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These methods require some set of assumptions need
to be hold on data in order to fit the model. But that
may not always be the case; in such scenario
performance of parametric methods is not quite
encouraging. Non- parametric methods may perform
better in this case as they do not assume any specific
distribution of response and predictors.

As genetic architecture of plant is very complex
in nature, so performance of GS methods become
very poor in such cases, as they could not be able to
model marker variance. As technology advances, it
become cheap to generate genomic data on large
scale resulting in availability of huge marker data.
Further, due to huge number of epistatic interaction it
becomes challenging to practice parametric methods
(Moore and Williams 2009). In epistatic interaction, a
number of loci are involved and also the possibility of
interaction cannot be ignored. Epistatic interaction may
play a crucial role for explaining genetic variation for
quantitative traits, as ignoring these kind of interaction
in the model may end up with lower genomic prediction
accuracy (Cooper et al. 2002). Gianola et al. (2006)
first used non-parametric and semi-parametric methods
for modeling complex genetic architecture, as they
also include such type of higher order interaction in
these models. Subsequently, several statistical
methods were implemented to model both main and
epistasis  effects for genomic selection (Cai et al.
2011, Xu 2007). Recently, some semi-parametric
(Legarra et al. 2018 ) and other robust approaches
(Tanaka 2018; Guha et al. 2019; Budhlakoti et al.
2020a; Budhlakoti et al. 2020b; Sehgal et al. 2020)
have  also  been  proposed and implemented in
genomic selection.

Abstract

Genomic Selection (GS) is the most prevalent method in
today’s scenario to access the genetic merit of individual
under study. It selects the candidates for next breeding
cycle on the basis of its genetic merit. GS has successfully
been used in various plant and animal studies in last decade.
Several parametric statistical models have been proposed
and being used successfully in various GS studies.
However, performance of parametric methods becomes very
poor when we have non additive kind of genetic architecture.
In such cases, generally performance of non-parametric
methods are quite satisfactory as these methods do not
require strict statistical assumptions. This article presents
comparative performance of few most commonly used non-
parametric methods for complex genetic architecture i.e.
non-additive, using simulated dataset generated at different
level of heritability and varying combination of population
size. Among several non-parametric methods, SVM
outperformed across a range of genetic architecture.

Key words: Genomic selection, epistasis,
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Introduction

Genomic Selection (GS) is most popular method in
plant science where dense genomic markers
information is used to access merit of an individual. It
is also a most popular technique for improving genetic
gain of individuals now a days. The technique was
first introduced and implemented by Meuwissen et al.
(2001). They estimated individual effect of each marker
by using appropriate statistical model, further sum of
these markers effect is used for calculation of genetic
merit of an individual.  GS has successfully been used
in various plant and animal studies during last decade.
Several parametric statistical models have been
proposed and are being used in various GS studies.
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In this article, existing non-parametric models
are reviewed, evaluated and their performance on
simulated dataset has been studied. We have
simulated genomic markers data and phenotype data
for epistatic genetic architecture at different level of
heritability (i.e. small, medium and high) with different
combination of population size. Performance evaluation
of different non-parametric methods i.e., RKHS, SVM,
ANN and RF) has been done and appropriate model
for different genetic architecture has been advocated.

Materials and methods

Several non-parametric methods have been studied
in relation to genomic selection e.g., Reproducing
Kernel Hilbert Space (RKHS), Support Vector Machine
(SVM), Neural Network (NN) and Random Forest (RF).
Each of these has been discussed one by one.  In
these non-parametric methods, SVM, NN and Random
Forest are based on supervised machine learning
based approach i.e. model is trained when labelled
dataset is available (where input and output both are
available). Here training dataset may consist of huge
number of predictors (e.g., SNPs, Xi, where x refers
to a vector containing genotypes of all SNPs for ith

plants or animal) to predict the value of target
phenotype (yi, that may be grain yield, thousand grain
weight).

