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I  Introduction

In multicellular organisms, specific cells com-
mit suicide to achieve and maintain homeostasis 
by specifically ordered metabolic changes dur-
ing normal development, environmental stress, 
or pathogen attack. This functionally conserved 
and gene-directed cell death process is known as 
programmed cell death (PCD). The phenomenon 
depends on active participation of the dying cells, 
and could be regulated by genetically controlled, 
well-orchestrated cell suicide machinery. The 
common process in such instances comprise one 
or more phenotypes such as cytoplasmic shrink-
age, membrane blebbing, loss of cell-to-cell 
contact, DNA fragmentation and disassembly of 
the nuclei (Lam et al. 2001; Lam 2004). Today, 
ample evidence can be presented to support that 
cell death during plant development and environ-
mental challenges involves PCD (Fig. 1).

PCD occurs in numerous vegetative as well 
as reproductive phases of plant development, 
including senescence of leaves (Gan and Amasino 
1997), development of tracheary elements (Zhang 
et al. 2002), timely death of petals after fertiliza-
tion (Havel and Durzan 1996), post-embryonic 
decay of aleurone layers (Wang et  al. 1996b), 
root cap development (Moller and McPherson 
1998), somatic as well as zygotic embryogenesis 
(Giuliani et al. 2002) and sex determination (De 
Long et al. 1993). A number of abiotic stresses 
such as salinity, extreme temperatures, excess 
light and UV radiation lead to production of ROS 
(Dhariwal et al. 1998). Reactive oxygen species 
(ROS) generated by biotic and abiotic stimuli act 
as molecules that function at the early stage of 
signal transduction, stress adaptation and PCD. 
Signaling responses of ROS include activation 
of MAPK related to hypersensitive response 
– HR (Hancock et  al. 2002). Exogenously sup-
plied ROS, such as H2O2, also induces cell death 
in soybean (Levine et al. 1994), tobacco (Houot 
et al. 2001), and Arabidopsis (Tiwari et al. 2002), 
which includes cell shrinkage, DNA fragmenta-
tion and chromatin condensation.

The cell death process can be divided into three 
phases: an induction phase, the nature of which 
depends on the specific death-inducing signals; an 
effector phase, during which the cells commit to 
die; and a degradation phase, where the biochemi-
cal and morphological features of cell collapse 
can be observed (Martins and Earnshaw 1997). 

Abbreviations: CaM – calmodulin; CERK – ceramide kinase; 
ER – endoplasmic reticulum; HR – hypersensitive response; 
LRR – leucine-rich repeat; MAPKs – mitogen activated pro-
tein kinases; MTP – mitochondrial-permeability transition 
pore; NBS – nucleotide binding site; PCD – programmed 
cell death; PK – protein kinase; PS – phosphatidyl serine; 
ROS – reactive oxygen species; SERCA – sarco endoplas-
mic reticulum Ca2+ ATPase; TM – transmembrane-domain; 
TMV – tobacco mosaic virus; TNF – tumour necrosis factor; 
VPE – vacuolar processing enzyme

Summary 

Throughout the life cycle of plants, programmed cell death (PCD) is involved in a wide range of deve
lopmental processes and responses against abiotic or biotic stresses. PCD is an active form of cellular 
suicide controlled by a network of genes. Such phenomenon is associated with recovery of cellular 
compounds and sustaining plant life. Basic morphological and biochemical features of PCD are believed 
to be conserved in both plants and animals. Nevertheless, recent studies demonstrate an involvement of 
organelles such as vacuole and chloroplast in plant cell death regulation, indicating that plants evolved 
own cell death machinery. Reactive oxygen species (ROS) generated by biotic and abiotic stresses act as 
a signal that induces plant PCD. This article describes some of the fundamental characteristics of plant 
PCD and raises points that may lead to a better understanding and novel strategies for plant molecular 
breeding.

