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SUMMARY 

In the present investigation the general expression of Cook-statistic has 
been derived for detection of outlier in the block designs for making test 
treatments-control treatment comparisons. The criterion of minimization of 
average Cook-statistic has been modified to identify robust designs for 
making test treatments-control treatment comparisons. It has been shown that 
al1 BTIB designs that are binary with respect to test treatments are robust 
against the presence of a single outlier. 
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1. Introduction 

The problem of outliers in the data generated from a general linear model 
has been studied .'extensively in the literature. Among various statistics 
developed for the detection of outliers, Cook's distance developed by Cqok [4] 
has been extensively used. Outliers are likely to occur in the data generated from 
experimental designs due to disease and / or insect attack on some particular plot 
of the experiment, heavy irrigation by mistake on some particular block(s) or 
plot(s) of the experiment, mistakes creeping in during recording of data, etc. In 
the data generated from designed experiments, the problem of outlier(s), 
however, has not been studied so extensively, though there are some references 
available, see e.g., Box and Draper [3], Gopalan and Dey [9], Singh et ai. [13], 
Ghosh ([6], [7]) and Ghosh and Kipngeno [8]. Box and Draper [3] were the first 
to study the robustness of experimental designs in presence of outIier(s). Box 
and Draper suggested that in order to make a designed experiment insensitive to 
outlier, the variance of overall discrepancy in the predicted responses should be 
minimised. Ghosh and Kipngeno [8] used the same criterion for studying the 

2mrobustness of optimum balanced factorial des.igns of resolution. 
V. Ghosh [6] used the information contained in a set of observations and Cook's 
distance for detecting the influential observations under full rank models. 
Ghosh [7] gave another measure of identifying the influential set of 
observations. The criterion is based on the sum of the variances of the predicted 

--- ------- ...~ 
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values of the set of unavailable observations and showed that this criterion is 
equivalent to the Cook's distance. Most of these criteria are based on full rank 
model situations and can usefully be employed in fitting response surfaces. 
However, these cannot be applied to the linear model for which the design 
matrix is deficient in rank. Gopalan and Dey [9) developed a criterion of 
robustness on the lines similar to those given by Box and Draper (3) in other 
experimental situations where the design matrix is not of full rank. Instead of 
taking the overall discrepancy in the variance of estimated value of responses 
they considered the discrepancy in the estimation of error variance. Gopalan and 
Dey [9] studied the robustness aspect of experimental designs by minimizing the 
variance of the bias or discrepancy in the estimation of error variance. They 
have identified some robust designs for one-way elimination of heterogeneity 
settings. Singh et al. [13J extended the results of Gopalan and Dey [9] to find 
out robust designs for two-way elimination of heterogeneity setting. They 
showed that important class of variance balanced row-column designs that 
satisfy the property of adjusted orthogonality are robust in the presence of a 
single outlier. Bhar and Gupta [2) have investigated the problem of outliers in 
the experimental data for the block designs using Cook's distance for the 
problem of inferring on the complete set of linearly independent 
orthonormalized treatment contrasts. However, there do exist experimental 
situations where the interest of the experimenter is only in a subset of all the 
possible elementary treatment contrasts rather than the complete set of all the 
possible elementary contrasts. Such an experimental situation could be one 
where the experimenter is interested in comparing several new treatments called 
test treatments with one or more standard treatments called control treatments. 
For example, in genetic resources environment, an essential activity is to test or 
evaluate the new germplasm I provenance I superior selections (test treatments), 
etc. with the existing provenance or released varieties (control treatments). 
National Bureau of Plant Genetic Resources, New Delhi, India, conducts several 
such trials. For example, a Coordinated advanced trial - I (1992) was conducted 
to evaluate 15 genotypes of Moth Bean (test treatments), viz., RMO-96, 
RMO-173, RMO-224, RMO-225, RMO-226, RMO-256, JMS-l, JMS-2, JMS-3, 
JMS-4, JMM-259, IPCMO-371, IPCMO-481. IPCMO-526, IPCMO-880 with 
three control treatments, viz.. Jadia, Jawala and Maru Moth-I. The trial was 
conducted in a randomized complete block design to compare each of the test 
treatments with control treatments. Similar situations also occur in other 
disciplines of agricultural sciences, industry, etc. The main problem of interest 
here is to design an experiment for the estimation of test treatments vs control 
treatments contrasts with as much precision as possible when the comparisons 
among the test treatments or among the controls are of lesser consequence. It is 
well known that for the estimation of elementary contrasts among test treatments 
and control treatments, conventional designs like balanced 
incomplete block (BIB) designs are not the best. A lot of literature is available 
for obtaining efficient block designs for making test treatments - control 
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treatments comparisons. For an excellent review on the topic one may refer to 
Hedayat et al. [11], Majumdar [12] and Gupta and Parsad [10] and the 
references cited therein. 

