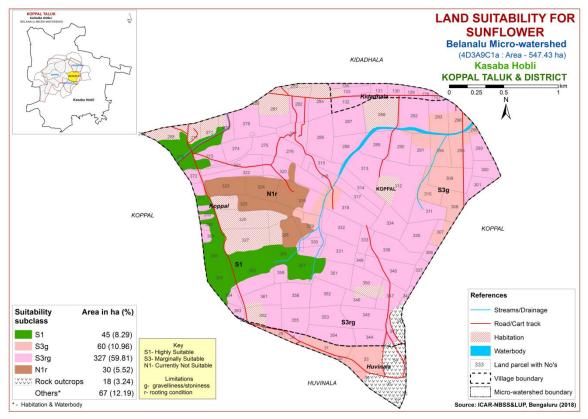


Fig. 7.7 Land Suitability map of Sunflower

7.8 Land Suitability for Cotton (Gossypium hirsutum)

Cotton is one of the most important fibre crop grown in the State in about 8.75 lakh ha area in Raichur, Dharwad, Belgaum, Gulbarga, Bijapur, Bidar, Bellary, Chitradurga and Chamarajnagar districts. The crop requirements for growing cotton (Table 7.9) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing cotton was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.8.

An area of about 45 ha (8%) is highly suitable (Class S1) for growing cotton and are distributed in the western part of the microwatershed. An area of about 5 ha (<1%) is moderately suitable (Class S2) and are distributed in the western part of the microwatershed. They have minor limitations of rooting depth and gravelliness. Marginally suitable (Class S3) lands occupy a maximum area of about 412 ha (75%) and are distributed in the major part of the microwatershed with moderate limitations of rooting depth, texture and gravelliness.

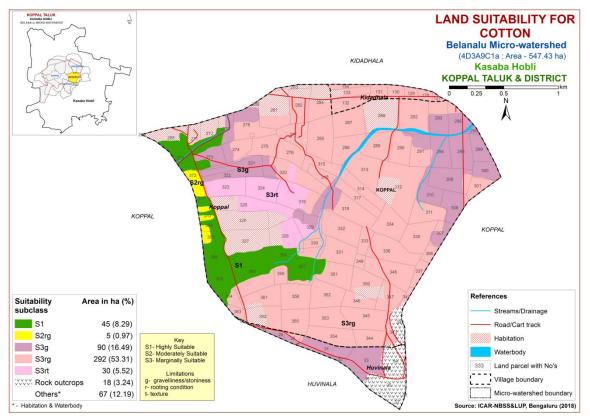


Fig. 7.8 Land Suitability map of Cotton

7.9 Land Suitability for Chilli (*Capsicum annuum L*)

Chilli is one of the most important spice crop grown in an area of 0.42 lakh ha in Karnataka State. The crop requirements for growing chilli (Table 7.10) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing chilli was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.9.

An area of about 35 ha (6%) is highly suitable (Class S1) for growing chilli and are distributed in the western part of the microwatershed. Moderately suitable (Class S2) lands cover an area of about 5 ha (<1%) and distributed in the eastern part of the microwatershed. They have moderate limitations of gravelliness and rooting depth. Marginally suitable (Class S3) lands occupy a maximum area of about 423 ha (77%) and are distributed in the major part of the microwatershed with moderate limitations of rooting depth, texture and gravelliness.

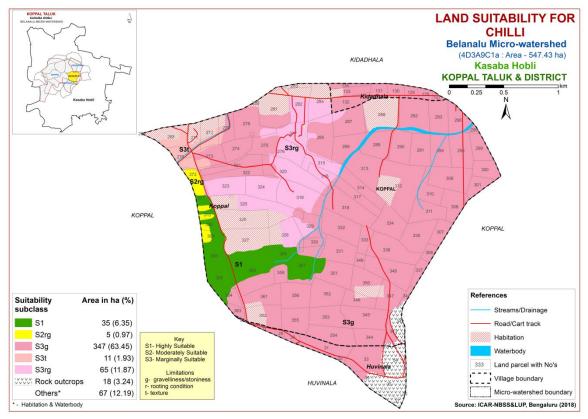


Fig. 7.9 Land Suitability map of Chilli

7.10 Land Suitability for Tomato (Solanum lycopersicum)

Tomato is one of the most important vegetable crop grown in an area of 0.65 lakh ha in almost all the districts of the State. The crop requirements (Table 7.11) for growing tomato were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing tomato was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.10.

An area of about 35 ha (6%) is highly suitable (Class S1) for growing tomato and are distributed in the western part of the microwatershed. Moderately suitable (Class S2) lands cover an area of about 5 ha (<1%) and distributed in the western part of the microwatershed. They have moderate limitations of gravelliness and rooting depth. Marginally suitable (Class S3) lands cover a maximum area of about 423 ha (77%) and distributed in the major part of the microwatershed. They have moderate limitations of gravelliness and rooting depth.

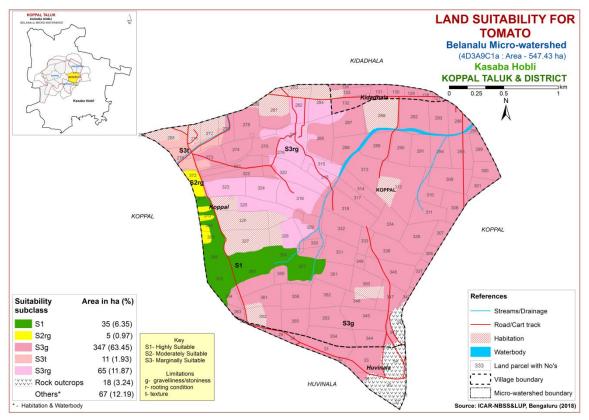


Fig. 7.10 Land Suitability map of Tomato

7.11 Land Suitability for Brinjal (Solanum melongena)

Brinjal is one of the most important vegetable crop grown in the state. The crop requirements for growing brinjal (Table 7.12) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing brinjal was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.11.

An area of about 111 ha (20%) is moderately suitable (Class S2) for growing Brinjal and distributed in the western and eastern part of the microwatershed with minor limitations of texture, rooting depth and gravelliness. Marginally suitable (Class S3) lands cover a maximum area of about 352 ha (64%) and occur in the major part of the microwatershed with moderate limitations of gravelliness and rooting depth.

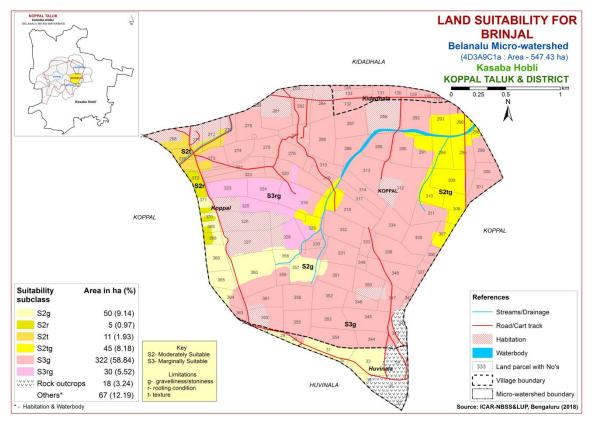


Fig 7.11 Land Suitability map of Brinjal

7.12 Land Suitability for Onion (Allium cepa L.,)

Onion is one of the most important vegetable crop grown in the state. The crop requirements for growing onion (Table 7.13) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing onion was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.12.

An area of about 100 ha (18%) is moderately suitable (Class S2) for growing Onion and distributed in the western and eastern part of the microwatershed with minor limitations of texture, rooting depth and gravelliness. Marginally suitable (Class S3) lands cover a maximum area of about 363 ha (66%) and occur in the major part of the microwatershed with moderate limitations of gravelliness, rooting depth and texture.

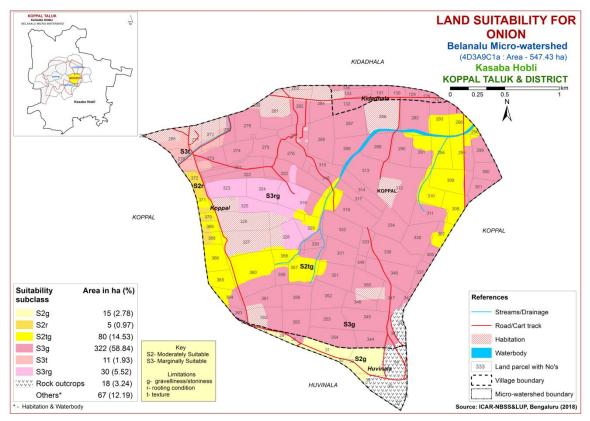


Fig 7.12 Land Suitability map of Onion

7.13 Land Suitability for Bhendi (Abelmoschus esculentus)

Bhendi is one of the most important vegetable crop grown in the state. The crop requirements for growing bhendi (Table 7.14) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing bhendi was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.13.

Moderately suitable (Class S1) lands occupy an area of about 111 ha (20%) for growing Bhendi and occur in the western and northeastern part of the microwatershed with minor limitations of rooting depth, texture and gravelliness. Maximum area of about 352 ha (64%) is marginally suitable (Class S3) for growing Bhendi and distributed in the major part of the microwatershed with moderate limitations of gravelliness and rooting depth.

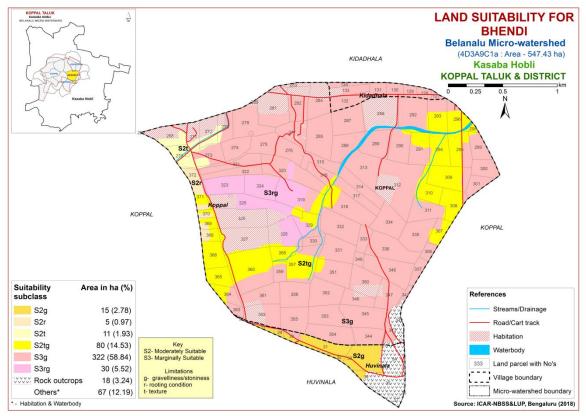


Fig 7.13 Land Suitability map of Bhendi

7.14 Land Suitability for Drumstick (Moringa oleifera)

Drumstick is one of the most important vegetable crop grown in 2403 ha area in the state. The crop requirements for growing drumstick (Table 7.15) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing drumstick was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.14.

An area of about 35 ha (6%) is highly suitable (Class S1) for growing drumstick and are distributed in the western part of the microwatershed. Moderately suitable (Class S2) lands cover an area of about 26 ha (5%) and are distributed in the northwestern and southern part of the microwatershed. They have minor limitations of graveliness and texture. Marginally suitable (Class S3) lands cover an area of about 372 ha (68%) and occur in the major part of the microwatershed. They have moderate limitations of gravelliness and rooting depth. Area currently not suitable (Class N1) cover about 30 ha (6%) and distributed in the western part of the microwatershed with severe limitation of rooting depth.

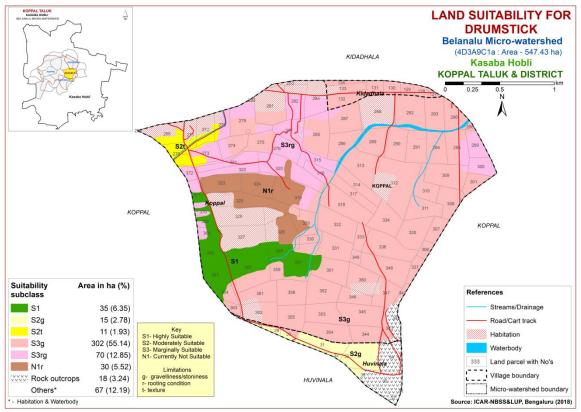


Fig. 7.14 Land Suitability map of Drumstick

7.15 Land Suitability for Mulberry (Morus nigra)

Mulberry is the most important leaf crop grown for rearing silkworms in about 1.66 lakh ha in all the districts of the state. The crop requirements for growing mulberry (Table 7.16) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing mulberry was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.15.

An area of about 35 ha (6%) is highly suitable (Class S1) for growing mulberry and are distributed in the western part of the microwatershed. An area of about 328 ha (60%) is moderately suitable (Class S2) for growing mulberry and distributed in the major part of the microwatershed. They have minor limitations of texture and gravelliness. Marginally suitable (Class S3) lands cover an area of about 70 ha (13%) and occur in the northwestern and northern part of the microwatershed. They have moderate limitations of gravelliness and rooting depth. Area currently not suitable (Class N1) cover about 30 ha (6%) and distributed in the western part of the microwatershed with severe limitation of rooting depth.

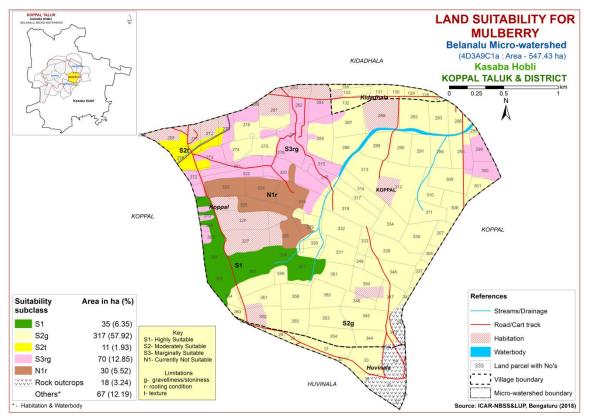


Fig. 7.15 Land Suitability map of Mulberry

7.16 Land Suitability for Mango (Mangifera indica)

Mango is one of the most important fruit crop grown in about 1.73 lakh ha in almost all the districts of the State. The crop requirements (Table 7.17) for growing mango were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing mango was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.16.

An area of about 35 ha (6%) is highly suitable (Class S1) for growing mango and are distributed in the western part of the microwatershed. Marginally suitable (Class S3) lands cover a maximum area of about 328 ha (60%) and occur in the major part of the microwatershed. They have moderate limitations of rooting depth, gravelliness, and texture. Area currently not suitable (Class N1) for growing mango cover about 101 ha (18%) and distributed in the northwestern part of the microwatershed with severe limitations of rooting depth and gravelliness.

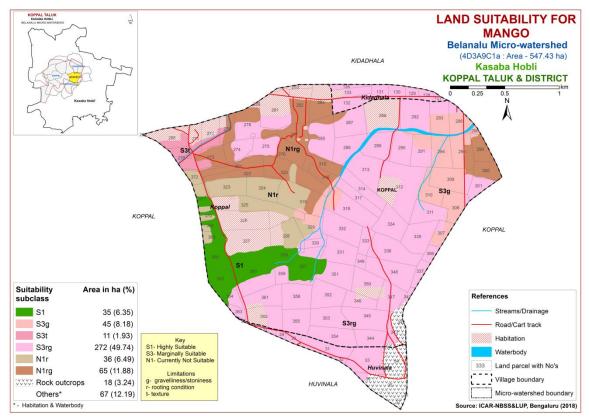


Fig. 7.16 Land Suitability map of Mango

7.17 Land Suitability for Sapota (Manilkara zapota)

Sapota is one of the most important fruit crop grown in an area of about 29373 ha in almost all the districts of the state. The crop requirements (Table 7.18) for growing sapota were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sapota was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.17.

An area of about 35 ha (6%) is highly suitable (Class S1) for growing sapota and are distributed in the western part of the microwatershed. Moderately suitable (S2) lands cover an area of about 257 ha (47%) and are distributed in the major part of the microwatershed. They have minor limitations of rooting depth and gravelliness. Marginally suitable (Class S3) lands cover a maximum area of about 141 ha (26%) and occur in the northern and western part of the microwatershed. They have moderate limitations of rooting depth, gravelliness and texture. Area currently not suitable (Class N1) cover about 30 ha (6%) and distributed in the western part of the microwatershed with severe limitation of rooting depth.

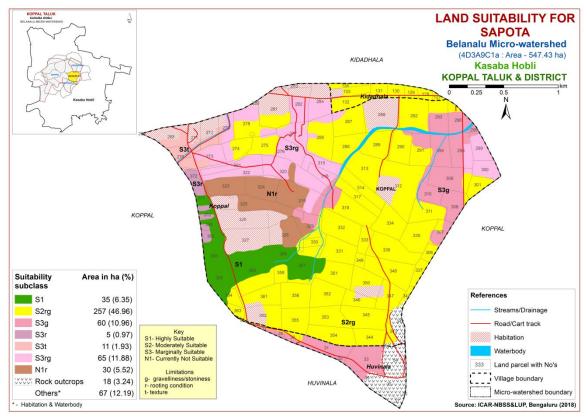


Fig. 7.17 Land Suitability map of Sapota

7.18 Land Suitability for Pomegranate (*Punica granatum*)

Pomegranate is one of the commercially grown fruit crop in about 18488 ha in Karnataka mainly in Bijapur, Bagalkot, Koppal, Gadag and Chitradurga districts. The crop requirements for growing pomegranate (Table 7.19) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing pomegranate was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.18.

An area of about 35 ha (6%) is highly suitable (Class S1) for growing pomegranate and are distributed in the western part of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 268 ha (49%) and are distributed in the major part of the microwatershed. They have minor limitations of rooting depth, gravelliness and texture. Marginally suitable (Class S3) lands for growing pomegranate occupy an area of about 130 ha (24%) and are distributed in the northeastern and northwestern part of the microwatershed with moderate limitations of gravelliness, texture and rooting depth. Area currently not suitable (Class N1) cover about 30 ha (6%) and distributed in the western part of the microwatershed with severe limitation of rooting depth.

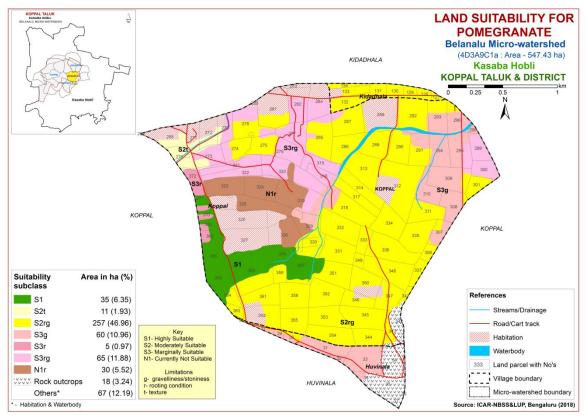


Fig. 7.18 Land Suitability map of Pomegranate

7.19 Land Suitability for Guava (Psidium guajava)

Guava is one of the most important fruit crop grown in an area of about 6558 ha in almost all the districts of the state. The crop requirements (Table 7.20) for growing guava were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing guava was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.19.

Moderately suitable (Class S2) lands occupy a maximum area of about 292 ha (53%) and are distributed in the major part of the microwatershed. They have minor limitations of gravelliness, rooting depth and texture. Marginally suitable (Class S3) lands for growing guava occupy a maximum area of about 141 ha (26%) and are distributed in the northwestern and northeastern part of the microwatershed with moderate limitations of gravelliness, texture and rooting depth. Area currently not suitable (Class N1) cover about 30 ha (6%) and distributed in the western part of the microwatershed with severe limitation of rooting depth.

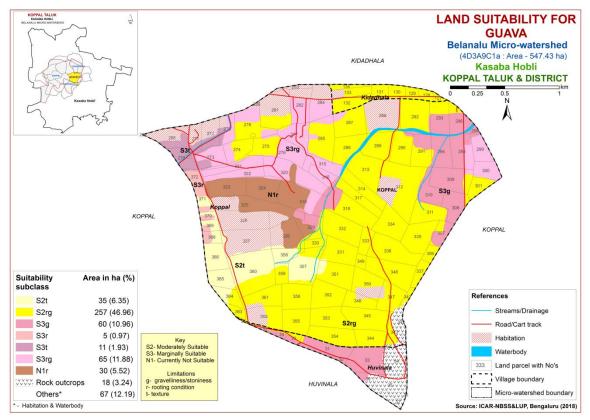


Fig. 7.19 Land Suitability map of Guava

7.20 Land Suitability for Jackfruit (Artocarpus heterophyllus)

Jackfruit is one of the most important fruit crop grown in 5368 ha in all the districts of the state. The crop requirements (Table.7.21) for growing jackfruit were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing jackfruit was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in figure 7.20.

An area of about 35 ha (6%) is highly suitable (Class S1) for growing jackfruit and are distributed in the western part of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 257 ha (47%) and are distributed in the major part of the microwatershed. They have minor limitations of rooting depth and gravelliness. Marginally suitable (Class S3) lands for growing jackfruit occupy an area of about 141 ha (26%) and are distributed in the northwestern and northeastern part of the microwatershed with moderate limitations of gravelliness, texture and rooting depth. Area currently not suitable (Class N1) cover about 30 ha (6%) and distributed in the western part of the microwatershed with severe limitation of rooting depth.

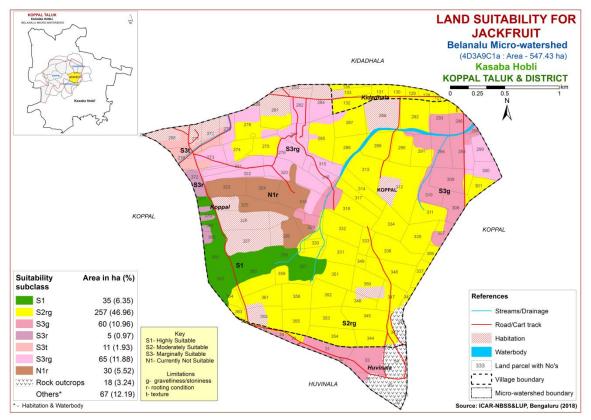


Fig. 7.20 Land Suitability map of Jackfruit

7.21 Land Suitability for Jamun (Syzygium cumini)

Jamun is an important fruit crop grown in almost all the districts of the state. The crop requirements (Table 7.22) for growing jamun were matched with the soil-site characteristics and a land suitability map for growing jamun was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.21.

An area of about 35 ha (6%) is highly suitable (Class S1) for growing jamun and are distributed in the western part of the microwatershed. Moderately suitable (Class S2) lands occupy a maximum area of about 268 ha (49%) and are distributed in the major part of the microwatershed. They have minor limitations of rooting depth, gravelliness and texture. Marginally suitable (Class S3) lands for growing jamun occupy an area of about 130 ha (24%) and are distributed in the northwestern and northeastern part of the microwatershed with moderate limitations of gravelliness and rooting depth. Area currently not suitable (Class N1) cover about 30 ha (6%) and distributed in the western part of the microwatershed with severe limitation of rooting depth.

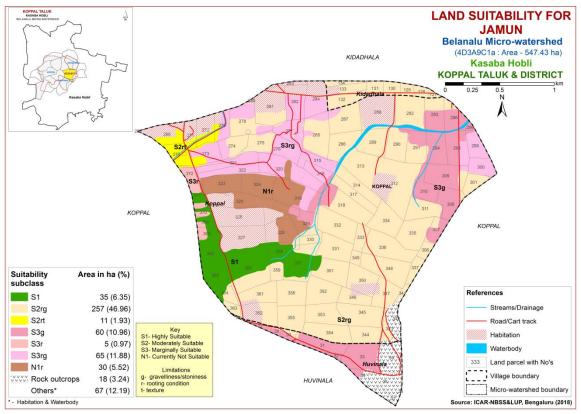


Fig. 7.21 Land Suitability map of Jamun

7.22 Land Suitability for Musambi (Citrus limetta)

Musambi is one of the most important fruit crop grown in an area of 5446 ha in almost all the districts of the state. The crop requirements (Table 7.23) for growing musambi were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing musambi was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.22.

An area of about 45 ha (8%) is highly suitable (Class S1) for growing musambi and are distributed in the western part of the microwatershed. An area of about 257 ha (47%) is moderately suitable (Class S2) and occur in the major part of the microwatershed. They have minor limitations of gravelliness and rooting depth. An area of about 130 ha (24%) is marginally suitable (Class S3) for growing musambi and are distributed in the northwestern and northeastern part of the microwatershed with moderate limitations of gravelliness and rooting depth. Area currently not suitable (Class N1) cover about 30 ha (6%) and distributed in the western part of the microwatershed with severe limitation of rooting depth.

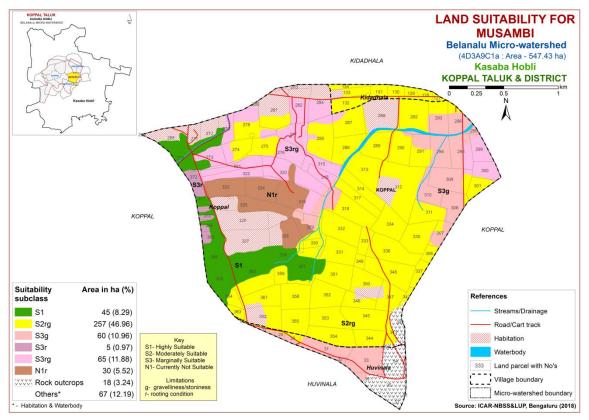


Fig. 7.22 Land Suitability map of Musambi

7.23 Land Suitability for Lime (Citrus sp)

Lime is one of the most important fruit crop grown in an area of 11752 ha in almost all the districts of the State. The crop requirements for growing lime (Table 7.24) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing lime was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.23.

An area of about 45 ha (8%) is highly suitable (Class S1) for growing lime and are distributed in the western part of the microwatershed. A maximum area of about 257 ha (47%) is moderately suitable (Class S2) and occur in the major part of the microwatershed. They have minor limitations of gravelliness and rooting depth. An area of about 130 ha (24%) is marginally suitable (Class S3) for growing lime and are distributed in the northwestern and northeastern part of the microwatershed with moderate limitations of gravelliness and rooting depth. Area currently not suitable (Class N1) cover about 30 ha (6%) and distributed in the western part of the microwatershed with severe limitation of rooting depth.

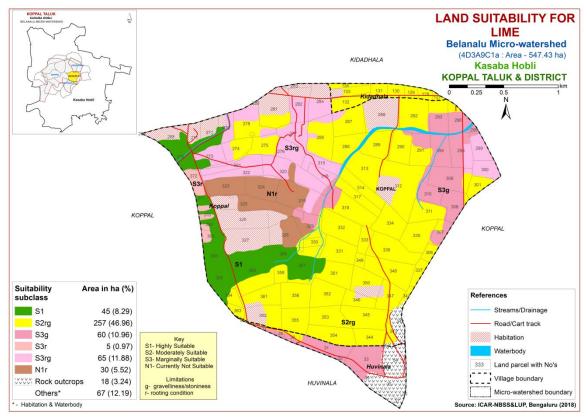


Fig. 7.23 Land Suitability map of Lime

7.24 Land Suitability for Cashew (Anacardium occidentale)

Cashew is one of the most important nut crop grown in an area of 7052 ha in almost all the districts of the State. The crop requirements for growing cashew (Table 7.25) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing cashew was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.24.

Maximum area of about 337 ha (61%) is moderately suitable (Class S2) and occur in the major part of the microwatershed. They have minor limitations of gravelliness, texture and rooting depth. An area of about 85 ha (16%) is marginally suitable (Class S3) for growing cashew and distributed in the western part of the microwatershed with moderate limitations of rooting depth and gravelliness. Area currently not suitable (Class N1) cover about 41 ha (7%) and distributed in the western part of the microwatershed with severe limitations of rooting depth and texture.

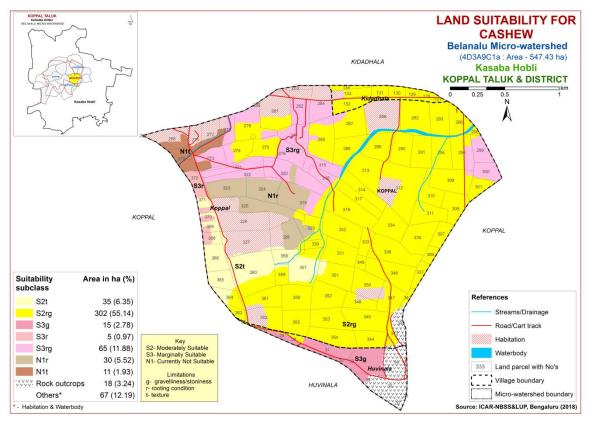


Fig. 7.24 Land Suitability map of Cashew

7.25 Land Suitability for Custard Apple (Annona reticulata)

Custard apple is one of the most important fruit crop grown in 1426 ha in almost all the districts of the State. The crop requirements(Table 7.26) for growing custard apple were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing custard apple was generated .The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.25.

An area of about 45 ha (8%) is highly suitable (Class S1) for growing custard apple and are distributed in the western part of the microwatershed. Moderately suitable (Class S2) lands cover a maximum area of about 387 ha (71%) and occur in the major part of the microwatershed. They have minor limitations of rooting depth and gravelliness. An area of about 30 ha (6%) is marginally suitable (Class S3) for growing custard apple and distributed in the western part of the microwatershed with moderate limitations of rooting depth and gravelliness.

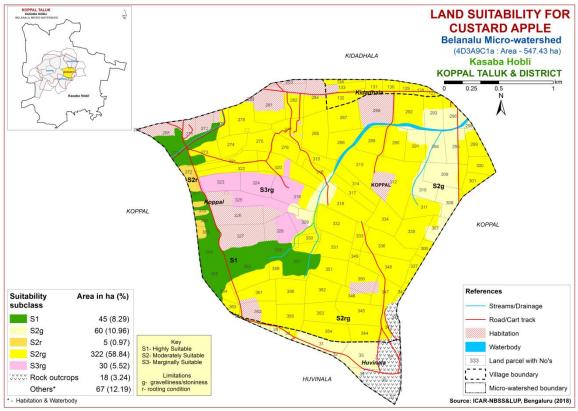


Fig. 7.25 Land Suitability map of Custard Apple

7.26 Land Suitability for Amla (Phyllanthus emblica)

Amla is one of the most important fruit and medicinal crop grown in an area of 151 ha and distributed in almost all the districts of the state. The crop requirements (Table 7.27) for growing amla were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing amla was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.26.

