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Abstract: When survey data shows spatial non-stationarity then geographically weighted regression (GWR) approach
explains the data more effectively than standard global regression   model. In this article, two outlier robust geographically
weighted regression (RGWR) estimators have been proposed to estimate the finite population total under spatial non-
stationarity. The first RGWR estimator is based on winsorization whereas second one is based on filtering of outliers.  In order
to compare the statistical performance of proposed estimators with standard non-robust GWR estimator and a robust
estimator proposed by Chamber (1986), a simulation study was carried out. It has been observed that proposed estimator
based on winsorization of sampled data performs fairly well in a scenario where spatial non-stationarity appears in population
and the survey data contains outliers.
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1.   Introduction
Sample surveys are most important mode of data

collection to obtain statistical information for planning,
development and growth. Sample surveys are often
conducted with the aim of estimating finite population
total. There are two basic approaches of sample survey,
viz., design-based approach [Cochran (1977)] and
model-based approach [Brewer (1963), Royall (1970)].
The population values are assumed to be fixed in design
based approach whereas the values of the population
are assumed to be generated by a stochastic model
called super-population model in model-based approach
[Valliant (2009)]. In simple regression analysis, many
assumptions should have to be followed, one of which
is that the relationship between dependent variable and
independent variable is constant in whole study area
(i.e. regression coefficient should be constant at each
and every data location). This assumption is referred
to as spatial stationarity condition. But in many surveys
*Author for correspondence Received February 07, 2020 Revised June 16, 2020 Accepted July 04, 2020

(for example, agriculture, forestry, environmental,
ecological surveys), observations are often spatially
correlated, thus, relationship between dependent
variable and independent variable will vary across all
locations in the study area. This condition is referred to
as spatial non-stationarity condition [Brunsdon et al.
(1996)]. When classical regression model is applied to
the case of spatial non-stationarity, then a global
regression coefficient explains the relationship between
dependent variable and independent variable at each
location in the same way but true relationship is varying
from location to location thus it will lead to increase in
bias and mean square error of the estimator of finite
population total. Geographically weighted regression
(GWR) is a fairly recent contribution to modelling
spatially heterogeneous processes [Brunsdon et al.
(1996)]. Under spatial non-stationarity, GWR model in
survey estimation is expected to provide a better
estimation of population parameters. GWR is a statistical
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technique of local regression analysis. It is used when
relationship between dependent variable and
independent variable varies according to location of
units in space. Several authors have discussed the robust
method of geographically weighted regression (RGWR)
using different approaches like fitting iterative GWR
models [Harris et al. (2010)], least absolute deviation
[Zhang and Mei (2011), Afifah et al. (2017)] robust
locally weighted least squares kernel regression method
[Ma et al.  ( 2014)] and robust GWR models [Warsito
et al. (2018)]. Leong and Yue (2017) proposed a
modification to the GWR namely conditional
geographically weighted regression (CGWR) to deal
with the varying bandwidth problem. Liu et al. (2018)
proposed GWR-assisted (geographically weighted
regression model-assisted) estimators to estimate the
finite population totals using survey data with the aid of
spatial and other auxiliary information.

An outlier is a data point that differs significantly
from other observations. Chamber (1986) described two
types of outliers in sample surveys, first type of outliers
is known as representative outliers whereas other one
is non-representative outliers. Let

, 1, 2, ..., iy i N denotes the value of study variable
associated with ith unit of population F of size N.  Let,

 ,... T, ,..., , 1 2 i NX x x x x is a set N p  of auxiliary
variable where 1 2( )T

i i ipx ,x ,...,xix for all i, i F are p
auxiliary variables associated with the study variable.
It is also assumed that values of auxiliary variables
associated with each unit are known. Now, the
population total i

i F
T y



  . In sample survey, we draw
a sample of size ‘n’ for estimation of finite population
total. Now, the population total can be expressed as
sum of observed value of sampled observations (Ts)
and non-sampled observations (T r), i.e.  Let