Keywords:  Aerenchyma • apoptosis • mitochondria • oxidative stress • programmed cell death • reactive 
oxygen species
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In plants, some PCD resembles either a common 
form seen in animals called apoptosis or it resem-
bles a morphologically distinct form of cell death 
(Pennel and Lamb 1997). However, distinctive 
characteristics of plant cells including the exist-
ence of a cell wall imply that there are dissimi-
larities in the execution of PCD. The cell wall 
precludes phagocytosis, establishing a different 
mechanism for corpse management. Similarly, 
the vacuole can be transformed into a hydrolytic 
compartment with hydrolases and toxin profiles 
(Paris et al. 1996) that degrade the components of 
dying cell after collapse of the vacuole.

II � Anatomy of Cell Death

Plant cells are characterized by the presence of cell 
wall. The cell wall may or may not be degraded 
along with the protoplast, depending on the type 
of PCD (Jones 2001). During tracheary element 
differentiation, the primary wall and a rigid sec-
ondary wall are required for cell function and are 
not hydrolyzed, except for portion of the primary 
wall between the adjacent tracheary elements 
that is degraded to from perforations (Nakashima 
et al. 2000). In most other forms of developmental 
PCD, collapsed primary cell walls are left behind, 
whereas nutrients from dismantled protoplast are 
recycled (He and Kermode 2003). When the HR 
is induced by pathogen invasion, the protoplast 
dies, leaving collapsed or crushed primary cell 

wall behind (Mittler and Lam 1997). Lysogenic 
aerenchyma formation involves death and often 
complete lysis of cells, with the disappearance 
of all cell components, including the cytoplasm 
and cell walls (Kozela and Regan 2003). Because 
plants do not have macrophages, dying cells must 
degrade their materials by themselves. In the case 
of rice seminal roots, the gas-space caused by 
lysogenous cell death expands radially, leaving 
behind structures derived from cell wall (Fig. 2). 
The first cell to collapse is located at a specific 
cell position in mid cortex (Kawai et  al. 1998), 
and such lysigenous aerenchyma formation is 
regulated by ethylene (He et al. 1996). Further-
more, stresses such as NaCl treatment affect the 
cortical cell death and cell proliferation in roots 
of rice (Samarajeewa et al. 1999).

One of the common features of animal cells 
undergoing apoptosis is development of membrane 
asymmetry. Exposure of phosphatidyl serine (PS) 
on the outer and inner surface of plasma mem-
brane triggers such phenomenon. Externalized PS 
appears to serve as an important signal for recogni-
tion and elimination of apoptotic cells by macro-
phages (Ceccatelli et al. 2004). Similar membrane 
asymmetry has also been observed in plants during 
PCD. In tobacco, changes in PS asymmetry, ana-
lyzed by measuring Annexin V bound to the cell 
membrane, were detected by a number of chemi-
cal agents (O’Brien et al. 1998). Similar findings 
were also reported in apple suspension cells under 
a low oxygen culture (Xu et al. 2004). However, 

Fig. 1. PCD occurs in plant life cycle. PCD is involved in many phases through vegetative and reproductive development and 
response to environmental stresses.
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the physiological role of PS exposure in plants is 
still unknown.

III � Biochemistry of Cell Death

Much of the evidence for the concept of apop-
tosis in plants is derived from the observation 
of DNA fragmentation in cells entering the cell 
death phase. In animals, the cleavage of DNA has 
been found to occur at the inter-nucleosomal sites 
resulting in DNA fragments of 180 bp (Walker 
and Sikorska 1994). This form of DNA frag-
mentation can be detected by molecular detec-
tion of DNA ladders (multimers of 180 bp) on 
agarose gels. DNA laddering has been observed 
in plant tissues responding to fungal infection or 
phytotoxin exposure (Ryerson and Heath 1996; 
Wang et al. 1996a), in senescing carpels (Orza´ez 
and Granell 1997), in hormone treated aleurone 

cells (Wang et al. 1996b), and in cells or tissues 
responding to abiotic stress treatments (Wang 
et al. 1996a). Using TUNEL assay, which detects 
PCD in situ, fragmented DNAs are detected in 
senescent leaves (Yen and Yang 1998), in trache-
ary element differentiation (Mittler and Lam 1995) 
and in senescent coleoptile (Kawai and Uchimiya 
2000). Nuclear shrinkage is also presented as 
other apoptotic features in plant (Katsuhara and 
Kawasaki 1996; Orza´ez and Granell 1997).

