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Abstract
Rice (Oryza sativa L.), the major staple food for more than half of world’s population, is being 
seriously affected by salinity stress worldwide. Salinity tolerance in rice is governed by many genes, 
identification of these stress responsive key genes as well as understanding the underlying cellular 
mechanisms is of paramount importance for developing salt tolerant varieties. In this study, 
meta-analysis was performed to combine gene expression gene expression datasets related to the 
identification of salinity stress responsive genes. A two-stage filtering approach was used to initially 
identify relevant genes. Then, a weighted gene co-expression network analysis was performed to 
detect the various gene modules associated with salinity stress in rice followed by DHGA approach 
to detect hub genes and unique hub genes. Moreover, other bioinformatics tools and techniques like 
Gene Ontology, motif analysis, protein structure prediction and protein-protein interactions were 
used to understand the salinity stress response mechanism in rice. Through the hub gene detection 
approach, 167 and 178 hub genes were identified in salinity stress and normal condition respectively, 
where 121 hub genes were common to both the conditions and 46 were unique to salinity stress 
condition. The functional enrichment analysis of hub genes further revealed their involvement in 
various processes linked with the salinity stress in rice. The 46 salinity stress genes were further 
analyzed with QTL, protein-protein interaction, gene ontology and motif analysis. These identified 
genes and mechanisms will add to the understanding of salinity response and its regulation in rice.
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Introduction
Rice (Oryza sativa L.) is the most important cereal crop and the major food source for more 

than half of world’s population. Further, the productivity of rice has been increasingly affected by 
salinity stress worldwide [1]. The salinization problem affects at least one-third of the world’s arable 
land and many more areas will be added to the list in future due to climate change and global 
warming [2,3]. Rice is preferably grown in submerged condition, where high salinity stress is highly 
prevalent [4]. Salinity occurs when there is high concentration of soluble salts found in soil/water. 
Salinity stress causes damage to plants in two ways i.e. (i) osmotic stress occurs due to relatively 
high salt ion concentration in soil/water that poses a threat to plant tissue and (ii) ion specific 
stresses resulting mostly from altered ratios of sodium and potassium ions (Na+/K+) and sodium 
and chlorine (Na+/Cl-) ions which causes damage to plant physiology [5]. At the cellular level, the 
mechanism of salinity response in rice is not completely known. Therefore, it is necessary to use 
the available network biology and bioinformatic tools to understand the underlying mechanism of 
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salinity stress response in rice. In addition, there is a need to identify 
salinity responsive genes in rice, which can further be used for the 
breeding of salinity tolerant rice varieties.

With the advancement of genomic technologies, a huge volume 
of high throughput and high dimensional data has been generated 
through various experiments across the world. A Gene Expression 
(GE) study is one such approach and the data generated from such 
technology are available in the public domain databases such as 
NCBI, Array Express, etc... over the years. There are both challenges 
and advantages in analyzing crop GE data. For crops, there are 
typically limited experimental datasets available, usually generated 
over varying experimental conditions and little bioinformatics work 
has been done on these data so far. Hence, integration and analysis 
of data generated by GE experiments for the same stress or related 
conditions is crucial in systems biology to enhance the sensitivity of 
the hypothesis under consideration for drawing valid conclusions 
[6]. For instance, meta-analysis of microarray data pertaining to 
different experiments in rice over different locations [7], soybean 
and Arabidopsis revealed the presence of highly connected key genes 
that are central to the plant defense system under various biotic and 
a biotic stresses [8,9].