Outliers are likely to occur in the experimental settings just described. 
However, for the experimental settings where one is interested only in a subset 
of all the possible elementary treatment contrasts rather than the complete set of 
all possible elementary treatment contrasts, the problem of outlier(s) needs 
special attention and has to be handled separately. So the present paper deals 
with the problem of studying outliers in designed experiments for experimental 
setting where several test treatments and a single control treatment are run in a 
design and the interest of the experimenter is to estimate only test treatments vs 
control treatment contrasts. We begin with some preliminaries in Section 2. 

2. Preliminaries 

Consider an experimental situation where it is required to compare v test 
treatments with a single control treatment via n experimental units arranged in b 
blocks, where the fh block contains k j experimental units V j 1,2, ... , b, such 

b 

that L k j = n. The v test treatments are indexed as 1,2,.. ., v and the control 
j~l 

treatment as O. It is also assumed that k j < (v + 1) and that only one treatment is 

applied to each experimental unit. In design d the ilh treatment is applied in ndij 

experimental units in the t block. The observations are represented by a two­
way classified additive, fixed effects, linear, homoscedastic model 

y=~I+,1'T+D'p+e (2.1) 

that can be rewritten as a general linear model 

y =X9+e (2.2) 

with E(e) =0 and Vee) CJ 
2I • Here y is an n x 1 vector of observations,n 

X = [1 ,1' D'] is n x p design matrix with rank m « p), p =l+v +b, 1 is n x I 

vector of ones anu 9 [~T' P'] is the parameter vector. ,1' is a n x (v +1) 

incidence matrix of observations vs treatments, D' is a n x b incidence matrix 
of observations vs blocks, ~ is the general mean, T = (TO,TI, ... ,T )' is the v 

vector of treatment effects, 13 (131,132, ... , I3b)' is the vector of block effects. 

Suppose that the vector y contains the observations in such a way that the 
observations pertaining to the control treatment are written first followed by 
the observations pertaInIng to the test treatments. ,1'1 =1, 
,11 =r =(ro. rl' ... , rv )' , where ro is the replication number of control treatment 

and ri is the replication number of the {h test treatment, i = 1, 2, ... , v. 
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0'1=1,01 k (k l ,k 2, ... ,kb )' and AD'==Wd =«ndhj» is the (v+l) x b 

incidence matrix of the treatments vs blocks, h 0, I, 2, "', v. Rewrite W d as 

Wd :; [%:0 ] , where NdO is a 1 x b incidence vector of the control treatment 

versus blocks and Nd is a v x b incidence matrix of test treatments vs blocks. 
Rewrite again the model (2.2) as 

y=[X l X2{:~]+e (2.3) 

where Xl A' and X2 = [1 0'], 81 == 't contains v+l parameters of interest to 

the experimenter, and 8 2 = fI.t p'T is a (l+b) vector of nuisance parameters in 

the model Using the principle of ordinary least squares, the reduced normal 
equations for estimating the treatment effects are given by 

C d1':::Qd (2.4) 

where Cd::: XiBX 1 =ABA' , Qd XiBy (2.5) 

and B I X2(Xl X 2 )- Xl is symmetric and idempotent. We can also write 

= [: (2.6) 


where AA' =Rd = diag (rO,r1, ... ,rv ), DO' =Kd =diag(kl,k2, ...,kb) 

e = ro N~oKdINdO' a=- NdKdlNdO and Md =R - NdKdIN~ 

R == diag (rl,r2, ... ,ry ) 