Endonucleases responsible for plant cell death 
have been characterized. Ito and Fukuda (2000) 
identified ZEN1 as a key nuclease responsible for 
nuclear degradation during the terminal stages of 
tracheary element differentiation. ZEN1 is a Zn2+-
requiring nuclease and its activity is insulated in 
the vacuole.

In animal apoptosis, caspases, cytosolic family 
of cysteine proteases that specifically cleave 
adjacent to an aspartate residue, have pivotal 

[AU1]

[AU2]

Fig. 2. Aerenchyma formation in rice roots follows a well designated cell fate. Lysigenous gas-space formation initiates at 
specific position of the mid cortex and expand toward basal portion of rice seminal root. In the neighborhood of the meristematic 
region, cell enlargement occurs. Cells in the mid cortex expand greatly, followed by acidification. Some cells in the mid cortex 
lose turgor pressure due to tonoplast disruption, followed by the loss of plasma-membrane integrity. Cells appear somewhat 
concave, lose contact with neighboring cells and collapse. Once cell collapse begins, neighboring cells die. The cavity then 
expands radially. Bar = 0.1 mm.
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roles in execution of cell death (Thornberry et al. 
1997). They are synthesized as inactive proen-
zymes and are activated by directed proteolytic 
removal of N-terminal peptide (Grutter 2000). In 
general, apoptotic cell death involves a sequence 
of caspase activation events in which initiator cas-
pases such as Casp 8 and 9 activate downstream 
caspases (Casp 3, 6, 7) which in turn process a 
variety of target proteins eventually leading to 
the apoptotic phenotype (Woltering et al. 2002). 
Although the existence of caspase orthologs in 
plants is controversial, cysteine protease or cas-
pase activity has been reported in plant systems 
undergoing PCD (Collazo et al. 2006). Uren et al. 
(2000) distinguished two families of caspase-like 
proteins, one from animals and slime mold and 
the other from plants, fungi, and protozoa. These 
are designated as paracaspases and metacaspases, 
respectively. The mcII-Pa protein, one of the met-
acaspase in Picea abies expressing in embryonic 
tissues is committed to PCD in embryogenesis 
(Suarez et al. 2004). Plant cell death can be sup-
pressed using synthetic or natural caspase inhibi-
tors. For example, VEIDase activity (equivalent 
to human caspase 6) was known as the main 
caspase-like activity in embryogenesis in Picea 
abies (Bozhkov et al. 2004). Expression of antia-
poptotic baculovirus p35 gene, a caspase inhibi-
tor in mammalian system, blocks PCD in tomato 
(Lincoln et al. 2002). Furthermore, caspase activ-
ities are detected in tobacco after invasion by 
pathogens (del Pozo and Lam 1998), in tomato 
after chemical-induced apoptosis (De Jong et al. 
2000) and in Arabidopsis after treatment with 
nitric oxide (Clarke et al. 2000).

Recently, vacuolar processing enzyme (VPE) was 
identified as a plant caspase. VPE-deficient plants 
showed inhibited cell death in HR and in embryo-
genesis (Hara-Nishimura et al. 2005). Although VPE 
is not homologically related to the caspase family 
or metacaspase family, it shares similar enzymatic 
properties with caspase 1. Unlike animal apoptosis, 
plants might have evolved a cell death system that 
is, in some case, mediated by VPE.