Application of network theory in GE data analysis leads to the 
discipline of network biology and Gene Co-expression Network 
(GCN) analysis is one such key approach. In other words, GE data 
is given as input to network analysis tools to analyze and extract 
informative knowledge [7,9,10]. In this direction, Weighted Gene 
Co-Expression Network Analysis (WGCNA) is used to decipher co-
expression patterns of genes across samples [11]. More specifically, 
WGCNA identifies modules using GE levels that are highly correlated 
across samples [12]. WGCNA has been successfully applied to detect 
co-expression modules in Arabidopsis, rice, maize, soybean and 
poplar [8-10,13]. In rice, it has been used to identify gene modules 
associated with drought stress tolerance used the gene network 
analysis technique to functionally annotate the rice genes [9,6,14]. 
Used this technique to identify the associated gene co-expression 
modules as well as consensus modules for drought and bacterial 
stress in rice via meta-analysis. WGCNA leads to construction of 
GCN, a scale free network, where, genes are represented as nodes 
and edges depict associations among genes [12]. In such a network, 
highly connected genes are called hub genes, which are expected to 
play an important role in understanding the biological mechanism 
of response under stress/disease [8,15]. Identification of such genes 
will also help in mitigating the stress response in crop plants through 
genetic engineering.

In this study, an attempt has been made to combine GE datasets 
for the identification salinity stress responsive genes and gene 
modules in rice. Further, a two-stage approach was used to detect 
the influential genes out of the large number of genes. Then, various 
hub genes and unique hub genes were identified for two differential 
GCNs constructed under salinity stress and control conditions 
using the available DHGA approach [7]. Here, we also used the 
WGCNA approach to detect the gene modules for salinity stress and 
further their functional enrichment analysis revealed the underlying 
mechanism of such stress response in rice [8]. Moreover, the findings 
were enriched with motif analysis and protein-protein interactions 
analysis.

Materials and Methods
Data collection

The rice microarray data was collected from GE Omnibus with 
platform GPL2025 (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GPL2025), which contains 3,384 samples and 208 series 
of Oryza sativa L. This platform consists of experimental samples 
on 57,381 probes generated by using the affymetrix gene chip rice 
genome array. Out of 3,384 samples only few are related to salinity 
stress. From these series, datasets pertain to GSE13735, GSE14403, 
GSE21651, GSE28209, GSE16108 and GSE6901 are selected to study 
the salt stress response mechanism in rice through meta-analysis. 
The detailed descriptions about the selected GE samples are given in 
Supplementary Data S1.

Data pre-processing
The raw CEL files of salinity stress related samples were initially 

processed using the Robust Multichip Average (RMA) algorithm 
that involves background correction, quantile normalization and 
summarization through the median polish approach [16,17]. To 
remove the outlier samples, meta-analysis was performed. This 
involves with selection of samples with mean ≥ 5.2 and standard 
deviation ≤ 2.8, as they are observed to be highly homogeneous at 
these parameters setting irrespective of their experimental conditions 
(Figure S1 in Document S1). In this process only 70 samples were 
selected (Document S1) and the log2 scale transformed expression 
data from the RMA for these selected experimental samples were used 
for further statistical analysis. Further, the analytical steps undertaken 
in this study are shown in Figure 1.

Selection of influential genes
A two-stage filtering procedure was applied to identify the genes 

that are differentially expressed in salinity stress conditions compared 
to normal condition. In the first stage, t-test was employed and the 
genes which were found to be significant at 5% level of significance 
were retained for the next stage of filtering. The test statistic for 
testing the significance of the i-th GE profile is given by:
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Where, ȳi and x-
i are the means, 2s y  and 2

is x  are the variances, 
ny and nx are the sample sizes under salinity stress and normal 
conditions respectively. In the second stage of filtering, Fold Change 
(FC) measure was computed for the genes selected at the first stage. 
The genes having at least 1.5 FC in their expression level was selected 
for further analysis. For i-th GE profile, the FC measure was computed 
as:

2 2log logi i iFC y x= −      
     (2)

Weighted gene co-expression network analysis (WGCNA)
GCN was constructed by using gene co-expression similarity 

measure. The gene co-expression similarity measure sij between i-th 
and j-th gene was computed by using the absolute value of Pearson’s 
correlation co-efficient (Horvath and Dong 2008) and given as:

jiij xxcors  ,( =
        

   (3)

Where, xi and xj, are the expression profiles of i-th and j-th gene 
respectively. Then, the adjacency score, aij, between i-th gene and j-th 
gene was computed as: 
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Where, β (≥ 1) is soft threshold power determined based on 
the concept of scale free property of biological networks. The detail 
methodology for determination of the soft threshold power has 
been discussed in detail by [11]. The use of weighted co-expression 
network along with soft threshold has advantage over unweighted 
networks or classical network approach [11], because the continuous 
nature of the gene co-expression information is preserved. Also, the 
results of weighted network approach are highly robust with respect 
to the choice of the soft threshold parameter.

