ICAR-NBSS&LUP Sujala MWS Publ.75

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

MADDENAHALLI (4B3D3N1a) MICROWATERSHED

Gubbi Taluk, Tumkur District, Karnataka

Karnataka Watershed Development Project – II

SUJALA – III

World Bank funded Project

ICAR – NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT GOVT. OF KARNATAKA, BANGALORE

About ICAR - NBSS&LUP

The ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS&LUP), Nagpur, a premier Institute of the Indian Council of Agricultural Research (ICAR), was set up during 1976 with the objective to prepare soil resource maps at national, state and district levels and to provide research inputs in soil resource mapping and its applications, land evaluation, land use planning, land resource management, and database management using GIS for optimising land use on different kinds of soils in the country.

The Bureau has been engaged in carrying out soil resource survey, agro-ecological and soil degradation mapping at the country, state and district levels for qualitative assessment and monitoring the soil health towards viable land use planning. The research activities have resulted in identifying the soil potentials and problems, and the various applications of the soil surveys with the ultimate objective of sustainable agricultural development. The Bureau has the mandate to correlate and classify soils of the country and maintain a National Register of all the established soil series. The Institute is also imparting in-service training to staff of the soil survey agencies in the area of soil survey, land evaluation and soil survey interpretations for land use planning. The Bureau in collaboration with Panjabrao Krishi Vidyapeeth, Akola is running post-graduate teaching and research programme in land resource management, leading to M.Sc. and Ph.D. degrees.

Citation: Rajendra Hegde, Ramesh Kumar, S.C., K.V. Niranjana, S. Srinivas, M.Lalitha, B.A. Dhanorkar, R.S. Reddy and S.K. Singh (2019). "Land Resource Inventory and Socio-Economic Status of Farm Households for Watershed Planning and Development of Maddenahalli (4B3D3N1a) Microwatershed, Gubbi Taluk, Tumkur District, Karnataka", ICAR-NBSS&LUP Sujala MWS Publ.106, ICAR – NBSS & LUP, RC, Bangalore. p.101& 32.

TO OBTAIN COPIES,

Please write to: Director, ICAR - NBSS & LUP,

Amaravati Road, NAGPUR - 440 033, India				
Phone	:	(0712) 2500386, 2500664, 2500545 (O)		
Telefax	:	0712-2522534		
E-Mail	:	director@nbsslup.ernet.in		
Website URL	:	nbsslup.in		
Or				
Head, Regional Centre, ICAR - NBSS&LUP, Hebbal, Bangalore - 560 024				
Phone	:	(080) 23412242, 23510350 (O)		
Telefax	:	080-23510350		
E-Mail	:	nbssrcb@gmail.com		

ICAR-NBSS & LUP Sujala MWS Publ. 75

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

MADDENAHALLI (4B3D3N1a) MICROWATERSHED

Gubbi Taluk, Tumkur District, Karnataka

Karnataka Watershed Development Project – II

Sujala-III

World Bank funded Project

ICAR – NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT, GOVT. OF KARNATAKA, BANGALORE

PREFACE

In Karnataka, as in other Indian States, the livelihoods of rural people are intertwined with farming pursuits. Thechallenges in agriculture are seriously threatening the livelihood of a large number of farmers as they have been practicing farming in contextual factors beyond their control. Climatic factors are the most important ones and have become much more significant in recent times due to rapid climate changes induced by intensive anthropogenic activities affecting our ecosystem in multiple ways. Climate change has become the reality, it is happening and efforts to evolve and demonstrate climate resilient technologies have become essential. Due to the already over stressed scenario of agrarian sector, the climate change is resulting in manifold increase in the complexities, pushing the rural mass to face more and more unpredictable situations. The rising temperatures and unpredictable rainfall patterns are going to test seriously the informed decisions farmers have to make in order to survive in farming and sustain their livelihood.

It is generally recognized that impacts of climate change shall not be uniform across the globe. It is said that impact of climate change is more severe in South Asia. Based on the analysis of meteorological data, it is predicted that in India, there will be upward trend in mean temperature, downward trend in relative humidity, annual rainfall and number of wet days in a year. Also, in general, phenomena like erratic monsoon, spread of tropical diseases, rise in sea levels, changes in availability of fresh water, frequent floods, droughts, heat waves, storms and hurricanes are predicted. Each one of these adverse situations are already being experienced in various parts of India and also at the global level. Decline in agricultural productivity of small and marginal farmers becoming more vulnerable is already witnessed.