S rT T T  where ‘s’ denotes sampled observations and
‘r’ denotes non-sampled observations. Under the model-
based approach of sample survey, let us consider a
linear regression model as

, 1,2,...,i iy e i N  T
ix β                            (1)

where, β is unknown regression coefficient and ei is
random error component associated with ith unit,
follows normal distribution with mean zero and variance

2 . Royall (1970) proposed a best linear unbiased
estimator of finite population total, i.e. ˆ

s LS
r

T T X    where
LS is least square estimator of regression coefficient.

Since, we know that least square estimate of regression
coefficient is very sensitive to sample outliers.  Hence,

Chamber (1986) developed an outlier-robustification of
the prediction approach using M-estimation [Huber
(1981)]. He assumed the following super population
model 0 for Y. Under 0 : the random variable,

1( )i i i ir y x     ~ i.i.d.(0,1) where 2 2 ( )i iv x  .
Robust estimator of finite population total is of the form,

1ˆ ˆˆ (( ) )T T
Chamber i i i i i i

i s i r i s
T y z y  

  

     h hx β x β (2)

2 2

i
i i r

i
i

i i
i s

x
xz

x







 
 
 





where, hβ̂  is a huber type M-estimator. But if
population shows non-stationarity in relationship
between dependent variable and independent variable
then above described models cannot explain the spatial
non-stationarity.

To deal with above mentioned situation, Brunsdon
et al. (1996) proposed a model that is known as
geographical weighted regression (GWR) model. GWR
is a statistical technique of local regression analysis. It
is used when relationship between dependent variable
and independent variable varies according to location

of units in space. Let  i iu ,v denotes the geographical
location of ith unit in the space. Consider a global
regression model,

0
1

, 1, 2,...,
p

i k ik i
k

y x e i N 


               (3)

where, yi denotes the value of the response variable of
the ith observation whereas 0 and k are the intercept
and slope parameter estimate for variable k
respectively. ikx denotes the value of  kth auxiliary
variable of the ith observation whereas ie is the error
term and  ~ N 0,1ie . Now, GWR equation may be
denoted as

0
1

( , ) ( , ) , 1,2,...,
p

i i i k i i i i
k

y u v u v x e i N 


    (4)

Estimator of regression coefficients under GWR
model is similar to that of weighted least squares (WLS)
of global regression model except that weight of a
particular observation is constant over the all regression
point in WLS method of estimation whereas in case
GWR parameter estimation, weight of a particular
observation is varying location to location over the all
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regression point. Suppose that the weight of ith
observation with respect to location ,( )j ju v is

,( )i j jw u v .The estimate of regression coefficients at
location ,( )j ju v is

1ˆ ( , ) ( ( , ) ) ( , )j j j j j ju v u v u vgwr T T
s s s sβ X W X X W y      (5)

where,  ,j ju vW is an n n matrix whose off-diagonal
element are zero and whose diagonal elements denote
the geographical weight of each of the n observed data
for the regression point. Barman (2017) proposed
estimators for finite population total which incorporate
spatial information that has smaller bias and better
efficiency as compared to existing estimators. A simplest
form of the estimator of finite population total under
spatial non-stationarity is

ˆˆ ( , )GWR i j j
i s j r

T y u v
 

   T gwr
jx β                        (6)

ˆ ( , )j ju vgwrβ is a geographically weighted least
square estimator of regression coefficients at location
( , )j ju v . It is well known that least square estimator of
regression coefficients is sensitive to sample outliers. A
first step in making this estimator less sensitive to outlier
might be to replace ˆ ( , )j ju vgwrβ by an outlier robust
alternative under spatial non-stationarity condition.
2. Proposed Outlier Robust Geographically

