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supplemented yoghurt is a unique attempt 
to utilize the salubrious seaweed along with 
goodness of yoghurt. Usage of fucoidan as health 

Table 1. Physico-chemical properties of 

seaweed-supplemented yoghurt

Parameter Value
Moisture 77.2%
Fat 3.2%
Protein 3.9%
Ash 0.2%
Carbohydrate 15.5%
Hunter color parameters

L* 67.2
a* 2.8
b* 13.6

pH 4.6
acidity 0.8%
DPPH Activity 80.2%
Metal chelating activity 67.2%
Reducing power 0.5

promoting ingredient is well justified considering 

its health beneficial aspects. The functional 

benefits of seaweed can be utilized in human 

diet using yoghurt as supplementation vehicle.
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Listeria monocytogenes is a ubiquitous pathogen 

with an ability to contaminate a variety of foods 

during pre- and/or post-processing (Olaimat 

et al., 2018). Due to its ability to resist wide 

environmental conditions such as pH (4.7 to 

9.2), high salinity (10% NaCl) and temperature 

(0.5 to 45°C), L. monocytogenes is recognized 

as significant food safety hazard, especially 

in ready-to-eat (RTE) foods. Owing to its high 

mortality rate (20 to 30%) and hospitalization 

rates of Listeria infection, the Food and Drug 

Administration of the United States implemented 

zero tolerance approach for L. monocytogenes 

in all the RTE foods (Hitchins, 1998). This 
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organism causes severe human illness such as 
human listeriosis, which results in meningitis, 
meningoencephalitis, septicemia, and other 
serious complications during pregnancy such 
as abortions and stillbirth (Scallan et al., 
2011). L. monocytogenes is usually susceptible 
to a broad spectrum of antibiotics that are 
generally employed effectively against gram 
positive bacteria but majority of strains show 
native resistance to fosfomycin, cefepime and 
cefotaxime (Hof et al., 1997). However, reports 
on increasing number of multidrug resistant L. 
monocytogenes strains is a major concern in 
humans and animal health care (Charpentier and 
Courvalin, 1999). The emergence of the antibiotic 
resistant strains of Listeria spp. might be due to 
the increased selective pressure of antibiotics or 
may be due to mutations or acquisition of mobile 
genetic elements like plasmids and conjugative 
transposons (Poyart et al. 1990; Charpentier 
and Courvalin, 1999) through conjugation 
methods (Perichon and Courvalin, 2009). The 
present study is aimed to detect the presence of 
molecular determinants of antibiotic resistance 
in L. monocytogenes isolated from fish and 
fishery environment which exhibited phenotypic 
antibiotic resistance.

Isolation of Listeria monocytogenes was carried 
out following USDA method as described by 
McClain and Lee (1998). Ten isolates of L. 
monocytogenes from fish and fishery environment 
showing phenotypic resistance to β-lactams, 
macrolides and tetracyclines were subjected to 
PCR amplification of antibiotic resistant genes 
viz., blaZ gene for penicillin (Olsen et al., 
2006), ampC for ampicillin (Dallenne et al ., 
(2010) ermA, ermB, and ermC for erythromycin 
(Sutcliffe et al., 1996) and tet genes tetA 
(Randall et al., 2004), tetB (Van et al. 2008), 
tetK (Strommenger et al., 2003), tetL (Escolar 
et al., 2017), tetM (Ng et al., 2001) and tetS 
(Charpentier et al., 1993) for tetracylines. The 

results of phenotypic and genotypic resistance 
of L. monocytogenes isolates are provided in 
Table 1. The results showed that 40% of L. 
monocytogenes strains revealed the presence 
of two molecular determinants of antibiotic 
resistance. A high prevalence of blaZ (90%) was 
found in L. monocytogenes (Fig.1) followed by 
tetS (40%). The detection of blaZ genes in 90% 
of L. monocytogenes isolates suggests that blaZ 
is the chief means of penicillin resistance. The 
resistance of L. monocytogenes to penicillin 
may be transcribed through the production of 
the enzyme β-lactamase, controlled by blaZ, 
blaI, and blaR cluster (Firth and Skurray, 2000). 
It is reported that L. monocytogenes may have 
attained blaZ gene through selection pressure of 
penicillin or acquired from other bacteria through 
horizontal gene transfer. Conjugative transfer 
of antibiotic resistance from the plasmids of 
enterococci and streptococci to the Listeria 
spp., and the successive movement of such 
mobile genetic element to L. monocytogenes was 
reported (Charpentier and Courvalin, 1999). All 
the L. monocytogenes isolates showed phenotypic 
resistance to ampicillin and tetracycline, but 
none of the ten isolates harbored either ampC or 
tet genes, except tetS. The present study found 
that incidence of various antimicrobial resistance 
determinants did not constantly associate with the 
phenotypical antibiotic resistance demonstrated 
by L. monocytogenes. This implies that alternate 
mechanisms such as reduced permeability of 
outer membrane proteins (Farmer et al., 1992), 
activation of antibiotic efflux pump (Charvalos et 
al., 1995), transformation in a gene associated 
with ribosomal protein (Yan and Taylor, 1991) 
or co-resistance and cross-resistance may be 
important drivers of antibiotic resistance. 
Further work to understand the true mechanisms 
that contribute to the antibiotic resistance 
in phenotypic resistant L. monocytogenes is 
necessary.
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Fig 1. PCR amplification of blaZ gene (377 bp) 
in L. monocytogenes isolates. Lane L: 100 bp 
ladder, Lane 1: negative control, lane: 2-10: 
L. monocytogenes isolates of retail fish market
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Table 1. Comparison of phenotypic and genotypic resistance in L. monocytogenes isolates

Antibiotic Interpretive criteria
Phenotypic 
resistant 
isolates*

ARG Amplicon 
size (bp)

ARG positive 
isolates*

Sensitive Resistant

Penicillin (10 IU)a ≥13 <13 10 blaZ 377 9

Ampicillin (10 µg)a ≥16 <16 10 ampC 630 0

Erythromycin (15µg)a ≥25 <25 10 ermA 645 0

ermB 639 0

ermC 642 0

Tetracycline (30 µg)b >14 ≤14 10 tetB 773 0

tetK 360 0

tetL 739 0

tetM 406 0

tetS 573 4

*number of isolates; a: EUCAST breakpoints; b:WHONET 5.6
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