In Karnataka, more than 60 per cent of the population live in rural areas and depend on agriculture and allied activities for their livelihood. Though the state has achieved significant progress in increasing the yield of many crops, there is tremendous pressure on the land resources due to the growing and competing demands of various land uses. This is reflected in the alarming rate of land degradation observed. Already more than 50 per cent of the area is affected by various forms of degradation. If this trend continues, the sustainability of the fragile ecosystem will be badly affected. The adverse effects of change in the climatic factors are putting additional stress on the land resources and the farmers dependent on this.

The natural resources (land, water and vegetation) of the state need adequate and constant care and management, backed by site-specific technological interventions and investments particularly by the government. Detailed database pertaining to the nature of the land resources, their constraints, inherent potentials and suitability for various land based rural enterprises, crops and other uses is a prerequisite for preparing locationspecific action plans, which are in tune with the inherent capability of the resources. Any effort to evolve climate resilient technologies has to be based on the baseline scientific database. Then only one can expect effective implementation of climate resilient technologies, monitor the progress, make essential review of the strategy, and finally evaluate the effectiveness of the implemented programs. The information available at present on the land resources of the state are of general nature and useful only for general purpose planning. Since the need of the hour is to have site-specific information suitable for farm level planning and detailed characterization and delineation of the existing land resources of an area into similar management units is the only option.

ICAR-NBSS&LUP, Regional Centre, Bangalore has taken up a project sponsored by the Karnataka Watershed Development Project-II, (Sujala-III), Government of Karnataka funded by the World Bank under Component -1 Land Resource Inventry. This study was taken up to demonstrate the utility of such a database in reviewing, monitoring and evaluating all the land based watershed development programs on a scientific footing. To meet the requirements of various land use planners at grassroots level, the present study on "Land Resource Inventory and Socio-Economic Status of Farm Households for Watershed Planning and Development of Maddenahalli Microwatershed, Gubbi Taluk and Tumakuru District, Karnataka" for integrated development was taken up in collaboration with the State Agricutural Universities, IISC, KSRSAC, KSNDMC as Consortia partners. The project provides detailed land resource information at cadastral level (1:7920 scale) for all the plots and socio-economic status of farm households covering thirty per cent farmers randomely selected representing landed and landless class of farmers in the micowatershed. The project report with the accompanying maps for the Microwatershed will provide required detailed database for evolving effective land use plan, alternative land use options and conservation plans for the planners, administrators, agricutural extention personnel, KVK officials, developmental departments and other land users to manage the land resources in a sustainable manner.

It is hoped that this database will be useful to the planners, administrators and developmental agencies working in the area in not only for formulating location specific developmental schemes but also for their effective monitoring at the village/watershed level.

Nagpur Date: 05.01.2018 S.K. SINGH Director, ICAR - NBSS&LUP, Nagpur

Contributors

Dr. Rajendra Hegde	D. G.K.C. I	
Principal Scientist, Head &	Dr. S.K.Singh	
Project Leader, Sujala-III Project	Director, ICAR-NBSS&LUP	
ICAR-NBSS&LUP, Regional Centre,	Coordinator, Sujala-III Project	
Bangalore	Nagpur	
Soil Survey, Mapping &	Report Preparation	
Dr. K.V. Niranjana	Sh. R.S. Reddy	
	Sh. Venkata Giriyappa	
	Dr. Gayathri, B.	
	Smt. Chaitra, S.P.	
Dr. B.A. Dhanorkar	Sh. Nagendra, B.R.	
	Dr. Savitha, H.R.	
	Dr. Gopali Bardhan	
	Sh. Somashekar T.N	
Field V	Vork	
Sh. C.Bache Gowda	Sh. Sandesh Shastri	
Sh. Somashekar	Sh. Rajeev, G.S.	
Sh. M. Jayaramaiah	Sh. Balasubramanyam, M.G.	
Sh. Paramesha, K.	Sh. Vijaya Kumar	
	Sh. Mayur Patil	
	Sh. Kamalesh K. Avate	
GIS W	Vork	
Dr. S.Srinivas	Sh. A.G. Devendra Prasad	
Sh. D.H.Venkatesh	Sh. Prakashanaik, M.K.	
Smt.K.Sujatha	Sh. Abhijith Sastry, N.S.	
Smt. K.V.Archana	Sh. Mahamad Ali, M.	
Sh. N.Maddileti	Sh. Amar Suputhra, S.	
	Sh. Avinash, K.N.	
	Sh. Anudeep, Y.	
	Sh. Sudip Kumar Suklabaidya	
	Smt. K.Karunya Lakshmi	
	Ms. Seema, K.V.	
	Ms. A. Rajab Nisha	