Weighted Regression Estimators
Geographically weighted regression coefficients are

more sensitive to outliers than standard regression
coefficients because the estimator of regression
coefficients at a particular point is based on less number
of observations than global regression model. A single
outlier point may distort local parameter estimates more
potentially than that in case of basic regression model
[Brunsdon et al. (1996)]. One observation that behaves
like outlier locally may not behave like outlier in global
regression. Since, GWR generates different model for
different observations, then it may happen that one
observation that behave like outlier at a location may
not behave like outlier at other locations. The following

super population model gwr have been assumed for

study variable y. Under GWR model gwr

1
0

1
[ ( , ) ( , ) ] ~ i.i.d.(0,1)

p

i i i i k i i i i
k

e y u v u v x   



  

where, 2 2 ( )i if x  .i.e., f is a function of xi . Under
error variance heteroscedasticity, ei have been estimated

using the residual at points i, then an ordinary GWR
model is fitted. It is assumed that the basic GWR fit
has a negligible bias. Since, 2 ( , )i iu v is a continuous
function over space. Hence, 2 ( , )i iu v estimated by
applying a mean smoother over the 2'sie . Let the
estimated value of  2 ( , )i iu v is 2ˆ ( , )i iu v . Hence,
considering error variance heteroscedasticity, weight
associated with ith  observation is

. 2
1( , ) ( , ) x 

ˆ ( , )i i i g i i i
i i

w u v w u v
u v



whereas .w ( , )g i i iu v is a geographical weighting
function. The geographical weighting function is also
called kernel.  For defining geographical weighting
function, let . ( , )eu i i jd u v is Euclidian distance between
regression point (uj,vj) and ith sampled data point and
hgwr is bandwidth of geographically weighted regression
analysis. Five different shapes of geographical
weighting functions (kernel) have been considered for
this study.

Thus, the following two outlier robust
geographically weighted regression (RGWR)
estimators of finite population total have been proposed
in this study

Proposed Estimator 1
We defined an outlier robust estimator of GWR

coefficients that is based on winsorization of data.
Winsorization is a process by which we replace lower
and upper extreme observations by their nearest
neighbours. We used winsorized data for estimation
of GWR coefficients. Winsorization of d-dimensional
data , 1 2( , , ,..., )T

dz y x x x has been carried out using
an initial bivariate correlation matrix T [Khan et al.
(2007)]. Now, winsorized data

 min ,1( )
u

M
 

  
 

h zz                               (7)

where, M(z) represents the Mahalanobis distance of
z based on initial bivariate correlation matrix T, i.e.,

 M  T 1z z T z
A justifiable value of the tuning constant, u, is

2
1(0.95)d  . The initial correlation matrix, T, has been

calculated using pair-wise approach where we
estimated each entry of the correlation matrix
separately [Alqallaf et al. (2002)]. We used bivariate
winsorization to compute the entries of T and this



538 Pramod Kumar Moury et al.

Kernel shape Geographical weighting function
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( , )
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( , )
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d u v h
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. ( , )
eu i j j
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d u v
h

g i j jw u v e
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 
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2

. ( , )
0.5

. ( , )
eu i j j

gwr

d u v
h

g i j jw u v e
   
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33
.

.
.

( , )1 if ( , )( , )

0, otherwise

eu i j j
eu i j j gwr

gwrg i j j

d u v d u v hhw u v

            


winsorized data has been used for estimation of GWR
coefficients. Now, geographically weighted regression
coefficient is given by

      1

. . . .
ˆ , , ,rgwr

w j j w j j w w j j wu v u v u v


 T T
s s s sβ X W X X W y

Now, proposed estimator of finite population total
using winsorization approach is

 _
ˆ ,T rgwr

RGWR W i j w j j
i s j r

T y u v
 

  x β

                 1ˆ ,T rgwr
i i i w i i i

i s
z y u v  



    x β    (8)
where,

1

2 .0

2 2.1

1
ˆ1 ˆ, ,
ˆ

1

j
j rwT rgwr i

j w i
iw

i i
i sN n

x
x

x xz
x

x


 





 
   
    
        

  




x β



and 2/2( )( ) l t mt te   with l = 0.5 and m = 6 [Chamber
(1986)].