Reproducing Kernel Hilbert Space (RKHS)

This is based on what we called semi-parametric
approach. It combines the merits of both non-
parametric model with a mixed model frame work by
Gianola et al. (2006). RKHS model can be expressed
as

 i i i i iY w z u g X e     

where i = 1, 2, ..., n  and   is a vector of fixed unknown
effects (e.g. may be physical location of an individual
or herd effect), u is a q x 1 vector which represent
additive genetic effects, wi and zi are known vectors
to be estimated, g(Xi) function of the SNP data which
is unknown and residuals e assumed to be normally
N(0, I2) distributed.

Support Vector Machine (SVM)

The SVM is a machine learning based method,
proposed by Vapnik et al. (1995). It is based on principle
of maximum separating hyperplane. It constructs a
hyperplane with the objective of separating data into
different class. In case a problem is based on

regression instead of classification i.e., when output
data is continuous then the Support Vector Regression
can be used. Support Vector Regression is an
important application of SVM technique. In order to
understand this, consider a mapping function f(X): Rp

 R, given the set of training data

(X1, Y1), (X2, Y2), ..., (Xn, Yn), Xi  Rp, Yi  R

Let us assume a simple linear function of following
form:

f(X) = w X + b

where, w is vector of weight to be estimated (i.e.,
regression coefficients) and b denotes bias. f(X) is
minimized by the following problem formulation:
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where, ei = Yi – f(Xi) is error of ith data point from
training set or also known as loss function L(.) which
measures quality of estimation and C represents
regularization parameter which handles trade-off
maximizing margin and minimizing of error term. For
time being there are several choice of loss functions
are available for SVM regression, among them most
frequently used one are absolute loss, squared loss
and -insensitive loss

Absolute loss: L(Y – f(X) = |Y – f(X)|

Squared loss: L(Y – f(X) = |Y – f(X)|2

-insensitive loss: 0 if | ( )|
( ) otherwise( ( )) Y f X

Y f XL Y f X  
 

Where  determines number of support vector in
regression function. Here our focus is on -insensitive
loss which minimizes
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Where 1i  and 2i are slack variables subject to
condition 1i > Yi – f(Xi) and 2i > f(Xi) – Yi – .  Solution
to this minimization has following form (Nocedal and
Wright 1999)
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This solution solely depends on training data in
form of inner product (Xi, X). So to takes advantage of
higher dimensional space and one can use kernel trick
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to replace inner product:

k(Xi, Xj) = (((Xi), ((Xi))

Kernel trick is usually a method of solving non-
linear problem via linear classifier. It transforms linearly
inseparable data to a linearly separable ones. The
kernel function maps the original non-linear
observations into a higher-dimensional space where
these observations are linearly separable. There are
several choice of kernel function are available e.g.
linear kernel, Radial Basis Function kernel, Gaussian
kernel etc. Choice of particular kernel function is data
dependent and appropriate choice of underlying
parameter requires extensive tuning.

Polynomial Kernel k(Xi, Xj) = (Xi, Xj + 1)d

RBF Kernel k(Xi, Xj) = exp(–||(Xi – Xj||)

Gaussian RBF Kernel k(Xi, Xj) = exp(–||(Xi – Xj||
2)

Sigmoid Kernel k(Xi, Xj) = tanh(aXi Xj + c)

Neural network (NN)

A neural network is a circuit of neurons just like our
brain. In every neural network it has an input and output
inputs are connected to output through a connections
and every connections have its own weight. During
training phase neural network adjust the weights and
learn from its previous error so that it can correctly
classify or predict the desired output. Structure of
neurons, basically consist of a) neurons b) node and
c) bias.

The basic layout of the NN is a two-stage network
with three types of layers: an input layer; a hidden
layer; and an output layer. This model is called the
feed-forward NN. In the hidden layer (not directly
observed), one data-derived predictor (or basis
function) is inferred at each of M neurons. These data
derived predictors are formed by first inferring a score
(Umi) which is a linear combination of the input variables
(marker genotypes, in our case), and then transforming
this score using a non-linear activation function (.),

that is   0
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  is a vector of regression coefficients

(i.e. weights). Likewise, in output layer phenotypes
are regressed on the calculated parameters,
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where (.) is usually a linear activation function and ei

is a model residual. Given the net input to a unit, the
output of that unit is computed as:
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where  is a parameter controlling the shape of the
activation function. This function try to move from 0
to 1 when the input x is greater than a certain value.