Laborato	ry Analysis
Dr. K.M.Nair	Smt. Steffi Peter
Smt. Arti Koyal	Smt. Thara, V.R.
Smt. Parvathy, S.	Smt. Roopa, G.
	Ms. Shwetha, N.K.
	Smt. Ishrat Haji
	Ms. Pavana Kumari, P.
	Sh. Shanthaveeraswamy, H.M.
	Sh. Ramesh, K.
	Ms. Padmaja, S.
	Ms. Veena, M.
	Conservation
Sh. Sunil P. Maske	
Socio-Econo	omic Analysis
Dr. S.C. Ramesh Kumar	Sh. M. K. Prakashanaik
	Ms. Sowmya K.B
	Sh.Manjunath M
	Sh.Veerabhadraswamy R
	Sh.Lankesh RS
	Sh.Kalaveerachari R Kammar
	Sh.Pradyumma U
	Sh.Yogesha HN
	Sh.Vijay kumar lamani
	Sh.Arun N Kambar
	Sh.Vinay
	Sh.Basavaraj.Biradar
	Sh.Vinod R
	Sh.Praveenkumar P Achalkar
	Sh.Rajendra D
Watershed Development D	epartment, GoK, Bangalore
Sh. Rajeev Ranjan IFS	Dr. A. Natarajan
Project Director & Commissioner, WDD	NRM Consultant, Sujala-III Project
Dr. S.D. Pathak IFS	
Executive Director & Chief Conservator of I	Forests, WDD

PART-A

LAND RESOURCE INVENTORY

Contents

Preface		
Contributor	ſS	
Executive S		
Chapter 1	Introduction	1
-	Geographical Setting	3
2.1	Location and Extent	3
	Geology	3
2.3	Physiography	4
2.4	Drainage	4
2.5	Climate	5
2.6		6
2.7	Land Utilization	7
Chapter 3	Survey Methodology	11
3.1	Base maps	11
3.2	Image Interpretation for Physiography	11
3.3	Field Investigation	14
3.4		16
	Laboratory Characterization	16
Chapter 4	The Soils	21
4.1	Soils of Granite gneiss Landscape	21
Chapter 5	Interpretation for Land Resource Management	27
5.1	Land Capability Classification	27
5.2	Soil Depth	29
5.3	Surface Soil Texture	30
5.4	Soil Gravelliness	31
5.5	Available Water Capacity	32
5.6	• •	33
5.7	Soil Erosion	34
	Fertility Status	37
	Soil Reaction (pH)	37
6.2	Electrical Conductivity (EC)	37
6.3	Organic Carbon (OC)	37
6.4	Available Phosphorus	37
6.5	Available Potassium	40
6.6	Available Sulphur	40
6.7	Available Boron	40
6.8	Available Iron	40
6.9	Available Manganese	40
6.10	Available Copper	40
6.11	Available Zinc	40
Chapter 7	Land Suitability for Major Crops	45
7.1	Land suitability for Sorghum	45
7.2	Land suitability for Fodder sorghum	48
7.3	Land suitability for Maize	49

7.4	Land suitability for Upland Paddy	50
7.5	Land suitability for Finger millet	52
	Land suitability for Redgram	53
7.0	Land suitability for Horsegram	54
7.7	Land suitability for Fieldbean	56
7.8	Land suitability for Cowpea	57
	Land suitability for Groundnut	58
7.10	Land suitability for Sunflower	60
7.11	Land suitability for Onion	61
7.12	Land suitability for Chilli	63
	Land suitability for Brinjal	64
7.14	Land suitability for Tomato	65
7.13		67
7.10	Land suitability for Mango	69
	Land suitability for Sapota Land suitability for Guava	71
		73
	Land suitability for Pomegranate	75
7.20	Land suitability for Banana	75
7.21	Land suitability for Jackfruit	76
	Land Suitability for Jamun	77
	Land Suitability for Musambi	
7.24	Land Suitability for Lime	80
7.25	Land Suitability for Cashew	82
	Land Suitability for Custard Apple	<u>83</u> 85
	Land Suitability for Amla	
7.28	Land Suitability for Tamarind	86
7.29	Land suitability for Marigold	88
7.30	Land suitability for Chrysanthemum	89
	Land suitability for Jasmine	91
7.32	Land suitability for Coconut	92
	Land suitability for Arecanut	93
7.34	Land suitability for Mulbery	94
7.35	Land Use classes	96
7.36	Proposed Crop Plan	97
Chapter 8	Soil Health Management	101
Chapter 9	Soil and Water conservation Treatment Plan	105
9.1	Treatment Plan	106
9.2	Recommended Soil and Water Conservation measures	109
9.3	Greening of Microwatershed	110
	References	113
	Appendix I	I
	Appendix II	XI
	Appendix III	XIX