Proposed Estimator 2
The outlier robust estimator of GWR coefficients

have been obtained after filtering the outlier observation
from the sampled dataset [Fotheringham et al. (2002)].
The process of filtering of outlier is carried out at each
regression point independent to other location. At next

regression point, we again filter the outlier freshly.  In
this approach, first we estimated the residuals by fitting
an ordinary GWR model at sampled data points then
identified the sampled data with very high residuals and
excluded them from the geographically weighted
regression analysis. Let ˆ gwr

i i ir y y  be the residual
of the estimate at sampled data point i. If ri has a very
high value, then, corresponding yi is considered as an
outlier. ˆ s sy Hy where H is the hat matrix defined as

    

    

    

1

. 1 1 . . 1 1

1

. 2 2 . . 2 2

1

. . .

, ,

, ,

, ,n n n n

u v u v

u v u v

u v u v







 
 
 
 
 
 
 
 

T T T
1 s s s

T T T
2 s s s

T T T
n s s s

x X W X X W

x X W X X WH

x X W X X W



Then, r = y Hy = (I   H)y and

         varVar      T T 2r I H I H y I H I H σ

Let, C = (I H)(I H)T and cii is the ith diagonal
element of  C. If the ith observation is behaving like
outlier and we have included it in the estimation of
̂ then it may produce a bias. Thus, the value of  has
been estimated by excluding the ith observation and
denoted by i  . Externally standardized residual is



given by 
*

ˆ
i

i
i ii

r
r

c 


 . Under this approach, following

Chatfield (1995), the observations for which * 3ir  are

filtered from the sampled dataset. Let, filtered dataset
is represented by marking “.f” sign as subscript with
already defined variables. Thus, outlier robust GWR
(RGWR) estimator of finite population total is given by

 _ .
ˆ ,T rgwr

RGWR F i j R f j j
i s j r

T y u v
 

  x β

               .
ˆ( ( , ))T rgwr

i i R f i i
i s

N n y u v
n 

   
 

 x β     (9)

RGWR coefficients at sampled points are given by

            1

. . . .
ˆ , , ,rgwr

R f i i f i i f i i fu v u v u v


 T T
s s s sβ X W X X W y

 .
ˆ ,rgwr

R f i iu vβ is a vector of two coefficients, i.e.

  . .0
.

. .1

ˆ ( , )ˆ , ˆ ( , )
R f i irgwr

R f i i
R f i i

u v
u v

u v





 
  
  

β

RGWR coefficients at non - sampled points are given
by

 
. .1

1
. .1

1

ˆ( , ) ( , )
ˆ ,

( , )

n

i j j R f i i
i

R f j j n

i j j
i

w u v u v
u v

w u v


 








 
. .0

1
. .0

1

ˆ( , ) ( , )
ˆ ,

( , )

n

i j j R f i i
i

R f j j n

i j j
i

w u v u v
u v

w u v


 








          1,2,3,..., ; 1,2,3,...,i n j N n  

where, wi(uj,vj) is the weight associated with ith
sampled data point with respect to location (uj,vj).
3. Simulation Study

With a view of evaluating the performance of
proposed RGWR estimators as compared to existing
estimators, a simulation study has been conducted under
three different conditions. We compared proposed
RGWR estimators with outlier-robust estimator

ĈHAMBERT given by Chamber (1986) as well as non-robust
GWR estimator of finite population total, i.e. ĜWRT . The
target population has been generated by mixing three
versions of a super population model. The population

coordinates (latitude and longitude) have been created
as rectangular grid of points such that N units are
located on a xN N grid with intersections between
100 to 300. Following Chandra et al. (2012), we
generated the dependent variable yi assuming following
super population model.