Random forest (RF)

Random forest is a group of binary tress constructed
using  recursive partitioning  (RPART). The basic unit
of random forest is known as a binary tree. A RF tree
is built using CART (classification and regression tree)
procedure. CART is recursive method which partition
the tree into homogeneous or if not possible to a near-
homogeneous terminal nodes. RF is often a collection
of few thousands tree, where every single tree is
developed using a bootstrap sample from original data.
RF trees usually differ from CART as they are grown
non deterministically using a two-stage randomization
procedure. In order to find the best split for the node,
RF selects at each and every node of each tree, a
random subset of variables and only those variables
are used further as a selection candidates. The purpose
of this two-step randomization is to decorrelate trees
so that the forest ensemble will have low variance,
i.e., bagging phenomenon

Random forest algorithm usually encompasses
the following phases:

1. Create  bootstrap samples (i.e. ntree ) from the
original data.

2. Develop a tree from each bootstrap data set. At
each node of the tree, randomly select  variables
(i.e., mtry generally mtry=p/3) for splitting.
Develop the tree in such a manner that each
terminal node has no fewer than nodesize  cases.

3. Combine information from the  trees (i.e., ntree)
for prediction of test data set.

4. Estimate out-of-bag (OOB) error rate by using
the test set i.e., data not used as a bootstrap
sample.
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Simulation study

For the purpose of illustration, simulated data were
generated using QTL Bayesian interval mapping
“qtlbim” (Yandell et al. 2012), a R based (R
Development Core Team 2019) package. This package
uses the Cockerham’s model as the fundamental
genetic model and has been trailed in many studies in
the context to genomic selection (Yi et al. 2007; Yi
and Shriner 2008; Piao et al. 2009; Yandell et al. 2012,
Howard et al. 2014).

In present study, a total of twelve data sets have
been simulated for genotypic and phenotype
information. The data sets were simulated at four
different heritability (0.1, 0.3, 0.5 and 0.7) and three
different levels of population size (n=200, 300 and 500).
Thus a range of diversified genetic architecture i.e.
with very low heritability 0.10, 0.3 to medium 0.5 and
high heritability 0.7 was created. For each stage the
data has been simulated for 1000 SNPs for different
combinations of population size (i.e. n=200, 300 and
500). Simulated data have 10 chromosomes with 100
SNPs in each with specified length. A total of 1000
markers are distributed over all the 10 chromosomes
in such a way that each marker is equi-spaced over
the chromosome. For epistatic architecture also the
data has been simulated for epistatic effects of size 5
i.e., 5 two-way epistatic interactions among 10 pairs
of loci with either positive or negative effects. In order
to compare the performance of methods under study,
cross validation techniques were used. Data is divided
into two parts i.e., training and validation sets such
that training set comprises of 70% data and validation
set of 30%. Former one is used for model building and
later one for model evaluation. The performance of
methods was evaluated by calculating prediction
accuracy and prediction error. Whole procedures is
repeated 100 times and prediction accuracy and
prediction error is calculated. In order to fit statistical
model used in the study, R package STGS (Budhlakoti
et al. 2019) is used for this purpose.

Evaluation measure

As an evaluation measure, prediction accuracy and
prediction error were used. Prediction accuracy can
be defined as pearson correlation coefficient between
observed phenotypic value and predicted phenotypic
value. Same can be expressed as

ˆ,

ˆ
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where ˆ,Y YS  denotes the covariance between observed

and predicted phenotypic value, YS  is standard

deviation of observed phenotype and ŶS  denotes

standard deviation of predicted phenotype. Prediction
Error (PE) can be simply defined as mean sum of
square error (MSE) between observed phenotypic
value and predicted phenotypic value. Same can be
expressed using following formula
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Where iY  is observed response; îY  is predicted

phenotype value of ith individual and n denotes total
no. of individuals’ in the test set.