LIST OF TABLES

2.1	Mean Monthly Rainfall, PET, 1/2 PET at Gubbi Taluk, Tumakuru District	5
2.2	Land Utilization in Tumakuru District	7
3.1	Differentiating Characteristics used for Identifying Soil Series	15
3.2	Soil map unit description of Maddenahalli Microwatershed	19
7.1	Soil-Site Characteristics of Maddenahalli Microwatershed	46
7.2	Crop suitability for Sorghum	47
7.3	Crop suitability for Fodder sorghum	48
7.4	Crop suitability for Maize	50
7.5	Crop suitability for Upland Paddy	51
7.6	Crop suitability for Finger millet	52
7.7	Crop suitability for Redgram	54
7.8	Crop suitability for Horsegram	55
7.9	Crop suitability for Fieldbean	57
7.10	Crop suitability for Groundnut	59
7.11	Crop suitability for Sunflower	60
7.12	Crop suitability for Onion	62
7.13	Crop suitability for Chilli	63
7.14	Crop suitability for Brinjal	65
7.15	Crop suitability for Tomato	66
7.16	Crop suitability for Mango	68
7.17	Crop suitability for Sapota	70
7.18	Crop suitability for Guava	72
7.19	Crop suitability for Pomegranate	74
7.20	Crop suitability for Banana	75
7.21	Crop suitability for Jackfruit	77
7.22	Crop Suitability for Jamun	78
7.23	Crop Suitability for Musambi	79
7.24	Crop Suitability for Lime	81
7.25	Crop Suitability for Cashew	83
7.26	Crop Suitability for Custard Apple	84
7.27	Crop Suitability for Amla	86
7.28	Crop Suitability for Tamarind	87
7.29	Crop suitability for Marigold	88
7.30	Crop suitability for Chrysanthemum	90
7.31	Crop suitability for Jasmine	91
7.32	Crop suitability for Coconut	93
7.33	Crop suitability for Arecanut	94
7.34	Crop suitability for Mulbery	95
7.35	Proposed Crop Plan for Maddenahalli Microwatershed	98

LIST OF FIGURES

2.1	Location map of Maddenahalli Microwatershed	3
	-	
2.2	Granite and granite gneiss rocks	4
2.3	Granite rocks	4
2.4	Rainfall distribution in Gundlupet Taluk, Chamarajanagar District	6
2.5	Natural vegetation of Maddenahalli Microwatershed	6
2.6	Current Land use – Maddenahalli Microwatershed	8
2.7	Location of Wells and Conservation Structures- Maddenahalli Microwatershed	8
2.8.a	Different crops and cropping systems in Maddenahalli Microwatershed	9
2.8.b	Different crops and cropping systems in Maddenahalli Microwatershed	10
3.1	Scanned and Digitized Cadastral map of Maddenahalli Microwatershed	13
3.2	Satellite image of Maddenahalli Microwatershed	13
3.3	Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Maddenahalli Microwatershed	14
3.4	Location of profiles in a transect	14
3.5	Soil phase or management units of Maddenahalli Microwatershed	17
5.1	Land Capability Classification of Maddenahalli Microwatershed	29
5.2	Soil Depth map of Maddenahalli Microwatershed	30
5.3	Surface Soil Texture map of Maddenahalli Microwatershed	31
5.4	Soil Gravelliness map of Maddenahalli Microwatershed	32
5.5	Soil Available Water Capacity map of Maddenahalli Microwatershed	33
5.6	Soil Slope map of Maddenahalli Microwatershed	34
5.7	Soil Erosion map of Maddenahalli Microwatershed	35
6.1	Soil Reaction (pH) map of Maddenahalli Microwatershed	38
6.2	Electrical Conductivity (EC) map of Maddenahalli Microwatershed	38
6.3	Soil Organic Carbon (OC) map of Maddenahalli Microwatershed	39
6.4	Soil Available Phosphorus map of Maddenahalli Microwatershed	39
6.5	Soil Available Potassium map of Maddenahalli Microwatershed	41
6.6	Soil Available Sulphur map of Maddenahalli Microwatershed	41
6.7	Soil Available Boron map of Maddenahalli Microwatershed	42
6.8	Soil Available Iron map of Maddenahalli Microwatershed	42
6.9	Soil Available Manganese map of Maddenahalli Microwatershed	43
6.10	Soil Available Copper map of Maddenahalli Microwatershed	43
6.11	Soil Available Zinc map of Maddenahalli Microwatershed	44
7.1	Land suitability for Sorghum	47
7.2	Land suitability for Fodder sorghum	49