Hub gene identification
Hub genes are referred as highly interacting genes present in the 

GCNs [12]. In network theory, the node is defined as hub node, if its 
connection degree is greater than the average connection degree of 
the network [18]. From a biological point of view, the identification 
of such informative genes is highly desirable as it can throw light on 
the underlying stress response mechanism in plants and further can 
be used for breeding stress resistant cultivars. For this purpose, the 
statistical approach, i.e. DHGA, developed by was used and can be 
briefly explained as [8]:

Let the Weighted Gene Score (WGS) for i-th gene in terms of 
weighted gene connectivity is written as

∑=
j

iji aWGS       
    (5)

This WGSi gave relative importance of i-th gene based on its 
connections to all other genes in the co-expression network. For the 
purpose of hub gene detection, we test following hypothesis:

µ≤iWGSH  :0  i.e. i-th gene in the co-expression network is not 
a hub gene   (6)

µ>iWGSH  :1  i.e. i-th gene in the co-expression network is a 
hub gene

Where, μ is average connection degree of the complete network 
model. To identify the hub genes for salinity stress in rice, we executed 
the dhga package implemented on the R language [8].

Identification of gene modules
To identify the gene modules (the genes which are closely related 

with each other), the average linkage hierarchical clustering was 
employed and Topological Overlap Matrix (TOM) based dissimilarity 
was used [12]. The TOM dissimilarity between i-th and j-th gene was 
computed as:

∑ −=
u

ijij wd 1                                 (7)   where,

ijji

ijij
ij akk

al
w

−+

+
=

1) ,( min ; ∑=
u

ujiuij aal  and ∑=
u

iui kk  
(connectivity of the i-th gene).

To implement this approach, the Block Wise Modules function 
available in WGCNA package of R-software was executed [20].

Gene ontology and motif analysis
Gene ontology analysis of the genes present within each module 

under salinity stress condition was carried out using Database for 
Annotation, Visualization and Integrated Discovery (DAVID), an 
annotation tool for researchers to understand biological meaning 

behind the list of genes (version 6.7) [19]. Further, to determine 
whether the genes in modules are transcriptionally co-regulated, 
a motif analysis was performed to find conserved motif regulatory 
elements in their promoters. Here, MEME was performed to predict 
motifs on the upstream region of 2,000 bps from the translation start 
site of the genes [20]. Then FIMO was used to conduct a Chi-squared 
test on the significance of these motifs in comparison to randomly 
selected genes in the genome.

Software and tools
For this present study, R software (v. 3.6.1) was used. It is an 

open source programming language and software environment for 
statistical computing and graphics [21]. The R language is widely used 
among statisticians and data miners for developing statistical and 
data mining models. For this study, different R packages and tools are 
used, which are listed in Table 1.

Results
Selection of influential genes

Using complete GE profiles, the expected differentially expressed 
genes were selected through a two-stage filtering procedure. In the 
first stage a t-test was used, where 5,036 number of genes were selected 
with p-values <0.05, which comprises 8.8% of total number of genes. 

Methods Tools/R 
Package Parameters

Genomic platform of R Bioconductor  

Data preprocessing Affy Default setting

Network analysis WGCNA Default value given in the 
package

Differential hub gene 
analysis dhga Default setting

Motif detection 
(EM algorithm) MEME Default value given in the 

package
3D Protein structure Swissprot Default setting

Influential gene selection R-code written  

Table 1:  R packages used in this study.