IV � Role of Vacuole

Cells destined to die are disposed off by the 
hydrolytic enzymes sequestered in the vacuoles 
(Jones 2001). The hydrolases sequestered in the 

vacuole are released when the vacuole collapses. 
This collapse is an irreversible step towards death 
which results in the immediate cessation of cyto-
plasmic streaming and requires a calcium flux 
(Jones 2000, 2001).

This execution process is based on the integra-
tion of various signals such as auxins, cytokinins, 
ethylene and elicitors (Jones 2001). In tracheary 
elements differentiation, auxin and cytokinins 
induce the de novo synthesis of vacuole seques-
tered nucleases and proteases, leading to com-
plete degradation of cellular content leaving 
behind the extracellular matrix and the second-
ary cell wall built before death (Gunawardena 
et al. 2004). During the formation of lysigenous 
aerenchyma, induced by ethylene, the dead cells 
are removed and the cell wall hydrolases, such 
as cellulase are induced to fulfill the need to 
remove not only the protoplasm but the extracel-
lular matrix as well, resulting in gas space forma-
tion (Schussler and Longstreth 2000). Vacuolar 
hydrolytic enzymes are released into the cytosol 
to attack various organelles, leading to cell death 
(Fukuda 2004). The caspase 1-like cysteine pro-
tease, VPE, in plant is also localized in the vacu-
ole (Hara-Nishimura et al. 2005). VPE deficiency 
suppresses vacuolar collapse leading to cell death, 
suggesting that VPE functions as a key molecule 
in vacuolar collapse-triggered cell death.

V � Role of Mitochondrion

Mitochondria are major sites of energy conversion 
and carbon metabolism in the cell. Mitochondria 
play a central role in integrating signals, regulator 
and adaptor molecules for regulation and execu-
tion of mammalian cell death. Mitochondria can 
trigger apoptosis from diverse stimuli through the 
opening of mitochondrial permeability transition 
pore (MTP), which allows release of the apop-
tosis-inducing factor and translocation of cyto-
chrome c into the cytosol (Green and Reed 1998). 
In Arabidopsis cells, oxidative stress increases 
mitochondrial electron transport, resulting in 
amplification of H2O2 production, depletion of 
ATP and cell death. The increased generation 
of H2O2 also caused the opening of MTP and 
the release of cytochrome c from mitochondria 
(Tiwari et al. 2002). The release of cytochrome c 
and cell death was prevented by a serine/cysteine 
protease inhibitor. ROS-treated plant mitochondria 
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showed morphological change from bacillus-like 
shape to a round shape (Fig. 3). Furthermore, the 
mitochondrial size decreased by half under ROS 
stress (Yoshinaga et al. 2005a, b). Mitochondrial 
fission proteins (Dnm1, Mdv1, Fis1) regulate 
cell death in animal and yeast cells by leading 
the mitochondrial fragmentation (Fannjiang et al. 
2004; Karbowski et al. 2004). Such morphologi-
cal changes suppress energy production of mito-
chondria and execute plant cell death.

In comparison to animal cells, plant mito-
chondrion has some unique components that 
alter mitochondrial functions towards PCD. One 
of these components is mitochondrial alterna-
tive oxidase (AOX) that functions as a part of 
an alternative electron pathway. This enzyme 
has been identified in Arabidopsis as an early 
induced gene in HR (Lancomme and Roby 
1999). An over-expression of AOX in transgenic 
tobacco plants carrying the R gene resulted in 
reduced HR lesions following viral infection 
(Ordog et al. 2002). Furthermore, the treatment 
of tobacco cells with inhibitors of the cytochrome 
c pathway (Cys and antimycin A) was accompa-
nied by a strong induction of the AOX capacity 
and the prevention of cell death (Vanlerberghe 
et al. 2002).