7.3	Land suitability for Maize	50
7.4	Land suitability for Upland Paddy	51
7.5	Land suitability for Finger millet	53
7.6	Land suitability for Redgram	54
7.7	Land suitability for Horsegram	56
7.8	Land suitability for Fieldbean	57
7.9	Land suitability for Cowpea	58
7.10	Land suitability for Groundnut	59
7.11	Land suitability for Sunflower	60
7.12	Land suitability for Onion	62
7.13	Land suitability for Chilli	63
7.14	Land suitability for Brinjal	65
7.15	Land suitability for Tomato	67
7.16	Land suitability for Mango	69
7.17	Land suitability for Sapota	71
7.18	Land suitability for Guava	73
7.19	Land suitability for Pomegranate	74
7.20	Land suitability for Banana	76
7.21	Land suitability for Jackfruit	77
7.22	Land Suitability for Jamun	78
7.23	Land Suitability for Musambi	80
7.24	Land Suitability for Lime	82
7.25	Land Suitability for Cashew	83
7.26	Land Suitability for Custard Apple	85
7.27	Land Suitability for Amla	86
7.28	Land Suitability for Tamarind	87
7.29	Land suitability for Marigold	89
7.30	Land suitability for Chrysanthemum	90
7.31	Land suitability for Jasmine	92
7.32	Land suitability for Coconut	93
7.33	Land suitability for Arecanut	94
7.34	Land suitability for Mulbery	95
7.35	Land Management Units map of Maddenahalli Microwatershed	97
7.36	Soil and water conservation map of Maddenahalli Microwatershed	110

EXECUTIVE SUMMARY

The land resource inventory of Maddenahalli Microwatershed was conducted using village cadastral maps and IRS satellite imagery on 1:7920 scale. The false colour composites of IRS imagery were interpreted for physiography and the physiographic delineations were used as base for mapping soils. The soils were studied in several transects and a soil map was prepared with phases of soil series as mapping units. Random checks were made all over the area outside the transects to confirm and validate the soil map unit boundries. The soil map shows the geographic distribution and extent, characterstics, classification, behaviour and use potentials of the soils in the microwartershed.

The present study covers an area of 588 ha in Gubbi taluk of Tumakuru district, Karnataka. The climate is semiarid and categorized as drought- prone with an average annual rainfall of 813 mm, of which about 466 mm is received during south –west monsoon, 196 mm during north-east and the remaining 151 mm during the rest of the year. An area of about 95 per cent is covered by soils, five per cent by others. The salient findings from the land resource inventory are summarized briefly below.

- The soils belong to 6 soil series and 18 soil phases (management units) and 5 land management units.
- The length of crop growing period is about 150 days starting from 3^{rd} week of June to third week of November.
- From the master soil map, several interpretative and thematic maps like land capability, soil depth, surface soil texture, soil gravelliness, available water capacity, soil slope and soil erosion were generated.
- Soil fertility status maps for macro and micronutrients were generated based on the surface soil samples collected at every 250 m grid interval.
- Land suitability for growing 34 major agricultural and horticultural crops were assessed and maps showing the degree of suitability along with constraints were generated.
- About 95 per cent area is suitable for agriculture.
- About 95 per cent of the soils are moderately deep (75-100 cm) to very deep (>150 cm).
- About 17 per cent of the area has clayey soils at the surface and 78 per cent loamy soils.
- About 56 per cent of the area has non-gravelly soils, 34 per cent gravelly soils (15-35 % gravel) and 6 per cent has very gravelly (35-60% gravel) soils.
- ✤ About 55 per cent has soils that are very low (<50mm/m) to low (51-100 mm/m) in available water capacity, 23 per cent medium (101-150 mm/m) and 18 per cent has very high (>200 mm/m) available water capacity.
- About 83 per cent of the area has very gently sloping (1-3% slope) lands and 12 per cent area has nearly level (0-1%).
- An area of about 74 per cent has soils that are slightly eroded (e1) and 22 per cent moderately eroded (e2).