2
0 1 , ~ (0, ) 1,2,3,...,i i i i i i iy x e N i N       (10)

with

0 6 (latitude ) (longitude )i i ia b   

1 2.4 (latitude ) (longitude )i i ia b   
where, 2 2

i ix  ; 2 1  . Parameters “a” and “b” in
the above-mentioned model define the spatial variation
in intercept and slope parameter over the space. These
parameters have been set to zero for scenario under
spatial stationarity condition. Under spatial non-
stationarity, these parameters are taken as a = 0.2 and
b = 0.4. Three populations have been generated such
that population I has 2

40~x  , population II is generated
with high leverage auxiliary variable, 2

90~ ,x  i.e. and
population III with low leverage auxiliary variable,
i.e. 2

5~x  . After generation of all three populations, a
fraction 2p of units of population I has been substituted
by data points of population II and population III each
of fraction p, p = 2%. After substitution, a final
population IV has been generated that contains
approximately 4% of data points containing possible
extreme leverage auxiliary variable. A population V
containing outliers with spatial-stationarity has been also
generated by setting a = b = 0 and repeating all steps of
population IV.

In this simulation study, population size has been
fixed as N = 2500 and from population IV and population
V, four different samples of sizes, i.e. n =10% (= 250),
15% (= 375), 20% (= 500), and 25% (= 625) of
population size have been drawn by SRSWOR. Using
each sample, estimates of finite population total have
been calculated under three different conditions; a)
population under spatial non-stationarity with outlier
contamination, b) population under spatial stationarity
with outlier contamination, c) population under spatial
non-stationarity without outlier contamination. These
estimates of finite population total are based on four
different estimators. These estimators are

ˆ ,CHAMBERT GWRT̂ , _R̂GWR WT and _R̂GWR FT as defined in

equation No. (2), (6), (8) and (9) respectively.
Performance of all the four estimators have also been
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evaluated for different spatial weighting functions (i.e.
gaussian, exponential, bi-square, tricube, boxcar). This
process has been repeated R = 5000 times
independently to obtain 5000 independent samples of
each sample size. In this simulation study, the
performance of different estimators under different
conditions of population have been evaluated by
computing the percentage absolute relative bias (ARB),
percentage relative root mean squared error (RRMSE)
and percentage relative efficiency (RE). A better
performing estimator shows comparatively lower value
of ARB as well as RRMSE whereas percentage RE
should be greater than 100.

Percentage absolute relative bias

1

ˆ1% ARB x 100
R

r

r

T T
R T


                             (11)

Percentage relative root mean square (RRMSE)

2

1

ˆ1% RRMSE = x 100
R

r

r

T T
R T

 
  
 

                 (12)

Percentage relative efficiency (RE)

RRMSE (standard)% RE  100
RRMSE (proposed estimator)

    (13)

where, r̂T is the estimate of population total T at rth
simulation run (r =1,..., R).
4. Results and Discussion

Percentage absolute relative bias (ARB) and
percentage relative root mean square (RRMSE) of both
the RGWR estimators  _R̂GWR WT and _R̂GWR FT as well
as non-robust estimator, ĜWRT ,of population total  of
finite population, in the presence of representative
outliers [Chamber (1986)] under spatial non-stationarity
condition and a robust estimator  ĈHAMBERT of finite
population total given by Chamber (1986) under spatial
stationarity condition have been obtained based on 5000
independents samples. ARB and RRMSE of different
estimators obtained for four different sample sizes of
10%, 15%, 20% and 25% of population size are
presented in the Table 1.