Figure 1: Analytical steps in flowchart form.
DEG: Differentially Expressed Genes; DHGA: Differential Hub Gene 
Analysis; UHS: Unique Hub gene in Salinity; HKH: House Keeping Hub 
genes; UHC: Unique Hub gene in Control condition; GO: Gene Ontology; 
PPIN: Protein-Protein Interaction Network; QTL: Quantitative Trait Loci; TF: 
Transcription Factor
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In the second stage, out of 5036 number of genes, 556 genes (0.97% 
of total number of genes) with FC value ≥ 1.5 were selected. Further, 
the selected probes are mapped to corresponding genes using MSU 
rice genome browser [22]. The detail descriptions about the selected 
556 genes along with their genomic locations are given in Table S1.

Identification of gene modules for salinity stress condition
For both salinity stress and normal conditions, the value of β 

was observed as 6 with better approximation to scale free topology 
(R2=0.85) and mean connectivity (K=30) (Figures in Document S2). 
Using this soft threshold parameter, 556 salinity responsive genes 
were divided into 8 and 7 modules for salinity stress and normal 
condition respectively (Figure 2). For this purpose, other parameters 
like module size, deep split level and tree merge cut height was set 
at 30 to 60.3 and 0.25 to 0.35 respectively. In both the conditions, 
the module represented by turquoise color contained maximum 
number of genes, hence designated as the largest module for either 
condition (Figure 2). The module memberships (number of genes in 
each module) of genes are listed in Table 2. Seven consensus modules 
between salinity and normal condition were also identified, where the 
module represented by turquoise color contained maximum number 

of genes (Figure 3b).

The matching of various modules in terms of their colors in 
either condition revealed the similar co-expression patterns, which 
can be well visualized from Figure 2. The module represented by 
brown color in consensus module diagram completely matched 
with that of salinity stress condition (Figure 2b). Other modules like 
blue and turquoise under salinity condition also partially matched 
with that of consensus condition (Figure 2b). Further, the extent 
of crosstalk between the various modules of consensus and stress 
conditions can be observed in matrix form (Figure 2). Similarly, for 
normal vs. consensus module diagram, the modules represented by 
turquoise and blue color under normal condition matched with that 
of consensus condition (Figure 2a).

The dendrograms and heatmaps of the selected genes divided 
into tightly co-expressed modules are represented in Figure 3 for 
both stress and normal conditions respectively by using TOM. The 
long branch in the dendrogram and high intensity of the red color in 
the heat map showed that the genes belong to the same module have 
higher degree of co-expression as compared to the genes outside of 
the module (Figure 3).

Figure 2: Clustering dendrogram of genes and various gene modules found in various conditions.
The correspondence between consensus modules and modules found in (a) normal and (b) salinity stress condition are represented. The extent of crosstalk 
between the Consensus Modules (CM) and stress modules (SM) and Normal Modules (NM) are shown in matrix form. Each row of the Table corresponds to 
modules under SM and NM conditions (labeled by color as well as text along with the number of genes in the modules) and column corresponds to consensus 
modules. Numbers in the Table indicate gene counts in the intersection of the corresponding modules. The figures in various colors in the Table showed the highest 
values.

Figure 3: Dendrograms and heat maps of genes divided into tightly co-expressed modules under various conditions. The heat map depicts the correlations among 
the 556 genes from microarray GE profiling under (a) stress and (b) normal condition. The intensity of deep red color in the heat map shows the strong correlation 
among genes present in the module.
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Out of 556 genes, 56 were found to be Salinity Responsive 
Transcription Factors (SRTFs) in rice as per RICESRTF database 
[23] (Table 2). This database is available at http://www.nipgr.res.
in/RiceSRTFDB.html and has 938 SRTF which are differentially 
expressed under salinity stress condition. The module membership 
of these SRTFs is given in Table 2. The largest turquoise module 
contained highest numbers of SRTFs belong to diversified of TF 
families followed by blue module (Table 2). The WRKY families of 
SRTFs are over-represented in blue module.