- An area of about 28 per cent has soils that are slightly acidic (pH 6.0-6.5),40 per cent area moderately acid (pH 5.5-6.0), 28 per cent strongly acid (pH 5.0-5.5) and 6 per cent area has neutral (pH 6.5-7.3).
- The Electrical Conductivity (EC) of the soils are dominantly $<2 \text{ dsm}^{-1}$ indicating that the soils are non-saline.
- About 63 per cent of the soils are low (<0.5%) in organic carbon and 32 per cent soils are medium (0.5-0.75%).
- Entire area is high (>57 kg/ha) in available phosphorus.
- About 19 per cent of the soils are low (<145 kg/ha), medium (145-337 kg/ha) in 73 per cent area and 3 per cent of the soils are high (>337 kg/ha) in available potassium.
- Available sulphur is high (>10 ppm) in about 1 per cent area and medium (10-20 ppm) in about 94 per cent area.
- Available boron is low (0.5 ppm) in about 95 per cent area and medium (0.5-1.0 ppm) in <1 per cent area.
- Available iron is sufficient (>4.5 ppm) in the entire microwatershed area.
- Available manganese and copper are sufficient in all the soils of the microwatershed.
- Available zinc is deficient (<0.6 ppm) in 43 per cent and sufficient (>0.6 ppm) in 52 per cent of soils of the microwatershed.
- The land suitability for 34 major crops grown in the microwatershed was assessed and the areas that are highly suitable (Class S1) and moderately suitable (Class S2) are given below. It is however to be noted that a given soil may be suitable for various crops but what specific crop to be grown may be decided by the farmer looking to his capacity to invest on various inputs, marketing infrastructure, market price and finally the demand and supply position.

		tability			itability
	Area in ha (%)			Area in ha (%)	
Crop	Highly	Moderately	Crop	Highly	Moderately
	suitable	suitable		suitable	suitable
	(S1)	<i>(S2)</i>		(S1)	(S2)
Sorghum	219 (37)	18 (3)	Guava	86 (15)	423 (72)
Fodder Sorghum	219 (37)	18 (3)	Pomegranate	219 (37)	18 (3)
Maize	-	237 (40)	Banana	219 (37)	18 (3)
Upland paddy	219 (37)	68 (12)	Jackfruit	219 (37)	18 (3)
Finger millet	219 (37)	68 (12)	Jamun	219 (37)	18 (3)
Red gram	219 (37)	18 (3)	Musambi	219 (37)	18 (3)
Horse gram	219 (37)	340 (58)	Lime	219 (37)	18 (3)
Field bean	219 (37)	18 (3)	Cashew	86 (15)	405 (69)
Cowpea	219 (37)	18 (3)	Custard apple	219 (37)	340 (58)
Groundnut	86 (15)	322 (55)	Amla	219 (37)	340 (58)
Sunflower	219 (37)	18 (3)	Tamarind	219 (37)	18 (3)
Onion	133 (23)	104 (18)	Marigold	219 (37)	18 (3)
Chilli	219 (37)	18 (3)	Chrysanthemum	219 (37)	18 (3)
Brinjal	219 (37)	18 (3)	Jasmine	219 (37)	18 (3)
Tomato	219 (37)	18 (3)	Coconut	86 (15)	151 (26)
Mango	219 (37)	18 (3)	Arecanut	86 (15)	151 (26)
Sapota	219 (37)	18 (3)	Mulbery	25 (5)	4557)

Land suitability for various crops in the Microwatershed

Apart from the individual crop suitability, a proposed crop plan has been prepared for the 5 identified LMUs by considering only the highly and moderately suitable lands for different crops and cropping systems with food, fodder, fibre and horticulture crops.

- Maintaining soil-health is vital to crop production and conserve soil and land resource base for maintaining ecological balance and to mitigate climate change. For this, several ameliorative measures have been suggested to these problematic soils like saline/alkali, highly eroded, sandy soils etc.,
- Soil and water conservation treatment plan has been prepared that would help in identifying the sites to be treated and also the type of structures required.
- As part of the greening programme, several tree species have been suggested to be planted in marginal and submarginal lands, field bunds and also in the hillocks, mounds and ridges that would help in supplementing the farm income, provide fodder and fuel and generate lot of biomass. This would help in maintaining an ecological balance and also contributes to mitigating the climate change.

INTRODUCTION

Land is a scarce resource and basic unit for any material production. It can support the needs of the growing population, provided they use the land in a rational and judicious manner. But what is happening in many areas of the state is a cause for concern to everyone involved in the management of land resources at the grassroots level. The area available for agriculture is about 51 per cent of the total geographical area and more than 60 per cent of the people are still dependant on agriculture for their livelihood. The limited land area is under severe stress and strain due to increasing population pressure and competing demands of various land uses. Due to this, every year there is significant diversion of farm lands and water resources for non-agricultural purposes. Apart from this, due to lack of interest in farmers for farming, large tracts of cultivable lands are turning into fallows in many areas and this trend is continuing at an alarming rate.