An area of about 35 ha (6%) is highly suitable (Class S1) for growing amla and are distributed in the western part of the microwatershed. Moderately suitable (Class S2) lands cover a maximum area of about 398 ha (73%) and occur in the major part of the microwatershed. They have minor limitations of rooting depth, gravelliness and texture. An area of about 30 ha (6%) is marginally suitable (Class S3) for growing amla and distributed in the western part of the microwatershed with moderate limitations of rooting depth and gravelliness.

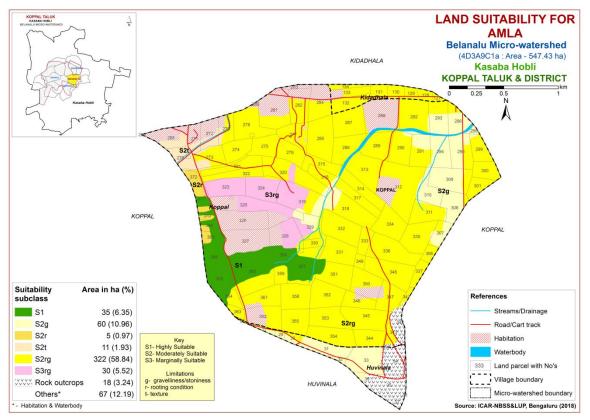


Fig. 7.26 Land Suitability map of Amla

7.27 Land Suitability for Tamarind (Tamarindus indica)

Tamarind is one of the most important spice crop grown in 14897 ha in all the districts of the state. The crop requirements (Table 7.28) for growing tamarind were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing tamarind was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.27.

An area of about 35 ha (6%) is highly suitable (Class S1) for growing tamarind and are distributed in the western part of the microwatershed. An area of about 13 ha (2%) is moderately suitable (Class S2) and occur in the northwestern part of the microwatershed. They have minor limitations of rooting depth and gravelliness. Maximum area of about 315 ha (58%) is marginally suitable (Class S3) for growing tamarind and are distributed in the major part of the microwatershed with moderate limitations of gravelliness and rooting depth. An area of about 101 ha (18%) is currently not suitable (Class N1) for growing tamarind and distributed in the western part of the microwatershed with severe limitations of rooting depth and gravelliness.

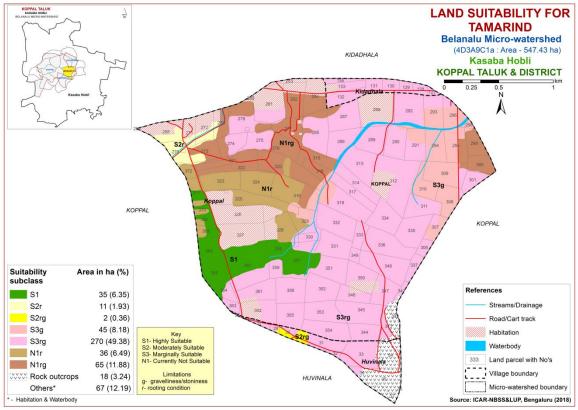


Fig. 7.27 Land Suitability map of Tamarind

7.28 Land Suitability for Marigold (Tagetes erecta)

Marigold is one of the most important flower crop grown in an area of 9108 ha in almost all the districts of the state. The crop requirements (Table 7.29) for growing marigold were matched with the soil-site characteristics and a land suitability map for growing marigold was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.28.

An area of about 35 ha (6%) is highly suitable (Class S1) for growing marigold and are distributed in the western part of the microwatershed. An area of about 16 ha (3%) is moderately suitable (Class S2) and occur in the western part of the microwatershed. They have minor limitations of rooting depth, gravelliness and texture. Maximum area of about 412 ha (75%) is marginally suitable (Class S3) for growing marigold and are distributed in the major part of the microwatershed with moderate limitations of gravelliness and rooting depth.

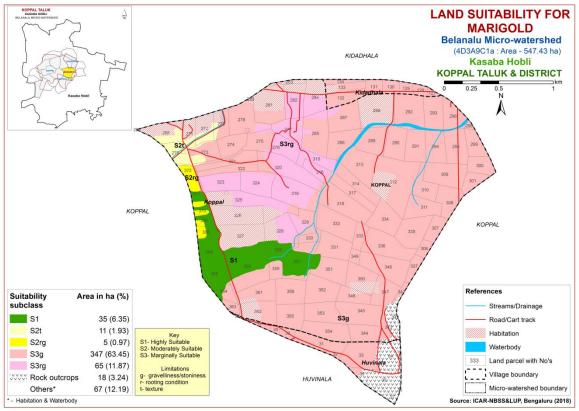


Fig. 7.28 Land Suitability map of Marigold

7.29 Land Suitability for Chrysanthemum (Chrysanthemum indicum)

Chrysanthemum is one of the most important flower crop grown in an area of 4978 ha in almost all the districts of the State. The crop requirements (Table 7.30) for growing chrysanthemum were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing chrysanthemum was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed is given in Figure 7.29.

An area of about 35 ha (6%) is highly suitable (Class S1) for growing chrysanthemum and are distributed in the western part of the microwatershed. An area of about 16 ha (3%) is moderately suitable (Class S2) and occur in the western part of the microwatershed. They have minor limitations of rooting depth, gravelliness and texture. An area of about 412 ha (75%) is marginally suitable (Class S3) for growing chrysanthemum and are distributed in the major part of the microwatershed with moderate limitations of gravelliness and rooting depth.

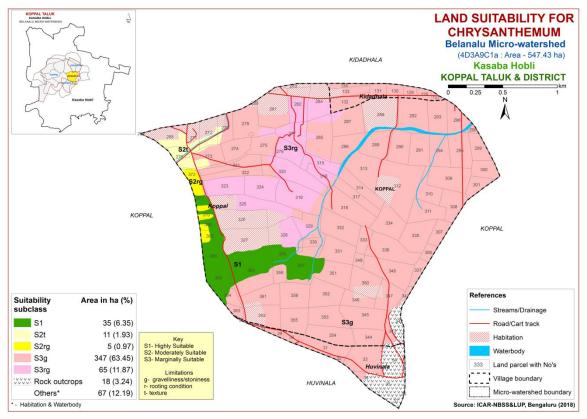


Fig. 7.29 Land Suitability map of Chrysanthemum

7. 30 Land Suitability for Jasmine (Jasminum sp.)

Jasmine is one of the most important flower crop grown in an area of 803 ha in almost all the districts of the State. The crop requirements (Table 7.31) for growing jasmine were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing jasmine was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.30.

An area of about 35 ha (6%) is highly suitable (Class S1) for growing jasmine and are distributed in the western part of the microwatershed. An area of about 5 ha (<1%) is moderately suitable (Class S2) and occur in the western part of the microwatershed. They have minor limitations of gravelliness and rooting depth. Maximum area of about 423 ha 77%) is marginally suitable (Class S3) for growing jasmine and are distributed in the major part of the microwatershed with moderate limitations of gravelliness, texture, and rooting depth.

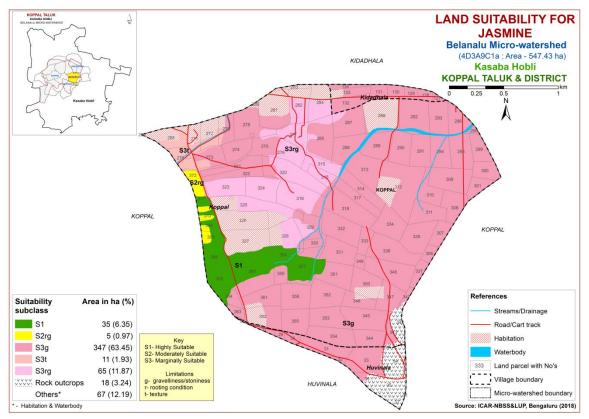


Fig. 7.30 Land Suitability map of Jasmine

7. 31 Land Suitability for Crossandra (Crossandra infundibuliformis)

Crossandra is one of the most important flower crop grown in almost all the districts of the State. The crop requirements (Table 7.32) for growing crossandra were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing crossandra was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.31.

An area of about 35 ha (6%) is highly suitable (Class S1) for growing crossandra and are distributed in the western part of the microwatershed. An area of about 5 ha (<1%) is moderately suitable (Class S2) and occur in the western part of the microwatershed. They have minor limitations of rooting depth and gravelliness. Maximum area of about 423 ha (77%) is marginally suitable (Class S3) for growing crossandra and are distributed in the major part of the microwatershed with moderate limitations of gravelliness, rooting depth, and texture.

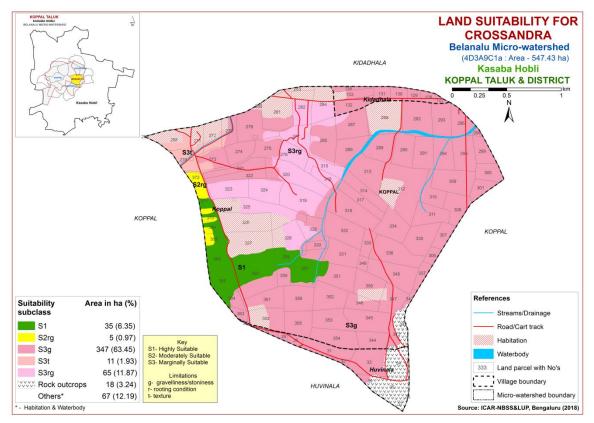


Fig. 7.31 Land Suitability map of Crossandra

Soil Map Units	Climate (P) (mm)	Growing period (Days)	Drainage Class	Soil depth (cm)	Soil texture		Gravelliness		AWC	Slope			EC		CEC [Cmol	BS
					Surf- ace	Sub- surface	Sur- face	Sub- surface	(mm/m) (%)		Erosion	рН	(dSm ⁻ ¹)	ESP	$(\mathbf{p}^+)\mathbf{kg}^-$	b 5 (%)
ABRbB2g2	662	<90	WD	25-50	1s	sc	35-60	>35	<50	1-3	moderate	6.13	0.02	0.36	3.60	58.76
KTPiB1g1	662	<90	WD	50-75	sc	sc	15-35	15-35	101-150	1-3	slight	6.42	0.07	0.05	4.41	100
LKRhB2g1	662	<90	WD	50-75	scl	gsc	15-35	40-60	51-100	1-3	moderate	8.18	0.30	4.51	12.19	100
LKRhB2g2	662	<90	WD	50-75	scl	gsc	35-60	40-60	51-100	1-3	moderate	8.18	0.30	4.51	12.19	100
LKRiB2g1	662	<90	WD	50-75	sc	gsc	15-35	40-60	51-100	1-3	moderate	8.18	0.30	4.51	12.19	100
HDHcA1g1	662	<90	WD	75-100	sl	gsc-gc	15-35	>35	51-100	0-1	slight	6.54	0.07	7.11	5.84	84.7
HDHcB2g1	662	<90	WD	75-100	sl	gsc-gc	15-35	>35	51-100	1-3	moderate	6.54	0.07	7.11	5.84	84.7
HDHhB2	662	<90	WD	75-100	scl	gsc-gc	-	>35	51-100	1-3	moderate	6.54	0.07	7.11	5.84	84.7
HDHhB2g1	662	<90	WD	75-100	scl	gsc-gc	15-35	>35	51-100	1-3	moderate	6.54	0.07	7.11	5.84	84.7
HDHiB2g1	662	<90	WD	75-100	sc	gsc-gc	15-35	>35	51-100	1-3	moderate	6.54	0.07	7.11	5.84	84.7
BDGhB2	662	<90	WD	75-100	scl	gc	-	35-60	<50	1-3	moderate	6.24	0.06	0.35	3.76	52.56
BDGhB2g1	662	<90	WD	75-100	scl	gc	15-35	35-60	<50	1-3	moderate	6.24	0.06	0.35	3.76	52.56
BPRcA1g1	662	<90	WD	100-150	sl	gsc-gc	15-35	>35	51-100	0-1	slight	6.64	0.03	0.51	5.45	63.48
BPRhB2g1	662	<90	WD	100-150	scl	gsc-gc	15-35	>35	51-100	1-3	moderate	6.64	0.03	0.51	5.45	63.48
BPRmB2g1	662	<90	WD	100-150	с	gsc-gc	15-35	>35	51-100	1-3	moderate	6.64	0.03	0.51	5.45	63.48
GDPcB2	662	<90	WD	100-150	sl	gsc-gc	-	30-60	51-100	1-3	moderate	7.88	0.10	2.87	7.8	97
GRHmB2	662	<90	MWD	100-150	с	с	-	<15	>200	1-3	moderate	9.08	0.23	7.11	63.21	100

Table 7.1 Soil-Site Characteristics of Belanalu Microwatershed

Lan	d use requirement	and Suita	Rating						
	characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)		Not suitable (N1)			
	Mean temperature in growing season	°C	26–30	30–34; 24–26	34–40; 20–24	>40; <20			
	Mean max. temp. in growing season	°C							
Climatic	Mean min. tempt. in growing season	°C							
regime1	Mean RH in growing season	%							
	Total rainfall	mm							
	Rainfall in growing season	mm							
Land quality	Soil-site characteristics								
Maintura	Length of growing period for short duration	Days							
Moisture availability	Length of growing period for long duration								
	AWC	mm/m							
Oxygen availability	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	V.poorly drained			
to roots	Water logging in growing season	Days							
	Texture	Class	sc, c (red), c (black)	scl, cl	ls, sl	-			
Nutriont	рН	1:2.5	5.5-7.8	5.0-5.5 7.8-9.0	>9.0	-			
Nutrient availability	CEC	C mol (p+)/Kg							
	BS	%							
	CaCO3 in root zone	%		<5	5-10	10-15			
	OC	%							
Rooting conditions	Effective soil depth	cm	>75	50-75	25-50	<25			
	Stoniness	%							
	Coarse fragments	Vol %	<15	15-35	35-60	60-80			
Soil toxicity	Salinity (EC saturation extract)	dS/m	<2	2-4	4-8	>8			
	Sodicity (ESP)	%	5-10	10-15	>15				
Erosion hazard	Slope	%	0-3	3-5	5-10	>10			

La	and use requirement	Rating					
	e characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)	
	Mean temperature in growing season	°C	30-34	35-38 26-30	38-40 26-20		
	Mean max. temp. in growing season	°C		20.50	20 20		
Climatic	Mean min. tempt. in growing season	°C					
regime	Mean RH in growing season	%					
	Total rainfall	mm					
	Rainfall in growing season	mm					
Land quality	Soil-site characteristic		-	-			
Moisture	Length of growing period for short duration	Days					
availability	Length of growing period for long duration						
	AWC	mm/m					
Oxygen availability	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	Very poorly drained	
to roots	Water logging in growing season	Days					
	Texture	Class	scl, cl, sc	c (red), c (black)	ls, sl	-	
Nutrient	рН	1:2.5	5.5-7.8	5.0-5.5 7.8-9.0	>9.0	-	
availability	CEC	C mol (p+)/Kg					
	BS	%					
	CaCO3 in root zone	%		<5	5-10	>10	
	OC	%					
Rooting conditions	Effective soil depth	cm	>75	50-75	25-50	<25	
	Stoniness	% Val %	-15	15.25	25.00	(0.00	
	Coarse fragments	Vol %	<15	15-35	35-60	60-80	
Soil toxicity	Salinity (EC saturation extract)	ds/m	<2	2-4	4-8	>8	
	Sodicity (ESP)	%	5-10	10-15	>15	-	
Erosion hazard	Slope	%	0-3	3-5	5-10	>10	

Table 7.3 Land suitability criteria for Maize

Land use requirement Rating								
	e characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N1)		
	Mean temperature in growing season	°C	28-32	33-38 24-27	39-40 20-23	<20		
	Mean max. temp. in growing season	°C						
Climatic regime	Mean min. tempt. in growing season	°C						
regime	Mean RH in growing season	%						
	Total rainfall Rainfall in growing season	mm mm	500-750	400-500	200-400	<200		
Land quality	Soil-site characteristic		1					
Moisture	Length of growing period for short duration	Days						
availability	Length of growing period for long duration							
	AWC	mm/m						
Oxygen availability	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	Very poorly drained		
to roots	Water logging in growing season	Days						
	Texture	Class	Sl, scl, cl,sc,c (red)	C (black)	ls	-		
Nutrient	рН	1:2.5	6.0-7.8	5.0-5.5 7.8-9.0	5.5-6.0 >9.0			
availability		C mol (p+)/ Kg						
	BS	%						
	CaCO3 in root zone	%		<5	5-10	>10		
	OC	%		50.75	25.50			
Rooting conditions	Effective soil depth	cm	>75	50-75	25-50	<25		
	Stoniness Coarse fragments	% Vol %	15-35	35-60	>60			
Soil	Salinity (EC saturation extract)	dS/m	<2	2-4	4-8	>8		
toxicity	Sodicity (ESP)	%	5-10	10-15	>15			
Erosion hazard	Slope	%	1-3	3-5	5-10	>10		

Table 7.4 Land suitability criteria for Bajra

La	and use requirement		Rating				
	te characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N1)	
	Mean temperature in growing season	°C	30-35(G) 20-25(AV) 15-18 (F&PS) 35-40(M)	25-30(G) 20-25 (AV) 12-15 (F&PS) 30-35(M)	20-25(G) 15-20(AV) 10-12	< 20 <15 <10 <25	
Climatic	Mean max. temp. in growing season	°C					
regime	Mean min. tempt. in growing season	°C					
	Mean RH in growing season	%					
	Total rainfall Rainfall in growing season	mm mm					
Land quality	Soil-site characteristic			I			
Moisture	Length of growing period for short duration	Days					
availability	Length of growing period for long duration						
	AWC	mm/m					
Oxygen availability	Soil drainage	Class	Well drained	Mod. Well drained	Poorly drained	Very Poorly drained	
to roots	Water logging in growing season	Days					
	Texture	Class	sc, c (red)	c (black),sl, scl, cl	ls	-	
Nutrient	рН	1:2.5	6.0-7.8	5.5-6.0 7.8-9.0	5.0-5.5 >9.0	-	
availability	CEC	C mol (p+)/ Kg					
	BS	%					
	CaCO3 in root zone OC	% %		<5	5-10	>10	
Rooting conditions	Effective soil depth Stoniness	cm %	>100	75-100	50-75	<50	
conditions	Coarse fragments	Vol %	<15	15-35	35-50	60-80	
Soil toxicity	Salinity (EC saturation extract)	dS/m	<1.0	1.0-2.0	>2.0		
•	Sodicity (ESP)	%	5-10	10-15	>15		
Erosion hazard	Slope	%	<3	3-5	5-10	>10	

La	and use requirement	Rating				
	e characteristics	Unit	Highly suitable (S1)		Marginally suitable (S3)	Not suitable (N1)
	Mean temperature in growing season	°C	20–25	25–30; 15–20	30–35; 10–15	>35; <10
	Mean max. temp. in growing season	°C				
Climatic	Mean min. tempt. in growing season	°C				
regime	Mean RH in growing season	%				
	Total rainfall	mm				
	Rainfall in growing season	mm				
Land quality	Soil-site characteristic					
Moisture	Length of growing period for short duration	Days				
availability	Length of growing period for long duration					
	AWC	mm/m				
Oxygen availability	Soil drainage	Class	Well drained	Mod. Well drained	Poorly drained	Very Poorly drained
to roots	Water logging in growing season	Days				
	Texture	Class	C (black)	-	c (red), scl, cl, sc	ls, sl
Nutrient	рН	1:2.5	6.0-7.8	5.0-6.0 7.8-9.0	>9.0	-
availability	CEC	C mol (p+)/Kg				
	BS	%				
	CaCO3 in root zone	%		<5	5-10	>10
	OC	%		50.75	05.50	25
Rooting	Effective soil depth	cm	>75	50-75	25-50	<25
conditions	Stoniness Coarse fragments	% Vol %	<15	15-35	35-60	60-80
Soil	Salinity (EC saturation extract)	dS/m	<13	2-4	4-8	>8
toxicity	Sodicity (ESP)	%	5-10	10-15	>15	_
Erosion hazard	Slope	%	<3	3-5	5-10	>10

Table 7.6 Land suitability criteria for Bengal gram

La	nd use requirement	Rating						
	e characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)		
	Mean temperature in growing season	°C	24–33	22–24; 33– 35	20–22; 35– 40	<20;>40		
	Mean max. temp. in growing season	°C						
Climatic	Mean min. tempt. in growing season	°C						
regime	Mean RH in growing season	%						
	Total rainfall Rainfall in growing	mm						
Land	season Soil-site	mm						
quality	characteristic Length of growing							
Moisture	period for short duration	Days						
availability	Length of growing period for long duration							
	AWC	mm/m						
Oxygen availability	Soil drainage	Class	Well drained	Mod. Well drained	Poorly drained	Very Poorly drained		
to roots	Water logging in growing season	Days						
	Texture	Class	scl	sl,cl, sc	c (red), c (black), ls	-		
Nutrient	рН	1:2.5	6.0-7.8	5.5-6.0 7.8-8.4	5.0-5.5 8.4-9.0	>9.0		
availability	CEC	C mol (p+)/ Kg						
	BS	%						
	CaCO3 in root zone	%		<5	5-10	>10		
	OC	%						
Pooting	Effective soil depth	cm	>75	50-75	25-50	<25		
Rooting conditions	Stoniness	%						
	Coarse fragments	Vol %	<35	35-60	>60			
Soil toxicity	Salinity (EC saturation extract)	dS/m	<2	2-4	4-8	>8		
	Sodicity (ESP)	%	<5	5-10	10-15	>15		
Erosion hazard	Slope	%	<3	3-5	5-10	>10		

Table 7.7 Land suitability criteria for Groundnut

Ls	and use requirement		Rating				
	e characteristics	Unit	Highly suitable (S1)		Marginally suitable (S3)	Not suitable (N1)	
	Mean temperature in growing season	°C	24–30	30–34; 20–24	34–38; 16–20	>38; <16	
	Mean max. temp. in growing season	°C					
Climatic	Mean min. tempt. in growing season	°C					
regime	Mean RH in growing season	%					
	Total rainfall	mm					
	Rainfall in growing season	mm					
Land quality	Soil-site characteristic						
Maistura	Length of growing period for short duration	Days					
Moisture availability	Length of growing period for long duration						
	AWC	mm/m					
Oxygen availability	Soil drainage	Class	Well drained	mod. Well drained	-	Poorly to very drained	
to roots	Water logging in growing season	Days					
	Texture	Class	cl, sc,c (red), c (black)	scl	ls, sl	-	
Nutrient	рН	1:2.5	6.5-7.8	7.8-8.4 5.5-6.5	8.4-9.0; 5.0-5.5	>9.0	
availability	CEC	C mol (p+)/Kg					
	BS	%					
	CaCO3 in root zone	%		<5	5-10	>10	
	OC	%	100	75 100	50.75	50	
Rooting	Effective soil depth	cm	>100	75-100	50-75	<50	
conditions	Stoniness Coarse fragments	% Vol %	<15	15-35	35-60	60-80	
Soil	Salinity (EC saturation extract)	dS/m	<2	2-4	4-8	>8	
toxicity	Sodicity (ESP)	%	<5	5-10	10-15	>15	
Erosion hazard	Slope	%	<3	3-5	5-10	>10	

 Table 7.8 Land suitability criteria for Sunflower

La	and use requirement		eria for Cotton Ratin	g		
	e characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N1)
	Mean temperature in growing season	°C	22-32	>32	<19	-
	Mean max. temp. in growing season	°C				
Climatic	Mean min. tempt. in growing season	°C				
regime	Mean RH in growing season	%				
	Total rainfall	mm				
	Rainfall in growing season	mm				
Land quality	Soil-site characteristic					
Moisture	Length of growing period for short duration	Days				
availability	Length of growing period for long duration					
	AWC	mm/m				
Oxygen availability to roots	Soil drainage	Class	Well to moderately well	Poorly drained/Some what excessively drained	-	very poorly/ex cessively drained
	Water logging in growing season	Days				
	Texture	Class	sc, c (red,black)	cl	scl	ls, sl
Nutrient	рН	1:2.5	6.5-7.8	7.8-8.4	5.5-6.5 8.4->9.0	<5.5
availability	CEC	C mol (p+)Kg				
	BS	%				
	CaCO3 in root zone OC	%		<5	5-10	>10
	Effective soil	%				
Rooting conditions	depth Stoniness	cm %	>100	50-100	25-50	<25
conditions	Coarse fragments	Vol %	<15	15-35	35-60	60-80
Soil	Salinity (EC saturation extract)	dS/m	<2	2-4	4-8	>8
toxicity	Sodicity (ESP)	%	5-10	10-15	>15	
Erosion hazard	Slope	%	<3	3-5	-	>5

Table 7.9 Land suitability criteria for Cotton

La	nd use requirement	Rating						
	te characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N1)		
	Mean temperature in growing season	°C	25-32	33-35 20-25	35-38 <20	>38		
	Mean max. temp. in growing season	°C						
Climatic	Mean min. tempt. in growing season	°C						
regime	Mean RH in growing season	%						
	Total rainfall	mm						
	Rainfall in growing season	mm						
Land quality	Soil-site characteristic							
Maisture	Length of growing period for short duration	Days						
Moisture availability	Length of growing period for long duration							
	AWC	mm/m						
Oxygen	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	Very poorly drained		
availability to roots	Water logging in growing season	Days						
	Texture	Class	scl, cl, sc	c (black), sl	ls	-		
	рН	1:2.5	6.0-7.3	5.0-6.0 7.3-8.4	8.4-9.0	>9.0		
Nutrient availability	CEC	C mol (p+)/ Kg						
	BS	%						
	CaCO3 in root zone	%		<5	5-10	>10		
	OC	%						
Rooting	Effective soil depth	cm	>75	50-75	25-50	<25		
conditions	Stoniness	%				10.00		
	Coarse fragments	Vol %	<15	15-35	35-60	60-80		
Soil toxicity		dS/m	<2	2-4	4-8	>8		
	Sodicity (ESP)	%	<5	5-10	10-15	>15		
Erosion hazard	Slope	%	<3	3-5	5-10	>10		

Table 7.10 Land suitability criteria for Chilli

L	and use requirement		Rating					
	te characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N1)		
	Mean temperature in growing season	°C	25-28	29-32 20-24	15-19 33-36	<15 >36		
	Mean max. temp. in growing season	°C						
Climatic	Mean min. tempt. in growing season	°C						
regime	Mean RH in growing season	%						
	Total rainfall	mm						
	Rainfall in growing season	mm						
Land quality	Soil-site characteristic							
Moisture	Length of growing period for short duration	Days						
availability	Length of growing period for long duration							
	AWC	mm/m						
Oxygen availability	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	V.poorly drained		
to roots	Water logging in growing season	Days						
	Texture	Class	sl, scl, cl, sc, c (red)	-	ls, c(black)	-		
Nutrient	рН	1:2.5	6.0-7.3	5.0-6.0 7.3-8.4	8.4-9.0	>9.0		
availability	CEC	C mol (p+)/Kg						
	BS	%						
	CaCO3 in root zone	%		<5	5-10	>10		
	OC	%						
Rooting	Effective soil depth	cm	>75	50-75	25-50	<25		
conditions	Stoniness	%		1.7.2.7	0.50	60 , 00		
	Coarse fragments	Vol %	<15	15-35	35-60	60-80		
Soil toxicity	Salinity (EC saturation extract)	dS/m	<2.0	2-4	4-8	>8.0		
	Sodicity (ESP)	%	<5	5-10	10-15	>15		
Erosion hazard	Slope	%	<3	3-5	5-10	>10		

I.a	and use requirement	bility criteria for Brinjal Rating				
	e characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)
	Mean temperature in growing season	°C	Well drained	Moderately well drained	Poorly drained	V. Poorly drained
	Mean max. temp. in growing season	°C				
Climatic regime	Mean min. tempt. in growing season	°C				
	Mean RH in growing season	%				
	Total rainfall Rainfall in	mm				
T I	growing season	mm				
Land quality	Soil-site characteristic			1	1	
Mainterna	Length of growing period for short duration	Days				
Moisture availability	Length of growing period for long duration					
	AWC	mm/m				
Oxygen	Soil drainage	Class				
availability to roots	Water logging in growing season	Days				
	Texture	Class	sl, scl, cl, sc c (red)	-	ls, c (black)	-
Nutrient	рН	1:2.5	6.0-7.3	7.3-8.4 5.0-6.0	8.4-9.0	>9.0
availability	CEC	C mol (p+)/Kg				
	BS	%				
	CaCO3 in root zone	%		<5	5-10	>10
	OC	%				
Rooting	Effective soil depth	cm	>75	50-75	25-50	<25
conditions	Stoniness	%				
	Coarse fragments	Vol %	<15	15-35	35-60	>60
Soil	Salinity (EC saturation extract)	ds/m	<2.0	2-4	4-8	>8.0
toxicity	Sodicity (ESP)	%	<5	5-10	10-15	>15
Erosion hazard	Slope	%	<3	3-5	5-10	>10

La	and use requirement	nt Rating						
	Soil –site characteristics		Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)		
	Mean temperature in growing season	°C	20-30	30-35	35-40	>40		
	Mean max. temp. in growing season	°C						
Climatic regime	Mean min. tempt. in growing season	°C						
	Mean RH in growing season	%						
	Total rainfall	mm						
	Rainfall in growing season	mm						
Land quality	Soil-site characteristic							
• •	Length of growing period for short duration	Days						
Moisture availability	Length of growing period for long duration							
	AWC	mm/m						
Oxygen availability	Soil drainage	Class	Well drained	Moderately /imperfectly	-	Poorly to V poorly drained		
to roots	Water logging in growing season	Days						
	Texture	Class	sl,scl,cl,sc,c (red)	-	c (Black),ls	-		
Nutrient	рН	1:2.5	6.0-7.3	5.0-6.0 7.3-7.8	7.8-8.4	>8.4		
availability	CEC	C mol (p+)/ Kg						
	BS	%						
	CaCO3 in root zone	%		<5	5-10	>10		
	OC	%						
Rooting	Effective soil depth	cm	>75	50-75	25-50	<25		
conditions	Stoniness	<u>%</u>		15.05	25.50	(0,00		
	Coarse fragments	Vol %	<15	15-35	35-60	60-80		
Soil toxicity	Salinity (EC saturation extract)	ds/m	<1.0	1.0-2.0	2.0-4.0	<4		
	Sodicity (ESP)	%	<5	5-10	10-15	>15		
Erosion hazard	Slope	%	<3	3-5	5-10	>10		