Following Gopalan and Dey [9], Bhar [I] and Bhar and Gupta [2] and 
rearranging the elements of matrix X, we have 

k 

X [0' I k' n r' and 


. Nd r Rd 


A'], 8 = [p' J.A. 1"r. (X'X) = [K' N;1 
L bxb -Obxl - EbX(p+l) 

(X'Xt = 0 (2.7)- °lxb °lX(p+l) 


-E'(p+l}xb ° (p+l}xl P(p+I}X(p+l} 
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Kd1where L = + Kd"lNdCdNdKd"l, E Kd"INdCd and P = Cd' 

Suppose that the uth observation pertaining to the ith treatment in Jh block, 
u = 1,2, ... ,n; i = 0,1,2, ... ,v; j =1,2, ..,b is denoted by x~O, where x~ is the uth 

row of the matrix X. The estimated value of x~a is given by 

x~O = Yu =J1+Tj +!3j' and using (2.7) we get 

Var(x~6)= (j2X~ (X'XJ XU = L jj - 2EjO + Poo (2.8) 

where L jj is the j'h diagonal element of the matrix L. E jh and Phh' are 

respectively the elements of Jh row and hth column of the matrices E and P. 

3. Detection ofOutlier in Block Designs for Test Treatments-Control 
Comparisons 

We now proceed to obtain a general form of Cook-statistic for detection of 
outliers in the data obtained from designed experiments pertaining to the 
experimental setting for comparing test treatments with a control treatment. The 
contrasts of interest,POI,are of the type 'to-'tj, 'r:j i = 1,2,... ,v, where 

P =[ly Iy]. The BLUE of PSI is POI' For a connected design the 

dispersion matrix of Pel is D( POI) = .,.2PCd"P'. 

thSuppose that the u observation is suspected to be an outlier, 
u =1,2"", n . In the presence of an outlying observation the mean shift model 
can be written as 

y Zy +e (3.1) 

where Z=[X u] and u=p 0 ... l(u th 
) •.. 0]', y (9' 0) and 8 is anon­

zero scalar quantity. 

Following Bhar [1] the Cook statistic for these experimental situations is 
defined as 
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where PO I(u) is the BLUE of PO I obtained after eliminating the U1h outlying 

observation. We then have the following result 

Result 1. {Lemma 3.4: Bhar [I]} 

where V:=} X(X'X)-X' :=B-S; S=BXICdX~B 

The matrices V and S are symmetric and idempotent. Therefore 

U'BX1CdP'(PC~P')-PCdX~Bu02 

where 8is the estimated value of 0 and is given by 8:= (u'Vu) -I u'Vy 

. [0 0]A g-inverse of Cd as given in (2.6) is Cd := 0 Md l and, therefore, 

PCdP' := Md l 
, where Mdl is the information matrix corresponding to the test 

treatments only. 

Therefore, 
D 

I 

_ 
-

U'BXICdP'MdPCdX~Bu32 
vcr 2 

= 
u'Tu32 

(3.2) 

(3.3) 

and CdP'MdPCd := Cd 

Therefore, from (3.3) we have 

T := BXlCdX1B := S (3.4) 

Using (3.4) in (3.2) and replacing 0'2 by &2 , we get 


2
D _ u'Su&2 s))3
(3.5)

1 - v&2 := v&2 
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which is the same as obtained by Bhar and Gupta [2] for a general block design. 
Thus the general expression of Cook-statistic for detection of a single outlier in 
block designs for comparing test treatments with a single control treatment 
remains the same as that of general block designs for making all the possible 
paired comparisons. The difference, however, is that in designs for making test 
treatments-control treatment comparisons the outlier may be an observation 
pertaining to a test treatment or the control treatment. Through some algebraic 

ithsimplifications, it can be shown easily that the Cook-statistic for any 
observation (i =1,2, ... , n) from the fh block is given by 

D. -	 u~CdUO tf 

I - (l-u~CdUO) v 


v 

k j(i) 

where Sjj is the ith diagonal element of matrix S and is given by 

1[k j(i) -1]
Sj; = {(kj(i) 1)lkj(i)}u~Cduo; uo{kj(i)(kj(i) _l)}1/2= kj(i) -f 

where k j(i) is the Jh block which contains the ith observation suspected to be an 

outlier, f is a v x 1 vector of incidence of v treatments in the rhblock, tj is the ith 
studentized residual. 