Further, land degradation has emerged as a serious problem which has already affected about 38 lakh ha of cultivated area in the state. Soil erosion alone has degraded about 35 lakh ha. Almost all the uncultivated areas are facing various degrees of degradation, particularly soil erosion. Salinity and alkalinity has emerged as a major problem affecting more than 3.5 lakh ha in the irrigated areas of the state. Nutrient depletion and declining factor productivity is common in both rainfed and irrigated areas. The degradation is continuing at an alarming rate and there appears to be no systematic effort among the stakeholders to contain this process. In recent times, an aberration of weather due to climate change phenomenon has added another dimension leading to unpredictable situations to be tackled by the farmers.

In this critical juncture, the challenge before us is not only to increase the productivity per unit area which is steadily declining and showing a fatigue syndrome, but also to prevent or at least reduce the severity of degradation. If the situation is not reversed at the earliest, then the sustainability of the already fragile crop production system and the overall ecosystem will be badly affected in the state. The continued neglect and unscientific use of the resources for a long time has led to the situation observed at present in the state. It is a known fact and established beyond doubt by many studies in the past that the cause for all kinds of degradation is the neglect and irrational use of the land resources. Hence, there is urgent need to generate a detailed site-specific farm level database on various land resources for all the villages/watersheds in a time bound manner that would help to protect the valuable soil and land resources and also to stabilize the farm production.

Therefore, the land resource inventory required for farm level planning is the one which investigates not only the surface but also consider the other parameters which are critical for productivity *viz.*, soils, climate, water, minerals and rocks, topography, geology, hydrology, vegetation, crops, land use pattern, animal population, socio-

economic conditions, infrastructure, marketing facilities and various schemes and developmental works of the government etc. From the data collected at farm level, the specific problems and potentials of the area can be identified and highlighted, conservation measures required for the area can be planned on a scientific footing, suitability of the area for various uses can be worked out and finally viable and sustainable land use options suitable for each and every land holding can be prescribed.

The Land Resource Inventory is basically done for identifying the potential and problem areas, developing sustainable land use plans, estimation of surface run off and water harvesting potential, preparation of soil and water conservation plans, land degradation/desertification etc. The Bureau is presently engaged in developing an LRI methodology using high resolution satellite remote sensing data and Digital Elevation Model (DEM) data to prepare Landscape Ecological Units (LEU) map representing agro-ecosystem as a whole. The LEU is preferred over landform as the base map for LRI. LEU is the assemblage of landform, slope and land use. An attempt was made to upscale the soil resource information from 1:250000 and 1:50000 scale to the LEU map in Goa and other states.

The land resource inventory aims to provide site specific database for Maddenahalli microwatershed in Gubbi Taluk, Tumakuru District, Karnataka State for the Karnataka Watershed Development Department. The database was generated by using cadastral map of the village as a base along with high resolution IRS LISS IV and Cartosat-1 merged satellite imagery.

The study was organized and executed by the ICAR- National Bureau of Soil Survey and Land Use Planning, Regional Centre, Bangalore under Generation of Land Resource Inventory Data Base Component-1 of the Sujala-III Project funded by the World Bank.

GEOGRAPHICAL SETTING

2.1 Location and Extent

Tumakuru District popularly known as *Kalpataru Nadu* (famous for production of Coconuts) is located in the southeastern part of Karnataka state. The Maddenahalli microwatershed (Bangihalli subwatershed) is located in the southeastern part of Karnataka in Gubbi Taluk, Tumakuru District, Karnataka State (Fig.2.1). It comprises parts of Gadi Ankanahalli, Jogihalli, Karegondanahalli, Sanabanahalli, Maranahalli, Madhenahalli and Pinnenahalli villages. It lies between 13⁰ 27' and 13⁰ 28' North latitudes and 76⁰ 51' to 76⁰53' East longitudes and covers an area of 588 ha. It is about 71 km south of Tumakuru and is surrounded by Sanabanahalli on the northeast, Pinnenahalli on northwest, Gadi Ankanahalli on the south and Maranahalli on the eastern side.

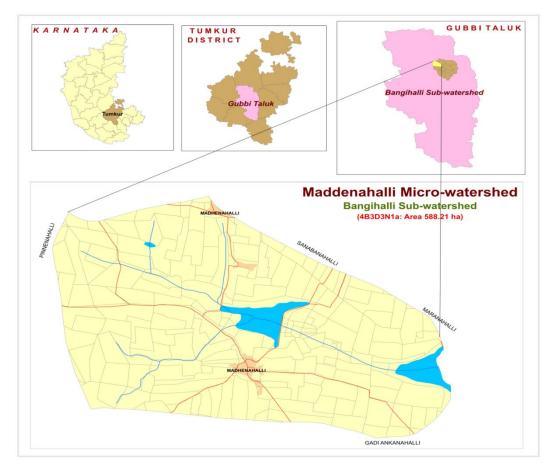


Fig.2.1 Location map of Maddenahalli Microwatershed

2.2 Geology

Major rock formation observed in the microwatershed are of Archaean age and comprise of (Figs.2.2 and 2.3) granite and granite gneiss. They are essentially pink to gray granite gneisses. The rocks are coarse to medium grained. They consist primarily of

quartz, feldspar, biotite and hornblende. The gray granite gneisses are highly weathered, fractured and fissured upto a depth of about 10 m.