La	and use requirement	Rating				
	e characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N1)
	Mean temperature in growing season	°C	25-28	29-32 20-24	15-19 33-36	<15 >36
	Mean max. temp. in growing season	°C				
Climatic	Mean min. tempt. in growing season	°C				
regime	Mean RH in growing season	%				
	Total rainfall	mm				
	Rainfall in growing season	mm				
Land quality	Soil-site characteristic					
Moisture	Length of growing period for short duration	Days				
availability	Length of growing period for long duration					
	AWC	mm/m				
Oxygen availability	Soil drainage	Class	Well drained	Moderately well drained	Imperfectly drained	Poorly to very poorly drained
to roots	Water logging in growing season	Days				
	Texture	Class	scl, cl,sc, c (red)	c (black)	ls	-
Nutrient	рН	1:2.5	6.0-7.3	5.0-6.0 7.3-8.4	8.4-9.0	>9.0
availability	CEC	C mol (p+)/Kg				
	BS	%				
	CaCO3 in root zone	%		<5	5-10	>10
	OC	%		50.75	25.50	25
Rooting	Effective soil depth	cm	>75	50-75	25-50	<25
conditions	Stoniness Coarse fragments	% Vol %	<15	15-35	35-60	60-80
Soil	Coarse fragments Salinity (EC saturation extract)	ds/m	<1.5	2-4	4-8	>8.0
toxicity	Sodicity (ESP)	%	<5	5-10	10-15	>15
Erosion hazard	Slope	%	<3	3-5	5-10	>10

Table 7.14 Land suitability criteria for Bhendi

Land use requirement			Rating				
	te characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)	
	Mean temperature in growing season	°C					
	Mean max. temp. in growing season	°C					
Climatic regime	Mean min. tempt. in growing season	°C					
legime	Mean RH in growing season	%					
	Total rainfall Rainfall in growing	mm					
T 1	season	mm					
Land quality	Soil-site characteristic						
	Length of growing period for short duration	Days					
Moisture availability	Length of growing period for long duration						
	AWC	mm/m					
Oxygen availability	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	V.Poorly drained	
to roots	Water logging in growing season	Days					
	Texture	Class	sc, scl, cl, c (red)	sl, c (black)	ls	S	
Nutrient	рН	1:2.5	6.0-7.3	5.0-5.5 7.3-7.8	5.5-6.0 7.8-8.4	>8.4	
availability	CEC	C mol (p+)/Kg					
	BS	%					
	CaCO3 in root zone	%		<5	5-10	>10	
	OC	%					
Pooting	Effective soil depth	cm	>100	75-100	50-75	<50	
Rooting conditions	Stoniness	%					
conditions	Coarse fragments	Vol %	<35	35-60	60-80	>80	
Soil toxicity	Salinity (EC saturation extract)	dS/m					
-	Sodicity (ESP)	%	<5	5-10	10-15	>15	
Erosion hazard	Slope	%	<3	3-10	-	>10	

La	and use requirement	Rating				
	ind use requirement		Highly Moderately Marginally Not			
Soil -si	te characteristics	Unit	suitable	suitable	suitable	suitable
		0	(S1)	(S2)	(S3)	(N1)
	Mean temperature in	°C	24–28	22–24; 28–	32–38; 22–	>38; <18
	growing season			32	18	
	Mean max. temp. in	°C				
	growing season					
Climatic	Mean min. tempt. in	°C				
regime	growing season					
0	Mean RH in	%				
	growing season					
	Total rainfall	mm				
	Rainfall in growing	mm				
	season					
Land	Soil-site					
quality	characteristic					
	Length of growing					
	period for short	Days				
Moisture	duration					
	Length of growing					
availability	period for long					
	duration					
	AWC	mm/m				
			Well	Moderately	Doorly	V Doorly
Oxygen	Soil drainage	Class		well	Poorly drained	V. Poorly drained
availability	_		drained	drained	dramed	uraineu
to roots	Water logging in	Davia				
	growing season	Days				
	Texture	Class	sc, cl, scl	c (red)	c (black), sl, ls	-
Nutrient	рН	1:2.5	5.5-7.3	5.0-5.5 7.8-8.4	7.3-8.4	>8.4
availability		C mol		7.0 0.1		
availability	CEC	(p+)/Kg				
	BS	%				
	CaCO3 in root zone	%		<5	5-10	>10
	OC	%			5.10	>10
	Effective soil depth	cm	>100	75-100	50-75	<50
Rooting	Stoniness	%	/100	75-100	50-75	\JU
conditions		Vol %	0-35	35-60	60-80	>80
	Coarse fragments	V 01 %	0-33	33-00	00-80	>00
Soil	Salinity (EC	dS/m	<2	2-4	4-8	>8
toxicity	saturation extract)	%	<5	5 10	10-15	> 15
	Sodicity (ESP)	%	<3	5-10	10-13	>15
Erosion hazard	Slope	%	0-3	3-5	5-10	>10

 Table 7.16 Land suitability criteria for Mulberry

Note: Suitability evaluation only for Mulberry leaf not for Silk worm rearing

L	and use requirement		Rating				
	te characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)	
	Mean temperature in growing season	°C	28-32	24-27 33-35	36-40	20-24	
	Min temp. before flowering	^{0}C	10-15	15-22	>22	-	
	Mean max. temp. in growing season	°C					
Climatic regime	Mean min. tempt. in growing season	°C					
	Mean RH in growing season	%					
	Total rainfall	mm					
	Rainfall in growing season	mm					
Land	Soil-site						
quality	characteristic						
Moisture	Length of growing period for short duration	Days					
availability	Length of growing period for long duration	Days					
	AWC	mm/m					
Oxygen availability	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	V.Poorly drained	
to roots	Water logging in growing season	Days					
	Texture	Class	scl, cl, sc, c (red)	-	ls, sl, c (black)	-	
Nutrient availability	рН	1:2.5	5.5-7.3	5.0-5.5 7.3-8.4	8.4-9.0	>9.0	
availability	CEC	C mol (p+)/Kg					
	BS	%					
	CaCO3 in root zone	%		<5	5-10	>10	
	OC	%					
Rooting	Effective soil depth	cm	>150	100-150	75-100	<75	
conditions	Stoniness	%					
	Coarse fragments	Vol %	<15	15-35	35-60	60-80	
Soil toxicity	Salinity (EC saturation extract)	dS/m	<2.0	2-4	4-8	>8.0	
-	Sodicity (ESP)	%	<5	5-10	10-15	>15	
Erosion hazard	Slope	%	<3	3-5	5-10	>10	

Table 7.17 Land suitability criteria for Mango

Ιn	nd use requirement	nd suitability criteria for Sapota Rating					
	te characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)	
	Mean temperature in growing season	°C	28-32	33-36 24-27	37-42 20-23	>42 <18	
	Mean max. temp. in growing season	°C			20 20		
Climatic	Mean min. tempt. in growing season	°C					
regime	Mean RH in growing season	%					
	Total rainfall	mm					
	Rainfall in growing season	mm					
Land quality	Soil-site characteristic		1	1			
Maintana	Length of growing period for short duration	Days					
Moisture availability	Length of growing period for long duration						
	AWC	mm/m					
Oxygen availability	Soil drainage	Class	Well drained	Moderately well drained	-	Poorly to very drained	
to roots	Water logging in growing season	Days					
	Texture	Class	scl, cl, sc, c (red)	sl	ls, c (black)	-	
Nutrient	рН	1:2.5	6.0-7.3	5.0-6.0 7.3-8.4	8.4-9.0	>9.0	
availability	CEC	C mol (p+)/ Kg					
	BS	%					
	CaCO3 in root zone	%		<5	5-10	>10	
	OC	%					
Rooting conditions	Effective soil depth	cm	>100	75-100	50-75	<50	
	Stoniness	%	.1 7	15.25	25.60	(0.00	
	Coarse fragments Salinity (EC	Vol %	<15	15-35	35-60	60-80	
Soil toxicity	• •	dS/m	<2.0	2-4	4-8	>8.0	
	Sodicity (ESP)	%	<5	5-10	10-15	>15	
Erosion hazard	Slope	%	<3	3-5	5-10	>10	

Table 7.18 Land suitabili	ity criteria for Sanota
Table 7.10 Lanu Sultabili	ly criteria for Sapola

La	nd use requirement	Rating						
	te characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)		
	Mean temperature in growing season	°C	30-34	35-38 25-29	39-40 15-24			
	Mean max. temp. in growing season	°C						
Climatic	Mean min. tempt. in growing season	°C						
regime	Mean RH in growing season	%						
	Total rainfall	mm						
	Rainfall in growing season	mm						
Land quality	Soil-site characteristic		-					
Moisture	Length of growing period for short duration	Days						
availability	Length of growing period for long duration							
	AWC	mm/m						
Oxygen availability	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	V.Poorly drained		
to roots	Water logging in growing season	Days						
	Texture	Class	scl,cl, sc, c (red)	c (black),sl	ls	-		
Nutrient	рН	1:2.5	5.5-7.8	7.8-8.4	5.0-5.5 8.4-9.0	>9.0		
availability	CEC	C mol (p+)/ Kg						
	BS	%						
	CaCO3 in root zone	%		<5	5-10	>10		
	OC	%						
Rooting	Effective soil depth	cm	>100	75-100	50-75	<50		
conditions	Stoniness	%	1.7	15.05	25.60	(0,00		
	Coarse fragments	Vol %	<15	15-35	35-60	60-80		
Soil toxicity		dS/m	<2.0	2-4	4-8	>8.0		
D '	Sodicity (ESP)	%	<5	5-10	10-15	>15		
Erosion hazard	Slope	%	<3	3-5	5-10	>10		

 Table 7.19 Land suitability criteria for Pomegranate

Ia	nd use requirement	Rating						
La	nu use requirement		Highly Moderately Marginally Not					
Soil –sit	e characteristics	Unit	suitable (S1)	suitable (S2)	suitable (S3)	suitable (N1)		
	Mean temperature in growing season	°C	28-32	33-36 24-27	37-42 20-23			
	Mean max. temp. in growing season	°C						
Climatic	Mean min. tempt. in growing season	°C						
regime	Mean RH in growing season	%						
	Total rainfall	mm						
	Rainfall in growing season	mm						
Land quality	Soil-site characteristic							
Moisture	Length of growing period for short duration	Days						
availability	Length of growing period for long duration							
	AWC	mm/m						
Oxygen availability	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	V.Poorly drained		
to roots	Water logging in growing season	Days						
	Texture	Class	scl, cl, sc, c (red)	sl	c (black), ls	-		
Nutrient	pH	1:2.5	6.0-7.8	5.0-6.0	7.8-8.4	>8.4		
availability	CEC	C mol (p+)/ Kg						
	BS	%						
	CaCO3 in root zone	%		<5	5-10	>10		
	OC	%						
Pooting	Effective soil depth	cm	>100	75-100	50-75	<50		
Rooting conditions	Stoniness	%						
	Coarse fragments	Vol %	<15	15-35	35-60	60-80		
Soil toxicity	Salinity (EC saturation extract)	dS/m	<2.0	2-4	4-8	>8.0		
	Sodicity (ESP)	%	<5	5-10	10-15	>15		
Erosion hazard	Slope	%	<3	3-5	5-10	>10		

Table 7.20 Land suitability criteria for Guava

La	nd use requirement		Rating					
	te characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)		
	Mean temperature in growing season	°C						
	Mean max. temp. in growing season	°C						
Climatic	Mean min. tempt. in growing season	°C						
regime	Mean RH in growing season	%						
	Total rainfall Rainfall in growing	mm mm						
Land quality	season Soil-site characteristic							
Moisture	Length of growing period for short duration	Days						
availability	Length of growing period for long duration							
	AWC	mm/m						
Oxygen availability	Soil drainage	Class	Well drained	Mod. well	Poorly	V. Poorly		
to roots	Water logging in growing season	Days						
	Texture	Class	scl, cl, sc, c (red)	-	sl, ls, c (black)	-		
Nutrient	рН	1:2.5	5.5-7.3	5.0-5.5 7.3-7.8	7.8-8.4	>8.4		
availability	CEC	C mol (p+)/ Kg						
	BS	%						
	CaCO3 in root zone	%		<5	5-10	>10		
	OC	%						
Rooting	Effective soil depth	cm	>100	75-100	50-75	<50		
conditions	Stoniness	%						
	Coarse fragments	Vol %	<15	15-35	35-60	>60		
Soil toxicity	Salinity (EC saturation extract)	dS/m	<2.0	2-4	4-8	>8.0		
	Sodicity (ESP)	%	<5	5-10	10-15	>15		
Erosion hazard	Slope	%	0-3	3-5	5-10	>10-		

La	nd use requirement	Rating				
	te characteristics	Unit	Highly suitable (S1)		Marginally suitable (S3)	Not suitable (N1)
	Mean temperature in growing season	°C				
	Mean max. temp. in growing season	°C				
Climatic	Mean min. tempt.	°C				
regime	in growing season Mean RH in	%				
	growing season Total rainfall	mm				
	Rainfall in growing season	mm				
Land quality	Soil-site characteristic					
Moisture	Length of growing period for short duration	Days				
availability	Length of growing period for long duration					
	AWC	mm/m				
Oxygen	Soil drainage	Class	Well	Mod. well	Poorly	V.Poorly
availability to roots	Water logging in growing season	Days				
	Texture	Class	scl, cl, sc, c(red)	sl, c (black)	ls	-
Nutrient	рН	1:2.5	6.0-7.8	5.0-6.0	7.8-8.4	>8.4
availability	CEC	C mol (p+)/ Kg				
	BS	%				
	CaCO3 in root zone	%		<5	5-10	>10
	OC	%				
Deating	Effective soil depth	cm	>150	100-150	50-100	<50
Rooting	Stoniness	%				
conditions	Coarse fragments	Vol %	<15	15-35	35-60	>60
Soil	Salinity (EC saturation extract)	dS/m	<2.0	2-4	4-8	>8.0
toxicity	Sodicity (ESP)	%	<5	5-10	10-15	>15
Erosion hazard	Slope	%	0-3	3-5	5-10	>10

Table 7.22 Land suitability criteria for Jamun

Land use requirement Rating						
	te characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)
	Mean temperature in	°C	28-30	31-35	36-40	>40
	growing season	C	20-30	24-27	20-23	<20
	Mean max. temp. in growing season	°C				
Climatic	Mean min. tempt. in growing season	°C				
regime	Mean RH in growing season	%				
	Total rainfall	mm				
	Rainfall in growing season	mm				
Land	Soil-site		I			
quality	characteristic					
	Length of growing period for short duration	Days				
Moisture availability	Length of growing period for long duration					
	AWC	mm/m				
Oxygen	Soil drainage	Class	Well drained	Moderately drained	poorly	Very poorly
availability to roots	Water logging in growing season	Days				1 7
	Texture	Class	scl, cl, sc, c	sl	ls	-
Nutrient	рН	1:2.5	6.0-7.8	5.5-6.0 7.8-8.4	5.0-5.5 8.4-9.0	>9.0
availability	CEC	C mol (p+)/ Kg				
	BS	%				
	CaCO3 in root zone	%		<5	5-10	>10
	OC	%				
Rooting	Effective soil depth	cm	>100	75-100	50-75	<50
conditions	Stoniness	%				
	Coarse fragments	Vol %	<15	15-35	35-60	60-80
Soil toxicity	Salinity (EC saturation extract)	dS/m	<2.0	2-4	4-8	>8.0
	Sodicity (ESP)	%	<5	5-10	10-15	>15
Erosion hazard	Slope	%	<3	3-5	5-10	>10

Table 7.23 Land suitability criteria for Musambi

La	nd use requirement	Rating						
La	nu use requirement							
Soil sit	e characteristics	Unit	Highly suitable	suitable	suitable	suitable		
5011 – Sit	e characteristics	Umt	(S1)	(S2)	(S3)			
	Maan tanan anatana in		(51)	31-35	36-40	(N1) >40		
	Mean temperature in	°C	28-30	24-27	20-23	-		
	growing season			24-27	20-23	<20		
	Mean max. temp. in	°C						
	growing season							
Climatic	Mean min. tempt. in	°C						
regime	growing season							
C	Mean RH in	%						
	growing season							
	Total rainfall	mm						
	Rainfall in growing	mm						
	season							
Land	Soil-site							
quality	characteristic		r	1				
	Length of growing							
	period for short	Days						
Moisture	duration							
availability	Length of growing							
	period for long							
	duration							
	AWC	mm/m						
Oxygen	Soil drainage	Class	Well	Moderately	poorly	Very		
availability		Class	drained	drained	poony	poorly		
to roots	Water logging in	Days						
10 10013	growing season	Days						
	Texture	Class	scl, cl,	sl	ls			
	ICALUIC	Class	sc, c	51	18	-		
	pН	1:2.5	6.0-7.8	5.5-6.0	5.0-5.5	>9.0		
Nutriant	pm	1.2.3	0.0-7.8	7.8-8.4	8.4-9.0	>9.0		
Nutrient		C mol						
availability	CEC	(p+)/						
		Kg						
	BS	%						
	CaCO3 in root zone	%		<5	5-10	>10		
	OC	%						
Deet	Effective soil depth	cm	>100	75-100	50-75	<50		
Rooting	Stoniness	%						
conditions	Coarse fragments	Vol %	<15	15-35	35-60	60-80		
	Salinity (EC							
Soil toxicity	saturation extract)	dS/m	<2.0	2-4	4-8	>8.0		
	Sodicity (ESP)	%	<5	5-10	10-15	>15		
	· · · · · · · · · · · · · · · · · · ·				~ - •			
Erosion	Slope	%	<3	3-5	5-10	>10		

L	Land use requirement Rating					
	te characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)
	Mean temperature in growing season	°C	32 to 34	28 to 32; 34 to 38	24 to 28; 38 to 40	<20;>40
	Mean max. temp. in growing season	°C				
Climatic	Mean min. tempt. in growing season	°C				
regime	Mean RH in growing season	%				
	Total rainfall	mm				
	Rainfall in growing season	mm				
Land quality	Soil-site characteristic					
Moisture availability	Length of growing period for short duration	Days				
	Length of growing period for long duration					
	AWC	mm/m				
Oxygen availability	Soil drainage	Class	Well drained	moderately well drained	Poorly drained	Very poorly drained
to roots	Water logging in growing season	Days				
	Texture	Class	scl, cl, sc, c (red)	-	sl, ls	c (black)
Nutrient	рН	1:2.5	5.5-6.5	5.0-5.5 6.5-7.3	7.3-7.8	>7.8
availability	CEC	C mol (p+)/ Kg				
	BS	%				
	CaCO3 in root zone	%		<5	5-10	>10
	OC	%				
Rooting	Effective soil depth	cm	>100	75-100	50-75	<50
conditions	Stoniness	%				
	Coarse fragments	Vol %	<15	15-35	35-60	60-80
Soil toxicity		dS/m	<2	2-4	4-8	>8
F	Sodicity (ESP)	%	<5	5-10	10-15	>15
Erosion hazard	Slope	%	<3	3-10	>10	-

 Table 7.25 Land suitability criteria for Cashew

La	and use requirement		Rating				
	te characteristics	Unit	Highly suitable (S1)		Marginally suitable (S3)	Not suitable (N1)	
	Mean temperature in growing season	°C					
	Mean max. temp. in growing season	°C					
Climatic	Mean min. tempt. in growing season	°C					
regime	Mean RH in growing season	%					
	Total rainfall	mm					
	Rainfall in growing season	mm					
Land quality	Soil-site characteristic						
Moisture availability	Length of growing period for short duration	Days					
	Length of growing period for long duration						
	AWC	mm/m					
Oxygen availability	Soil drainage	Class	Well drained	Mod. well drained	Poorly drained	V.Poorly drained	
to roots	Water logging in growing season	Days					
	Texture	Class	Scl, cl, sc, c (red), c (black)	-	Sl, ls	-	
Nutrient availability	рН	1:2.5	6.0-7.3	5.5-6.0 7.3-8.4	5.0-5.5 8.4-9.0	>9.0	
	CEC	C mol (p+)/Kg					
	BS	%					
	CaCO3 in root zone	%		<5	5-10	>10	
	OC	%				-	
Rooting	Effective soil depth	cm	>75	50-75	25-50	<25	
conditions	Stoniness	%	15.05	25.50	(0.00		
	Coarse fragments	Vol %	<15-35	35-60	60-80	-	
Soil toxicity	Salinity (EC saturation extract)	dS/m	<2.0	2-4	4-8	>8.0	
	Sodicity (ESP)	%	<5	5-10	10-15	>15	
Erosion hazard	Slope	%	0-3	3-5	>5	-	

Table 7.26 Land	suitability	criteria for	Custard apple
			Castar a appro

La	and use requirement	Rating					
	te characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N1)	
	Mean temperature in growing season	°C					
	Mean max. temp. in growing season	°C					
Climatic	Mean min. tempt. in growing season	°C					
regime	Mean RH in growing season	%					
	Total rainfall	mm					
	Rainfall in growing season	mm					
Land quality	Soil-site characteristic						
Moisture availability	Length of growing period for short duration	Days					
	Length of growing period for long duration						
	AWC	mm/m					
Oxygen	Soil drainage	Class	Well drained	Mod.well drained	Poorly drained	V. Poorly drained	
availability to roots	Water logging in growing season	Days					
	Texture	Class	scl, cl, sc, c (red)	c (black)	ls, sl	-	
Nutrient availability	рН	1:2.5	5.5-7.3	5.0-5.5 7.3-7.8	7.8-8.4	>8.4	
availability	CEC	C mol (p+)/Kg					
	BS	%					
	CaCO3 in root zone	%		<5	5-10	>10	
	OC	%					
Rooting	Effective soil depth	cm	>75	50-75	25-50	<25	
Rooting conditions	Stoniness	%					
	Coarse fragments	Vol %	<15-35	35-60	60-80	-	
Soil toxicity	Salinity (EC saturation extract)	dS/m	<2.0	2-4	4-8	>8.0	
-	Sodicity (ESP)	%	<5	5-10	10-15	>15	
Erosion hazard	Slope	%	0-3	3-5	5-10	>10	

Table 7.27 Land suitability criteria for Amla

Land use requirement				Rating				
	e characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)		
	Mean temperature in growing season	°C						
	Mean max. temp. in growing season	°C						
Climatic	Mean min. tempt. in growing season	°C						
regime	Mean RH in growing season	%						
	Total rainfall	mm						
	Rainfall in growing season	mm						
Land quality	Soil-site characteristic							
Moisture	Length of growing period for short duration	Days						
availability	Length of growing period for long duration							
	AWC	mm/m						
Oxygen	Soil drainage	Class	Well drained	Mod.well drained	Poorly drained	V.Poorly drained		
availability to roots	Water logging in growing season	Days						
	Texture	Class	scl, cl,sc, c (red)	sl, c (black)	ls	-		
Nutrient	рН	1:2.5	6.0-7.3	5.0-6.0 7.3-7.8	7.8-8.4	>8.4		
availability	CEC	C mol (p+)/ Kg						
	BS	%						
	CaCO3 in root zone	%		<5	5-10	>10		
	OC	%						
Pooting	Effective soil depth	cm	>150	100-150	75-100	<75		
Rooting conditions	Stoniness	%						
conditions	Coarse fragments	Vol %	<15	15-35	35-60	60-80		
Soil toxicity	Salinity (EC saturation extract)	dS/m	<2	2-4	4-8	>8		
	Sodicity (ESP)	%	<5	5-10	10-15	>15		
Erosion hazard	Slope	%	0-3	3-5	5-10	>10		

Table 7.28 Land	suitability	criteria fo	r Tamarind
Table 7.20 Lanu	Sultability	ci iteria iu	1 1 amai mu

Table 7.29 Land suitability criteria for MarigoldLand use requirementRating						
	te characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)
	Mean temperature	°C	18-23	17-15	35-40	>40
	in growing season	-		24-35	10-14	<10
	Mean max. temp. in growing season	°C				
Climatic	Mean min. tempt. in growing season	°C				
regime	Mean RH in growing season	%				
	Total rainfall	mm				
	Rainfall in growing season	mm				
Land quality	Soil-site characteristic					
Moisture	Length of growing period for short duration	Days				
availability	Length of growing period for long duration					
	AWC	mm/m				
Oxygen availability	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	V.Poorly drained
to roots	Water logging in growing season	Days				
	Texture	Class	sl,scl, cl, sc, c (red)	c (black)	ls	-
Nutrient	рН	1:2.5	6.0-7.3	5.0-6.0 7.3-8.4	8.4-9.0	>9.0
availability	CEC	C mol (p+)/Kg				
	BS	%				
	CaCO3 in root zone	%		<5	5-10	>10
	OC	%				
Rooting	Effective soil depth	cm	>75	50-75	25-50	<25
conditions	Stoniness	%				
	Coarse fragments	Vol %	<15	15-35	35-60	60-80
Soil toxicity	Salinity (EC saturation extract)	dS/m	<2.0	2-4	4-8	>8.0
-	Sodicity (ESP)	%				
Erosion hazard	Slope	%	<3	3-5	5-10	>10

Table 7.29 Land suitability criteria for Marigold

La	and use requirement	y criteria for Chrysanthemum Rating				
	te characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)
	Mean temperature in growing season	°C	18-23	17-15 24-35	35-40 10-14	>40 <10
	Mean max. temp. in growing season	°C			1011	
Climatic regime	Mean min. tempt. in growing season	°C				
	Mean RH in growing season	%				
	Total rainfall Rainfall in growing season	mm mm				
Land quality	Soil-site characteristic					
Moisture availability	Length of growing period for short duration	Days				
	Length of growing period for long duration					
	AWC	mm/m				
Oxygen availability	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	V.Poorly drained
to roots	Water logging in growing season	Days				
	Texture	Class	sl,scl, cl, sc, c (red)	c (black)	ls	-
Nutrient availability	рН	1:2.5	6.0-7.3	5.0-6.0 7.3-8.4	8.4-9.0	>9.0
availability	CEC	C mol (p+)/Kg				
	BS	%				
	CaCO3 in root zone	%		<5	5-10	>10
	OC	%				
Rooting	Effective soil depth	cm	>75	50-75	25-50	<25
conditions	Stoniness	%	.1 7	15.25	25.50	(0,00
	Coarse fragments	Vol %	<15	15-35	35-60	60-80
Soil toxicity	Salinity (EC saturation extract) Sodicity (ESP)	dS/m %	<2.0	2-4	4-8	>8.0
Erosion	Sourcity (ESP)	70				
hazard	Slope	%	<3	3-5	5-10	>10

Land use requirement			Rating			
Soil –si	Unit	Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)	
	Mean temperature in growing season	°C	18-23	17-15 24-35	35-40 10-14	-
	Mean max. temp. in growing season	°C				
Climatic	Mean min. tempt. in growing season	°C				
regime	Mean RH in growing season	%				
	Total rainfall	mm				
	Rainfall in growing season	mm				
Land quality	Soil-site characteristic					
Moisture	Length of growing period for short duration	Days				
availability	Length of growing period for long duration					
	AWC	mm/m				
Oxygen availability	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	V.Poorly drained
to roots	Water logging in growing season	Days				
	Texture	Class	scl, cl, sc, c (red)	sl	ls, c (black)	-
Nutrient	рН	1:2.5	6.0-7.3	5.0-6.0 7.3-8.4	8.4-9.0	>9.0
availability	CEC	C mol (p+)/Kg				
	BS	%				
	CaCO3 in root zone	%		<5	5-10	>10
	OC	%	_			
Rooting conditions	Effective soil depth	cm	>75	50-75	25-50	<25
	Stoniness	%	.15	15.25	25.60	<u>(0.90</u>
	Coarse fragments	Vol %	<15	15-35	35-60	60-80
Soil toxicity	Salinity (EC saturation extract) Sodicity (ESP)	dS/m %	<2.0	2-4	4-8	>8.0
Erosion	• • •					
hazard	Slope	%	<3	3-5	5-10	>10

Table 7.31 Land suitability	criteria for Jasmine (irrigated)

T	and use requirement	Rating				
	te characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	0	Not suitable (N1)
	Mean temperature in growing season	°C				
	Mean max. temp. in growing season	°C				
Climatic regime	Mean min. tempt. in growing season	°C				
regime	Mean RH in growing season	%				
	Total rainfall	mm				
	Rainfall in growing season	mm				
Land	Soil-site					
quality	characteristic			T	1	
Moisture	Length of growing period for short duration	Days				
availability	Length of growing period for long duration					
	AWC	mm/m				
Oxygen availability	Soil drainage	Class	Well drained	Moderately well drained	-	Poorly to very poorly drained
to roots	Water logging in growing season	Days				
	Texture	Class	scl, cl, sc, c(red)	sl,	c (black),ls	-
Nutrient	рН	1:2.5	6.0-7.3	5.0-6.0 7.3-8.4	8.4-9.0	>9.0
availability	CEC	C mol (p+)/Kg				
	BS	%				
	CaCO3 in root zone	%		<5	5-10	>10
	OC	%				
Rooting conditions	Effective soil depth	cm	>75	50-75	25-50	<25
	Stoniness	%				
	Coarse fragments	Vol %	<15	15-35	35-60	60-80
Soil toxicity	Salinity (EC saturation extract)	dS/m	<2.0	2-4	4-8	>8.0
Energie ::	Sodicity (ESP)	%				
Erosion hazard	Slope	%	<3	3-5	5-10	>10

7.32 Land suitability criteria for Crossandra

7.29 Land Management Units (LMUs)

The 17 soil map units identified in Belanalu Microwatershed have been grouped into five Land Management Units (LMUs) for the purpose of preparing a Proposed Crop Plan. Land Management Units are grouped based on the similarities in respect of the type of soil, the depth of the soil, the surface soil texture, gravel content, AWC, slope, erosion etc. and a Land Management Units map (Fig.7.32) has been generated. These Land Management Units are expected to behave similarly for a given level of management.