Results and discussion

The performance of different non-parametric methods
under study i.e., RKHS, SVM, ANN and RF at diverse
level of heritability and population size has been
discussed here. Prediction accuracy and MSE were
used as an evaluation measure for different models.
Results of the same have been presented in Tables 1
and 2.

Table 1. Mean of genomic prediction accuracy for
different non-parametric methods under study
using simulated dataset for different
combination of population size (n) and various
levels of heritability (h2)

h2/methods Population RKHS ANN SVM RF
size

0.1 n=200 0.54 0.57 0.59 0.46

n=300 0.55 0.56 0.57 0.48

n=500 0.57 0.62 0.62 0.54

0.3 n=200 0.53 0.72 0.75 0.63

n=300 0.55 0.73 0.77 0.67

n=500 0.58 0.75 0.79 0.68

0.5 n=200 0.55 0.82 0.85 0.70

n=300 0.45 0.82 0.85 0.71

n=500 0.53 0.86 0.89 0.74

0.7 n=200 0.62 0.84 0.88 0.72

n=300 0.60 0.88 0.89 0.73

n=500 0.59 0.90 0.91 0.77
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Table 1 shows the
prediction accuracy of
different non-parametric
methods under study. This
table presents the average of
prediction accuracy generated
over 100 replications.
Likewise, Table 2 shows the
MSE of different non-
parametric methods under
study. These results are
generated using simulated
dataset at different levels of
heritability (i.e., 0.1, 0.3, 0.5
and 0.7) for varying population
size (i.e. 200, 300 and 500).
Graphical representations of
same is given in Fig. 1.
Detailed discussion of results
obtained at different heritability
are discussed below.

At heritability 0.1

Table 1 clearly demonstrates
the accuracy of ANN and SVM
which is at par followed by
RKHS, whereas performance
for RF methods seems to be
lowest among all methods. On
the basis of MSE, a similar
performance has been
observed i.e., ANN and SVM
at par followed by RKHS,
whereas RF has highest MSE
indicating poorest performance
(Table 2).

At heritability 0.3

For this heritability, SVM is
performing quite well as
compared to other methods
followed by ANN, RF and
RKHS (Table 1). MSE also
depicts the same picture, For
SVM, MSE is lowest among
all followed by ANN, RKHS
and RF (Table 2).

At heritability 0.5

Here, the performance of SVM
and ANN is at par followed by
RF and RKHS with respect toF
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prediction accuracy (Table 1). Likewise, same pattern
can be observed for MSE, SVM and ANN which has
lowest MSE among all followed by RF and RKHS
(Table 2).

At heritability 0.7

At this heritability level, SVM showed quite a good
genomic prediction accuracy followed by ANN, RF and
RKHS (Table 1). Also, at this heritability level, around
0.90 prediction accuracy was observed for SVM and
ANN. Prediction error is also lowest for SVM followed
by ANN, RF and RKHS (Table 2).

In general, it was also observed that with
increase in population size, as a general trend,
prediction accuracy is slightly increased and MSE
decreased. This may be due to the reason that
increased data size results in proper model fitting and
training.

It can be concluded from the above results that
performance of SVM is consistent throughout different
levels of heritability with respect to prediction accuracy
and MSE (Tables 1 and 2). However, ANN is also
performing quite well, almost at par with SVM with
increased population size. Performance of random
forest is a bit poor at low heritability (h2 0.1) however,
it improves gradually with increase in heritability. Here,

performance of RKHS is not found to be encouraging
in comparison to their counterparts throughout the
study.

Impact of genetic architecture on genomic
prediction accuracy has been explored. In this study,
comparative evaluation of most commonly used non-
parametric methods for genomic selection has been
done. We have presented the results of the same using
most commonly used evaluation measures like
prediction accuracy and MSE. Overall performance
of SVM has been remarkable across the range of
genetic architecture.
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