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submergence tolerance in rice
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INTRODUCTION
Rice is a semi aquatic plant adapted to survive
submergence for limited period of time. Apart from
anatomical adaptations such as formation of
aerenchyma (Kawai and Uchimiya, 2000), rice plant
undergoes complex metabolic changes like avoidance
of self-poisoning and maintenance of adequate energy
supply under submergence stress (Dhariwal et al.
1998). Oxygen deprivation results in cessation of TCA
cycle and shift in the production of ATP from the
mitochondrial electron transport linked oxidative
phosphorylation to the substrate level phosphorylation
of anaerobic glycolysis (Das and Uchimiya, 2002).
Alcoholic fermentation is recognized as the principal
catalytic pathway for recycling NAD to maintain
glycolysis and substrate level phosphorylation in the
absence of O

2
 (Ricard et al., 1994). Alcohol

dehydrogenase (ADH) is the main enzyme of alcoholic
fermentation which catalyzes reduction of acetaldehyde
to ethanol (Vartapetian and Jackson, 1997).
Accumulation of acetaldehyde, on the other hand, is
detrimental to plant cells (Crawford and Braendle 1996).
ADH activity and the level of acetaldehyde in plants
under submergence are, thus, thought to be indicators
of plant survival under submergence. The present study
was undertaken to find if the ADH activity can be
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correlated with degree of submergence tolerance in
seedlings of some rice cultivars differing in degree of
tolerance to submergence stress.

Seeds of four rice cultivars showing tolerant
(FR13A), moderately tolerant (Gangasiuli) and
susceptible (Mahsuri and Sarala) reaction to
submergence were surface sterilized (10 min in 4%
sodium hypochlorite solution) and were allowed to
germinate in Petri plates lined with double layer of filter
paper disks at 30+1oC in dark. Petri plates with one-
week old seedlings were completely submerged in
plastic trays (6 inch deep) containing water for 120 h.
ADH activity was determined after every 24 h using
only the leaf samples (Rumpho and Kennedy, 1981).
The rate of the reaction was determined from the linear
portion of the reaction curve. One Unit of enzyme
activity was defined as the amount that brought about
a change of 1.0 absorbance unit per min.  Aldehyde
estimation was carried out by the method of Sarkar
(2001) with a calibration curve prepared by using
formaldehyde (0.25μl ml-1) as a standard. The results
were expressed as μl aldehyde released per g dry weight
of tissue. ADH isozymes were separated (Grover and
Pental, 1992) by loading samples containing60μg protein
on 7.5% polyacrylamide gels using a vertical
electrophoresis unit at a constant current of 20 mA.
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Gels were stained for ADH activity following the
method of Vallejos (1983). Soluble protein content was
estimated by the method of Bradford (1976).

The basal level ADH activity was found to be
higher in tolerant cultivars (0.70-1.125 units mg-1 protein)
than the susceptible ones (0.42 to 0.52 units mg-1

protein). Submergence caused enhancement of activity
by 5.24 to 29.86 fold in the seedlings of all four cultivars
compared to the pre-submergence level (Fig. 1), with
the peak values recorded at 48h of submergence. The
susceptible cultivars, Mahsuri and Sarala showed higher
induction (8.81 to 29.96 fold) than the tolerant cultivars
which showed only 5.24 to 7.26 fold enhancement in
activity. The specific activity of ADH in one of the
susceptible cultivars, Mahsuri was 15.53 as compared

Fig 1. Alcohol dehydrogenase activity (unit mg-1 protein) in the seedlings of different rice cultivars under control (solid
line) and submerged (dashed line) conditions. Data presented are mean + SE, n=6.
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to 5.90 and 5.01 units mg-1 protein observed in the
tolerant cultivars FR13A and Gangasiuli, respectively.
Decline in ADH activity was noted in all cultivars
subsequent to 48h of submergence: the susceptible
cultivars began to show symptoms of rotting particularly
after 96 h.

These observations were supported by the
intensity of the ADH activity bands, which was highly
induced under submergence, especially in the
susceptible cultivar Mahsuri. Only one ADH activity
band was seen in control as well as submerged plants
(Fig. 2). Submerged rice seedlings have been reported
to have a very active alcoholic fermentation and
enhanced ADH activity (Ellis and Setter 1999).
Although the tolerant cultivars had higher pre-
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submergence ADH activity, maximum rise in activity
was observed in the susceptible cultivar Mahsuri.
Findings of previous studies examining associations
between ADH activity and flood tolerance have been
contradictory with some studies reporting negative
correlations, as in maize (Marshall et al., 1973 ) and
others  reporting a positive relationship as in sunflower
(Torres,1981). Flood intolerant species typically found

Fig. 2. Aldehyde released (µl g-1 dry wt.) by the seedlings
of different rice cultivars under control (solid line)
and submerged (dashed line) conditions.  Data
presented are mean + SE, n=6.

Pattern of accumulation of aldehyde appeared
to match closely with that of the ADH activity (Fig 1
and 2). The observed variation in the amounts of
aldehyde released, like ADH activities, could be
attributed to the cultivar differences. It seems possible
that very high ADH activity of Mahsuri on the 2nd day
i.e. 48h of submergence resulted in conversion of most
of the acetaldehyde to ethanol. Higher accumulation
of aldehyde in other three cultivars after 72h could also
be the result of declining ADH activity after 72h (Fig 1
and 2). Moreover, aldehyde, being toxic might have
made IR42 more vulnerable submergence stress.

Enzyme activity staining for ADH isozymes
showed that its activity increased under anaerobiosis
(Fig 3) reflecting activation of alcohol dehydrogenase
genes. Activation of certain genes by environmental
stimuli has previously been reported (Muench et al.
1993). Grover and Pental (1992) reported five isozymes
of ADH in the germinating seeds of Oryza sativa. The

Fig. 3 Native-PAGE of alcohol dehydrogenase after 48h
of submergence in one-week-old rice seedlings.
(Where 1= FR13A,  2 = Gangasiuli,  3 = Mahsuri
and   4 = Sarala). 60µg protein per lane was loaded.

in aquatic and terrestrial habitats tend to exhibit
increased ADH activity in response to hypoxic soils,
while flood-tolerant species typically have reduced ADH
activity (McManmon and Crawford 1971).

Increased aldehyde activity under submergence
in three of the cultivars with maximum accumulation at
72 h. The notable exception was Mahsuri, which
showed a sudden increase upto 24h and then declined
gradually (Fig. 2). Acetaldehyde has been detected in
a number of plants including rice (Boamfa et al. 2003)
and found to be produced in higher amounts under
anaerobic conditions (Kim et al. 2007). Amount of
acetaldehyde is an indication of the rate of alcoholic
fermentation and also an index of survival under
submergence stress (Sarkar, 2001).
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pattern was same in both aerobically and anaerobically
germinating seeds. As in present study, they too did not
find any novel ADH isozyme under anaerobic conditions
which they thought might be a common feature of the
species belonging to the genus Oryza. Therefore, it
appears that ADH activity alone may not determine
the overall tolerance of all rice cultivars to submergence;
other factors such as reserve carbohydrate status and
the mode of their utilization (Das et al., 2000) may also
play a role in survival of rice plants under submergence.
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