The map units that have been grouped into five Land Management Units along with brief description of soil and site characteristics are given below.

LMU	Mapping unit	Soil and site characteristics
1	BPRcA1g1,BPRhB2g1,BPRmB2g1, GDPcB2, BDGhB2, BDGhB2g1, HDHcA1g1,HDHcB2g1, HDHhB2,HDHhB2g1,HDHiB2g1	Moderately deep to deep, red gravelly sandy clay to clay soils with slopes of 0- 3%, slight to moderate erosion, gravelly (15-35%)
2	GRHmB2	Deep, black calcareous clay soils with slopes of 1-3%, moderate erosion
3	KTPiB1g1	Moderately shallow, red loamy soils with slopes of 1-3%, slight erosion, gravelly (15-35%)
4	LKRhB2g1,LKRhB2g2, LKRiB2g1	Moderately shallow, red gravelly sandy clay soils with slopes of 1-3%, moderate erosion, gravelly to very gravelly (15-60%)
5	ABRbB2g2	Shallow, red gravelly clay soils with slopes of 1-3%, moderate erosion, very gravelly (35-60%)

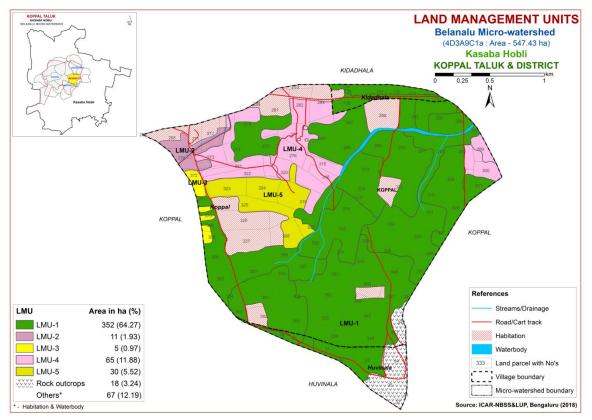


Fig 7.32 Land Management Units map of Belanalu microwatershed

7.30 Proposed Crop Plan for Belanalu Microwatershed

After assessing the land suitability for the 31 crops, the proposed crop plan has been prepared for the five identified LMUs by considering only the highly (Class S1) and moderately (Class S2) suitable lands for each of the 31 crops. The resultant proposed crop plan is presented in Table 7.33.

LMU	Soil Map Units	Survey Number	Field Crops/ Commercial crops	Horticulture Crops (Rainfed/Irrigated)	Suitable Interventions
1	221.BPRcA1g1 231.BPRhB2g1 459.BPRmB2g1 267.GDPcB2 187.BDGhB2 188.BDGhB2g1 106.HDHcA1g1 111.HDHcB2g1 122.HDHhB2 123.HDHhB2g1 128.HDHiB2g1 (Moderately deep to deep, red gravelly sandy clay to clay soils)	Kidadhala : 127,128,129,	Horse gram, Castor, Mulberry	Musambi, Lime, Jamun, Jackfruit Amla, Custard apple, Tamarind Vegetable crops:	Drip irrigation, mulching, suitable soil and water conservation practices (Crescent Bunding with Catch Pit etc)
2	373.GRHmB2 (Deep, black calcareous clay soils)		Sunflower, Cotton, Bengal gram, Safflower, Linseed, Bajra, Soybean	Musambi, Tamarind, Amla, Custard apple Vegetables:	Biofertilizers and micronutrients, drip

Table 7.33 Proposed Crop Plan for Belanalu Microwatershed

LMU	Soil Map Units	Survey Number	Field Crops/ Commercial crops	Horticulture Crops (Rainfed/Irrigated)	Suitable Interventions
3	74.KTPiB1g1 (Moderately shallow, red loamy soils)	Koppal : 371,372	Groundnut, Bajra, Green gram, Black gram, Cowpea, Horse gram, Castor,	Musambi, Amla, Custard apple, Cashew Flower crops: Marigold,	Drip irrigation, Mulching, suitable soil and water conservation practices (Crescent Bunding with Catch Pit etc)
4	452.LKRhB2g1 47.LKRhB2g2 54.LKRiB2g1 (Moderately shallow, red gravelly sandy clay soils)	Koppal : 273,276,277,279,282,284, 299,300,315,316,320,321, 322	Groundnut, Bajra, Castor	Musambi, Amla, Cashew, Custard apple,	Drip irrigation, mulching, suitable soil and water conservation practices (Crescent Bunding with Catch Pit etc)
5	470.ABRbB2g2 (Shallow, red gravelly clay soils)	Koppal : 319,323,324,325,328	gram, Horse gram	Custard apple, Hybrid Napier, Styloxanthes hamata,	Use of short duration varieties, sowing across the slope and split application of nitrogen fertilizers

SOIL HEALTH MANAGEMENT

8.1 Soil Health

Soil health is basic to plant health and plant health is basic to human and bovine health. Soil is fundamental to crop production. Without soil, no food could be produced nor would livestock be fed on a large scale. Because it is finite and fragile, soil is a precious resource that requires special care from its users.

Soil health or the capacity of the soil to function is critical to human survival. Soil health has been defined as: "the capacity of the soil to function as a living system without adverse effect on the ecosystem". Healthy soils maintain a diverse community of soil organisms that help to form beneficial symbiotic associations with plant roots, recycle essential plant nutrients, improve soil structure with positive repercussions for soil, water and nutrient holding capacity and ultimately improve crop production and also contribute to mitigating climate change by maintaining or increasing its carbon content.

Functional interactions of soil biota with organic and inorganic components, air and water determine a soil's potential to store and release nutrients, and water to plants and to promote and sustain plant growth. Thus, maintaining soil health is vital to crop production and conserve soil resource base for sustaining agriculture.

The most important characteristics of a healthy soil are

- Good soil tilth
- Sufficient soil depth
- Good water storage and good drainage
- Adequate supply, but not excess of nutrients
- Large population of beneficial organisms
- Small proportion of plant pathogens and insect pests
- Low weed pressure
- > Free of chemicals and toxins that may harm the crop
- Resistance to degradation
- Resilience when unfavourable conditions occur

Characteristics of Dombarahalli-1Microwatershed

- The soil phases with sizeable area identified in the microwatershed belonged to the soil series of HDH (257 ha), LKR (66 ha), BDG (45 ha), GDP (35 ha), ABR (30 ha), BPR (15 ha), GRH (11 ha) and KTP (5 ha).
- As per land capability classification, entire area in the microwatershed falls under arable land category (Class II and III). The major limitations identified in the arable lands were soil and erosion.
- On the basis of soil reaction, an area of about 17 ha (3%) is slightly acid (pH 6.0-6.5), 225 ha (41%) is neutral (pH 6.5-7.3), 141 ha (26 %) is slightly alkaline (pH 7.3-7.8),

70 ha(13%) is moderately alkaline (pH 7.8-8.4), 9 ha (2%) is strongly alkaline (pH 8.4-9.0) and 2 ha (<1%) is very strongly alkaline (pH >9.0) in reaction.

Soil Health Management

The following actions are required to improve the current land husbandry practices that provide a sound basis for the successful adoption of sustainable crop production system.

Acid soils

Acid soils occupy an area of about 17 ha (3%) in the microwatershed. The following measures are recommended for reclaiming acid soils.

- 1. Growing of crops suitable for a particular soil pH.
- 2. Ameliorating the soils through the application of amendments (liming materials). Liming materials:
- 1. $CaCO_3$ (Calcium Carbonate). More than 90% use in India.
- 2. Dolomite [Ca Mg $(Co_3)_2$]
- 3. Quick lime (Cao)
- 4. Slaked lime [Ca (OH)₂]

For normal pH and pH-4.8 (35 t/ha) and pH 6 .0-7.0 (4 t/ha) lime is required

Alkaline soils

An area of about 222 ha (40%) is under alkaline soils. The following actions are recommended.

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers (Azospirullum, Azatobacter, Rhizobium).
- 3. Application of 25% extra N and P (125 % RDN&P).
- 4. Application of $ZnSO_4 12.5$ kg/ha (once in three years).
- 5. Application of Boron 5 kg/ha (once in three years).

Neutral soils

Neutral soils cover about 225 ha (41 %) and the following actions are recommended.

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers, (Azospirullum, Azotobacter, Rhizobium).
- 3. Application of 100 per cent RDF.
- 4. Need based micronutrient applications.

Besides the above recommendations, the best transfer of technology options are also to be adopted.

Soil Degradation

Soil erosion is one of the major factor affecting the soil health in the microwatershed. An area of about 450 ha (82%) is under moderate erosion. The areas with moderate erosion need immediate soil and water conservation and, other land development and land husbandry practices for restoring soil health.

Dissemination of Information and Communication of Benefits

Any large scale implementation of soil health management requires that supporting information is made available widely, particularly through channels familiar to farmers and extension workers. Given the very high priority attached to soil health especially by the Central Government on issuing Soil-Health Cards to all the farmers, media outlets like Regional, State and National Newspapers, Radio and Dooradarshan programs in local languages but also modern information and communication technologies such as Cellular phones and the Internet, which can be much more effective in reaching the younger farmers.

Inputs for Net Planning (Saturation Plan) and Interventions needed

Net planning in IWMP is focusing on preparation of

- 1. Soil and Water Conservation Treatment Plans for each plot or farm.
- 2. Productivity enhancement measures/ interventions for existing crops/livestock/other farm enterprises.
- 3. Diversification of farming mainly with perennial horticultural crops and livestock.
- 4. Improving livelihood opportunities and income generating activities.

In this connection, how various outputs of Sujala-III are of use in addressing these objectives of Net Planning are briefly presented below.

- Soil Depth: The depth of a soil decides the amount of moisture and nutrients it can hold, what crops can be taken up or not, depending on the rooting depth and the length of growing period available for raising any crop. Deeper the soil, better for a wide variety of crops. If sufficient depth is not available for growing deep rooted crops, either choose medium or short duration crops or deeper planting pits need to be opened and additional good quality soil brought from outside has to be filled into the planting pits.
- Surface Soil Texture: Lighter soil texture in the top soil means, better rain water infiltration, less run-off and soil moisture conservation, less capillary rise and less evaporation losses. Lighter surface textured soils are amenable to good soil tilth and are highly suitable for crops like groundnut, root vegetables (carrot, raddish, potato etc) but not ideal for crops that need stagnant water like lowland paddy. Heavy textured soils are poor in water infiltration and percolation. They are prone for sheet erosion; such soils can be improved by sand mulching. The technology that is developed by the AICRP-Dryland Agriculture, Vijayapura, Karnataka can be adopted.

- Gravelliness: More gravel content is favorable for run-off harvesting but poor in soil moisture storage and nutrient availability. It is a significant parameter that decides the kind of crop to be raised.
- Land Capability Classification: The land capability map shows the areas suitable and not suitable for agriculture and the major constraints in each of the plot/survey number. Hence, one can decide what kind of enterprise is possible in each of these units. In general, erosion and soil are the major constraints in Dombarahalli-1Microwatershed.
- Organic Carbon: An area of about 13 ha (2%) is medium (0.5-0.75%) and high (>0.75%) in 450 ha (82%). The areas that are medium in OC needs to be further improved by applying farmyard manure and rotating crops with cereals and legumes or mixed cropping.
- Promoting green manuring: Growing of green manuring crops costs Rs. 1250/ha (green manuring seeds) and about Rs. 2000/ha towards cultivation that totals to Rs. 3250/- per ha. On the other hand, application of organic manure @ 10 tons/ha costs Rs. 5000/ha. The practice needs to be continued for 2-3 years or more. Nitrogen fertilizer needs to be supplemented by 25% in addition to the recommended level in 13 ha area where OC is less than 0.75 per cent. For example, for rainfed maize, recommended level is 50 kg N per ha and an additional 12 kg /ha needs to be applied for all the crops grown in these plots.
- Available Phosphorus: Available phosphorus is medium in (23-57 kg/ha) 442 ha (81%) and high (>57 kg/ha) in 21 ha (4%) of the area. The areas with high phosphorus content reduce 25% from the RDF to avoid the excess application of fertilizer and apply additional 25% phosphorus in areas where it is low and medium.
- Available Potassium: Available potassium is low (<145 kg/ha) in 37 ha (7%), medium (145-337 kg/ha) in 262 ha (48%) and high (>337 kg/ha) in 164 ha (30%) area of the microwatershed. The areas with high potassium content reduce 25% from the RDF to avoid the excess application of fertilizer and apply additional 25% potassium in areas where it is medium.
- Available Sulphur: Available sulphur is a very critical nutrient for oilseed crops. Available sulphur is low (<10 ppm) in 253 ha (46%), medium in 141 ha (26%) and high (>20 ppm) in 69 ha (13 %) area of the microwatershed. Areas with low and medium in available sulphur need to be applied with magnesium sulphate or gypsum or Factamphos (p) fertitilizer (13% sulphur) for 2-3 years for the deficiency to be corrected.
- Available Iron: It is deficient (<4.5 ppm) in 100 ha (18%) and sufficient (>4.5 ppm) in 363 ha (66 %) area of the microwatershed. To manage iron deficiency iron sulphate @ 25 kg/ha needs to be applied for 2-3 years.

- Available Zinc: It is deficient (<0.6 ppm) in 2 ha (<1%) and sufficient (>0.6 ppm) in 461 ha (84 %) area of the microwatershed. Application of zinc sulphate @ 25kg/ha is to be followed in areas that are deficient in available zinc.
- Available Boron: Available boron is low in (<0.5ppm) 31 ha (6%) and medium (0.5-1.0 ppm) in 432 ha (79%) of the microwatershed. The areas with low and medium in boron content need to be applied with sodium borate @ 10kg/ha as soil application or 0.2% borax as foliar spray to correct the deficiency.</p>
- **Available Manganese**: It is sufficient in the entire area of the microwatershed.
- **Available Copper:** It is sufficient in the entire area of the microwatershed.
- Soil Acidity: The microwatershed has 17 ha (3 %) area with soils that are slightly acid. These areas need application of lime (Calcium Carbonate).
- Soil Alkalinity: An area of about 222 ha (40%) in the microwatershed has soils that are slightly to very strongly alkaline. These areas need application of gypsum and wherever calcium is in excess, iron pyrites and element sulphur can be recommended. Management practices like treating repeatedly with good quality water to drain out the excess salts and provision of subsurface drainage and growing of salt tolerant crops like Casuarina, Acasia, Neem, Ber etc, are recommended..
- Land Suitability for various crops: Areas that are highly, moderately and marginally suitable and not suitable for growing various crops are indicated. Along with the suitability, various constraints that are limiting the productivity are also indicated. For example, in case of cotton, gravel content, rooting depth and salinity/alkalinity are the major constraints in various plots. With suitable management interventions, the productivity can be enhanced. In order to increase water holding capacity of light textured soils, growing of green manure crops and application of organic manure is recommended.

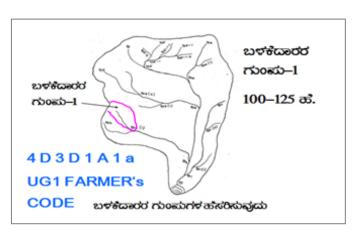
SOIL AND WATER CONSERVATION TREATMENT PLAN

For preparing soil and water conservation treatment plan for Belanalu Microwatershed, the land resource inventory database generated under Sujala-III project has been transformed as information through series of interpretative (thematic) maps using soil phase map as a base. The various thematic maps (1:7920 scale) generated were

- > Soil depth
- Surface soil texture
- Available water capacity
- > Soil slope
- ➢ Soil gravelliness
- ➢ Land capability
- Present land use and land cover
- Crop suitability maps
- ➢ Rainfall map
- > Hydrology
- Water Resources
- Socio-economic data
- Contour plan with existing features- network of waterways, pothissa boundaries, cut up/ minor terraces etc.
- ➤ Cadastral map (1:7920 scale)
- Satellite imagery (1:7920 scale)

Apart from these, Hand Level/ Hydro Marker/ Dumpy Level/ Total Station and Kathedars' List to be collected.

Steps for Survey and Preparation of Treatment Plan


The boundaries of Land User Groups' and Survey No. boundaries are traced in the

field.

- Naming of user groups and farmers
- Identification of arable and non arable lands
- Identification of drainage lines and gullies
- Identification of non treatable areas
- > Identification of priority areas in the arable lands
- Treatment plan for arable lands
- Location of water harvesting and recharge structures

9.1 Treatment Plan

The treatment plan recommended for arable lands is briefly described below.

9.1.1 Arable Land Treatment

A. BUNDING

Steps for	Survey and Preparation of Treatment Plan		USER GROUP-1
scale of 1:250 Existing netw	ork of waterways, pothissa		CLASSIFICATION OF GULLIES ಕೊರಕಲಿನ ವರ್ಗೀಕರಣ
lines/ waterco marked on the Drainage line	rass belts, natural drainage ourse, cut ups/ terraces are e cadastral map to the scale s are demarcated into	UPPER REACH MIDDLE REACH	 ・ 畝にどを成び 15 Ha. ものは残なび 15+10=25 あ. ・ ಕಲಸ್ಥರ
Small gullies Medium gullies	(up to 5 ha catchment) (5-15 ha catchment)	LOWER REACH	२ 25 क्रेड्रेज ⁶ तेल्ड अप्रेर्ड POINT OF CONCENTRATION
Ravines Halla/Nala	(15-25 ha catchment) and (more than 25ha catchment)		

Measurement of Land Slope

Land slope is estimated or determined by the study and interpretation of contours or by measurement in the field using simple instruments like Hand Level or Hydromarker.

Vertical and Horizontal intervals between bunds as recommended by the Watershed Development Department.

Slope percentage	Vertical interval (m)	Corresponding Horizontal Distance (m)
2 - 3%	0.6	24
3 - 4%	0.9	21
4 - 5%	0.9	21
5 - 6%	1.2	21
6 - 7%	1.2	21

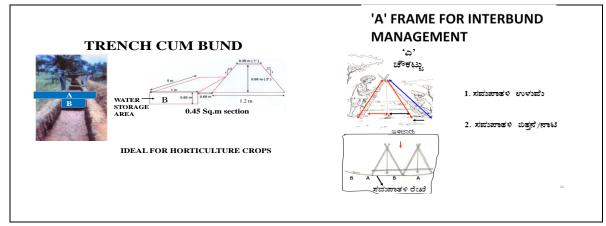
Note: i) The above intervals are maximum.

(ii) Considering the slope class and erosion status (A1... A= 0-1% slope, 1= slight erosion) the intervals have to be decided.

Bund length recording: Considering the contour plan and the existing grass belts/partitions, the bunds are aligned and lengths are measured.

Section of the Bund

Bund section is decided considering the soil texture class and gravelliness class (bg₀b = loamy sand, $g_0 = <15\%$ gravel). The recommended sections for different soils are given below.


Top width (m)	Base width (m)	Height (m)	Side slope (Z:1;H :V)	Cross sectio n (sq m)	Soil Texture	Remarks
0.3	0.9	0.3	01:01	0.18	Sandy loam	Vegetativ
0.3	1.2	0.3	1.5:1	0.225	Sandy clay	e bund
0.3	1.2	0.5	0.9:1	0.375	Red gravelly soils	
0.3	1.2	0.6	0.75:1	0.45		
0.3	1.5	0.6	01:01	0.54	Red sandy loam	
0.3	2.1	0.6	1.5:1	0.72	Very shallow clayey black soils	
0.45	2	0.75	01:01	0.92		
0.45	2.4	0.75	1.3:1	1.07	Shallow clayey black soils	
0.6	3.1	0.7	1.78:1	1.29	Medium clayey black soils	
0.5	3	0.85	1.47:1	1.49		

Recommended Bund Section

Formation of Trench cum Bund

Dimensions of the Borrow Pits/ Trenches to be excavated (machinery are decided considering the Bund Section).

Details of Borrow Pit dimensions are given below

Bund section	Bund length	Earth quantity			Pit		Berm (pit to pit)	Soil depth Class
m ²	m	m ³	L(m)	W(m)	D(m)	Quantity (m ³)	m	
0.375	6	2.25	5.85	0.85	0.45	2.24	0.15	Shallow
0.45	6	2.7	5.4	1.2	0.43	2.79	0.6	Shallow
0.45	6	2.7	5	0.85	0.65	2.76	1	Moderately Shallow
0.54	5.6	3.02	5.5	0.85	0.7	3.27	0.1	Moderately shallow
0.54	5.5	2.97	5	1.2	0.5	3	0.5	Shallow
0.72	6.2	4.46	6	1.2	0.7	5.04	0.2	Moderately shallow
0.72	5.2	3.74	5.1	0.85	0.9	3.9	0.1	Moderately deep

Size of Borrow Pits/ Trench recommended for Trench cum Bund (by machinery)

B. Waterways

- **a**) Existing waterways are marked on the cadastral map (1:7920 scale) and their dimensions are recorded.
- **b**) Considering the contour plan of the MWS, additional waterways/ modernization of the existing ones can be thought of.
- c) The design details are given in the Manual.

C. Farm Ponds

Waterways and the catchment area will give an indication on the size of the Farm Pond. Location of the pond can be decided based on the contour plan/ field condition and farmers' need/desire.

D. Diversion Channel

Existing EPT/ CPT are marked on the cadastral map. Looking to the need, these can be modernized or fresh diversion channel can be proposed and runoff from this can be stored in *Gokatte*/ Recharge Ponds.

9.1.2 Non-Arable Land Treatment

Depending on the gravelliness and crops preferred by the farmers, the concerned authorities can decide appropriate treatment plan. The recommended treatments may be Contour Trench, Staggered Trench, Crescent Bund, Boulder Bund or Pebble Bund.

9.1.3 Treatment of Natural Water Course/ Drainage Lines

- a) The cadastral map has to be updated as regards the network of drainge lines (gullies/ nalas/ hallas) and existing structures are marked to the scale and storage capacity of the existing water bodies are documented.
- b) The drainage line will be demarcated into Upper Reach, Middle Reach and Lower Reach.
- c) Considering the Catchment, *Nala* bed and bank conditions, suitable structures are decided.
- d) Number of storage structures (Check dam/ *Nala* bund/ Percolation tank) will be decided considering the commitments and available runoff in water budgeting and quality of water in the wells and site suitability.
- e) Detailed Levelling Survey using Dumpy Level / Total Station has to be carried out to arrive at the site-specific designs as shown in the Manual.
- f) The location of ground water recharge structures are decided by examining the lineaments and fracture zones from geological maps.
- g) Rainfall intensity data of the nearest Rain Gauge Station is considered for Hydrologic Designs.
- h) Silt load to the Storage/Recharge Structures is reduced by providing vegetative, boulder and earthern checks in the natural water course. Location and design details are given in the Manual.

9.2 Recommended Soil and Water Conservation Measures

The appropriate conservation structures best suited for each of the land parcel/ survey number (Appendix-I) are selected based on the slope per cent, severity of erosion, amount of rainfall, land use and soil type. The different kinds of conservation structures recommended are

- 1. Graded / Strengthening of Bunds
- 2. Trench cum Bunds (TCB)
- 3. Trench cum Bunds / Strengthening
- 4. Crescent Bunds

A map (Fig. 9.1) showing soil and water conservation plan with different kinds of structures recommended has been prepared which shows the spatial distribution and extent of area. A maximum area of about 445 ha (81 %) needs trench cum bunding, an area of about 11 ha (2 %) needs graded bunding and 8 ha (1%) requires strengthening of existing bunds/ bunding. The conservation plan prepared may be presented to all the stakeholders including farmers and after considering their suggestions, the conservation plan for the microwatershed may be finalized in a participatory approach.

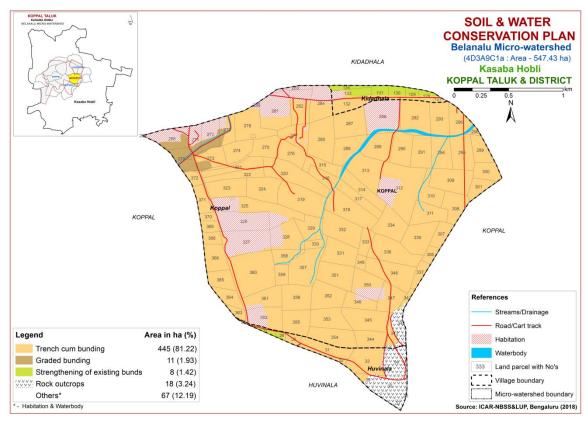


Fig. 9.1 Soil and Water Conservation Plan map of Belanalu Microwatershed

9.3 Greening of Microwatershed

As part of the greening programme in the watersheds, it is envisaged to plant a variety of horticultural and other tree plants that are edible, economical and produce lot of biomass which helps to restore the ecological balance in the watersheds. The lands that are suitable for greening programme are non-arable lands (land capability classes V, VI VII and VIII) and also the lands that are not suitable or marginally suitable for growing annual and perennial crops. The method of planting these trees is given below.

It is recommended to open the pits during the 1^{st} week of March along the contour and heap the dugout soil on the lower side of the slope in order to harness the flowing water and facilitate weathering of soil in the pit. Exposure of soil in the pit also prevents spread of pests and diseases due to scorching sun rays. The pits should be filled with mixture of soil and organic manure during the second week of April and keep ready with sufficiently tall seedlings produced either in poly bags or in root trainer nurseries so that planting can be done during the 2^{nd} or 3^{rd} week of April depending on the rainfall.

The tree species suitable for the area considering rainfall, temperature and adaptability is listed below; waterlogged areas are recommended to be planted with species like Neral (*Sizyzium cumini*) and Bamboo. Dry areas are to be planted with species like Honge, Bevu, Seetaphal *etc*.

	Dry De	eciduous Species	Temp (°C)	Rainfall (mm)
1.	Bevu	Azadiracta indica	21–32	400-1,200
2.	Tapasi	Holoptelia integrifolia	20-30	500 - 1000
3.	Seetaphal	Anona Squamosa	20-40	400 - 1000
4.	Honge	Pongamia pinnata	20 - 50	500-2,500
5.	Kamara	Hardwikia binata	25 -35	400 - 1000
6.	Bage	Albezzia lebbek	20 - 45	500 - 1000
7.	Ficus	Ficus bengalensis	20 - 50	500-2,500
8.	Sisso	Dalbargia Sissoo	20 - 50	500 - 2000
9.	Ailanthus	Ailanthus excelsa	20 - 50	500 - 1000
10.	Hale	Wrightia tinctoria	25 - 45	500 - 1000
11.	Uded	Steriospermum chelanoides	25 - 45	500 - 2000
12.	Dhupa	Boswella Serrata	20 - 40	500 - 2000
13.	Nelli	Emblica Officinalis	20 - 50	500 -1500
14.	Honne	Pterocarpus marsupium	20 - 40	500 - 2000
	Moist D	eciduous Species	Temp (°C)	Rainfall (mm)
15.	Teak	Tectona grandis	20 - 50	500-5000
16.	Nandi	Legarstroemia lanceolata	20 - 40	500 - 4000
17.	Honne	Pterocarpus marsupium	20 - 40	500 - 3000
18.	Mathi	Terminalia alata	20 - 50	500 - 2000
19.	Shivane	Gmelina arboria	20 - 50	500 -2000
20.	Kindal	T.Paniculata	20 - 40	500 - 1500
21.	Beete	Dalbargia latifolia	20 - 40	500 - 1500
22.	Tare	T. belerica	20 - 40	500 - 2000
23.	Bamboo	Bambusa arundinasia	20 - 40	500 - 2500
24.	Bamboo	Dendrocalamus strictus	20 - 40	500 - 2500
25.	Muthuga	Butea monosperma	20 - 40	400 - 1500
26.	Hippe	Madhuca latifolia	20 - 40	500 - 2000
27.	Sandal	Santalum album	20 - 50	400 - 1000
28.	Nelli	Emblica officinalis	20 - 40	500 - 2000
29.	Nerale	Sizyzium cumini	20 - 40	500 - 2000
30.	Dhaman	Grevia tilifolia	20 - 40	500 - 2000
31.	Kaval	Careya arborea	20 - 40	500 - 2000
32.	Harada	Terminalia chebula	20 - 40	500 - 2000

References

- 1. FAO (1976) Framework for Land Evaluation, Food and Agriculture Organization, Rome.72 pp.
- FAO (1983) Guidelines for Land Evaluation for Rainfed Agriculture, FAO, Rome, 237 pp.
- 3. IARI (1971) Soil Survey Manual, All India Soil and Land Use Survey Organization, IARI, New Delhi, 121 pp.
- 4. Katyal, J.C. and Rattan, R.K. (2003) Secondary and Micronutrients; Research Gap and future needs. Fert. News 48 (4); 9-20.
- Naidu, L.G.K., Ramamurthy, V., Challa, O., Hegde, R. and Krishnan, P. (2006) Manual Soil Site Suitability Criteria for Major Crops, NBSS Publ. No. 129, NBSS &LUP, Nagpur, 118 pp.
- 6. Natarajan, A. and Dipak Sarkar (2010) Field Guide for Soil Survey, National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur, India.
- Natarajan, A., Rajendra Hegde, Raj, J.N. and Shivananda Murthy, H.G. (2015) Implementation Manual for Sujala-III Project, Watershed Development Department, Bengaluru, Karnataka.
- 8. Sarma, V.A.K., Krishnan, P. and Budihal, S.L. (1987) Laboratory Manual, Tech. Bull. 23, NBSS &LUP, Nagpur.
- 9. Sehgal, J.L. (1990) Soil Resource Mapping of Different States of India; Why and How? National Bureau of Soil Survey and Land Use Planning, Nagpur, 49 pp.
- Shivaprasad, C.R., R.S. Reddy, J. Sehgal and M. Velayuthum (1998) Soils of Karnataka for Optimizing Land Use, NBSS Publ. No. 47b, NBSS & LUP, Nagpur, India.
- 11. Soil Survey Staff (2006) Keys to Soil Taxonomy, Tenth edition, U.S. Department of Agriculture/ NRCS, Washington DC, U.S.A.
- 12. Soil Survey Staff (2012) Soil Survey Manual, Handbook No. 18, USDA, Washington DC, USA.