The host-selective toxin victorin, produced 
by Cochliobolus victoriae causes Victoria blight 
of oat. Victorin binds to P protein of the gly-
cine decarboxylase (GD) complex localized in 

the mitochondrial matrix (Wolpert et  al. 1994), 
inhibits GD activity, and induces apoptosis-like 
responses such as chromatin condensation and 
DNA laddering (Navarre and Wolpert 1995: Yao 
et al. 2001; Guo and Crawford 2005).

Furthermore, Kim et  al. (2006) showed that 
virus-induced gene silencing (VIGS) of mito-
chondrial hexokinase caused necrotic lesion of 
leaves in Nicotiana benthamiana. These cells also 
showed nuclear condensation and DNA fragmen-
tation, which are morphological markers of PCD. 
These findings suggest a pivotal role of mito-
chondria in the regulation of plant cell death.

VI � Role of Chloroplast

Light requirement for PCD has often been associ-
ated with the production of ROS during photo-
synthesis (Martienssen 1997). Seo et  al. (2000) 
demonstrated that the DS9 gene encoding FtsH 
protein in chloroplast is involved in the cell death 
regulation in tobacco mosaic virus (TMV)-medi-
ated HR. Transgenic tobacco over-expressing DS9 
stimulated HR cell death. In contrast, DS9 defi-
cient plant displays less necrotic lesions. Ara-
bidopsis mutant psi2 (phytochrome signaling) 
showed light dependent super-induction of the 
pathogen-related protein PR-1a and developed 
spontaneous necrotic lesions in the absence of 
pathogen infection (Genoud et al. 1998). The PSI2 

Fig. 3. Morphological changes in mitochondria during ROS-induced plant cell death. Mitochondria were observed by electron 
microscope at 0 (control, left) or 3 days (right) after cell death induction (Partially modified from Yoshinaga et al. 2005a).
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product negatively regulates photo-transduction 
pathways downstream of both phyA and phyB.

The lesion initiation 1 (len1) mutant of Ara-
bidopsis, having the defective chloroplast chap-
eronin (Cpn60), developed lesions on its leaves 
in a light dependent manner. The len1 leaves 
had a wrinkled irregular surface and displayed 
lesion formation when they were grown under 
short-day conditions. Under long-day conditions, 
the lesion formation was suppressed (Ishikawa 
et al. 2003). In addition, lls1 (lethal leaf spot 1) 
mutant in maize is also characterized by the light-
dependent formation of necrotic spots (Gray et al. 
2002). The Lls1 gene encodes a protein possess-
ing Rieske-type Fe-sulfur center domain. In acd2 
Arabidopsis mutant, the photo-activation of the red 
chlorophyll catabolite triggers free radical produc-
tion and subsequent cell death (Mach et al. 2001). 
These results clearly support the notion that light 
energy is used directly or indirectly to produce cell 
death mediators such as ROS or phototoxic chlo-
rophyll intermediates, triggering the death.

VII � Signals in Cell Death

Signals that initiate the process of cell death are 
passed on inside the cell through a number of cas-
cades (Fig. 4). These signals, especially ROS signal 

is believed to be mediated through alterations in 
Ca2+-fluxes, redox changes, ATP depletion, mem-
brane vulnerability, ion leakage and disruptions 
to cellular function. For example, the altered 
NAD(P)H pool may confer the prevention of 
ROS-induced cell death (Hayashi et al. 2005).