Identification of hub genes for salinity stress
For both salinity stress and normal conditions, the genes with 

p-value ≤ 0.0001 were considered as hub genes. A total of 167 and 178 
hub genes were chosen for stress and normal conditions respectively 
(Table 3). The lists of genes and hub genes along with their locations 
and brief description are given in Table S1 and S2. From the module 
membership of the hub genes, it was observed that all the identified 
hub genes under salinity stress condition belong to two modules 
namely turquoise (141) and blue (26) (Table 2). From differential co-
expression network analysis (analysis of networks for two contrasting 
conditions, i.e. salinity vs. control) unique hub genes (UHGs) were 
identified. In other words, the hub genes in the GCN, which are 
unique to either, stress (disease) or control condition is referred as 
UHG. It was found that 46 and 57 are UHG for salinity stress and 
normal conditions respectively, whereas 121 hub genes are common 

to both the conditions. Out of 46 UHGs expressed under salinity 
condition 31 are from turquoise and 15 from blue module (Table 2). 
A brief description about these 46 UHGs are provided in Table S3. 
The GCNs constructed for the two differential conditions are shown 
in Figure 4. Further, large numbers of gene-gene interactions in the 
GCNs are found in normal condition as compared to salt stress in 
rice (Figure 4).

Functional analysis of modules under salinity stress
The GO analysis of the genes presents in the modules revealed 

the underlying molecular functions associated with the modules 
and are given in Table 2. In the largest turquoise module, the genes 
are over-represented in the category of oxidation reduction activity, 
heme binding, tetrapyrrole binding, electron carrier activity, cation 
binding, ion binding and metal ion binding. Similar interpretations 
are also made for all other modules (Table 2). Further, no significant 

Figure 4: Gene co-expression networks for two differential conditions in rice. The GCNs are constructed for salt stress (A) and normal (B) conditions respectively. 
The nodes are represented as genes and edges are shown as the association among the genes.

Modules #G #SRTF #HG #UHG Functions

Black 24 1 0 0 Unknown

Blue 72 2 26 15
Peptidase activity (GO:0070011), Proteolysis

(GO:0006508), Endopeptidase activity (GO:0004175), Ion transport (GO:0006811)

Brown 40 1 0 0 Cation binding (GO:0043169), Ion binding (GO:0043167)

Green 34 3 0 0 Unknown

Grey 14 1 0 0 Oxidation reduction (GO:0055114), Iron ion binding (GO:0005506), heme binding (GO:0020037), 
Tetrapyrrole binding (GO:0046906)

Red 28 2 0 0 Unknown

Turquoise 304 12 141 31
Oxidation reduction (GO:0055114), Heme binding (GO:0020037), Tetrapyrrole binding  
(GO:0046906), Electron carrier activity (GO:0009055), Cation binding (GO:0043169), Ion binding 
(GO:0043167), Metal ion binding (GO:0046872)

Yellow 40 3 0 0 Metal ion binding (GO:0046872), Cation binding (GO:0043169), Ion binding (GO:0043167)

Table 2:  Module description along with gene and hub gene membership in salinity stress condition.

Modules, identified gene modules represented by color; G, represents number of genes present in the module; SRTF, number of salinity responsive transcription 
factors; family, SRTF family; HG, represents number of hub genes in the module; UHG, number of unique hub genes in the module; Functions, molecular functions 
associated with each module.

Data description dhga Approach

 
p-value ≤ 1E-04 p-value ≤ 1E-08 p-value ≤ 1E-12

# HG % HG # HG % HG # HG % HG

Salinity stress 167 30.03 135 24.28 82 14.17

Control 178 32.01 140 25.21 87 15.65

Table 3: Comparison of DHGA and existing approaches in terms of predicted 
hub genes.
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GO Molecular Function (MF) terms were associated with black, 
green and red color modules (Table 2) and it may be inferred that 
role of the genes present in these modules under salinity stress are 
still largely unknown.

Functional analysis of hub genes under salinity stress
Further, the GO analysis of the identified hub genes under salinity 

stress condition was carried out by using DAVID database and the 
results are shown in Table 4.