Appendix I

Belanalu 9C1c Microwatershed Soil Phase Information

Village	Survey No	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capability	Conservation Plan
Kidadhal a	127	0.59	HDHhB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Current fallow (Cf)	Not Available	lles	Trench cum bunding
Kidadhal a	128	1.28	HDHhB2g1		Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Pearl millet (Pm)	Not Available	Iles	Trench cum bunding
Kidadhal a	129	1.35	HDHcA1g1	LMU-1	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Nearly level (0- 1%)	Slight	Pearl millet (Pm)	Not Available	IIs	Graded bunding
Kidadhal a	130	1.97	HDHcA1g1	LMU-1	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Nearly level (0- 1%)	Slight	Current fallow+Maize (Cf+Mz)	Not Available	IIs	Graded bunding
Kidadhal a	131	2.01	HDHcA1g1	LMU-1	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Nearly level (0- 1%)	Slight	Current fallow (Cf)	Not Available	IIs	Graded bunding
Kidadhal a	132	3.83	HDHhB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Current fallow (Cf)	Not Available	Iles	Trench cum bunding
Kidadhal a	133	2.93	HDHcA1g1	LMU-1	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Nearly level (0- 1%)	Slight	Current fallow (Cf)	Not Available	IIs	Graded bunding
Kidadhal a	134	1.29	HDHcA1g1	LMU-1	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Nearly level (0- 1%)	Slight	Not Available (NA)	Not Available	IIs	Graded bunding
Huvinala	21	0.14	HDHhB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Bajra (Bj)	Not Available	Iles	Trench cum bunding
Huvinala	27	0.7	BPRcA1g1	LMU-1	Deep (100-150 cm)	Sandy loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Nearly level (0- 1%)	Slight	Bajra (Bj)	Not Available	IIIs	Graded bunding
Huvinala	29	0.57	BPRcA1g1	LMU-1	Deep (100-150 cm)	Sandy loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Nearly level (0- 1%)	Slight	Bajra (Bj)	Not Available	IIIs	Graded bunding
Huvinala	30	1.33	BPRhB2g1	LMU-1	Deep (100-150 cm)	Sandy clay loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Bajra (Bj)	Not Available	Illes	Trench cum bunding
Huvinala	31	5.1	BPRmB2g1	LMU-1	Deep (100-150 cm)	Clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Bajra (Bj)	2 Borewell	IIIs	Trench cum bunding
Huvinala	32	0.6	BPRmB2g1	LMU-1	Deep (100-150 cm)	Clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	IIIs	Trench cum bunding
Huvinala	33	8.14	BPRmB2g1	LMU-1	Deep (100-150 cm)	Clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Current fallow+Bajra (Cf+Bj)	Not Available	IIIs	Trench cum bunding
Huvinala	34	5.09	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Current fallow (Cf)	Not Available	Ro	Ro
Huvinala	35	5.41	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro (Rc)	Not Available	Ro	Ro
Huvinala	36	0.001	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro (Rc)	Not Available	Ro	Ro
Huvinala	37	1.74	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro (Rc)	Not Available	Ro	Ro
Huvinala	39	1.55	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Current fallow (Cf)	Not Available	Ro	Ro
Koppal	268	5.99	Habitation	Others	Others	Others	Others	Others	Others	Others	Maize (Mz)	Not Available	Others	Others

Village	Survey No	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capability	Conservation Plan
Koppal	269	0	GRHmB2	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderate	Habitation	Not Available	lles	Graded bunding
Koppal	270	3.62	GRHmB2	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	lles	Graded bunding
Koppal	271	2.84	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Koppal	272	4.23	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Koppal	273	4.59	LKRiB2g1	LMU-4	Moderately shallow (50-75 cm)	Sandy clay	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Pearl millet (Pm)	Not Available	lles	Trench cum bunding
Koppal	274	4.32	HDHhB2	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	lles	Trench cum bunding
Koppal	275	4.48	HDHhB2	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	lles	Trench cum bunding
Koppal	276	4.26	LKRhB2g1	LMU-4	Moderately shallow (50-75 cm)	Sandy clay loam	Gravelly (15- 35%)	mm/m)	Very gently sloping (1-3%)	Moderate	Habitation	Not Available	Illes	Trench cum bunding
Koppal	277	4.94	LKRhB2g1	LMU-4	Moderately shallow (50-75 cm)	Sandy clay loam	Gravelly (15- 35%)	mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	Illes	Trench cum bunding
Koppal	278	7.52	HDHhB2	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	Iles	Trench cum bunding
Koppal	279	3.64	LKRiB2g1	LMU-4	Moderately shallow (50-75 cm)	Sandy clay	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	lles	Trench cum bunding
Koppal	280	0.17	Habitation	Others	Others	Others	Others	Others	Others	Others	Maize (Mz)	Not Available	Others	Others
Koppal	281	9.04	Habitation	Others	Others	Others	Others	Others	Others	Others	Fallow land+Habitation (Fl+Hb)	Not Available	Others	Others
Koppal	282	5.7	LKRhB2g1	LMU-4	Moderately shallow (50-75 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land+Habitation (Fl+Hb)	Not Available	IIIes	Trench cum bunding
Koppal	283	1.05	Habitation	Others	Others	Others	Others	Others	Others	Others	Fallow land (Fl)	Not Available	Others	Others
Koppal	284	6.06	LKRhB2g1	LMU-4	Moderately shallow (50-75 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Habitation+Indust rial area (Hb+Ia)	Not Available	Illes	Trench cum bunding
Koppal	285	8.56	HDHhB2	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize+Sorghum (Mz+Sg)	Not Available	Iles	Trench cum bunding
Koppal	286	5.67	HDHhB2	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	lles	Trench cum bunding
Koppal	287	7.04	HDHhB2	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	lles	Trench cum bunding
Koppal	288	9.65	Habitation	Others	Others	Others	Others	Others	Others	Others	Fallow land (Fl)	Not Available	Others	Others
Koppal	289	6.12	HDHiB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay	Gravelly (15- 35%)	mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	lles	Trench cum bunding
Koppal	290	5.41	HDHiB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay	35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	1 Borewell	lles	Trench cum bunding
Koppal	291	5.39	HDHiB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	lles	Trench cum bunding

Village	Survey No	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capability	Conservation Plan
Koppal	292	8.5	HDHiB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallowland+Redgr am (Fl+Rg)	Not Available	IIes	Trench cum bunding
Koppal	293	5.37	BDGhB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land+Maize (Fl+Mz)	Not Available	IIIes	Trench cum bunding
Koppal	294	5.47	BDGhB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	IIIes	Trench cum bunding
Koppal	295	6.31	BDGhB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	1 Borewell	IIIes	Trench cum bunding
Koppal	296	4.61	BDGhB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize+Fallow land (Mz+Fl)	Not Available	Illes	Trench cum bunding
Koppal	298	0.45	BDGhB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	Illes	Trench cum bunding
Koppal	299	3.61	LKRhB2g2	LMU-4	Moderately shallow (50-75 cm)	Sandy clay loam	Very gravelly (35-60%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize+Fallow land (Mz+Fl)	Not Available	IIIes	Trench cum bunding
Koppal	300	3.65	LKRiB2g1	LMU-4	Moderately shallow (50-75 cm)	Sandy clay	Gravelly (15- 35%)	mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	IIes	Trench cum bunding
Koppal	301	2.82	HDHhB2g1		Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	lles	Trench cum bunding
Koppal	306	1.58	HDHiB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay	35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow and+Maize (Fl+Mz)	Not Available	lles	Trench cum bunding
Koppal	307	3.03	BDGhB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Pearl millet (Pm)	Not Available	Illes	Trench cum bunding
Koppal	308	4.93	BDGhB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallowland+Maize (Fl+Mz)	Not Available	Illes	Trench cum bunding
Koppal	309	7.76	BDGhB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Drumstick+Maize (Ds+Mz)	Not Available	IIIes	Trench cum bunding
Koppal	310	4.33	BDGhB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Pearl millet (Pm)	Not Available	IIIes	Trench cum bunding
Koppal	311	5.37	HDHiB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay	Gravelly (15- 35%)	mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	Iles	Trench cum bunding
Koppal	312	16.06	HDHiB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay	Gravelly (15- 35%)	mm/m)	Very gently sloping (1-3%)	Moderate	Maize+Sorghum (Mz+Sg)	Not Available	lles	Trench cum bunding
Koppal	313	7.76	HDHhB2g1		Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	lles	Trench cum bunding
Koppal	314	4.76	HDHhB2g1		Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	lles	Trench cum bunding
Koppal	315	3.61	LKRhB2g1	LMU-4	Moderately shallow (50-75 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	IIIes	Trench cum bunding
Koppal	316	3.06	LKRhB2g1	LMU-4	Moderately shallow (50-75 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	IIIes	Trench cum bunding
Koppal	317	4.02	HDHhB2g1		Moderately deep (75-100 cm)	Sandy clay loam	35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	lles	Trench cum bunding
Koppal	318	8.93	HDHhB2	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	lles	Trench cum bunding
Koppal	319	9.82	ABRbB2g2	LMU-5	Shallow (25-50 cm)	Loamy sand	Very gravelly (35-60%)	mm/m)	Very gently sloping (1-3%)	Moderate	Maize+Redgram (Mz+Rg)	Not Available	IIIes	Trench cum bunding
Koppal	320	9.48	LKRhB2g1	LMU-4	Moderately shallow (50-75 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize+Fallow land (Mz+Fl)	Not Available	IIIes	Trench cum bunding

Village	Survey No	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capability	Conservation Plan
Koppal	321	4.06	LKRiB2g1	LMU-4	Moderately shallow (50-75 cm)	Sandy clay	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Redgram (Rg)	Not Available	lles	Trench cum bunding
Koppal	322	3.76	LKRiB2g1	LMU-4	Moderately shallow (50-75 cm)	Sandy clay	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	IIes	Trench cum bunding
Koppal	323	5.74	ABRbB2g2	LMU-5	Shallow (25-50 cm)	Loamy sand	Very gravelly (35-60%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Habitation	Not Available	IIIes	Trench cum bunding
Koppal	324	6.32	ABRbB2g2	LMU-5	Shallow (25-50 cm)	Loamy sand	Very gravelly (35-60%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Pearl millet (Pm)	Not Available	IIIes	Trench cum bunding
Koppal	325	10.87	ABRbB2g2	LMU-5	Shallow (25-50 cm)	Loamy sand	Very gravelly (35-60%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Habitation+Redgr am (Hb+Rg)	Not Available	IIIes	Trench cum bunding
Koppal	326	8.15	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Koppal	327	9.37	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Koppal	328	6.89	ABRbB2g2	LMU-5	Shallow (25-50 cm)	Loamy sand	Very gravelly (35-60%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	IIIes	Trench cum bunding
Koppal	329	4.56	BDGhB2	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	IIIes	Trench cum bunding
Koppal	330	1.69	HDHhB2	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Pearl millet (Pm)	Not Available	lles	Trench cum bunding
Koppal	331	6.22	HDHhB2	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Not Available (NA)	Not Available	lles	Trench cum bunding
Koppal	332	7.76	HDHhB2	LMU-1	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize+Teak (Mz+Tk)	Not Available	lles	Trench cum bunding
Koppal	333	2.53	HDHcB2g1		Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	lles	Trench cum bunding
Koppal	334	6.33	HDHiB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay	Gravelly (15- 35%)	mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	lles	Trench cum bunding
Koppal	335	6.97	HDHiB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	lles	Trench cum bunding
Koppal	336	8.53	HDHiB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	lles	Trench cum bunding
Koppal	337	2.07	HDHiB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy clay	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize+Fallow land (Mz+Fl)	Available	lles	Trench cum bunding
Koppal	341	0.87	HDHcB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Dyke+Maize (Dy+Mz)	Not Available	lles	Trench cum bunding
Koppal	342	1.53	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Dyke (Dy)	Not Available	Ro	Ro
Koppal	343	3.92	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Sunflower (Sf)	Not Available	Ro	Ro
Koppal	344	4.21	HDHcB2g1		Moderately deep (75-100 cm)	Sandy loam	35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	lles	Trench cum bunding
Koppal	345	7.6	HDHcB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	lles	Trench cum bunding
Koppal	346	3.62	HDHcB2g1		Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Habitation	Not Available	lles	Trench cum bunding
Koppal	347	5.22	HDHcB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Foxtail millets+Habitation (Fxm+Hb)	Not Available	IIes	Trench cum bunding

Village	Survey No	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capability	Conservation Plan
Koppal	348	8.5	HDHcB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	lles	Trench cum bunding
Koppal	349	1.15	HDHcB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	lles	Trench cum bunding
Koppal	350	6.1	HDHcB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Not Available (NA)	1 Borewell	IIes	Trench cum bunding
Koppal	351	6.77	HDHcB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	lles	Trench cum bunding
Koppal	352	6.64	HDHcB2g1	LMU-1	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Habitation	Not Available	IIes	Trench cum bunding
Koppal	353	5.95	HDHcB2g1		Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	lles	Trench cum bunding
Koppal	354	6.35		LMU-1	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	lles	Trench cum bunding
Koppal	355	5.56	HDHhB2g1		Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Sorghum (Sg)	Not Available	lles	Trench cum bunding
Koppal Koppal	356 357	6.22 8.25	HDHhB2g1 GDPcB2	LMU-1	Moderately deep (75-100 cm) Deep (100-150 cm)	Sandy clay loam Sandy loam	Gravelly (15- 35%) Non gravelly	Very Low (<50 mm/m) Low (51-100	Very gently sloping (1-3%) Very gently	Moderate Moderate	Fallow land+Maize (Fl+Mz) Pearl millet (Pm)	Available Not	IIes IIIes	Trench cum bunding Trench cum
Koppal	358	0.23 2.94	GDPcB2	LMU-1	Deep (100-150 cm)	Sandy loam	(<15%) Non gravelly	mm/m) Low (51-100	sloping (1-3%) Very gently	Moderate	Maize (Mz)	Available Not	Illes	bunding Trench cum
Koppal	359	2.31	HDHhB2g1		Moderately deep	Sandy roam	(<15%) Gravelly (15-	mm/m) Very Low (<50	sloping (1-3%) Very gently	Moderate	Pearl millet (Pm)	Available Not	lles	bunding Trench cum
					(75-100 cm)	loam	35%)	mm/m)	sloping (1-3%)			Available		bunding
Koppal	360	14.33	GDPcB2	LMU-1	Deep (100-150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Habitation+Pearl millet (Hb+Pm)	Not Available	Illes	Trench cum bunding
Koppal	361	5.67	HDHhB2g1		Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Habitation	Not Available	IIes	Trench cum bunding
Koppal	362	6.13	HDHhB2g1		Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Habitation	Not Available	lles	Trench cum bunding
Koppal	363	1.4	HDHhB2g1		Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Pearl millet (Pm)	Not Available	lles	Trench cum bunding
Koppal	364	3.09	GDPcB2	LMU-1	Deep (100-150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Pearl millet (Pm)	Not Available	Illes	Trench cum bunding
Koppal	365	3.72	GDPcB2	LMU-1	Deep (100-150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	Illes	Trench cum bunding
Koppal	366	4.79	GDPcB2	LMU-1	Deep (100-150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Habitation	Not Available	Illes	Trench cum bunding
Koppal	368	1.87	GDPcB2	LMU-1	Deep (100-150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Drumstick+Habita tion (Ds+Hb)	Not Available	IIIes	Trench cum bunding
Koppal	369	1.64	GDPcB2	LMU-1	Deep (100-150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Pearlmillet+Drum stick (Pm+Ds)	Not Available	Illes	Trench cum bunding
Koppal	370	1.21	GDPcB2	LMU-1	Deep (100-150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	Illes	Trench cum bunding
Koppal	371	2.81	KTPiB1g1	LMU-3	Moderately shallow (50-75 cm)		35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Maize (Mz)	Not Available	IIs	Trench cum bunding
Koppal	372	1.49	KTPiB1g1	LMU-3	Moderately shallow (50-75 cm)	Sandy clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Maize (Mz)	Not Available	IIs	Trench cum bunding

Appendix II

Belanalu 9C1c Microwatershed Soil Fertility Information

Village	Survey Number	Soil Reaction	Salinity	Organic Carbon	1	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
		1	Non saline (<2		Medium (23 – 57		Medium (10 –		Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kidadhala	127	-		High (> 0.75 %)		High (> 337 kg/ha)		Low (< 0.5 ppm)		1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline (pH 7.3			Medium (23 – 57	0 1 0/ 7	Medium (10 -		Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kidadhala	128		dsm)	High (> 0.75 %)		High (> 337 kg/ha)		Low (< 0.5 ppm)		1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline (pH 7.3	Non saline (<2		Medium (23 – 57		Medium (10 –		Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kidadhala	129			High (> 0.75 %)	kg/ha)	High (> 337 kg/ha)	20 ppm)	Low (< 0.5 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
			1		Medium (23 – 57		Medium (10 –		Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kidadhala	130	Neutral (pH 6.5 - 7.3)	dsm)	0.75 %)	kg/ha)	High (> 337 kg/ha)	20 ppm)	Low (< 0.5 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
			Non saline (<2	Medium (0.5 –	Medium (23 – 57		High (> 20		Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kidadhala	131	Neutral (pH 6.5 - 7.3)	dsm)	0.75 %)	kg/ha)	High (> 337 kg/ha)	ppm)	Low (< 0.5 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline (pH 7.3	Non saline (<2	Medium (0.5 –	Medium (23 – 57	Medium (145 -	High (> 20		Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kidadhala	132	- 7.8)	dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	Low (< 0.5 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline (pH 7.3	Non saline (<2	Medium (0.5 –	Medium (23 – 57	Medium (145 -	High (> 20		Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kidadhala	133	- 7.8)	dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	Low (< 0.5 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline (pH 7.3	Non saline (<2	Medium (0.5 –	Medium (23 – 57	Medium (145 -	High (> 20		Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kidadhala	134	- 7.8)	dsm)	0.75 %)	kg/ha)	337 kg/ha)	ppm)	Low (< 0.5 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline (pH 7.3	Non saline (<2		Medium (23 – 57			Medium (0.5 -	Deficient (<	Sufficient (>	Sufficient (>	Sufficient (>
Huvinala	21	- 7.8)	dsm)	High (> 0.75 %)	kg/ha)	High (> 337 kg/ha)	Low (<10 ppm)	1.0 ppm)	4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline (pH 7.3	Non saline (<2		Medium (23 – 57			Medium (0.5 –	Deficient (<	Sufficient (>	Sufficient (>	Sufficient (>
Huvinala	27	- 7.8)	dsm)	High (> 0.75 %)	kg/ha)	High (> 337 kg/ha)	Low (<10 ppm)	1.0 ppm)	4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline (pH 7.3	Non saline (<2		Medium (23 – 57			Medium (0.5 -	Deficient (<	Sufficient (>	Sufficient (>	Sufficient (>
Huvinala	29	- 7.8)	dsm)	High (> 0.75 %)	kg/ha)	High (> 337 kg/ha)	Low (<10 ppm)	1.0 ppm)	4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
			Non saline (<2		Medium (23 - 57			Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Huvinala	30	Neutral (pH 6.5 - 7.3)	dsm)	High (> 0.75 %)	kg/ha)	High (> 337 kg/ha)	Low (<10 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
			Non saline (<2		Medium (23 – 57	, ,		Medium (0.5 –	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Huvinala	31	Neutral (pH 6.5 - 7.3)	dsm)	High (> 0.75 %)	kg/ha)	337 kg/ha)	Low (<10 ppm)		(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
			Non saline (<2			Medium (145 –		Medium (0.5 –	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Huvinala	32	<u> </u>		High (> 0.75 %)		0, 1	Low (<10 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
			Non saline (<2			Medium (145 –		Medium (0.5 –	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Huvinala	33	Neutral (pH 6.5 - 7.3)	dsm)	High (> 0.75 %)	kg/ha)	337 kg/ha)	Low (<10 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Huvinala	34	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro
Huvinala	35	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro
Huvinala	36	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro
Huvinala	37	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro
Huvinala	39	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro
Koppal	268	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Koppal	269		Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)	High (> 337 kg/ha)	Low (<10 ppm)	Medium (0.5 – 1.0 ppm)	Deficient (< 4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)

Village	Survey Number	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Koppal	270	Strongly alkaline (pH 8.4 – 9.0)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	Low (<10 ppm)	Medium (0.5 – 1.0 ppm)	Deficient (< 4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	271	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Koppal	272	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Koppal	273	Moderately alkaline (pH 7.8 – 8.4)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)		Medium (10 – 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	274	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)		Medium (10 – 20 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	275	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)		Medium (10 – 20 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	276	Slightly acid (pH 6.0 – 6.5)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)		High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	277	Neutral (pH 6.5 - 7.3)	Non saline (<2	High (> 0.75 %)	Medium (23 – 57		High (> 20 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	278	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 – 20 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	279	Slightly alkaline (pH 7.3 – 7.8)		High (> 0.75 %)	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 – 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	280	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Koppal	281	Others		Others		Others	Others	Others	Others	Others	Others	Others
Koppal	282	Slightly alkaline (pH 7.3 - 7.8)		High (> 0.75 %)	Medium (23 - 57 kg/ha)	Medium (145 – 337 kg/ha)	High (> 20 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	283	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Koppal	284	Slightly alkaline (pH 7.3 - 7.8)		High (> 0.75 %)	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	High (> 20 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	285	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	286	Slightly acid (pH 6.0 – 6.5)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	287	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 - 57 kg/ha)		High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	288	Others	Others Non saline (<2	Others	Others Medium (23 – 57	Others Modium (145	Others High (> 20	Others Medium (0.5 –	Others Sufficient	Others Sufficient (>	Others Sufficient (>	Others Sufficient (>
Koppal	289	Neutral (pH 6.5 – 7.3) Slightly alkaline (pH 7.3	dsm)	High (> 0.75 %)		337 kg/ha)	ppm) Medium (10 –	1.0 ppm) Medium (0.5 –	(>4.5 ppm)	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	290	– 7.8) Moderately alkaline		High (> 0.75 %)		337 kg/ha)	Medium (10 – 20 ppm) Medium (10 –	Medium (0.5 – 1.0 ppm) Medium (0.5 –	(>4.5 ppm)	Sufficient (> 1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	291	(pH 7.8 – 8.4) Slightly alkaline (pH 7.3	dsm)	High (> 0.75 %)		High (> 337 kg/ha)		Medium (0.5 - 1.0 ppm)	(>4.5 ppm) Sufficient	Sufficient (> 1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	Sufficient (> 0.6 ppm) Sufficient (>
Koppal	292	– 7.8)		High (> 0.75 %)		High (> 337 kg/ha)		Low (< 0.5 ppm)		1.0 ppm)	0.2 ppm)	Sufficient (> 0.6 ppm) Sufficient (>
Koppal	293	Moderately alkaline (pH 7.8 - 8.4)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)	High (> 337 kg/ha)	Medium (10 – 20 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	0.6 ppm)

Village	Survey Number	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Koppal	294	Moderately alkaline (pH 7.8 - 8.4)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)	High (> 337 kg/ha)	Low (<10 ppm)	Medium (0.5 – 1.0 ppm)	Deficient (< 4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	295	Moderately alkaline (pH 7.8 - 8.4)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)	High (> 337 kg/ha)	Low (<10 ppm)	Medium (0.5 – 1.0 ppm)	Deficient (< 4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	296	Moderately alkaline (pH 7.8 - 8.4)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)	High (> 337 kg/ha)	Medium (10 – 20 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	298	Moderately alkaline (pH 7.8 – 8.4)	Non saline (<2 dsm)	High (> 0.75 %)	0, ,	High (> 337 kg/ha)	,	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	299	Moderately alkaline (pH 7.8 – 8.4)	Non saline (<2 dsm)	High (> 0.75 %)		High (> 337 kg/ha)	Medium (10 – 20 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	300	Moderately alkaline (pH 7.8 – 8.4)	Non saline (<2 dsm)	High (> 0.75 %)	0, ,	337 kg/ha)	Low (<10 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	301	Moderately alkaline (pH 7.8 – 8.4)	Non saline (<2 dsm)	High (> 0.75 %)		337 kg/ha)	Low (<10 ppm)	Low (< 0.5 ppm)		Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	306	Slightly alkaline (pH 7.3 - 7.8)	dsm)	High (> 0.75 %)	0, ,	337 kg/ha)	Low (<10 ppm)	Medium (0.5 – 1.0 ppm)	Deficient (< 4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	307	(pH 7.8 – 8.4)	Non saline (<2 dsm)	High (> 0.75 %)		337 kg/ha)	Low (<10 ppm)	Low (< 0.5 ppm)		Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	308	Moderately alkaline (pH 7.8 - 8.4)	Non saline (<2 dsm)	High (> 0.75 %)	0, ,	337 kg/ha)	Low (<10 ppm)	Low (< 0.5 ppm)		Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	309	Moderately alkaline (pH 7.8 - 8.4) Moderately alkaline	Non saline (<2 dsm) Non saline (<2	High (> 0.75 %)	Medium (23 – 57 kg/ha) Medium (23 – 57	High (> 337 kg/ha)	Low (<10 ppm)	Medium (0.5 – 1.0 ppm) Medium (0.5 –	Deficient (< 4.5 ppm) Deficient (<	Sufficient (> 1.0 ppm) Sufficient (>	Sufficient (> 0.2 ppm) Sufficient (>	Sufficient (> 0.6 ppm) Sufficient (>
Koppal	310	(pH 7.8 – 8.4) Moderately alkaline	dsm) Non saline (<2	High (> 0.75 %)		337 kg/ha)	Low (<10 ppm)		4.5 ppm) Deficient (<	Sufficient (> 1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	311	(pH 7.8 – 8.4) Slightly alkaline (pH 7.3	dsm)	High (> 0.75 %)		337 kg/ha)	Low (<10 ppm) Medium (10 –		4.5 ppm) Deficient (<	Sufficient (> 1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	312	- 7.8)	dsm) Non saline (<2	High (> 0.75 %)		337 kg/ha)	20 ppm) High (> 20	1.0 ppm) Medium (0.5 –	4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	313	Neutral (pH 6.5 - 7.3)	dsm) Non saline (<2	High (> 0.75 %)		337 kg/ha)	ppm) Medium (10 –	1.0 ppm) Medium (0.5 –	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	314	Neutral (pH 6.5 – 7.3) Slightly acid (pH 6.0 –	dsm) Non saline (<2	High (> 0.75 %)		337 kg/ha)	20 ppm) High (> 20	1.0 ppm) Medium (0.5 –	(>4.5 ppm)	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	315	6.5)		High (> 0.75 %)		337 kg/ha)	ppm) High (> 20	1.0 ppm) Medium (0.5 –	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	316	Neutral (pH 6.5 – 7.3)	dsm) Non saline (<2	High (> 0.75 %)		337 kg/ha)	ppm) Medium (10 –	1.0 ppm) Medium (0.5 –	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	317	Neutral (pH 6.5 - 7.3)	dsm) Non saline (<2	High (> 0.75 %)		337 kg/ha)	20 ppm) Medium (10 –	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	318	Neutral (pH 6.5 - 7.3)	dsm) Non saline (<2	High (> 0.75 %)		337 kg/ha)	20 ppm) Medium (10 –	1.0 ppm) Medium (0.5 –	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	319	Neutral (pH 6.5 - 7.3)	dsm) Non saline (<2	High (> 0.75 %)		High (> 337 kg/ha)		1.0 ppm) Medium (0.5 –	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	320	Neutral (pH 6.5 - 7.3)	dsm) Non saline (<2	High (> 0.75 %)		337 kg/ha)	20 ppm) Medium (10 –	1.0 ppm) Medium (0.5 –	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	321	Neutral (pH 6.5 – 7.3)		High (> 0.75 %)		Low (<145 kg/ha)		1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)

Village	Survey Number	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Koppal	322	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	High (> 0.75 %)		Low (<145 kg/ha)		Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	323	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)	Low (<145 kg/ha)	Medium (10 – 20 ppm)	Medium (0.5 – 1.0 ppm)		Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	324	Neutral (pH 6.5 - 7.3)		High (> 0.75 %)		337 kg/ha)	Medium (10 – 20 ppm)	Medium (0.5 – 1.0 ppm)	(>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	325		Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)		Medium (10 – 20 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	326	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Koppal	327	Others	Others	Others		Others	Others	Others		Others	Others	Others
Koppal	328	Slightly alkaline (pH 7.3 - 7.8)	dsm)	High (> 0.75 %)		High (> 337 kg/ha)	Low (<10 ppm)		(>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	329	Slightly alkaline (pH 7.3 - 7.8)	dsm)	High (> 0.75 %)		High (> 337 kg/ha)	Low (<10 ppm)		(>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	330	Slightly alkaline (pH 7.3 – 7.8)	dsm)	High (> 0.75 %)		High (> 337 kg/ha)	Low (<10 ppm)		(>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	331	u ,		High (> 0.75 %)		High (> 337 kg/ha)	Low (<10 ppm)		(>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	332	Slightly alkaline (pH 7.3 – 7.8)	dsm)	High (> 0.75 %)		High (> 337 kg/ha)	Low (<10 ppm)		(>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	333	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha) Medium (23 – 57	337 kg/ha)	Low (<10 ppm)	Medium (0.5 – 1.0 ppm) Medium (0.5 –	(>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	334	u ,		High (> 0.75 %)	kg/ha)	337 kg/ha)	Low (<10 ppm)	1.0 ppm)	(>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	335	Slightly alkaline (pH 7.3 - 7.8)	dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha) Medium (23 – 57	337 kg/ha)	Low (<10 ppm)		4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	336	· · · · · · · · · · · · · · · · · · ·	-	High (> 0.75 %)		337 kg/ha)	Low (<10 ppm)	Medium (0.5 – 1.0 ppm) Medium (0.5 –	(>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	337	Slightly alkaline (pH 7.3 - 7.8)	dsm)	High (> 0.75 %)		337 kg/ha)	Low (<10 ppm)		4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm) Sufficient (>
Koppal	341	Slightly alkaline (pH 7.3 - 7.8)		High (> 0.75 %)			Low (<10 ppm)			Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	0.6 ppm)
Koppal	342	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro
Koppal	343	Ro	Ro Non saline (<2	Ro		Ro Medium (145 –	Ro	Ro Medium (0.5 -		Ro Sufficient (>	Ro Sufficient (>	Ro Sufficient (>
Koppal	344		dsm)	High (> 0.75 %)	kg/ha)		Low (<10 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Koppal	345	Neutral (pH 6.5 - 7.3)		High (> 0.75 %)		High (> 337 kg/ha)	Low (<10 ppm)	1	(>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	346	Neutral (pH 6.5 - 7.3)	-	High (> 0.75 %)	0, ,	High (> 337 kg/ha)	Low (<10 ppm)		(>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	347	u ,		High (> 0.75 %)	0, ,	337 kg/ha)	Low (<10 ppm)		(>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	348		Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 – 57 kg/ha)		Low (<10 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)