Table 1 shows that for the case of population with
spatial non-stationarity condition, both proposed RGWR
estimators  _R̂GWR WT & _R̂GWR FT perform better than
non-robust estimator  ĜWRT and non-spatial robust

estimator, ĈHAMBERT , proposed by Chamber (1986) w.r.t.
ARB and RRMSE for four different sample sizes of
10%, 15%, 20% and 25% of finite population size and
with all spatial weighting functions (i.e. gaussian,
exponential, bi-square, tricube, boxcar). Chamber (1986)
found that ĈHAMBERT  was very effective in outlier robust
estimation of finite population under different sampling
methods when population shows spatial stationarity but

ĈHAMBERT seems not very effective in case of population
shows spatial non-stationarity. RGWR estimator based
on winsorization approach, _

ˆ ,RGWR WT performs much
better than the RGWR estimator that is based on
filtering of outliers, i.e. _

ˆ .RGWR FT
Table 2 shows the performance of best performing

robust estimator estimator _R̂GWR WT under different
spatial weighting functions (i.e. gaussian, exponential,
bi-square, tricube, boxcar) on the basis of ARB and
RRMSE in estimation of finite population total based
on 5000 independents samples.

For the case of population with spatial non-
stationarity condition, ARB and RRMSE of robust
estimators, _

ˆ ,RGWR WT with bi-square shape of spatial
weighting function perform better than other shape of
spatial weighting function (i.e. gaussian, exponential,
tricube, boxcar) for relatively smaller sample sizes i.e.
10% and 15% of finite population size. On the contrary,
tricube shape of spatial weighting function performs
better than others for sample sizes equals 20% and
25% of finite population size.

The effect of non-stationarity condition in population
with outliers on estimation process has been shown in
Table 3. Table 3 shows the comparative performance
of proposed RGWR estimators  _R̂GWR WT & _R̂GWR FT
against spatial non-robust estimator  ĜWRT and a non-
spatial robust estimator  ĈHAMBERT of finite population
total for population with outliers under spatial stationarity
condition using bi-square weighting function. As
expected, ĈHAMBERT  have least ARB and RRMSE for
all four different sample sizes of 10%, 15%, 20% and
25% of population size as compared to both proposed
RGWR estimators. Thus, non-spatial robust estimator
 ĈHAMBERT  performed better than rest of estimators.

Table 4 presents performance of all estimators of
finite population total under spatial non-stationarity
condition based on 5000 independent samples when
samples are not contaminated with outliers. As expected
spatial non-robust estimator  ĜWRT has least ARB and



Table 1:  Percentage ARB and percentage RRMSE of different estimators of finite population total under spatial non-stationarity
condition, where samples are contaminated with representative outliers.

Shape of           Estimator ARB ARB ARB ARB RRMSE RRMSE RRMSE RRMSE
weighting (n=10%) (n=15%) (n=20%) (n=25%)   (n=10%)   (n=15%)   (n=20%)    (n=25%)
function