From GO term enrichment analysis the hub genes were found to 
be mostly over-represented in the ontology category like oxidation 
reduction (redox) activity (GO: 0055114) and response to oxidative 
stress (GO: 0006979) (Table 4). The role of the genes in the redox 

activities are related to electron transport that balances the charges 
during ion transport [5]. The redox activities are also related to 
reactive oxygen intermediates that are produced in response to 
oxidative stress due to water deficit during salinity stress [24]. Under 
MF taxonomy, the chosen hub genes were over-represented in the 
categories like cation binding, ion binding, metal ion binding (Table 
4), which might be due to the high ion concentration present in the 
soil or water because of salinity stress. The other members of chosen 
hub gene set were also found to be involved in other MFs like iron 
ion binding activity, electron carrier activity, tetrapyrrole binding, 
calcium ion binding, heme binding, etc. (Table 4). The role of the 
selected hub genes in tetrapyrrole binding activity is related to the 
osmotic adjustment for salt tolerance in crop. The biosynthesis of 

GO terms Ontology Description #Genes %Genes p-value Fisher Exact Value

GO:0055114 P Oxidation reduction Activity 16 11.2 0.00053 2.00E to 04

GO:0005506 F Iron ion binding Activity 12 8.4 0.0013 4.00E to 04

 GO:0009055 F Electron carrier activity 12 8.4 0.0014 4.40E to 04

GO:0020037 F Heme binding 9 6.3 0.004 1.10E to 03

GO:0046906 F Tetrapyrrole binding 9 6.3 0.0045 1.30E to 03

GO:0005509 F Calcium ion binding 8 5.6 0.0055 1.40E to 03

GO:0043169 F Cation binding 26 18.2 0.0096 5.90E to 03

GO:0043167 F Ion binding 26 18.2 0.0096 5.90E to 03

GO:0006979 P Response to oxidative stress 5 3.5 0.012 2.00E to 03

GO:0004601 F Peroxidase activity 5 3.5 0.013 2.30E to 03

GO:0016684 F Oxido-reductase activity, acting on peroxide as acceptor 5 3.5 0.013 2.30E to 03

GO:0046872 F Metal ion binding 24 16.8 0.017 1.10E to 02

 GO:0016209 F Antioxidant activity 5 3.5 0.018 3.60E to 03

GO:0008171 F O-methyltransferase activity 3 2.1 0.024 1.80E to 03

GO:0015101 F Organic cation transmembrane transporter activity 2 1.4 0.04 1.10E to 03

Table 4: GO term enrichment analysis of hub genes identified in salinity stress condition by using DAVID.

Ontology ‘‘P’’ indicates Biological Process and Ontology ‘‘F’’ indicates Molecular Function. ‘‘# of genes’’ is the number of genes in the query gene list. “% of genes” 
is the percentage of genes in the query gene list. P-value represents the statistical significance of the gene enrichment test. “Fisher Exact Value” is the significance 
value obtained from Fisher’s test.

Gene ID Query Species Homolog ID Homolog Species BBMH score BBMH e-value

Os01g07530 Oryza sativa AT5G40390.1 Arabidopsis thaliana 959 0

Os02g19820 Oryza sativa AT4G10850.1 Arabidopsis thaliana 228 3.00E to 60

Os02g37040 Oryza sativa AT3G21670.1 Arabidopsis thaliana 596 1.00E to 170

Os08g43390 Oryza sativa AT3G61880.2 Arabidopsis thaliana 582 2.00E to 166

Os09g16030 Oryza sativa AT2G16890.2 Arabidopsis thaliana 312 4.00E to 85

Os09g38130 Oryza sativa AT5G65980.1 Arabidopsis thaliana 479 2.00E to 135

Os11g34460 Oryza sativa AT1G68050.1 Arabidopsis thaliana 874 0

Table 5: Arabidopsis homolog corresponds to unique hub genes for salinity stress in rice.