Village	Survey Number	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Koppal	349	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	High (> 0.75 %)	Medium (23 - 57 kg/ha)		Low (<10 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	350	Neutral (pH 6.5 - 7.3)		High (> 0.75 %)	Medium (23 – 57 kg/ha)		Low (<10 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	351	Neutral (pH 6.5 - 7.3)	-	High (> 0.75 %)		High (> 337 kg/ha)	Low (<10 ppm)	1	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	352	Neutral (pH 6.5 - 7.3)	,	High (> 0.75 %)	0, ,	High (> 337 kg/ha)	Low (<10 ppm)		Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	353	Neutral (pH 6.5 - 7.3)	,	High (> 0.75 %)	0, ,	High (> 337 kg/ha)	Low (<10 ppm)		Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Koppal	354	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm_) Non saline (<2	High (> 0.75 %)	Medium (23 – 57 kg/ha) Medium (23 – 57	High (> 337 kg/ha)	Low (<10 ppm)	Medium (0.5 – 1.0 ppm) Medium (0.5 –	Sufficient (>4.5 ppm) Sufficient	Sufficient (> 1.0 ppm) Sufficient (>	Sufficient (> 0.2 ppm) Sufficient (>	Sufficient (> 0.6 ppm) Sufficient (>
Koppal	355	Neutral (pH 6.5 - 7.3)		High (> 0.75 %)		High (> 337 kg/ha)	Low (<10 ppm)		(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	356	Neutral (pH 6.5 – 7.3) Slightly alkaline (pH 7.3	dsm)	High (> 0.75 %)		High (> 337 kg/ha)	Low (<10 ppm)		(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	357	– 7.8) Slightly alkaline (pH 7.3	dsm)	High (> 0.75 %)		High (> 337 kg/ha)	Low (<10 ppm)		(>4.5 ppm) Deficient (<	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	358	– 7.8) Slightly alkaline (pH 7.3	dsm)	High (> 0.75 %)		High (> 337 kg/ha)	Low (<10 ppm)		4.5 ppm) Deficient (<	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	359	– 7.8) Slightly alkaline (pH 7.3	dsm)	High (> 0.75 %)		High (> 337 kg/ha) Medium (145 -	Low (<10 ppm)		4.5 ppm) Deficient (<	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	360	– 7.8) Slightly alkaline (pH 7.3	dsm)	High (> 0.75 %)			Low (<10 ppm)		4.5 ppm) Deficient (<	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	361	– 7.8) Slightly alkaline (pH 7.3	dsm)	High (> 0.75 %)		High (> 337 kg/ha)	Low (<10 ppm)		4.5 ppm) Deficient (<	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	362	- 7.8) Slightly alkaline (pH 7.3		High (> 0.75 %)	kg/ha) Medium (23 - 57	High (> 337 kg/ha) Medium (145 -	Low (<10 ppm)	1.0 ppm) Medium (0.5 -	4.5 ppm) Deficient (<	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	363	– 7.8) Slightly alkaline (pH 7.3	,	High (> 0.75 %)	kg/ha) Medium (23 – 57	0, ,	Low (<10 ppm)		4.5 ppm) Deficient (<	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	364	– 7.8) Slightly alkaline (pH 7.3		High (> 0.75 %)	kg/ha) Medium (23 – 57	0, ,	Low (<10 ppm)	1.0 ppm) Medium (0.5 –	4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	365	– 7.8) Slightly alkaline (pH 7.3	Non saline (<2	High (> 0.75 %)	Medium (23 – 57		Low (<10 ppm)	Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	366	– 7.8) Slightly alkaline (pH 7.3	Non saline (<2	High (> 0.75 %)	Medium (23 – 57	Low (<145 kg/ha)		Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	368	– 7.8) Slightly alkaline (pH 7.3	Non saline (<2	High (> 0.75 %)	Medium (23 – 57	Low (<145 kg/ha)		Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	369	– 7.8) Slightly alkaline (pH 7.3	Non saline (<2	High (> 0.75 %)	Medium (23 – 57	Low (<145 kg/ha)		Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	370		Non saline (<2	High (> 0.75 %)	Medium (23 – 57			Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	371		Non saline (<2	High (> 0.75 %)	Medium (23 – 57	Medium (145 -	Low (<10 ppm)	Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Koppal	372	(pH 7.8 – 8.4)	dsm)	High (> 0.75 %)	kg/ha)	337 kg/ha)	Low (<10 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)

Appendix III

Belanalu 9C1c Microwatershed Soil Suitability Information

													50	II Sui	tabilit	y Infe	ormat	10n														
Village	Survey Number	Mango	Maize	Sapota	Sorghum	Guava	Cotton	Tamarind	Lime	Bengal gram	Sunflower	Red gram	Amla	Jackfruit	Custard-apple	Cashew	Jamun	Musambi	Groundnut	Chilly	Tomato	Marigold	Chrysanthemum	Pomegranate	Bajra	Jasmine	Bhendi	Brinjal	Crossandra	Drumstick	Mulberry	Onion
Kidadhala	127	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Kidadhala	128	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Kidadhala	129	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Kidadhala	130	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Kidadhala	131	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Kidadhala	132	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Kidadhala	133	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Kidadhala	134	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Huvinala	21	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Huvinala	27	S3rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2g	S3g	S2g	S2g	S2g
Huvinala	29	S3rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2g	S3g	S2g	S2g	S2g
Huvinala	30	S3rg	S3g	S3g	S3g	S3g	S3g	S2rg	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2g	S3g	S2g	S2g	S2g
Huvinala	31	S3rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2g	S3g	S2g	S2g	S2g
Huvinala	32	S3rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2g	S3g	S2g	S2g	S2g
Huvinala	33	S3rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2g	S3g	S2g	S2g	S2g
Huvinala	34	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro
Huvinala	35	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro
Huvinala	36	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro
Huvinala	37	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro
Huvinala	39	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro
Koppal	268	Othe	Othe	Othe	Othe	Othe	Othe			Othe	Othe	Othe		Othe	Othe	Othe		Othe				Othe		Othe	Othe		Othe	Othe	Othe	Othe		Othe
Koppal	269	rs S3t	rs S2t	rs S3t	rs S1	rs S3t	rs S1	rs S2r	rs S1	rs S1	rs S1	rs S2t	rs S2t	rs S3t	rs S1	rs N1t	rs S2rt	rs S1	rs S3t	rs S3t	rs S3t	rs S2t	rs S2t	rs S2t	rs S2t	rs S3t	rs S2t	rs S2t	rs S3t	rs S2t	rs S2t	rs S3t
Koppal	270	S3t	S2t	S3t	S1	S3t	S1	S2r	S1	S1	S1	S2t	S2t	S3t	S1	N1t	S2rt	S1	S3t	S3t	S3t	S2t	S2t	S2t	S2t	S3t	S2t	S2t	S3t	S2t	S2t	S3t
Koppal	271	Othe	Othe	Othe			-	Othe	-	Othe	Othe	Othe				Othe			Othe			Othe		Othe				Othe				
F F -		rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs

Village	Survey Number	Mango	Maize	Sapota	Sorghum	Guava	Cotton	Tamarind	Lime	Bengal gram	Sunflower	Redgram	Amla	Jackfruit	Custard-apple	Cashew	Jamun	Musambi	Groundnut	Chilly	Tomato	Marigold	Chrysanthemum	Pomegranate	Bajra	Jasmine	Bhendi	Brinjal	Crossandra	Drumstick	Mulberry	Onion
Koppal	272	Other s	Other s	Other s	Other s	Other s	Other s	Other s	Other S	Other s	Other s	Other s	Other s	Other S	Other s	Other s	Other s	Other s	Other s	Other s	Other s	Other s	Other s	Other S								
Koppal	273	N1rg	S3rg	-	S3rg	s S3rg	S3g	N1rg	S3rg	S2rt	-	S3rg	S2rg	s S3rg	-	-	S3rg	s S3rg	s S3rg	-	S3g	S3g	S3g	s S3rg	s S2rg	s S3g	S3g	S3g	S3g	S3rg	S3rg	-
Koppal	274	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	275	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	276	N1rg	S3rg	S3rg	S3rg	S3rg	S3rg	N1rg	S3rg	S2rt	S3rg	S3rg	S2rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3g	S3g	S3rg	S3rg	S3rg	S3g
Koppal	277	N1rg	S3rg	S3rg	S3rg	S3rg	S3rg	N1rg	S3rg	S2rt	S3rg	S3rg	S2rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3g	S3g	S3rg	S3rg	S3rg	S3g
Koppal	278	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	279	N1rg	S3rg	S3rg	S3rg	S3rg	S3g	N1rg	S3rg	S2rt	S3rg	S3rg	S2rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3g	S3g	S3g	S3g	S3rg	S2rg	S3g	S3g	S3g	S3g	S3rg	S3rg	S3g
Koppal	280		Othe								Othe	Othe			Othe		Othe	Othe						Othe		Othe				Othe		
Koppal	281	rs Othe	rs Othe	Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	Othe	rs Othe	rs Othe								
Koppal	282	rs N1rg	rs S3rg	rs S3rg	rs S3rg	rs S3rg	rs S3rg	rs N1rg	rs S3rg	rs S2rt	rs S3rg	rs S3rg	rs S2rg	rs S3rg	rs S2rg	rs S3rg	rs S3rg	rs S3rg	rs S2rg	rs S3rg	rs S3rg	rs S3rg	rs S3rg	rs S3rg	rs S2rg	rs S3rg	rs S3g	rs S3g	rs S3rg	rs S3rg	rs S3rg	rs S3g
Koppal	283	-	-		-	-	Othe	-				Othe	-	-		-	Othe	-			-	-		Othe	-			-			Ū	
		rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs								
Koppal	284	N1rg					-	N1rg	-		S3rg				S2rg		S3rg							S3rg		S3rg		S3g	S3rg			
Koppal	285	S3rg		S2rg		S2rg					S3rg			S2rg	S2rg		S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg		S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	286	S3rg		S2rg	-	S2rg			S2rg	S3g	S3rg		-	S2rg	S2rg		S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg		S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	287	S3rg		S2rg	S3g	S2rg	-	S3rg	S2rg	S3g	S3rg			S2rg	S2rg	S2rg			S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	288	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs								
Koppal	289	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	290	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	291	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	292	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	293	S3g	S3g	S3g	S2g	S3g	S2g	S2rg	S3g	S3g	S3g	S3g	S2tg	S2tg	S3g	S3g	S2g	S2tg														
Koppal	294	S3g	S3g	S3g	S2g	S3g	S2g	S2rg	S3g	S3g	S3g	S3g	S2tg	S2tg	S3g	S3g	S2g	S2tg														
Koppal	295	S3g	S3g	S3g	S2g	S3g	S2g	S2rg	S3g	S3g	S3g	S3g	S2tg	S2tg	S3g	S3g	S2g	S2tg														
Koppal	296	S3g	S3g	S3g	S2g	S3g	S2g	S2rg	S3g	S3g	S3g	S3g	S2tg	S2tg	S3g	S3g	S2g	S2tg														
Koppal	298	S3g	S3g	S3g	S2g	S3g	S2g	S2rg	S3g	S3g	S3g	S3g	S2tg	S2tg	S3g	S3g	S2g	S2tg														

Village	Survey Number	Mango	Maize	Sapota	Sorghum	Guava	Cotton	Tamarind	Lime	Bengal gram	Sunflower	Redgram	Amla	Jackfruit	Custard-apple	Cashew	Jamun	Musambi	Groundnut	Chilly	Tomato	Marigold	Chrysanthemum	Pomegranate	Bajra	Jasmine	Bhendi	Brinjal	Crossandra	Drumstick	Mulberry	Onion
Koppal	299	N1rg	S3rg	S3rg	S3rg	S3rg	S3g	N1rg	S3rg	S2rt	S3rg	S3rg	S2rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3g	S3g	S3g	S3g	S3rg	S2rg	S3g	S3g	S3g	S3g	S3rg	S3rg	S3g
Koppal	300	N1rg	S3rg	S3rg	S3rg	S3rg	S3g	N1rg	S3rg	S2rt	S3rg	S3rg	S2rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3g	S3g	S3g	S3g	S3rg	S2rg	S3g	S3g	S3g	S3g	S3rg	S3rg	S3g
Koppal	301	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	306	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	307	S3g	S3g	S3g	S2g	S3g	S2g	S2rg	S3g	S3g	S3g	S3g	S2tg	S2tg	S3g	S3g	S2g	S2tg														
Koppal	308	S3g	S3g	S3g	S2g	S3g	S2g	S2rg	S3g	S3g	S3g	S3g	S2tg	S2tg	S3g	S3g	S2g	S2tg														
Koppal	309	S3g	S3g	S3g	S2g	S3g	S2g	S2rg	S3g	S3g	S3g	S3g	S2tg	S2tg	S3g	S3g	S2g	S2tg														
Koppal	310	S3g	S3g	S3g	S2g	S3g	S2g	S2rg	S3g	S3g	S3g	S3g	S2tg	S2tg	S3g	S3g	S2g	S2tg														
Koppal	311	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	312	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	313	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	314	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	315	N1rg	S3rg	S3rg	S3rg	S3rg	S3rg	N1rg	S3rg	S2rt	S3rg	S3rg	S2rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3g	S3g	S3rg	S3rg	S3rg	S3g
Koppal	316	N1rg	S3rg	S3rg	S3rg	S3rg	S3rg	N1rg	S3rg	S2rt	S3rg	S3rg	S2rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3g	S3g	S3rg	S3rg	S3rg	S3g
Koppal	317	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	318	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	319	N1r	S3rg	N1r	S3rg	N1r	S3rt	N1r	N1r	S3rt	N1r	N1r	S3rg	N1r	S3rg	N1r	N1r	N1r	S3rg	S3rg	S3rg	S3rg	S3rg	N1r	S3rg	S3rg	S3rg	S3rg	S3rg	N1r	N1r	S3rg
Koppal	320	N1rg	S3rg	S3rg	S3rg	S3rg	S3rg	N1rg	S3rg	S2rt	S3rg	S3rg	S2rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3g	S3g	S3rg	S3rg	S3rg	S3g
Koppal	321	N1rg	S3rg	S3rg	S3rg	S3rg	S3g	N1rg	S3rg	S2rt	S3rg	S3rg	S2rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3g	S3g	S3g	S3g	S3rg	S2rg	S3g	S3g	S3g	S3g	S3rg	S3rg	S3g
Koppal	322	N1rg	S3rg	S3rg	S3rg	S3rg	S3g	N1rg	S3rg	S2rt	S3rg	S3rg	S2rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3g	S3g	S3g	S3g	S3rg	S2rg	S3g	S3g	S3g	S3g	S3rg	S3rg	S3g
Koppal	323	N1r	S3rg	N1r	S3rg	N1r	S3rt	N1r	N1r	S3rt	N1r	N1r	S3rg	N1r	S3rg	N1r	N1r	N1r	S3rg	S3rg	S3rg	S3rg	S3rg	N1r	S3rg	S3rg	S3rg	S3rg	S3rg	N1r	N1r	S3rg
Koppal	324	N1r	S3rg	N1r	S3rg	N1r	S3rt	N1r	N1r	S3rt	N1r	N1r	S3rg	N1r	S3rg	N1r	N1r	N1r	S3rg	S3rg	S3rg	S3rg	S3rg	N1r	S3rg	S3rg	S3rg	S3rg	S3rg	N1r	N1r	S3rg
Koppal	325	N1r	S3rg	N1r	S3rg	N1r	S3rt	N1r	N1r	S3rt	N1r	N1r	S3rg	N1r	S3rg	N1r	N1r	N1r	S3rg	S3rg	S3rg	S3rg	S3rg	N1r	S3rg	S3rg	S3rg	S3rg	S3rg	N1r	N1r	S3rg
Koppal	326	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe	Othe								
Koppal	327	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe	rs Othe								
Koppai	347	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs								
Koppal	328	N1r	S3rg	N1r	S3rg	N1r	S3rt	N1r	N1r	S3rt	N1r	N1r	S3rg	N1r	S3rg	N1r	N1r	N1r	S3rg	S3rg	S3rg	S3rg	S3rg	N1r	S3rg	S3rg	S3rg	S3rg	S3rg	N1r	N1r	S3rg

Village	Survey Number	Mango	Maize	Sapota	Sorghum	Guava	Cotton	Tamarind	Lime	Bengal gram	Sunflower	Redgram	Amla	Jackfruit	Custard-apple	Cashew	Jamun	Musambi	Groundnut	Chilly	Tomato	Marigold	Chrysanthemum	Pomegranate	Bajra	Jasmine	Bhendi	Brinjal	Crossandra	Drumstick	Mulberry	Onion
Koppal	329	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S2rg	S3g	S3g	S3g	S3g	S2tg	S2tg	S3g	S3g	S2g	S2tg						
Koppal	330	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	331	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	332	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	333	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	334	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	335	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	336	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	337	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	341	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	342	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro
Koppal	343	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro	Ro
Koppal	344	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	345	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	346	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	347	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	348	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	349	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	350	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	351	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	352	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	353	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	354	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	355	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	356	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	357	S1	S1	S1	S1	S2t	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S2t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2tg	S2g	S1	S1	S1	S2tg
Koppal	358	S1	S1	S1	S1	S2t	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S2t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2tg	S2g	S1	S1	S1	S2tg

Village	Survey Number	Mango	Maize	Sapota	Sorghum	Guava	Cotton	Tamarind	Lime	Bengal gram	Sunflower	Redgram	Amla	Jackfruit	Custard-apple	Cashew	Jamun	Musambi	Groundnut	Chilly	Tomato	Marigold	Chrysanthemum	Pomegranate	Bajra	Jasmine	Bhendi	Brinjal	Crossandra	Drumstick	Mulberry	Onion
Koppal	359	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	360	S1	S1	S1	S1	S2t	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S2t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2tg	S2g	S1	S1	S1	S2tg
Koppal	361	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	362	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	363	S3rg	S3g	S2rg	S3g	S2rg	S3rg	S3rg	S2rg	S3g	S3rg	S3g	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2g	S3g	S3g	S3g	S3g	S2rg	S2g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Koppal	364	S1	S1	S1	S1	S2t	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S2t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2tg	S2g	S1	S1	S1	S2tg
Koppal	365	S1	S1	S1	S1	S2t	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S2t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2tg	S2g	S1	S1	S1	S2tg
Koppal	366	S1	S1	S1	S1	S2t	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S2t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2tg	S2g	S1	S1	S1	S2tg
Koppal	368	S1	S1	S1	S1	S2t	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S2t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2tg	S2g	S1	S1	S1	S2tg
Koppal	369	S1	S1	S1	S1	S2t	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S2t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2tg	S2g	S1	S1	S1	S2tg
Koppal	370	S1	S1	S1	S1	S2t	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S2t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2tg	S2g	S1	S1	S1	S2tg
Koppal	371	N1r	S2rg	S3r	S2rg	S3r	S2rg	N1r	S3r	S2rt	S3rg	S3rg	S2r	S3r	S2r	S3r	S3r	S3r	S2r	S2rg	S2rg	S2rg	S2rg	S3r	S2rg	S2rg	S2r	S2r	S2rg	S3rg	S3rg	S2r
Koppal	372	N1r	S2rg	S3r	S2rg	S3r	S2rg	N1r	S3r	S2rt	S3rg	S3rg	S2r	S3r	S2r	S3r	S3r	S3r	S2r	S2rg	S2rg	S2rg	S2rg	S3r	S2rg	S2rg	S2r	S2r	S2rg	S3rg	S3rg	S2r

PART-B

SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS

CONTENTS

1	Findings of the socio-economic survey	1-3
2	Introduction	5
3	Methodology	7-8
4	Salient features of the survey	9-25
5	Summary	27-30

LIST OF TABLES

1	Households sampled for socio economic survey	9
2	Population characteristics	9
3	Age wise classification of household members	9
4	Education level of household members	10
5	Occupation of household heads	10
6	Occupation of family members	10
7	Institutional participation of household members	11
8	Type of house owned by households	11
9	Durable assets owned by households	11
10	Average value of durable assets owned by households	12
11	Farm implements owned by households	12
12	Average value of farm implements	12
13	Livestock possession by households	12
14	Average labour availability	13
15	Adequacy of hired labour	13
16	Distribution of land (ha)	13
17	Average land value (Rs./ha)	13
18	Status of bore wells	14
19	Source of irrigation	14
20	Depth of water(Avg in meters)	14
21	Irrigated area (ha)	14
22	Cropping pattern	14
23	Cropping intensity	15
24	Possession of bank account and saving	15
25	Borrowing status	15
26. a	Cost of cultivation of Maize	16
26. b	Cost of cultivation of Bajra	17
26. c	Cost of cultivation of Horse gram	18
26. d	Cost of cultivation of Sugarcane	19
27	Adequacy of fodder	20

28	Annual gross income	20
29	Average annual expenditure	20
30	Horticultural species grown	20
31	Forest species grown	21
32	Average additional investment capacity	21
33	Source of funds for additional investment	21
34	Marketing of the agricultural produce	22
35	Marketing channels used for sale of agricultural produce	22
36	Mode of transport of agricultural produce	22
37	Incidence of soil and water erosion problems	22
38	Interest shown towards soil testing	23
39	Usage pattern of fuel for domestic use	23
40	Source of drinking water	23
41	Source of light	23
42	Existence of sanitary toilet facility	23
43	Possession of public distribution system (PDS) card	24
44	Participation in NREGA programme	24
45	Adequacy of food items	24
46	Inadequacy of food items	24
47	Farming constraints experienced	25

Chapter 1

FINDINGS OF THE SOCIO-ECONOMIC SURVEY

- The survey was conducted in Belanalu is located at North latitude 15^o 20' 57.623" and 15^o 19' 20.322" and East longitude 76^o 12' 30.222 and 76^o 10' 31.004" covering an area of about 547.63ha coming under Kidadhala, Koppala and Huvinala villages of Koppal taluk.
- Socio-economic analysis of Belanalu micro watersheds of Ginigera sub-watershed, Koppal taluk & District indicated that, out of the total sample of 35 total respondents, 13 (37.14%) were marginal, 11(31.43%) were small, 3 (8.57%) were semi medium and 2 (5.71%) were medium farmers. 6 landless farmers were also interviewed for the survey.
- The population characteristics of households indicated that, there were 97 (53.89%) men and 83 (46.11 %) were women. The average population of landless was 4.66, marginal farmers were 4.92, small farmers were 5.72, semi medium was 5.66 and medium farmers were 4.
- ★ *Majority of the respondents (47.78%) were in the age group of 16-35 years.*
- Education level of the sample households indicated that, there were 30.56 per cent illiterates, 66.12 percent pre university education and 4.44 per cent attained graduation.
- About, 51.43 per cent of household heads practicing agriculture and 40.00 per cent of the household heads were engaged as agricultural labourers.
- Agriculture was the major occupation for 30.00 per cent of the household members.
- In the study area, 22.86 per cent of the households possess katcha house and 34.29 per cent possess pucca house.
- The durable assets owned by the households showed that, 77.14 per cent possess TV, 62.86 per cent possess mixer grinder, 97.14 per cent possess mobile phones and 8.57 per cent possess motor cycles.
- ✤ Farm implements owned by the households indicated that, 5.71 per cent of the households possess Bullock Cart, 11.43 per cent possess plough, 8.57 per cent possess Sprayer and 11.43 per cent possess Weeder.
- Regarding livestock possession by the households, 14.29 per cent of the households possess bullocks, 37.14 per cent possess local cow and 2.86 per cent possess sheep.
- The average labour availability in the study area showed that, own labour men available in the micro watershed was 1.26, women available in the micro watershed was 1.22, hired labour (men) available was 8.26 and hired labour (women) available was 8.
- *Further*, 68.57 per cent of the household opined that hired labour was adequate.
- ✤ Out of the total land holding of the sample respondents 11.44 ha (38.24%) of dry land and 14.55 ha (48.64 %) of irrigated land.
- ✤ There were 6.00 live bore wells and 3.00 dry bore wells among the sampled households.

- Bore well was the major source of irrigation for 17.14 per cent of the households.
- The major crops grown by sample farmers are Maize, Bajra, Horsegram, Sugarcane and cropping intensity was recorded as 88.96 per cent.
- *Out of the sample households 20.00 percent possessed bank account.*
- ✤ About 20.00 per cent of the respondents borrowed credit from various sources⁻
- The per hectare cost of cultivation for Maize, Bajra, Horsegram, Sugarcane and 0 was Rs.40150.98, 44680.94, 6213.94 and 33533.02, with benefit cost ratio of 1:1.80, 1: 0.90, 1: 1.20 and 1: 1.80, respectively.
- Further, 48.57 per cent of the households opined that dry fodder was adequate and 8.57 per cent of the households have opined that the green fodder was adequate.
- ✤ The average annual gross income of the farmers was Rs. 48471.43 in microwatershed, of which Rs. 25157.14 comes from agriculture.
- Sampled households have grown 31 horticulture trees and 56 forestry trees together in the fields and back yards.
- ✤ Households have an average investment capacity of Rs. 4742.86 for land development and Rs. 2171.43 for irrigation facility.
- Source of funds for additional investment is concerned, 2.86 per cent depends on own funds and 62.86 per cent depends on bank loan for land development activities.
- Regarding marketing channels, 68.57 per cent of the households have sold agricultural produce to the local/village merchants, while, 2.86 per cent have sold in regulated markets.
- ✤ Further, 68.57 per cent of the households have used tractor for the transport of agriculture commodity.
- Majority of the farmers (62.86%) have experienced soil and water erosion problems in the watershed and 68.57 per cent of the households were interested towards soil testing.
- Fire wood was the major source of fuel for domestic use for 91.43 per cent of the households and 22.86 per cent households has LPG connection.
- Piped supply was the major source for drinking water for 65.71 per cent of the households.
- *Electricity was the major source of light for 100.00 per cent of the households.*
- ♦ *In the study area, 100.00 per cent of the households possess toilet facility.*
- Regarding possession of PDS card, 100.00 per cent of the households possessed BPL card.
- ✤ Households opined that, the requirement of cereals (100.00%), pulses (100.00%) and oilseeds (94.29%) are adequate for consumption.
- ✤ Farming constraints experienced by households in the micro watersheds were lower fertility status of the soil (74.29%) wild animal menace on farm field (65.71%), frequent incidence of pest and diseases (62.86%), inadequacy of irrigation water (2.86%), high cost of fertilizers and plant protection chemicals

(65.71%), high rate of interest on credit (68.57%), low price for the agricultural commodities (60.00%), lack of marketing facilities in the area (51.43%), lack of transport for safe transport of the agricultural produce to the market (54.29%) and Less rainfall (5.71%).

Chapter 2

INTRODUCTION

Soil and water are the two precious natural resources which are essential for crop production and existence of life on earth. Rainfed agriculture is under severe stress due to various constraints related to agriculture like uneven and erratic distribution of rainfall, indiscriminate use of fertilizers, chemicals and pesticides, adoption of improper land management practices, soil erosion, decline in soil fertility, decline in ground water resources leading to low crop productivity. The area under rainfed agriculture has to be managed effectively using the best available practices to enhance the production of food, fodder and fuel. This is possible if the land resources are characterized at each parcel of land through detailed land resource inventory using the best available techniques of remote sensing, GPS and GIS. The watershed development programs are aimed at the sustainable distribution of its resources and the process of creating and implementing plans, programs, and projects to sustain and enhance watershed functions that affect the plant, animal and human communities within a watershed boundary.

World Bank funded KWDP II, SUJALA III project was implemented in with Broad objective of demonstrating more effective watershed management through greater integration of programmes related to rain-fed agriculture, innovative and science based approaches and strengthen institutional capacities and If successful, it is expected that the systems and tools could be mainstreamed into the overall IWMP in the State of Karnataka and in time, throughout other IWMP operations in India. With this background the socioeconomic survey has been carried out with following specific objectives:

- 1. To understand the demographic features of the households in the micro-watershed
- 2. To understand the extent of family labour available and additional employment opportunities available within the village.
- 3. To know the status of assets of households in the micro-watershed for suggesting possible improvements.
- 4. To study the cropping pattern, cropped area and productivity levels of different households in micro-watershed.
- 5. To determine the type and extent of livestock owned by different categories of HHs
- 6. Availability of fodder and level of livestock management.