4. Robustness Aspects ofBalanced Treatment Incomplete Block Designs 

For studying the robustness of designs for comparing several test 
treatments with a control treatment against the presence of a single outlier, we 
may use average Cook statistic as used by Bhar and Gupta [2]. However, for 
studying the problem of outlier in designs for making test treatments vs control 
treatment comparison, we cannot use the Cook statistic averaged over all the n 
observations. If the outlying observation pertains to the control treatment then 
we take the average of Cook statistic over all the no observations pertaining to 
control treatment; on the other hand, if the outlying observation arises from the 
test treatments then we take the average value of Cook statistic over all possible 
(n no) observations. 

Using (3.6), the average value of Cook-statistic when outlying observation 
arises from control treatment is 
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- 1 no S·· t~ 
Do =-'" II .---'-- (4.1) 

n .LJ k .(.) - I Vo j"=l J I _ s.. 
II 

k j{i) 

Similarly, the average value of Cook-statistic when outlying observation 
comes from test treatments is 

n 2 
1 L Sjj tj (4.2)

(n no)' kJ'(j) -1 . V
I=no+l s .. 

II
k j(i) 

It is seen that both the averages in (4.1) and (4.2) are weighted sum of 

[811 8 12 Jsquares of tj's. Write the matrix 8 in partitioned form as 8 = 
8 21 8 22 

where 81i is the sub-matrix corresponding to no observations on control 

treatment and 8 22 is the sub matrix corresponding to n - no observations on test 

treatments. 
We now describe the robustness criterion as in case of general block 

designs as follows: A design is robust against the presence of a single outlier 
pertaining to control treatment if all the diagonal elements of the sub matrix 
8 11 are equal; similarly, a design is robust against the presence of a single 

outlier pertaining to a test treatment if all the diagonal elements of the sub 
matrix 8 22 are equal. 

Now depending upon whether the outlying observation pertains to a 
control treatment or a test treatment, (2.8) may be simplified as below 

Case 1. When the outlying observation pertains to the control treatment 
and appears in the /h block 

For this case the expression in (2.8) is Var( x)}) = L jj - 2E jO + POO ' 

where Ejo is the element in the t row and first column of the matrix E and Poo is 
the first diagonal element of the matrix P, j =1,2, .. ,b. 

Case 2. When the outlying observation pertains to the test treatment and 
appears in the yh block 

For this case the expression in (2.8) is Var( x~ih = L jj - 2Ejh +Phh , 

h = 1,2, ... , v; j = 1, 2, ... , b, where E jh is the element in the t row and 

h th column of the matrix E and Phh is the h th diagonal element of the matrix P. 

It appears difficult to establish the equality of variance of x~9, 
'<I u =1,2, ... , n for a general block design set up. Therefore, we restrict our study 



ROBUST BLOCK DESIGNS 15 

to only those block designs that are variance balanced for estimation of test 
treatments--{:ontrol treatment contrasts. A block design is said to be variance 
balanced for the estimation of test treatments vs control treatment contrasts if it 
permits the estimation of these contrasts with the same variance and covariance 
between any two estimated test treatments vs control treatment contrasts is also 
same. In a proper block design set up, these designs have been termed as 
balanced treatment incomplete block (BTIB) designs. These are defined as 
below 

Definition 4.1. An arrangement of v test treatments and a control treatment 
in b blocks each of size k < (v + 1) is said to be a BTIB design if 

b 

(i) ~>ijni'j A, a constant \:j i *' i' =1,2, ... , V 
j=l 

b 

(ii) Lnojnjj =: Ao, a constant \:j i = 1,2, ... , V 
j=! 