Figure 5: Predicted 3D structure of two key proteins under salt stress in rice. The three-dimensional structures of two key proteins (a) LOC_Os01g63810.1 (b) 
LOC_Os01g62830.1, which are overlapped with salinity tolerant QTL regions are predicted.
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proline in plants also plays an important role in salinity tolerance, 
as it binds the free ions, thus stabilizes the cell structure. Further, the 
proline synthesis may also play role in nitrogen metabolism in plants 
which is related to salinity tolerance in plants [25].

Unique hub gene analysis
Here, the identified UHGs under salinity stress condition (Tables 

2, S3) were further validated by using QTL information. Further, 
17 salinity stress responsive Quantitative Trait Loci (QTLs) were 
obtained from the Gramene QTL database (http://www.gramene.
org/qtl/). These QTLs and hub gene regions were then mapped 
using Gramene annotation of rice genome obtained from MSU 
Rice Genome Annotation (Osa1) Release 7 [22]. Interestingly, two 
UHGs Os01g0856900 (from blue module) and Os01g0847100 (from 
turquoise module) are found to be perfectly overlapped with QTLs 
(AQEM001and AQEM008) region, which indicates their key role in 
salinity stress tolerance in rice (Table S3). These two genes encode 
LOC_Os01g63810.1 and LOC_Os01g62830.1 proteins respectively, 
the 3D structures of which were predicted by using SWISS MODEL 
and shown in Figure 5.

The protein-protein interaction data for the protein LOC_

Figure 6: Protein interaction network for the protein LOC_OS01G63810.1.LOC_Os01g63810.1 is the central node and interacts with 57 other proteins in the 
constructed protein-protein interaction network.

Figure 7: Detected motifs in the upstream sequences. The detected motifs are shown for the blue module (a) and turquoise module (b).

Os01g63810.1 was extracted from database of interacting proteins in 
Oryza sativa available at http://csb.shu.edu.cn/dipos/. Further, this 
information was used to construct the Protein Interaction Network 
(PIN) only for the protein LOC_Os01g63810.1. The PIN was plotted 
using RCytoscape and is shown in Figure 6 [26]. From the PIN, it is 
observed that the protein interacts with 57 other proteins (Figure 6). 
Furthermore, identified 46 UHGs were mapped to their Arabidopsis 
orthologs by using GreenPhylDB and are shown in Table 5 [27]. 
The results showed that seven UHGs in rice have unique orthologs 
corresponding to Arabidopsis (Table 5).

Motif analysis of unique hub genes
The identified 46 UHGs under salinity stress mostly belong to 

blue (15) and Turquoise (31) gene modules. To determine whether 
the UHGs in both the modules are transcriptionally co-regulated 
or not, motif analysis was performed on both the gene modules. 
The nucleotide sequence data of the UHGs present in the both the 
modules were taken from the Gene database of NCBI (www.ncbi.
nlm.nih.gov/gene) and further used in motif analysis separately for 
both the modules.

At the transcription level, 31 and 15 UHGs present in Blue and 
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Turquoise modules are transcriptionally co-regulated by examining 
if the promoter regions of these genes share conserved motifs as the 
regulatory elements. Initially, three candidate motifs are predicted 
separately for both the modules of length 15 and 20 for blue and 
turquoise modules respectively and only one motif is validated by 
sequence comparison with known cis regulatory motifs in the place 
database. Further, the results are shown in Figure 7. The results 
indicated that the detected motif for the blue module is TCG-rich 
motif, while the detected motif for the turquoise module is rich in 
GC-content (Figure 7). The motif analysis and co-expression analysis 
provide some support that the identified gene module is likely to be 
co-regulated (Figure 7).

Discussion
Understanding salinity stress response mechanism in rice is of 

paramount importance for plant breeders to develop salinity stress 
tolerant cultivars. In public domain databases, there are few samples 
available related to salinity stress in rice, which have been generated 
over varying experimental conditions by multiple studies. Thus, 
meta-analysis was performed to combine these datasets and the 
meta-data was used for further statistical analysis. Then, developed 
and existing techniques were applied on the Meta GE data to identify 
the responsible key genes and modules to understand salinity stress 
response mechanism in rice.