Scope and importance of survey

Survey helps in identification of different socio-economic and resource usepatterns of farmers at the Micro watershed. Household survey provides demographic features, labour force, and levels of education; land ownership and asset position (including livestock and other household assets) of surveyed households; and cropping patterns, input intensities, and average crop yields from farmers' fields. It also discusses crop utilization and the degree of commercialization of production in the areas; farmers' access to and utilization of credit from formal and informal sources; and the level of adoption and use of soil, water, and pest management technologies.

METHODOLOGY

The description of the methods, components selected for the survey and procedures followed in conducting the baseline survey are furnished under the following heads.

1. Description of the study area

Koppal district is an administrative district in the state of Karnataka in India. In the past Koppal was referred to as 'Kopana Nagara'. Koppal, now a district headquarters is ancient Kopana a major holy place of the Jainas. The district occupies an area of 7,190 km² and has a population of 1,196,089, which 16.58% were urban as of 2001. The Koppal district was formed after split of Raichur district.

Geographers are very particular about the physiography or relief of a region. It plays a very important role in the spatial analysis of agricultural situation of the study area. The undulating topography with black cotton soil shrips, cut across by numerous nalas or streams is the major characteristic feature of the study region. Three physiographic divisions have made considering the local conditions of landforms and crops grown in the district. On the basis of physiography, Koppal district can be divided into three major divisions. They are (a) Koppal & Yelburga plateau, (b) Maidan division, (c) Tungabhadra valley. The district is part of Krishna basin the main streams draining the area are Maskinala, Ilkal-nadi and Hirenala. These are Ephemaral in nature, these come under Tungabhadra sub-basin. The drainage exhibit dentritic to subdentric with drainage density varies from 1.4 to7.0kms/sq.km.

According to the 2011 census Koppal district has a population of 1,391,292, roughly equal to the nation of Swaziland or the US state of Hawaii. This gives it a ranking of 350th in India (out of a total of 640). The district has a population density of 250 inhabitants per square kilometer (650/sq mi). Its population growth rate over the decade 2001-2011 was 16.32%.Koppal has a sex ratio of 983 females for every 1000 males, and a literacy rate of 67.28%.

2. Locale of the survey and description of the micro-watershed and

The study was conducted in Belanalu micro-watershed (Ginigera sub-watershed, Koppal taluk & District) is located at North latitude $15^0 20' 57.623''$ and $15^0 19' 20.322''$ and East longitude $76^0 12' 30.222$ and $76^0 10' 31.004''$ covering an area of about 547.63ha bounded by under Kidadhala, Koppala and Huvinala Villages.

3. Selection of the respondents for the study

The micro-watershed is marked with 320 square meters grids. One farmer from every alternate grid in the micro-watershed was selected for the study and interviewed for socio-economic data. Totally 35 households were interviewed for the survey.

4. The parameters considered for socio-economic survey of households

Two forms of data were collected from the micro-watershed which includes primary data from the farm households and secondary data about the villages under the micro-watershed jurisdiction.

The following parameters were considered for the primary data collection about the socio-economic data of the households, (1) Demographic information, (2) Farm and durable assets owned by households, (3) Livestock possession, (4) Labour availability, (5) Level of migration in the village, Land holding, (7) Cropping pattern, (8) Source of irrigation, (9) Borrowing status, (10) Cost of cultivation of major crops, (11) Economics of subsidiary activities, (12) Fodder availability, (13) Family annual income from different sources, (14) Horticulture and forestry species grown, (15) Additional investment capacity, (16) Marketing practices, (17) Status of soil and water conservation structure, (18) Access to basic needs and (19) Constraints and suggestion.

The following parameters were considered for the secondary data regarding the villages under the micro-watershed jurisdiction, (1) Number of villages in each micro-watershed jurisdiction, (2) Village wise number of households, (3) Geographical area of the villages, (4) Cultivable are a including rainfed and irrigated, (5) Number and type of house in each village, (6) Human and livestock population, (7) Facilities in the village such as roads, transport facility for conveyance, drinking water supply, street light and (8) Community based organizations in the villages.

5. Development of interview schedule and data collection

Taking into the consideration the objectives of the survey, an interview schedule was prepared after thorough consultation with the experts in the field of social sciences. A comprehensive interview schedule covering all the major parameters for measuring the socio-economic situation was developed.

6. Tools used to analyze the data

The statistical components such as frequency and percentage were used to analyze the data.

Abbreviations used in the report

LL=Landless MF=Marginal Farmers SF=Small farmers SMF=Semi medium farmers MDF=Medium farmers LF=Large Farmers

FINDINGS OF THE SURVEY

This chapter deals with systematic presentation of results of the survey. Keeping in view the objectives, the salient features of the survey are presented under the following headings.

Households sampled for socio-economic survey: The data on households sampled for socio economic survey in Belanalu Micro watershed is presented in Table 1 and it indicated that 35 farmers were sampled in Belanalu micro-watershed among households surveyed 13 (37.14%) were marginal, 11(31.43%) were small, 3 (8.57 %) were semi medium and 2 (5.71 %) were medium farmers. 6 landless farmers were also interviewed for the survey.

 Table 1. Households sampled for socio economic survey in Belanalu microwatershed

Sl.No.	Particulars	L	L (6)	MF	F (13)	SF	(11)	SN	AF (3)	M	DF (2)	All	(35)
51.1NU.	raruculars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Farmers	6	17.1	13	37.1	11	31.4	3	8.57	2	5.71	35	100

Population characteristics: The population characteristics of households sampled for socio-economic survey in Belanalu Micro watershed is presented in Table 2. The data indicated that, there were 97 (53.89%) men and 83 (46.11%) were women. The average population of landless was 4.66, marginal farmers were 4.92, small farmers were 5.72, semi medium was 5.66 and medium farmers were 4.

Sl.No.	Particulars	LI	L (28)	MF (64)		SF	(63)	SMF (17)		M	DF (8)	All (180)	
51.110.	raruculars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Men	16	57.1	34	53	33	52	10	58.8	4	50	97	53.9
2	Women	12	42.9	30	47	30	48	7	41.2	4	50	83	46.1
	Total	28	100	64	100	63	100	17	100	8	100	180	100
A	verage	4	.66	4	.92	5.	.72	5	5.66		4	5	.14

Table 2. Population characteristics in Belanalu micro-watershed

Age wise classification of population: The age wise classification of household members in Belanalu Micro watershed is presented in Table 3. The indicated that, 35 (19.44%) of population were 0-15 years of age, 86 (47.78%) were 16-35 years of age, 49(27.22%) were 36-60 years of age and 10 (5.56 %) were above 61 years of age.

 Table 3: Age wise classification of members of the household in Belanalu microwatershed

SI No	I.No. Particulars		LL (28)		MF (64)		SF (63)		SMF (17)		MDF (8)		(180)
51.1NO.	Particulars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	0-15 years of age	4	14.3	15	23.4	11	17.5	4	23.53	1	13	35	19.44
2	16-35 years of age	14	50	30	46.9	32	50.8	7	41.18	3	38	86	47.78
3	36-60 years of age	9	32.1	17	26.6	15	23.8	4	23.53	4	50	49	27.22
4	> 61 years	1	3.57	2	3.13	5	7.94	2	11.76	0	0	10	5.56
	Total	28	100	64	100	63	100	17	100	8	100	180	100

Education level of household members: Education level of household members in Belanalu Micro watershed is presented in Table 4. The results indicated that, there were 30.56 per cent of illiterates, 22.78 per cent of them had primary school education, 6.11 per cent middle school education, 21.67 per cent high school education, 7.78 per cent of them had PUC education, 2.78 per cent of them had ITI, 4.44 per cent attained graduation and 3.89 them had other education.

SI No	Sl.No. Particulars		LL (28)		MF (64)		SF (63)		F (17)	Μ	DF (8)	All (180)	
51.110.	Particulars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Illiterate	10	35.7	21	32.8	21	33.3	2	11.8	1	12.5	55	30.6
2	Primary School	4	14.3	14	21.9	16	25.4	5	29.4	2	25	41	22.8
3	Middle School	0	0	7	10.9	1	1.59	1	5.88	2	25	11	6.11
4	High School	6	21.4	13	20.3	12	19.1	6	35.3	2	25	39	21.7
5	PUC	3	10.7	3	4.69	6	9.52	1	5.88	1	12.5	14	7.78
6	ITI	1	3.57	0	0	2	3.17	2	11.8	0	0	5	2.78
7	Degree	2	7.14	3	4.69	3	4.76	0	0	0	0	8	4.44
8	Others	2	7.14	3	4.69	2	3.17	0	0	0	0	7	3.89
	Total	28	100	64	100	63	100	17	100	8	100	180	100

Table 4. Education level of members of the household in Belanalu micro-watershed

Occupation of head of households: The data regarding the occupation of the household heads in Belanalu Micro watershed is presented in Table 5. Indicate that, 51.43 per cent of households heads were practicing agriculture, 40.00 per cent of the household heads were agricultural Labour likewise general labour (8.57 %)

SING	l.No. Particulars		LL (6)		MF (13)		SF (11)		SMF (3)		MDF (2)		l (35)
51.110.			%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Agriculture	1	17	8	62	6	54.55	3	100	0	0	18	51.43
2	Agricultural Labour	4	67	4	31	4	36.36	0	0	2	100	14	40
3	General Labour	1	17	1	7.7	1	9.09	0	0	0	0	3	8.57
	Total	6	100	13	100	11	100	3	100	2	100	35	100

Table 6: Occupation of members of the household in Belanalu micro-watershee	Table 6: Occu	pation of mem	bers of the hou	sehold in Belana	alu micro-watershed
---	---------------	---------------	-----------------	------------------	---------------------

Sl.No.	Particulars	LL	. (28)	MF	(64)	SF	F (63)	SM	F (17)	MDF (8)		All (180)	
51.110.	raruculars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Agriculture	2	7.14	19	29.7	21	33.33	9	52.94	3	38	54	30
2	Agricultural Labour	18	64.3	19	29.7	22	34.92	2	11.76	4	50	65	36.1
3	General Labour	1	3.57	1	1.56	1	1.59	0	0	0	0	3	1.67
4	Private Service	1	3.57	2	3.13	3	4.76	1	5.88	0	0	7	3.89
5	Trade & Business	0	0	0	0	0	0	1	5.88	0	0	1	0.56
6	Student	4	14.3	20	31.3	13	20.63	4	23.53	1	13	42	23.3
7	Housewife	0	0	0	0	1	1.59	0	0	0	0	1	0.56
8	Children	2	7.14	3	4.69	2	3.17	0	0	0	0	7	3.89
	Total	28	100	64	100	63	100	17	100	8	100	180	100

Occupation of the members of the household: The data regarding the occupation of the household members in Belanalu Micro watershed is presented in Table 6. The results indicate that, agriculture was the major occupation for 30.00 per cent of the household

members, 36.11 per cent were agricultural labour, 1.67 per cent were general labour, 3.89 per cent were working in private sector, 0.56 per cent were working in trade & business, 23.33 per cent were working in pursuing education, 0.56 per cent were involved as housewife and 3.89 per cent were children.

Institutional Participation of household members: The data regarding the institutional participation of the household members in Belanalu Micro watershed is presented in Table 7. The results show that, out of the total family members in the households, 100 per cent were not participating in any of the institutions.

Table 7: Institutional Participation of household member in Belanalu microwatershed

Sl.No.	Particulars	LL	(28)	MF	r (64)	SF	(63)	SM	F (17)	MD	F (8)	All	(180)
31.1 10.	rarticulars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	No Participation	28	100	64	100	63	100	17	100	8	100	180	100
	Total	28	100	64	100	63	100	17	100	8	100	180	100

Type of house owned: The data regarding the type of house owned by the households in Belanalu Micro watershed is presented in Table 8. The results indicate that, 42.86 percent possess thatched house, 22.86 per cent of the households possess katcha house and 34.29 per cent possess pacea house.

Sl.No.	Particulars	LI	(-)		SI	F (11)	SN	AF (3)	M	DF (2)	All (35)		
SI.INO.	Farticulars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Thatched	5	83	6	46	2	18.18	1	33.3	1	50	15	42.86
2	Katcha	1	17	2	15	5	45.45	0	0	0	0	8	22.86
3	Pucca/RCC	0	0	5	38	4	36.36	2	66.7	1	50	12	34.29
	Total	6	100	13	100	11	100	3	100	2	100	35	100

 Table 8. Type of house owned by households in Belanalu micro-watershed

Durable assets owned by the households: The data regarding the Durable Assets owned by the households in Belanalu Micro watershed is presented in Table 9. The results shows that, 77.14 per cent possess TV, 62.86 per cent possess mixer grinder, 2.86 per cent possess Bicycle, 8.57 per cent possess motor cycle and 97.14 per cent possess mobile phones.

Table 9. Durable assets owned by households in Belanalu micro-watershed

SLNo	l.No. Particulars				MF (13)		SF (11)		IF (3)	MDF (2)		All (35)	
51.110.	Farticulars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Television	3	50	8	62	11	100	3	100	2	100	27	77.14
2	Mixer/Grinder	3	50	8	62	7	63.6	3	100	1	50	22	62.86
3	Bicycle	0	0	1	7.7	0	0	0	0	0	0	1	2.86
4	Motor Cycle	0	0	0	0	1	9.09	1	33	1	50	3	8.57
5	Mobile Phone	7	117	11	85	11	100	3	100	2	100	34	97.14
6	Blank	0	0	2	15	0	0	0	0	0	0	2	5.71

Average value of durable assets: The data regarding the average value of durable assets owned by the households in Belanalu Micro watershed is presented in Table 10. The result shows that, the average value of television was Rs.5018.00, mixer grinder was

Rs.1286.00, bicycle was Rs.3000.00, motor cycle was Rs. 31666.00 and mobile phone was Rs.2069.00.

					I	Average Va	alue (Rs.)
Sl.No.	Particulars	LL (6)	MF (13)	SF (11)	SMF (3)	MDF (2)	All (35)
1	Television	6000	5312	4272	5666	5500	5018
2	Mixer/Grinder	1500	1237	1242	1233	1500	1286
3	Bicycle	0	3000	0	0	0	3000
4	Motor Cycle	0	0	25000	35000	35000	31666
5	Mobile Phone	2250	2142	1964	2375	1333	2069

Table 10. Average value of durable assets owned in Belanalu micro-watershed

Farm implements owned: The data regarding the farm implements owned by the households in Belanalu Micro watershed is presented in Table 11. About 5.71 per cent of the households possess Bullock Cart, 11.43 per cent possess plough, 8.57 per cent possess Sprayer and 11.43 per cent possess Weeder.

Table 11. Farm implements owned in Belanalu micro-watershed

Sl.No.	Particulars	LL (6)		MF (13)		SF (11)		SMF (3)		MI	DF (2)	All (35)	
51.110.	Particulars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Bullock Cart	0	0	1	7.69	0	0	1	33.3	0	0	2	5.71
2	Plough	0	0	1	7.69	2	18.18	1	33.3	0	0	4	11.43
3	Sprayer	0	0	1	7.69	0	0	1	33.3	1	50	3	8.57
4	Weeder	0	0	2	15.4	0	0	1	33.3	1	50	4	11.43
5	Blank	6	100	11	84.6	9	81.82	2	66.7	1	50	29	82.86

Average value of farm implements: The data regarding the average value of farm Implements owned by the households in Belanalu Micro watershed is presented in Table 12. The results show that the average value of plough was Rs.2075.00, bullock Cart was Rs.18000.00, sprayer was Rs.3833.00 and weeder was Rs.100.00.

					A	verage Va	lue (Rs.)
Sl.No.	Particulars	LL (6)	MF (13)	SF (11)	SMF (3)	MDF (2)	All (35)
1	Bullock Cart	0	18000	0	18000	0	18000
2	Plough	0	1800	2500	1500	0	2075
3	Sprayer	0	1500	0	5000	5000	3833
4	Weeder	0	91	0	300	50	100

Sl.No.	Particulars	LL (6)		MF (13)		SF (11)		SMF (3)		MDF (2)		All (35)	
SI.INO.	SI.NO. Particulars		%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Bullock	0	0	1	7.7	2	18.18	1	33	1	50	5	14.29
2	Local cow	1	17	5	38	5	45.45	1	33	1	50	13	37.14
3	Sheep	0	0	0	0	1	9.09	0	0	0	0	1	2.86
4	blank	5	83	7	54	4	36.36	1	33	0	0	17	48.57

Livestock possession by the households: The data regarding the Livestock possession by the households in Belanalu Micro watershed is presented in Table 13. This indicates

that, 14.29 per cent of the households possess bullocks, 37.14 per cent possess local cow and 2.86 per cent possess sheep.

Average Labour availability: The data regarding the average labour availability in Belanalu Micro watershed is presented in Table 14. The indicated that, own labour men available in the micro watershed was 1.26, women available in the micro watershed was 1.22, hired labour (men) available was 8.26 and hired labour (women) available was 8.

SI No	Particulars	LL (6)	MF (13)	SF (11)	SMF (3)	MDF (2)	All (35)
Sl.No.	Particulars	Ν	Ν	Ν	Ν	Ν	Ν
1	Hired labour Female	0	8.5	7.38	6.67	10	8
2	Own Labour Female	0	1.2	1.25	1.33	1	1.22
3	Own labour Male	0	1.2	1.25	1.67	1	1.26
4	Hired labour Male	0	8.6	7.38	6.67	12.5	8.26

 Table 14. Average labour availability in Belanalu micro-watershed

Adequacy of hired labour: The data regarding the adequacy of hired labour in Belanalu Micro watershed is presented in Table 15. The results indicate that, 68.57 per cent of the household opined that hired labour was adequate.

Table 15 Adequacy	of hired labou	in Rolanalu	miero-watershed
Table 15. Adequacy	of fifted labour	III Delalialu	i mici u-water sneu

Sl.No.	Particulars	LL (6) MF		(13) SF (11)		F (11)	SMF (3)		MDF (2)		All (35)		
		Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Adequate	0	0	10	76.9	8	72.7	3	100	3	150	24	68.6

Distribution of land (ha): The data regarding the distribution of land (ha) in Belanalu Micro watershed is presented in Table 16. The results indicate that, 11.44 ha (38.24%) of dry land and 14.55 ha (48.64 %) of irrigated land.

Sl.No.	Particulars	LL (6)		MF	MF (13)		(11)	SMI	F (3)	MDF	F (2)	All (35)	
51.190.	DI.NO. Particulars		%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Dry	0	0	5.37	84.67	4.05	35.27	2.02	40	0	0	11.44	38.24
2	Irrigated	0	0	0.49	7.66	3.99	34.74	3.04	60	7.04	100	14.55	48.64
3	Permanent Fallow	0	0	0.49	7.66	3.44	29.98	0	0	0	0	3.93	13.12
	Total	0	100	6.34	100	11.47	100	5.06	100	7.04	100	29.91	100

Table 16. Distribution of land (ha) in Belanalu micro-watershed

Average value of land (ha): The data regarding the average land value (Rs./ha) in Belanalu Micro watershed is presented in Table 17. The results show that the average value of dry land was Rs.517860.94, the average value of irrigated land was Rs.367579.97 and the average value of Permanent Fallow land was Rs. 156603.1.

 Table 17. Average value of land (ha) in Belanalu micro-watershed

Sl.No.	Particulars	LL (6)	MF (13)	SF (11)	SMF (3)	MDF (2)	All (35)
51.110.	r ai uculars	Ν	Ν	Ν	Ν	Ν	Ν
1	Dry	0	712500	370500	296400	0	517860.9
2	Irrigated	0	411666.7	551675.1	312866.7	283908	367580
3	Permanent Fallow	0	247000	143841.2	0	0	156603.1

Status of bore wells: The data regarding the status of bore wells in Belanalu Micro watershed is presented in Table 18. The results indicate that, there were 3 De-functioning

bore wells and 6 functioning bore wells among the sampled households in micro watershed.

Sl.No.	Dontioulong	LL (6)	MF (13)	SF (11)	SMF (3)	MDF (2)	All (35)
51.110.	Particulars	Ν	Ν	Ν	Ν	Ν	Ν
1	De-functioning	0	0	0	1	2	3
2	Functioning	0	0	1	2	3	6

Table 18. Status of bore wells in Belanalu micro-watershed

Source of irrigation: The data regarding the source of irrigation in Belanalu Micro watershed is presented in Table 19. The results that bore well was major source of irrigation for 17.14 per cent of the households.

Table 19. Source of irrigation in Belanalu micro-watershed

			LL	LL (6)		MF (13)		SF (11)		SMF (3)		MDF (2)		ll (35)
S	Sl.No.	Particulars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
	1	Bore Well	0	0	0	0	1	9.09	2	66.7	3	150	6	17.14

Depth of water (Avg. In meters): The data regarding the depth of water in Belanalu Micro watershed is presented in Table 20. The results revealed that, depth of bore well was 7.75 meter.

Table 20. Depth of water (Avg. In meters) in Belanalu micro-watershed

Sl.No.	Particulars	LL (6)	MF (13)	SF (11)	SMF (3)	MDF (2)	All (35)
		Ν	Ν	Ν	Ν	Ν	Ν
1	Bore Well	0	0	2.22	43.69	57.91	7.75

Irrigated Area (ha): The data regarding the irrigated area (ha) in Belanalu Micro watershed is presented in Table 21. The results indicate that, the availability of irrigation water was used for kharif crops was 10.40 ha.

Table 21. Irrigated Area (ha) in Belanalu micro-watershed

Sl.No.	Particulars	LL (6)	MF (13)	SF (11)	SMF (3)	MDF (2)	All (35)
1	Kharif	0	0	0.61	2.91	6.88	10.4
	Total	0	0	0.61	2.91	6.88	10.4

Cropping pattern: The data regarding the cropping pattern in Belanalu Micro watershed is presented in Table 22. The results indicate that, farmers have grown Maize (22.68 ha), Sugarcane (1.21 ha), Bajra (0.4 ha) and Horse gram (0.40 ha).

Table 22. Cropping pattern in Belanalu micro-watershed

Sl.No.	Particulars	LL (6)	MF (13)	SF (11)	SMF (3)	MDF (2)	All (35)
1	Kharif - Maize	0	4.03	8.04	4.94	5.67	22.68
2	Kharif - Sugarcane	0	0	0	0	1.21	1.21
3	Kharif - Bajra	0	0.4	0	0	0	0.4
4	Kharif - Horsegram	0	0.4	0	0	0	0.4
	Total	0	4.84	8.04	4.94	6.88	24.7

Cropping intensity: The data regarding the cropping intensity in Belanalu Micro watershed is presented in Table 23. The results indicate that, the cropping intensity was 88.96 per cent.

T 11 22 4	a • • •	• (0/) •	DI	• • • • •
Table 23. (Cropping int	ensity (%) in	i Belanalu	micro-watershed

Sl.No.	Particulars	LL (6)	MF (13)	SF (11)	SMF (3)	MDF (2)	All (35)
1	Cropping Intensity	0	100	100	98.63	69.67	88.96

Possession of bank account and savings: The data regarding the possession of bank account and saving in Belanalu micro-watershed is presented in Table 24. The results indicate that, 20.00 cent of the households posses bank account.

Table 24. Possession of Bank account and savings in Belanalu micro-watershed

		LI	. (6)	MF (13)		SF (11)		SMF (3)		MDF (2)		All (35)	
Sl.No.	Particulars	Ν	%	Ν	N %		N %		N %		%	Ν	%
1	Account	0	0	3	23.08	3	27.27	0	0	1	50	7	20

Borrowing status: The data regarding the borrowing status in Belanalu micro-watershed is presented in Table 25. The results indicate that, 20.00 percent of the sample farmers have borrowed credit from different sources.

Table 25. Borrowing status in Belanalu micro-watershed

Sl.No.	Particulars	LL	. (6)	MF (13)		SF (11)		SMF (3)		MDF (2)		All (35)	
51.140.	articulars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Credit Availed	0	0	3	23.08	3	27.3	0	0	1	50	7	20

Cost of Cultivation of Maize: The data regarding the cost of cultivation (Rs/ha) of Maize in Belanalu micro watershed is presented in Table 26.a. The results indicate that, the total cost of cultivation (Rs/ha) for Maize was Rs. 40150.98. The gross income realized by the farmers was Rs. 73906.78. The net income from Maize cultivation was Rs.33755.80, thus the benefit cost ratio was found to be 1:1.8.

Sl.No		rticulars	Units	Phy Units	Value(Rs.)	% to C3
Ι	Cost A1		•			
1	Hired Human La	lbour	Man days	62.51	11386.2	28.36
2	Bullock		Pairs/day	1.98	1089.11	2.71
3	Tractor		Hours	5.7	4302.48	10.72
4	Machinery		Hours	1.47	1251.47	3.12
5	Seed Main Crop Maintenance)	(Establishment and	Kgs (Rs.)	18.47	2160.33	5.38
6	FYM		Quintal	2.31	2753.02	6.86
7	Fertilizer + micr	onutrients	Quintal	3.52	3132.18	7.8
8	Pesticides (PPC)		Kgs / liters	1.9	2247.34	5.6
9	Irrigation		Number	1.88	0	0
10	Depreciation cha	arges		0	86.93	0.22
11	Land revenue an	d Taxes		0	4.94	0.01
II	Cost B1				•	
12	Interest on work	ing capital			1235.15	3.08
13	Cost B1 = (Cost	A1 + sum of 15 and 1	6)		29649.15	73.84
III	Cost B2				•	
14	Rental Value of	Land			385.71	0.96
15	Cost B2 = (Cost	B1 + Rental value)			30034.87	74.8
IV	Cost C1					
16	Family Human I	Labour		31.68	6466.03	16.1
17	Cost C1 = (Cost Labour)	t B2 + Family			36500.89	90.91
V	Cost C2				·	
18	Risk Premium				0	0
19	Cost C2 = (Cost	t C1 + Risk Premium)			36500.89	90.91
VI	Cost C3		•			
20	Managerial Cost				3650.09	9.09
21	Cost C3 = (Cost	t C2 + Managerial Cos	st)		40150.98	100
VII	Economics of th	e Crop				
		a) Main Product (q)		38.78	45151.17	
-	Main Product	b) Main Crop Sales Pr	rice (Rs.)		1164.29	
a.	a. e) Main Product (a			136.31	28755.62	
	By Product	f) Main Crop Sales Pr	ice (Rs.)		210.95	
b.	Gross Income (R		. ,		73906.79	
с.	Net Income (Rs.				33755.8	
d.	Cost per Quintal	(Rs./q.)			1035.35	
e.	Benefit Cost Rat				1:1.8	

Table 26(a). Cost of Cultivation of Maize in Belanalu micro-watershed

Cost of Cultivation of Bajra: The data regarding the cost of cultivation (Rs/ha) of Bajra in Belanalu micro watershed is presented in Table 26.b. The results indicate that, the total cost of cultivation (Rs/ha) for Bajra was Rs. 44680.94. The gross income realized by the farmers was Rs. 39520.00. The net income from Bajra cultivation was Rs.-5160.94, thus the benefit cost ratio was found to be 1:0.90.

Sl.No	Particu	lars	Units	Phy Units	Value(Rs.)	% to C3
Ι	Cost A1					
1	Hired Human Labour		Man days	86.45	14943.5	33.44
2	Bullock		Pairs/day	2.47	1235	2.76
3	Tractor		Hours	4.94	3705	8.29
4	Seed Main Crop (Esta Maintenance)	blishment and	Kgs (Rs.)	12.35	1482	3.32
5	FYM		Quintal	2.47	2964	6.63
6	Fertilizer + micronutri	ients	Quintal	2.47	2964	6.63
7	Pesticides (PPC)		Kgs / liters	2.47	2964	6.63
8	Depreciation charges			0	0.05	0
9	Land revenue and Tax	tes		0	4.94	0.01
II	Cost B1					
10	Interest on working ca	pital			1244.88	2.79
11	Cost B1 = (Cost A1 +	- sum of 15 and 16	b)		31507.37	70.52
III	Cost B2					
12	Rental Value of Land				466.67	1.04
13	Cost B2 = (Cost B1 +	- Rental value)			31974.04	71.56
IV	Cost C1					
14	Family Human Labou	r		39.52	8645	19.35
15	Cost C1 = (Cost B2 +	- Family Labour)			40619.04	90.91
V	Cost C2					
16	Risk Premium				0	0
17	Cost C2 = (Cost C1 -	- Risk Premium)			40619.04	90.91
VI	Cost C3					
18	Managerial Cost				4061.9	9.09
19	Cost C3 = (Cost C2 - Cost)	- Managerial			44680.94	100
VII	Economics of the Cr	op				
a.	Main Product	a) Main Product (c	l)	19.76	39520	
а.		b) Main Crop Sale	es Price (Rs.)		2000	
b.	Gross Income (Rs.)				39520	
c.	Net Income (Rs.)				-5160.94	
d.	Cost per Quintal (Rs./	q.)			2261.18	
e.	Benefit Cost Ratio (B	C Ratio)			1:0.9	

Table 26 (b). Cost of Cultivation of Bajra in Belanalu micro-watershed

Cost of Cultivation of Horsegram: The data regarding the cost of cultivation (Rs/ha) of Horsegram in Belanalu micro watershed is presented in Table 26.c. The results indicate, the total cost of cultivation (Rs/ha) for Horsegram was Rs.6213.94. The gross income realized by the farmers was Rs. 7410.00. The net income from Horsegram cultivation was Rs. 1196.06, thus the benefit cost ratio was found to be 1:1.2.