For a BTIB design, the Cd matrix given in (2.6) is 

(4.3)
Cd =:[_ :;°1 VA+~~\-l1'l 

k v k k 

with Md = v A + Ao I-!:11' . It is easy l~ see that a generalized inverse of Cd, as 
k k 


0 0' 1
given in (2.6) is Cd = 0 Md l[ 

It is easily seen that Md1 = 
k 

1+ 
U 

11' 

(Ao + VA) Ao(Ao + VA) 


We now have Poo =0, diagonal element of 

- 1 k U
M d = +----­

(1..0 +vA) 1..0(1..0 + vA) 

AIsoE=Kd1NctCd =Kdl[NdO N'][~ ~dl]= ~ KdIN'Mdl
] 

Therefore, Ejo = °and 

1 U 
Ejh= + ,forallh=I,2, ... ,v 


(AO +VA) AO(Ao +VA) 
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L = Kd1 +KdlNdCdNdKdl 

= Kd1 + KdlN'MdlNKdl 

I I v kA 

Therefore C· = + L n 2. + --- ­

')) k k(A.o + VA) i=! )1 Ao(Ao + vA) 


Let us assume that the design is binary with respect to test treatments, then 

v 

Lnij =k and so 
i=l 

I 	 kA
Ljj = -+ +---­

k 01.0 + vA) 1..0(1..0 + vA) 

IV I I kAA I.J
Thus 	2 ar(yu)= + +----- v u 1,2, ... , no 

(J k (1..0 + vA) 1..0(1..0 + vA) 

1 V I 	 kA 2 2kAA

and 	2 ar(yu)=-+ +---­
(J k (1..0 + vA) 1..0(1..0 + vA) (1..0 + vA) 1..0(1..0 + vA) 

k kA
+ +----­

(1..0 + vA) 1..0(1..0 + vA) 

I 	 k 
=- + Vu=no+l,no+2,~n,n 

k (1..0 + vA) (1..0 + vA) 

which is constant for given v, k, A, 1..0 . We, therefore, have the following result 

Theorem 4.1. All BTIB designs that are binary with respect to test 
treatments are robust against the presence of a single outlier. 

In the present investigation, we have made an attempt to develop test 
statistic for detection of outlier(s) in block designs for making test treatments­
control treatment comparisons and identified robust designs against the presence 
of a single outlier. A design is said to be robust if it minimizes the average value 
of Cook statistic. It may be noted that the criteria of robustness is dependent on 
design matrix X alone and doesn't involve the observation vector y. As a result 
the value of F~statistic for studying the significance of treatment effects may get 
affected by the presence of outlier(s) even if the design is robust according to the 
above criterion. Therefore, besides detection of outlier(s) and identification of 
robust designs in presence of outIier(s), it is essential to develop some 
estimation/analytical procedures so that inference on the parameters of interest 
does not change. One way to deal with such situations is to develop robust 
procedure of estimation of treatment contrasts. However, this is beyond the 
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scope of the present investigation. In the absence of robust estimation 
procedures, one may think of either deleting the observation(s) identified as 
outlier(s) or carrying out the analysis of covariance by defining a covariate for 
each of the outlying observation. Bhar and Gupta [2] have shown that the 
reduced normal equations under the analysis of covariance model or with 
suspected observation(s) deleted from the model are same. Therefore, both the 
above alternatives are same and one may use either of them. As the reduced 
normal equations under the analysis of covariance model or with suspected 
observation(s) deleted from the model are same, therefore, for a design to be 
robust against the presence of a single outlier, it must remain connected after 
one missing observation. The results on robustness of block designs for making 
test treatments-control treatment comparisons against a missing observation 
obtained by Srivastava et ai. [14] may be quite useful in these situations. 
Keeping in view the above, we can say that all BTIB designs, binary with 
respect to test treatments and robust against a single missing observation, are 
robust against the presence of a single outlier as per the criterion of 
minimization of average Cook-statistic. 
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