Bi-square _R̂GWR WT 0.6906 0.6268 0.5816 0.5409 0.8307 0.7370 0.6756 0.6264

_R̂GWR FT 0.9328 0.7392 0.6241 0.5384 1.1574 0.9272 0.7821 0.6748

ĜWRT 0.9888 0.7689 0.6345 0.5506 1.2413 0.9634 0.7973 0.6891

ĈHAMBERT 0.9400 0.7986 0.7014 0.6338 1.1722 0.9862 0.8686 0.7820

Boxcar _R̂GWR WT 0.7222 0.6374 0.5845 0.5438 0.8638 0.7510 0.6791 0.6299

_R̂GWR FT 0.9533 0.7400 0.6249 0.5391 1.1955 0.9298 0.7840 0.6758

ĜWRT 0.9908 0.7689 0.643 0.5544 1.2421 0.962 0.8062 0.6924

Exponential _R̂GWR WT 0.8168 0.6723 0.5957 0.5483 0.9937 0.8018 0.6985 0.6405

_R̂GWR FT 0.9832 0.7554 0.6336 0.5461 1.2295 0.9499 0.7954 0.6842

ĜWRT 1.0454 0.7896 0.6495 0.5573 1.3044 0.9889 0.8168 0.6983

Gaussian _R̂GWR WT 0.7246 0.6352 0.5852 0.5329 0.8795 0.7516 0.6819 0.6297

_R̂GWR FT 0.9555 0.7409 0.6251 0.5381 1.1953 0.9311 0.7835 0.6742

ĜWRT 1.0072 0.7742 0.6347 0.5489 1.2616 0.9688 0.7970 0.6871

Tricube _R̂GWR WT 0.7122 0.6297 0.5784 0.5391 0.8486 0.7401 0.6719 0.6249

_R̂GWR FT 0.9521 0.7399 0.6241 0.5386 1.1969 0.9283 0.7820 0.6750

ĜWRT 0.9822 0.7637 0.6398 0.5517 1.2298 0.9541 0.801 0.6892

Table 2: Percentage ARB and percentage RRMSE of different estimators under spatial non-stationarity condition, where
samples are contaminated with representative outliers.

 Estimator (Weighting ARB ARB ARB ARB RRMSE RRMSE RRMSE RRMSE
               function) (n=10%)  (n=15%)  (n=20%)  (n=25%) (n=10%) (n=15%)  (n=20%) (n=25%)

_R̂GWR WT ( Bi-square) 0.6906 0.6268 0.5816 0.5409 0.8307 0.7370 0.6756 0.6264

_R̂GWR WT  (Boxcar) 0.7222 0.6374 0.5845 0.5438 0.8638 0.7510 0.6791 0.6299

_R̂GWR WT  (Exponential) 0.8168 0.6723 0.5957 0.5483 0.9937 0.8018 0.6985 0.6405

_R̂GWR WT  (Gaussian) 0.7246 0.6352 0.5852 0.5329 0.8795 0.7516 0.6819 0.6297

_R̂GWR WT  (Tricube) 0.7122 0.6297 0.5784 0.5391 0.8486 0.7401 0.6719 0.6249
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Table 4: Percentage ARB and percentage RRMSE of different estimators under spatial non-stationarity condition, where
samples are not contaminated with representative outliers.

Estimator ARB ARB ARB ARB RRMSE RRMSE RRMSE RRMSE
(n=10%) (n=15%) (n=20%)   (n=25%) (n=10%) (n=15%)  (n=20%) (n=25%)

Shape of weighting function: bi-square

_R̂GWR WT 0.0863 0.0538 0.0407 0.0334 0.1112 0.0688 0.0518 0.0425

_R̂GWR FT 0.3129 0.2235 0.1829 0.1570 0.3978 0.2803 0.2305 0.1967

ĜWRT 0.0703 0.0386 0.0261 0.0202 0.0888 0.0490 0.0329 0.0254

ĈHAMBERT 0.7479 0.5918 0.4928 0.4239 0.9431 0.7412 0.6204 0.5297

RRMSE than both proposed RGWR estimators
 _R̂GWR WT & _R̂GWR FT as well as non-spatial robust
estimator  ĈHAMBERT  for estimation of finite population
total. Thus, GWR estimator  ĜWRT performed better
than rest of estimators as expected.

Table 5(a) and Table 5(b) show the percentage
relative efficiency (% RE) of both the proposed RGWR
robust estimators as compared to non-robust GWR
estimator, i.e ĜWRT ,and non spatial robust estimator, i.e.

CHAMBERT̂ ,respectively under spatial non-stationarity
condition, where samples are contaminated with
representative outliers. The proposed RGWR estimator
based on winsorization approach, _R̂GWR WT , shows
significantly high percentage of RE as compared to both

ĜWRT and ĈHAMBERT .
5.   Conclusion

In this study, two outlier robust geographically
weighted regression (RGWR) estimators have been
proposed under super population model for estimation
of finite population total using predictive approach
where population shows non-stationarity in relationship
between response variable and regressors and also
population is contaminated with outliers. These two

proposed RGWR estimators are _R̂GWR WT and
_R̂GWR FT that are based on winsorization approach and

filtering of outliers respectively. These proposed
estimators are compared with a non-robust GWR
estimator, ĜWRT , and a non-spatial outlier robust
estimator ĈHAMBERT given by Chamber (1986). Both
proposed estimators performed better than ĜWRT  and