Sl.No	Particular	°S	Uni	ts	Phy Units	Value(Rs.)	% to C3
Ι	Cost A1						
1	Hired Human Labour		Man da	ays	8.34	1404.81	22.61
2	Bullock		Pairs/d	ay	0	0	0
3	Tractor		Hours		0.93	694.69	11.18
4	Seed Main Crop (Establi Maintenance)	shment and	Kgs (R	.s.)	2.47	617.5	9.94
5	FYM		Quinta	1	0.62	741	11.92
6	Fertilizer + micronutrien	ts	Quinta	1	0.31	370.5	5.96
7	Pesticides (PPC)		Kgs / li	iters	0.31	370.5	5.96
8	Depreciation charges				0	0.93	0.01
9	Land revenue and Taxes				0	4.94	0.08
II	Cost B1						
10	Interest on working capit	al				251.94	4.05
11	Cost B1 = (Cost A1 + st	um of 15 and 16	5)			4456.81	71.72
III	Cost B2						
12	Rental Value of Land					466.67	7.51
13	Cost B2 = (Cost B1 + R)	ental value)				4923.47	79.23
IV	Cost C1						
14	Family Human Labour				3.4	725.56	11.68
15	Cost C1 = (Cost B2 + F)	amily Labour)				5649.04	90.91
V	Cost C2						
16	Risk Premium					0	0
17	Cost C2 = (Cost C1 + R)	isk Premium)				5649.04	90.91
VI	Cost C3						
18	Managerial Cost					564.9	9.09
19	Cost C3 = (Cost C2 + N)	Ianagerial Cost	t)			6213.94	100
VII	Economics of the Crop						
		a) Main Produc	ί, Γ		1.85	7410	
a.	Main Product	b) Main Crop S (Rs.)	ales Pri	ce		4000	
b.	Gross Income (Rs.)					7410	
c.	Net Income (Rs.)					1196.06	
d.	Cost per Quintal (Rs./q.)					3354.35	
e.	Benefit Cost Ratio (BC I	Ratio)				1:1.2	

Table 26 (c). Cost of Cultivation of Horsegram in Belanalu micro-watershed

Cost of Cultivation of Sugarcane: The data regarding the cost of cultivation (Rs/ha) of Sugarcane in Belanalu micro watershed is presented in Table 26.d. The results indicate that, the total cost of cultivation (Rs/ha) for Sugarcane was Rs. 33533.02. The gross income realized by the farmers was Rs.59280.00. The net income from Sugarcane cultivation was Rs. 25746.98, thus the benefit cost ratio was found to be 1:1.8.

Sl.No	Part	iculars	Units	Phy Units	Value(Rs.)	% to C3
Ι	Cost A1		·			
1	Hired Human Lab	our	Man days	48.17	7718.75	23.02
2	Bullock		Pairs/day	0	0	0
3	Tractor		Hours	4.94	3705	11.05
4	Seed Main Crop (I Maintenance)	Establishment and	Kgs (Rs.)	4940	9880	29.46
5	Fertilizer + micror	outrients	Quintal	2.47	1976	5.89
6	Pesticides (PPC)		Kgs / liters	1.24	1235	3.68
7	Irrigation		Number	6.18	0	0
8	Depreciation charg	ges		0	127.21	0.38
9	Land revenue and	Taxes		0	4.94	0.01
II	Cost B1					
10	Interest on workin	g capital			1570.92	4.68
11	Cost B1 = (Cost A	1 + sum of 15 and	16)		26217.82	78.19
III	Cost B2					
12	Rental Value of La	and			500	1.49
13	Cost B2 = (Cost B	B1 + Rental value)			26717.82	79.68
IV	Cost C1					
14	Family Human La	bour		18.53	3766.75	11.23
15	Cost C1 = (Cost H Labour)	32 + Family			30484.57	90.91
V	Cost C2					
16	Risk Premium				0	0
17	Cost C2 = (Cost C)	C1 + Risk Premium	l)		30484.57	90.91
VI	Cost C3					
18	Managerial Cost				3048.46	9.09
19	Cost C3 = (Cost C Cost)	C2 + Managerial			33533.02	100
VII	Economics of the	Crop				_
9	Main Product	a) Main Product (q		247	59280	
a.		b) Main Crop Sales	s Price (Rs.)		240	
b.	Gross Income (Rs.)			59280	
c.	Net Income (Rs.)				25746.98	
d.	Cost per Quintal (I	Rs./q.)			135.76	
e.	Benefit Cost Ratio	(BC Ratio)			1:1.8	

Table 26 (d). Cost of Cultivation of Sugarcane in Belanalu micro-watershed

Adequacy of fodder: The data regarding the adequacy of fodder in Belanalu Micro watershed is presented in Table 27. The results indicate that, 48.57 per cent of the households opined that dry fodder was adequate and 2.86 per cent of them opined dry fodder was inadequate. With respect to green fodder availability, 8.57 percent of them opined it was sufficient.

Sl.	Dontioulong	LL	(6)	M	F (13)	SI	F (11)	SM	IF (3)	MD	F (2)	Al	l (35)
No.	Particulars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Adequate-Dry Fodder	0	0	6	46.15	7	63.64	2	66.7	2	100	17	48.57
2	Inadequate-Dry Fodder	0	0	1	7.69	0	0	0	0	0	0	1	2.86
3	Adequate-Green Fodder	0	0	1	7.69	0	0	1	33.3	1	50	3	8.57

Table 27. Adequacy of fodder in Belanalu micro-watershed

Average annual gross income: The data regarding the annual gross income in Belanalu Micro watershed is presented in Table 28. The results indicate that, the farmers have annual gross income of Rs. 48471.43 in micro-watershed, of which Rs. 25157.14 is from agriculture itself.

Sl.No.	Particulars	LL (6)	MF (13)	SF (11)	SMF (3)	MDF (2)	All (35)
31.1NO.	Farticulars	Rs.	Rs.	Rs.	Rs.	Rs.	Rs.
1	Service/salary	1000	4615.38	0	26666.7	0	4171.43
2	Business	0	4615.38	0	0	0	1714.29
3	Wage	24500	10615.4	17181.8	27666.7	7500	16342.9
4	Agriculture	0	15692.3	21045.5	53333.3	142500	25157.1
5	Dairy Farm	0	0	0	0	4000	228.57
6	Goat Farming	0	0	2727.27	0	0	857.14
	Income(Rs.)	25500	35538.5	40954.6	107667	154000	48471.4

Table 28. Average annual gross income in Belanalu micro-watershed

Average annual Expenditure: The data regarding the average annual expenditure in Belanalu Micro watershed is presented in Table 29. The results indicate that, the farmers have annual gross expenditure of Rs. 131741.67 in micro-watershed, of which Rs. 6228.57 is from agriculture itself.

Table 29. Average annual Expenditure in Belanalu micro-watershed

Sl.No.	Particulars	LL (6)	MF (13)	SF (11)	SMF (3)	MDF (2)	All (35)
1	Service/salary	4000	45000	0	10000	0	1685.71
2	Business	0	10000	0	0	0	285.71
3	Wage	12200	1000	2800	1666.67	2000	2971.43
4	Agriculture	0	9200	7875	15666.7	5333.33	6228.57
5	Goat Farming	0	0	5000	0	0	142.86
	Total	16200	65200	15675	27333.3	7333.33	131742

Table 30. Horticulture s	species grown	in Belanalu mi	cro-watershed
	P		

Sl.No.	Particulars	LL	(6)	MF	(13)	SF (11)	SMF	(3)	MDI	F (2)	All	(35)
SI.INU.	rarticulars	F	В	F	В	F	B	F	B	F	B	F	В
1	Coconut	0	0	2	0	4	0	0	0	25	0	31	0

*F= Field B=Back Yard

Horticulture species grown: The data regarding horticulture species grown in Belanalu Micro watershed is presented in Table 30. The results indicate that, the total number of horticultural trees grown coconut (31).

Forest species grown: The data regarding forest species grown in Belanalu Micro watershed is presented in Table 31. The results indicate that, households have planted 53 neem trees, 1 acacia trees, 1 banyan trees and 1 peepul tree in the field.

Sl.No.	Particulars	LL	(6)	MF	(13)	SF (11)	SMF	'(3)	MDI	F (2)	All	(35)
51.190.	rarticulars	F	В	F	B	F	В	F	В	F	В	F	В
1	Neem	0	0	3	0	30	0	16	0	4	0	53	0
2	Acacia	0	0	1	0	0	0	0	0	0	0	1	0
3	Banyan	0	0	0	0	1	0	0	0	0	0	1	0
4	Peepul Tree	0	0	1	0	0	0	0	0	0	0	1	0

 Table 31. Forest species grown in Belanalu micro-watershed

***F= Field B=Back Yard**

Average additional investment capacity: The data regarding average additional investment capacity in Belanalu Micro watershed is presented in Table 32. The results indicate that, households have an average investment capacity of Rs. 4742.86 for land development, Rs. 2171.43 for creation of irrigation facility, Rs.2828.57 for Improved crop production, Rs.1057.14 adoption of improved livestock management and Rs. 57.14 for adoption of subsidiaries enterprises.

 Table 32. Average additional investment capacity of households in Belanalu microwatershed

Sl. No.	Particulars	LL (6)	MF (13)	SF (11)	SMF (3)	MDF (2)	All (35)
1	Land development	0	4538.46	4181.82	10333.3	15000	4742.86
2	Irrigation facility	0	1076.92	2545.45	8666.67	4000	2171.43
3	Improved crop production	0	3153.85	2272.73	5000	9000	2828.57
4	Improved livestock management	0	538.46	727.27	0	11000	1057.14
5	Subsidiary enterprises	0	153.85	0	0	0	57.14

Source of funds for additional investment: The data regarding source of funds for additional investment in Belanalu Micro watershed is presented in Table 33. The results indicate that, the sources of finance raised from bank as a loan and from own sources for land development was 62.86 and 2.86 per cent for subsidiary enterprises, for irrigation facility was 31.43 and 57.14 per cent for improved crop production.

Table 33. Source of funds for additional investment in Belanalu micro-watershed

SI. No	Item		Land elopment		rigation facility	CI	roved rop uction	live	stock	ontor	idiary prises
		Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Loan from bank	22	62.86	11	31.4	20	57.14	6	17.1	1	2.86

Marketing of agricultural produce: The data regarding marketing of the agricultural produce in Belanalu Micro watershed is presented in Table 34. The results indicated that,

75.00 percent of output of Bajra was sold in the market with average price of Rs. 2000.00; 83.33 percent of output of Horse gram was sold in the market with average price of Rs. 4000.00; 73.53 percent of output of Maize was sold in the market with average price of Rs. 1111.36 and 100.00 percent of output of Sugarcane was sold in the market with average price of Rs. 240.00.

140	le e li mui neem	g of agricultur	ai produce in .	Benanana	mero mate	Iblied
Sl.	Crops	Output	Output	Output	Output	Avg. Price
No	Crops	obtained (q)	retained (q)	sold (q)	sold (%)	obtained (Rs/q)
1	Bajra	8	2	6	75	2000
2	Horsegram	6	1	5	83.33	4000
3	Maize	801	212	589	73.53	1111.36
4	Sugarcane	200	0	200	100	240

Table 34. Marketing of agricultural produce in Belanalu micro-watershed

Marketing channels used for sale of agricultural produce: The data regarding marketing channels used for sale of agricultural produce in Belanalu Micro watershed is presented in Table 35. The results indicated that, 68.57 cent of the households have sold agricultural produce to the local/village merchants and 2.86 per cent of regulated market.

Table 35. Marketing channels used for sale of agricultural produce in Belanalu micro-watershed

Sl.	Particulars	LL	(6)	MF	' (13)	SI	F (11)	SM	IF (3)	MD	F (2)	All	(35)
No.	raruculars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Local/village Merchant	0	0	10	77	9	81.8	3	100	2	100	24	68.57
2	Regulated Market	0	0	0	0	0	0	0	0	1	50	1	2.86

Mode of transport of agricultural produce: The data regarding mode of transport of agricultural produce in Belanalu Micro watershed is presented in Table 36. The results indicated that, 68.57 cent of the households have used tractor and 2.86 cent of the households have used Truck .

SI No	Particulars	LL	(6)	MF	' (13)	SI	F (11)	SM	F (3)	MD	F (2)	Al	l (35)
31.1NO.	raruculars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Tractor	0	0	10	77	9	81.8	3	100	2	100	24	68.57
2	Truck	0	0	0	0	0	0	0	0	1	50	1	2.86

Table 36. Mode of transport of agricultural produce in Belanalu micro-watershed

Incidence of soil and water erosion problems: The data regarding incidence of incidence of soil and water erosion problems in Belanalu Micro watershed is presented in Table 37. The results indicate that, 62.86 per cent of the households have experienced soil and water erosion problems.

 Table 37. Incidence of soil and water erosion problems in Belanalu micro-watershed

SING	.Particulars	LL	, (6)	MF	(13)	SF	(11)	SM	IF (3)	MI	DF (2)	Al	l (35)
51. 140	.raruculars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Soil and water erosion problems in the farm	0	0	10	77	7	63.6	3	100	2	100	22	62.86

Interest towards soil testing: The data regarding Interest shown towards soil testing in Belanalu Micro watershed is presented in Table 38. The results indicated that, 68.57 per cent of the households were interested towards soil testing.

SI No	.No. Particulars	L	L (6)	M	F (13)	SF	(11)	SM	F (3)	MD	F (2)	All (35)	
51.1NO.	raruculars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Interest in soil test	0	0	10	77	9	81.8	3	100	2	100	24	68.57

Table 38. Interest regarding soil testing in Belanalu micro-watershed

Usage pattern of fuel for domestic use: The data on usage pattern of fuel for domestic use in Belanalu Micro watershed is presented in Table 39. The results indicated that, LPG was the major source of fuel for domestic use for 22.86 per cent of the households followed by firewood (91.43 %).

Table 39. Usage pattern of fuel for domestic use in Belanalu micro-watershed

Sl.No.	Particulars	LL (6)		MF (13)		SF	(11)	SN	IF (3)	MD	F (2)	All (35)	
		Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Fire Wood	5	83.3	10	76.9	12	109	3	100	2	100	32	91.43
2	LPG	2	33.3	5	38.5	1	9.09	0	0	0	0	8	22.86

Source of drinking water: The data on source of drinking water in Belanalu Micro watershed is presented in Table 40. The results indicated that, tank supply of water was the major source for drinking water for 17.14 per cent of the households followed by piped waters supply (65.71 %) and bore well water (17.14%).

 Table 40. Source of drinking water in Belanalu micro-watershed

SI No	Particulars	LI	. (6)	MF (13)		SF (11)		SN	IF (3)	M	DF (2)	All (35)	
51.190.		Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Piped supply	1	16.67	8	61.5	10	90.91	2	66.7	2	100	23	65.71
2	Bore Well	2	33.33	2	15.4	1	9.09	1	33.3	0	0	6	17.14
3	Lake/ Tank	3	50	3	23.1	0	0	0	0	0	0	6	17.14

Source of light: The data on source of light in Belanalu Micro watershed is presented in Table 41. The results indicated that, electricity was the major source of light for 100.00 per cent of the households.

Table 41. Source of light in Belanalu micro-watershed

Sl.No.	Particulars	LL (6)		MF (13)		SF (11)		SMF (3)		MDF (2)		All (35)	
		Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Electricity	6	100	13	100	11	100	3	100	2	100	35	100

Existence of sanitary toilet facility: The data on availability of toilet facility in Belanalu Micro watershed is presented in Table 42. The results indicated that, 100.00 per cent of the households possess toilets.

Table 42. Existence of sanitary toilet facility in Belanalu micro-watershed

Sl.No.	Particulars	LL (6)		MF (13)		SF (11)		SMF (3)		MDF (2)		All	(35)
	Particulars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Sanitary toilet facility	6	100	13	100	11	100	3	100	2	100	35	100

Possession of PDS card: The data regarding possession of PDS card in Belanalu Micro watershed is presented in Table 43. The results indicated that, 100 per cent of the households possessed BPL card.

Sl.No.	Particulars	LL (6)		MF (13)		SF (11)		SMF (3)		MI	DF (2)	All (35)		
		Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	
1	BPL	6	100	13	100	11	100	3	100	2	100	35	100	

Table 43. Possession of PDS card in Belanalu micro-watershed

Participation in NREGA programme: The data regarding Participation in NREGA programme in Belanalu Micro watershed is presented in Table 44. The results indicated that, only 48.57 per cent of them participate have participated in NREGA programme.

Table 44. Participation in NREGA programme in Belanalu micro-watershed

Sl.	Particulars	LL (6)		MF (13)		SF (11)		SMI	F (3)	MD	F (2)	All (35)	
No.	r ar ticular s	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Participation in NREGA programme	2	33.3	7	53.9	5	45.5	2	66.7	1	50	17	48.6

Adequacy of food items: The data regarding adequacy of food items in Belanalu Micro watershed is presented in Table 45. The results indicated that, the extent of adequacy of food items for cereals, pulses, Oilseeds and vegetables were 100.00, 100.00, 94.29, 51.43 per cent respectively, similarly for Fruits (11.43%), milk (85.71%), Egg (8.57%), and Meat (5.71%).

Table 45. Adequacy of food items in Belanalu micro-watershed

Sl.No.	Particulars	LI	LL (6)		MF (13)		F (11)	SMF (3)		MDF (2)		All (35)	
51. 1NO.	rarticulars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Cereals	6	100	13	100	11	100	3	100	2	100	35	100
2	Pulses	6	100	13	100	11	100	3	100	2	100	35	100
3	Oilseed	5	83.3	13	100	10	90.91	3	100	2	100	33	94.29
4	Vegetables	1	16.7	5	38.5	8	72.73	3	100	1	50	18	51.43
5	Fruits	1	16.7	1	7.69	2	18.18	0	0	0	0	4	11.43
6	Milk	4	66.7	12	92.3	9	81.82	3	100	2	100	30	85.71
7	Egg	0	0	1	7.69	2	18.18	0	0	0	0	3	8.57
8	Meat	1	16.7	1	7.69	0	0	0	0	0	0	2	5.71

Table 46. Inadequacy of food items in Belanalu micro-watershed

Sl.No.	Particulars	LL (6)		MF (13)		SF (11)		SMF (3)		MDF (2)		All (35)	
51. 110.	rarticulars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Oilseed	1	16.7	0	0	1	9.09	0	0	0	0	2	5.71
2	Vegetables	5	83.3	8	61.5	3	27.27	0	0	1	50	17	48.57
3	Fruits	5	83.3	12	92.3	9	81.82	3	100	2	100	31	88.57
4	Milk	2	33.3	1	7.69	2	18.18	0	0	0	0	5	14.29
5	Egg	6	100	12	92.3	9	81.82	3	100	2	100	32	91.43
6	Meat	5	83.3	12	92.3	10	90.91	3	100	2	100	32	91.43

Inadequacy of food items: The data regarding in adequacy of food items in Belanalu Micro watershed is presented in Table 46. The results indicated that, the extent of in adequacy of food items for Oilseeds and vegetables were 5.71, 48.57, 91.43 per cent

respectively, similarly for fruits (88.57%), milk (14.29%), egg (91.43%) and meat (91.43%).

Farming constraints: The data regarding farming constraints experienced by households in Belanalu Micro watershed is presented in Table 47. The results indicated that, lower fertility status of the soil was the constraint experienced by (74.29 %) per cent of the households, wild animal menace on farm field (65.71%), frequent incidence of pest and diseases (62.86%), inadequacy of irrigation water (2.86%), high cost of fertilizers and plant protection chemicals (65.71%), high rate of interest on credit (68.57%), low price for the agricultural commodities (60.00 %), lack of marketing facilities in the area (51.43%), lack of transport for safe transport of the agricultural produce to the market (54.29%) and less rainfall (5.71%).

SN	Particulars	M	MF (13)		SF (11)		4F (3)	/		Al	l (35)
DIN	rarticulars	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
1	Lower fertility status of the soil	10	76.92	11	100	3	100	2	100	26	74.29
2	Wild animal menace on farm field	10	76.92	8	72.73	3	100	2	100	23	65.71
3	Frequent incidence of pest and diseases	9	69.23	8	72.73	3	100	2	100	22	62.86
4	Inadequacy of irrigation water	0	0	0	0	1	33.33	0	0	1	2.86
5	High cost of Fertilizers and plant protection chemicals	10	76.92	8	72.73	3	100	2	100	23	65.71
6	High rate of interest on credit	11	84.62	8	72.73	3	100	2	100	24	68.57
7	Low price for the agricultural commodities	10	76.92	8	72.73	2	66.67	1	50	21	60
8	Lack of marketing facilities in the area	8	61.54	6	54.55	3	100	1	50	18	51.43
9	Lack of transport for safe transport of the Agril produce to the market.	7	53.85	7	63.64	3	100	2	100	19	54.29
10	Less rainfall	1	7.69	1	9.09	0	0	0	0	2	5.71

Table 47. Farming constraints experienced in Belanalu micro-watershed

SUMMARY AND IMPLICATIONS

In order to assess the socio-economic condition of the farmers in the watershed 35 households located in the micro watershed were interviewed for the survey. The study was conducted in Belanalu micro-watershed (Ginigera sub-watershed, Koppal taluk & District) is located at North latitude 15^{0} 20' 57.623" and 15^{0} 19' 20.322" and East longitude 76^{0} 12' 30.222 and 76^{0} 10' 31.004" covering an area of about 547.63 ha bounded by under Kidadhala, Koppala and Huvinala Villages.

Socio-economic analysis of Belanalu micro watersheds of Ginigera subwatershed, Koppal taluk & District indicated that, out of the total sample of 35 total respondents, 13 (37.14%) were marginal, 11(31.43%) were small, 3 (8.57%) were semi medium and 2 (5.71%) were medium farmers. 6 landless farmers were also interviewed for the survey.

The population characteristics of households indicated that, there were 97 (53.89%) men and 83 (46.11%) were women. The average population of landless was 4.66, marginal farmers were 4.92, small farmers were 5.72, semi medium was 5.66 and medium farmers were 4. Majority of the respondents (47.78%) were in the age group of 16-35 years. Education level of the sample households indicated that, there were 30.56 per cent illiterates, 66.12 percent pre university education and 4.44 per cent attained graduation.

About, 51.43 per cent of household heads practicing agriculture and 40.00 per cent of the household heads were engaged as agricultural laborers. Agriculture was the major occupation for 30.00 per cent of the household members. In the study area, 22.86 per cent of the households possess katcha house and 34.29 per cent possess pucca house.

The durable assets owned by the households showed that, 77.14 per cent possess TV, 62.86 per cent possess mixer grinder, 97.14 per cent possess mobile phones and 8.57 per cent possess motor cycles. Farm implements owned by the households indicated that, 5.71 per cent of the households possess Bullock Cart, 11.43 per cent possess plough, 8.57 per cent possess Sprayer and 11.43 per cent possess Weeder.

Regarding livestock possession by the households, 14.29 per cent of the households possess bullocks, 37.14 per cent possess local cow and 2.86 per cent possess sheep. The average labour availability in the study area showed that, own labour men available in the micro watershed was 1.26, women available in the micro watershed was 1.22, hired labour (men) available was 8.26 and hired labour (women) available was 8.

Further, 68.57 per cent of the household opined that hired labour was adequate. Out of the total land holding of the sample respondents 11.44 ha (38.24%) of dry land and 14.55 ha (48.64%) of irrigated land. There were 6.00 live bore wells and 3.00 dry bore wells among the sampled households. Bore well was the major source of irrigation for 17.14 per cent of the households. The major crops grown by sample farmers are Maize, Bajra, Horsegram, Sugarcane and cropping intensity was recorded as 88.96 per cent.

Out of the sample households 20.00 percent possessed bank account. About 20.00 per cent of the respondents borrowed credit from various sources⁻ The per hectare cost of cultivation for Maize, Bajra, Horsegram, Sugarcane and 0 was Rs.40150.98, 44680.94, 6213.94 and 33533.02, with benefit cost ratio of 1:1.80, 1: 0.90, 1: 1.20 and 1: 1.80, respectively.

Further, 48.57 per cent of the households opined that dry fodder was adequate and 8.57 per cent of the households have opined that the green fodder was adequate. The average annual gross income of the farmers was Rs. 48471.43 in micro-watershed, of which Rs. 25157.14 comes from agriculture. Sampled households have grown 31 horticulture trees and 56 forestry trees together in the fields and back yards.

Households have an average investment capacity of Rs. 4742.86 for land development and Rs. 2171.43 for irrigation facility. Source of funds for additional investment is concerned, 2.86 per cent depends on own funds and 62.86 per cent depends on bank loan for land development activities.

Regarding marketing channels, 68.57 per cent of the households have sold agricultural produce to the local/village merchants, while, 2.86 per cent have sold in regulated markets. Further, 68.57 per cent of the households have used tractor for the transport of agriculture commodity.

Majority of the farmers (62.86%) have experienced soil and water erosion problems in the watershed and 68.57 per cent of the households were interested towards soil testing. Fire wood was the major source of fuel for domestic use for 91.43 per cent of the households and 22.86 per cent households has LPG connection. Piped supply was the major source for drinking water for 65.71 per cent of the households. Electricity was the major source of light for 100.00 per cent of the households. In the study area, 100.00 per cent of the households possess toilet facility. Regarding possession of PDS card, 100.00 per cent of the households possessed BPL card.

Households opined that, the requirement of cereals (100.00%), pulses (100.00%) and oilseeds (94.29%) are adequate for consumption.

Farming constraints experienced by households in the micro watersheds were lower fertility status of the soil (74.29%) wild animal menace on farm field (65.71%), frequent incidence of pest and diseases (62.86%), inadequacy of irrigation water (2.86%), high cost of fertilizers and plant protection chemicals (65.71%), high rate of interest on credit (68.57%), low price for the agricultural commodities (60.00%), lack of marketing facilities in the area (51.43%), lack of transport for safe transport of the agricultural produce to the market (54.29%) and Less rainfall (5.71%).

Implications of the survey

- ✓ Result indicated that, there were 30.56 per cent were illiterate hence, extension methodologies such as demonstration, street play, drama, video shows will be effective in dissemination of the technologies in the micro watershed.
- ✓ The data indicate that, 22.86 per cent of the households possess katcha house. Hence, the development department while implementing the watershed plan should focus on agriculture to enhance the productivity of major crops in the area to increase the income of the farmers.
- ✓ Results indicated that the local institutional participation of the household members in the micro watershed is minimal hence, activities like membership campaign, awareness creation about the benefits of membership in local institutions and strengths of organized groups must be conveyed.
- ✓ Majority of the households in the watershed have experience in use of mobile phones, and television hence, these mass media can be effectively utilized for transfer of technology as well as for information dissemination.
- ✓ The farm machinery/implement possession in the micro watershed was found to be minimum the reasons may lack of knowledge or lack of financial ability which can be addressed through training on use of different farm implements, providing information on different sources of finance for purchase of farm implements.
- ✓ The possession of livestock such as crossbred cow found is less hence, farmers must be made aware of the benefits of crossbred cow in increased milk production.
- ✓ The possession of livestock such as sheep, goat and poultry was found to be low hence, farmers may be informed the role of subsidiary enterprises in enhancing the income and information on financial support for subsidiary activities.
- ✓ The data indicate that, job/work was the reason for all the migrants hence, farmers may be trained on profitable agriculture or self employment such has animal husbandry, plate making, sheep rearing, goat rearing, rabbit rearing with suitable information on sources of financial support.
- ✓ The results indicate that there was a change in quality of life due to migration hence, the developmental departments should take actions to arrest migration and to improve the quality of the life in rural areas.
- ✓ Households possess 11.44(38.24 %) of dry land and 14.55ha (48.64 %) of irrigated land hence, the availability of the dry land agricultural technologies such as short duration crops, high yielding drought resistance crop varieties, drip irrigation technology and subsidy information will be helpful for the farmers to enhance the productivity of land and as well as farmers income.
- ✓ Few of the bore well in micro watershed found non functional hence, farmers may be trained on possibility of bore well rejuvenation.
- ✓ Open well was major source of irrigation for 0.00 per cent of the households. Hence, in order to increase the area under irrigation as well as to increase the water use efficiency farmers may trained on drip irrigation and provide the information on

subsidy for drip irrigation equipment's along with the information on different agencies which provides the financial assistance for drip irrigation.

- ✓ The cropping intensity in the micro watershed was found to be (88.96 %) hence, care must be taken by the implementing agency to bring uncultivated land into cultivation through suitable measures.
- ✓ Many of the household members have borrowed loan from cooperative banks which has higher rate of interest hence, farmers may be sensitized on the different sources of credit with lesser interest rate such SHGs etc.
- ✓ The results indicated the non availability of both green and dry fodder throughout the year hence, fodder development activities can be taken up in the micro watershed.
- ✓ The average annual gross income of the households Rs.25157.14 from agriculture, Rs.1714.29 from business and Rs. 16342.86 from wages and. Agriculture was found to be the major source of income for households hence; the development activities should focus on productivity enhancement, marketing arrangements and agricultural technology dissemination to have a direct impact on the farmers.
- ✓ The cultivation of forest species is found minimal hence, information and production technology related to agro-forestry and integrated farming system.
- ✓ The data indicated that, 62.86 per cent of the households have experienced soil and water erosion problems. Hence, those farmers who reported the soil and water erosion problems may be given attention while implementation of the watershed development plan.
- ✓ The data indicated that, 68.57 per cent of the households have interest in soil testing hence, farmers must be provided with the information on various institutions which are involved in soil testing for the benefit of the farmers.
- ✓ Except summer ploughing the adoption of other soil and water conservation structures is minimum hence, the farmers in the micro watershed should be sensitized on the use of different conservation structures for soil water conservation.
- ✓ Cereals and pulses found be adequate for per cent of the households respectively hence, farm households and the farm women must be trained on importance of balanced nutrition and role of vegetable, milk, egg, meat in balanced diet.
- ✓ Lower fertility status of the soil (74.29%), wild animal menace on farm field (65.71%), frequent incidence of pest and diseases (62.86%), high cost of fertilizers and plant protection chemicals (65.71%), high rate of interest on credit (68.57%), low price for the agricultural commodities (60.00%), lack of marketing facilities in the area (51.43%), lack of transport for safe transport of the agricultural produce to the market (54.29%) were the major farming constraints experienced hence, these constraints must be addressed immediately for the welfare of the farmers. Awareness to be created among the farmers to approach nearest KVKs/RSKs and other developmental departments for technical and for subsidized inputs and utilize the well established regulated markets, approaching the contract firms, direct markets to avoid the involvement of middlemen.