The death receptors belong to the tumour 
necrosis factor (TNF) receptor super family or to 
the Fas receptors in animals and proteins encoded 
by R genes in plants (Kam 2000). The R genes 
are activated through specific interactions with 
avirulence proteins generated only by certain 
types of pathogens. The R genes encode several 
classes of proteins possessing domains of nucle-
otide binding sites (NBS), leucine-rich repeats 
(LRR), transmembrane domains (TM), and ser-
ine threonine protein kinases (PK). The majori-
tyof these proteins have the NBS-LRR structure 
and are believed to be functionally confined to 
disease resistance. This class of R proteins may 
be further subdivided depending on the presence 
or absence of an N-terminal Toll/Il-1 receptor 
(TIR) domain. The NBS domain shows homol-
ogy to regions found in the pro-apoptotic regu-
lator Apaf-1 (Van der Biezen and Jones 1998). 
Apaf-1 and these proteins also share a similar 
structural organization. Thus, the common nucle-
otide binding (NBS) domain shared by these pro-
teins links an effector domain (CARD in Apaf-1 

[AU3]

Fig. 4. Biological processes leading to oxidative stress-induced cell death. Abiotic and biotic stresses lead to ROS accumulation, 
which triggers orchestrated events in plant cells.
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and TIR in these proteins) to a C-terminal domain 
likely to be involved in protein-protein interac-
tions [WD domains in Apaf-1 and LRR domain 
in R proteins] and both are involved in cell death 
(Inohara et al. 1999).

As in the case of animals, following the receipt 
of a stimulus plant death receptors are activated, 
which in turn affect a number of signal pathways 
by protein phosphorylation, lipid-mediated sign-
aling and a modification in ion fluxes. Mitogen-
activated protein kinase (MAPK) cascades have 
become one of the most widely studied pathways 
of phosphorylation signaling related to PCD. Two 
Arabidopsis MAPKKs, AtMEK4 and AtMEK5, 
are functionally interchangeable with tobacco 
NtMEK2 in activating the downstream MAPKs. 
In the case of transient transformation experi-
ments, performed in tobacco, the active forms 
of AtMEK4 and AtMEK5 activate endogenous 
tobacco SIPK and WIPK. These two MAPKKs, 
as well as tobacco NtMEK2 also activate two 
endogenous MAPKs, followed by the HR-like 
cell death (Ren et  al. 2002). Oxidative stress-
activated MAP triple kinase 1 (OMTK1) can 
specifically activate the downstream MAP kinase 
MMK3, which can also be activated by ethylene 
and elicitors, thus serving as a convergence point 
of the cell death network (Nakagami et al. 2004).

The activity of protein kinases is simultane-
ously regulated by cofactors and second mes-
sengers such as calcium. A MAPK phosphatase 
gene (NtMKP1), ortholog of Arabidopsis MKP1, 
was isolated as a candidate gene for a calmod-
ulin (CaM)-binding protein from tobacco. In 
transgenic tobacco over-expressing NtMKP1, 
the wound-induced activation of SIPK, salicylic 
acid-induced MAPK and WIPK were inhib-
ited. These results suggest that plant CaMs are 
involved in these stress-activated MAPK cas-
cades via NtMKP1 (Yamakawa et al. 2004).

Sphingolipids are essential components of 
eukaryotic membranes that not only serve as 
modulators of extracellular interactions and cell 
surface receptors but also have critical func-
tions as intracellular signaling messengers. The 
sphingolipid pathway generates three signal-
ing metabolites known to function in intracel-
lular signaling i.e., ceramide, sphingosine and 
sphingosine-1-phosphate, These metabolites play 
important roles in cell growth and differentia-
tion (Hannun and Obeid 2002; Liang et al. 2003). 

Ceramide signaling pathway serves as a critical 
second-messenger system and has been studied 
in detail to understand apoptosis during degen-
erative and proliferative disease expressions in 
animal systems. The balance between the bio-
active sphingolipid ceramide and its phospho-
rylated derivatives modulate PCD in animals 
as well as plants (Hannun and Obeid 2002). As 
second messengers, sphingolipids and sphin-
goid bases regulate cell behavior at many levels, 
including cell-to-cell communication, growth 
factor receptors, growth, differentiation and 
transformation (Ng and Hetherington 2001). The 
interplay between sphingolipid metabolite sphin-
gosine-1-phosphate and heterotrimeric G-proteins 
represents an evolutionary conserved signal trans-
duction mechanism in plants (Coursol et al. 2003). 
Arabidopsis ceramide kinase (CERK) mutant, 
called acd5, accumulated CERK substrates, and 
showed apoptosis-like phenotype (Liang et  al. 
2003). Acid tolerance response 1 (Atr1) mutants, 
tolerant to AAL toxin, are also resistant to H2O2-
induced death, suggesting the involvement of 
ROS in sphingolipid metabolism for regulation 
of cell death (Gechev and Hille 2005).