ĈHAMBERT under above mentioned conditions. For
population containing outliers under non-stationarity
condition, robust estimators _R̂GWR WT perform
significantly better than non-robust GWR estimator
 ĜWRT and non-spatial outlier robust estimator
 ĈHAMBERT whereas performance of _R̂GWR FT do not
show any significant improvement over ĜWRT and

ĈHAMBERT . It is due to the reduction of sample size due to
filtering of outliers. RGWR estimator based on
winsorization approach, i.e. _R̂GWR WT ,performed much
better than the RGWR estimator based on filtering of
outliers _R̂GWR FT ,RGWR estimator based on
winsorization approach, i.e. _R̂GWR WT ,shows high
efficiency with respect to GWR estimator ĜWRT as well
as non-spatial robust estimator ĈHAMBERT .

_R̂GWR WT performs satisfactory in all the three conditions
discussed in results and discussion section. Thus, it may

Table 3: Percentage ARB and percentage RRMSE of different estimators under spatial stationarity condition, where samples
are contaminated with representative outliers.

Estimator ARB ARB ARB ARB RRMSE RRMSE RRMSE RRMSE
(n=10%) (n=15%) (n=20%)   (n=25%) (n=10%) (n=15%)  (n=20%) (n=25%)

Shape of weighting function: bi-square

_R̂GWR WT 0.4502 0.4233 0.3961 0.3728 0.4821 0.4555 0.4297 0.4078

_R̂GWR FT 0.7171 0.5670 0.4735 0.4117 0.9010 0.7112 0.5924 0.5142

ĜWRT 0.7280 0.5754 0.4865 0.4192 0.9139 0.7198 0.6089 0.5261

ĈHAMBERT 0.4482 0.4225 0.3955 0.3715 0.4658 0.4435 0.4200 0.3991
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Table 5(a): Percentage RE of the proposed RGWR estimators based on bi-square shape of weighting function as compared

to  ĜWRT  under spatial non-stationarity condition, where samples are contaminated with representative outliers.

Estimator %RE(n =10%) %RE(n=15%) %RE(n=20%) %RE(n=25%)

_R̂GWR WT 189.57 158.02 141.70 129.01

_R̂GWR FT 101.43 101.21 102.79 102.31

ĜWRT 100.00 100.00 100.00 100.00

Fig. 1: % ARB and % RRMSE of different estimators under spatial non-stationarity with outliers (A & B), 
spatial stationarity with  outliers (C & D) and spatial  non-stationarity without outlier (E & F)
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Table  5(b): Percentage RE of the proposed RGWR estimators based on bi-square shape of weighting function as compared
to  C H A M B E RT̂  under spatial non-stationarity condition, where samples are contaminated with representative
outliers.

Estimator %RE(n =10%) %RE(n=15%) %RE(n=20%) %RE(n=25%)

_R̂GWR WT 141.11 133.81 128.57 124.84

_R̂GWR FT 101.43 106.36 111.06 115.89

ĈHAMBERT 100.00 100.00 100.00 100.00



Fig. 2: Percentage RE of proposed estimators based on bi-square shape of weighting function as compared to (A)

ĜWRT and (B) ĈHAMBERT , under spatial non-stationarity condition, where samples are contaminated with

representative outliers

be concluded that the proposed robust estimator based
on winsorization approach, _R̂GWR WT , is robust against
presence of outliers in sample surveys data. In this study,
five different shapes of kernels (spatial weighing
function) have also been compared in which proposed
RGWR estimators, _R̂GWR WT , with bi-square and tri-cube
shape of kernel performed better than the other shape
of kernels (boxcar, gaussian, exponential).
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