The chromosome annotation of the hub genes which are uniquely 
expressed under salinity stress condition showed that they mostly lie 
on the chromosome 1, 2, 3, 6, and 9. The hub gene Os05g0439000 
(p-value = 6.32 × 10-84), which encodes for zinc finger protein was 
found to have regulatory role in drought and salt tolerance [19]. The 
hub gene Os02g0715000 was found to be involved in the cysteine 
proteinase activity that is responsible for plant growth and for 
conferring tolerance to abiotic stress like salinity [28]. The hub gene 
Os11g0591800 encodes wound induced protein involved in cell wall 
structure, which is responsible for salinity tolerance in plants [29]. The 
hub gene, Os01g0856900 encodes starch binding domain protein that 
may offer tolerance to salinity stress by accumulating carbohydrates 
such as sugars (e.g. glucose, fructose, fructans and trehalose) and 
starch occur under salt stress [30].

Hub gene Os06g0271000 with significance value 8.55 × 10-06 
involved in glycosyl transferase activity, which has been reported 
to have biological role in abiotic stress tolerance mechanism in 
Arabidopsis [31]. The hub gene LOC_Os10g05400 was found to be 
involved in protein kinase activity that plays an important role in 
plant salinity stress tolerance by means of regulation of ionic and 
osmotic homeostasis [32]. The hub gene Os11g0245100 encodes 
glutathione S-transferase zeta protein, which has been reported to 
have important role in salinity and oxidative stress in Arabidopsis 
[33]. The hub gene Os03g0195900 with p-value = 5.98 × 10-70 involved 
in sulphate transfer activities that plays significant role in salinity 
and drought tolerance in plants. This transporter may play role in 
plant leaves in controlling their early response to water stress in 
strong connection with abscic acid biosynthesis [34]. The hub gene 
Os02g0770800 involved in nitrate reductase activities that involves in 
salinity tolerance mechanism as it affects the synthesis of both proline 
and other free nitrogenous compounds, which might be utilized 
in osmotic adjustment [35]. The hub gene LOC_Os09g09230 with 
p-value 6.40 × 10-84 involved in Dihydroflavonol-4-Reductase (DFR), 
which plays a key role in flavenoid biosynthesis in purple sweet potato 
that supports the protective function of anthocyanins of enhanced 

scavenging of reactive oxygen radicals in plants under salinity stress 
conditions [33]. Hub gene Os04g0687900 with significance value 6.32 
× 10-84 encodes OsFBT6 - F-box protein, which confers tolerance to 
abiotic stress in chickpea [36]. The hub gene Os05g0515600 (p-value 
= 1.63 × 10-74) involved in O-methyltransferase activity, which is 
associated with sodium sequestration excessively found under salinity 
stress condition [4]. The hub gene Os06g0195800 with p-value 6.32 × 
10-84 encodes DnaJ protein, which provides tolerance to abiotic stress 
by lowering the accumulation of ROS [37,38]. Among these uniquely 
expressed hub genes, the information about some genes and their role 
in abiotic stress tolerance could not be traced back by using available 
resources. However, the unreported genes may have some role in 
salinity tolerance in rice, which needs be studied in detail.

Conclusion
In this study, meta-analysis was performed to combine the 

publicly available GE datasets related salinity stress in rice. Using 
the available WGCNA and dhga approaches, a number of key genes 
with high connectivity in the GCN for both normal and salinity 
conditions were identified. Functional enrichment analysis of these 
key genes revealed the associated molecular functions under salinity 
stress. These identified genes may act as potential candidates for 
salinity stress response engineering in rice. Moreover, the identified 
genes were validated with QTL, protein-protein interaction, protein 
structure prediction, motif analysis etc. Such type of analysis provided 
information on various molecular mechanisms like biosynthesis 
of secondary metabolites and stress specific roles of certain plant 
products revealed. Further, this study will surely add on to the 
understanding of salinity response and its regulation in rice. Besides, 
two key proteins were predicted and mapped to QTLs, which can 
be used by breeders to clone these genes for salinity stress response 
engineering in rice.
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