VIII � Cell Death Regulator

Bax, known as a mammalian proapoptotic pro-
tein, causes cell death when expressed in plants 
and yeast (Madeo et al. 1999; Baek et al. 2004; 
Yoshinaga et al. 2005a, b). Using such heterolo-
gous system, candidates of plant cell death regu-
lators were isolated (Kawai-Yamada et al. 2005a, 
b). Bax inhibitor-1 (BI-1) is one such death sup-
pressor that is conserved in metazoans and plants 
(Xu and Reed 1998; Lam et al. 2001; Chae et al. 
2003; Hückelhoven 2004). Plant BI-1 genes iso-
lated from rice (Kawai et  al 1999), Arabidop-
sis (Kawai et  al. 1999; Sanchez et  al. 2000; Yu 
et al. 2002), tobacco (Bolduc and Brisson 2003), 
Brassica (Bolduc and Brisson 2003) and barley 
(Hückelhoven et al. 2001) have been intensively 
studied in yeast, plant and mammalian system. 
The BI-1 protein has six or seven transmembrane 
domains and is localized in the endoplasmic reticu-
lum (ER) membrane (Xu and Reed 1998; Kawai-
Yamada et al. 2001; Bolduc et al. 2003). Plant cells 
over-expressing AtBI-1 demonstrated cell death 
suppression in response to Bax-, salicylic acid-, 
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elicitor-, and H2O2-induced cell death (Kawai-
Yamada et  al. 2001; Matsumura et  al. 2003; 
Kawai-Yamada et  al. 2004). AtBI-1 may act 
down-stream of ROS generation (Kawai-Yamada 
et  al. 2004). The C-terminal mutant of AtBI-1, 
lacking a coiled-coil structure, fails to inhibit cell 
death (Fig. 5). Recently, calmodulin was isolated 
as an interactant of C-terminal region of AtBI-1 
(Ihara-Ohori et al. 2007). Calmodulin binding to 
AtBI-1 modulates calcium flux in plant cells. The 
AtBI-1 over-expressing or knock-down plants 
demonstrated an altered sensitivity against CPA 
(inhibitor of SERCA type Ca2+-ATPases) and ion 
stresses, suggesting that AtBI-1 plays a role in 
ion homeostasis in case of plant cell death regu-
lation (Fig. 6).

IX � Concluding Remarks

Cell death in multicellular organisms is aimed at 
the removal of unuseful cells and is essential to 
the development and maintenance of organism. 
Despite the recent progress in our understanding 
of plant cellular events, numerous uncertainties 
remain. ROS accumulation in response to various 
biotic and abiotic stresses has been implicated in 
programmed cell death. The ROS cause oxidative 
damage to membrane lipids, proteins and nucleic 
acids in cells and these intracellular changes are 
believed to trigger-off a variety of responses in plant 
cells. The ROS signal is believed to be mediated 
through alterations in Ca2+-fluxes, redox changes, 
ATP depletion, membrane vulnerability, ion leak-
age and disruptions to cellular functioning.

Further work in this field, such as the analysis 
of Ca2+ and redox signaling, are likely to elucidate 
the associated molecular mechanisms responsible 
for regulating plant cell death and survival under 
various stresses. Such studies may provide new 
strategies to develop crop resistant to biotic and 
abiotic stresses (Dhariwal et al., 1998; Dhariwal 
and Uchimiya, 1999).
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