Fig.2.2 Granite and granite gneiss rocks

Fig. 2.3 Granite rocks

2.3 Physiography

Physiographically, the area has been identified as granite gneiss landscape based on geology. It has been further divided into three landforms *viz*; mounds/ ridges, uplands and lowlands based on slope and other relief features. They have been further subdivided into four physiographic units, *viz*; summits, side slopes, very gently sloping uplands and lowlands/valleys. The elevation ranges from 832-856 m. The mounds and ridges are mostly covered by rock outcrops.

2.4 Drainage

There are no perennial rivers flowing in Gubbi taluk. However, the area is drained by several small seasonal streams like Hosa kaluve which joins the river Shimsha along its course. Though, they are not perennial, during rainy season, it carries large quantities of rain water. The microwatershed area has only few small tanks which are not capable of storing water that flows during the rainy season. Due to this, the ground water recharge is very much affected in the villages. This is reflected in the failure of many bore wells in the villages. If the available rain water is properly harnessed by constructing new tanks and recharge structures at appropriate places in the villages, then the drinking and irrigation needs of the area can be easily met. The drainage network is dendritic to sub parallel.

2.5 Climate

The district falls under semiarid tract and is categorized as drought-prone with average annual rainfall of 813 mm (Table 2.1). Of the total rainfall, a maximum of 466 mm is received during south–west monsoon period from June to September, north-east monsoon from October to early December contributes about 196 mm and the remaining 151 mm is received during the rest of the year. The winter season is from December to February. During April and May, the temperatures reach up to 35°C and in December and January, the temperatures will go down to 20°C. Rainfall distribution is shown in Figure 2.4. The average Potential Evapo-Transpiration (PET) is 110 mm and varies from a low of 73 mm in December to 152 mm in the month of April. The PET is always higher than precipitation in all the months except in the last week of August to first week of October. Generally, the Length of crop Growing Period (LGP) is 150 days and starts from 3rd week of June to third week of November.

Tumakuru District				
Sl. no.	Months	Rainfall	PET	1/2 PET
1	JAN	6.50	78.30	39.15
2	FEB	7.00	102.70	51.35
3	MAR	24.40	142.60	71.30
4	APR	40.50	151.60	75.80
5	MAY	72.50	149.70	74.85
6	JUN	78.50	121.10	60.55
7	JUL	99.20	107.60	53.80
8	AUG	119.70	105.80	52.90
9	SEP	168.30	101.20	50.60
10	OCT	141.90	100.20	50.10
11	NOV	47.00	85.00	42.50
12	DEC	7.30	73.00	36.50
	Total	812.80	109.90	

Table 2.1 Mean Monthly Rainfall, PET, 1/2 PET in Gubbi Taluk, Tumakuru District

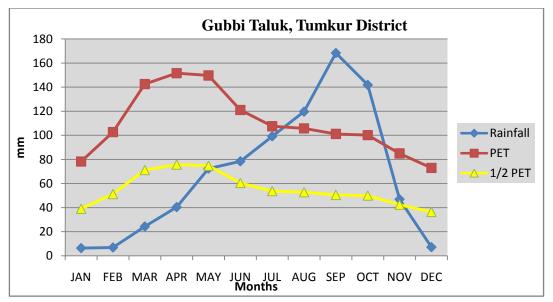


Fig 2.4 Rainfall distribution in Gubbi Taluk, Chamarajanagara District

2.6 Natural Vegetation

The natural vegetation is sparse comprising few tree species, shrubs and herbs. The mounds, ridges and boulders occupy very sizeable areas which are under thin to moderately thick forest vegetation. Still, there are some remnants of the past forest cover which can be seen in patches in some ridges and hillocks in the microwatershed.

Apart from the continuing deforestation, the presence of large population of goats, sheep and other cattle in the microwatershed is causing vegetative degradation of whatever little vegetation left in the area. The uncontrolled grazing has left no time for the regeneration of the vegetative cover. This leads to the accelerated rate of erosion on the hill slopes resulting in the formation of deep gullies in the foot slopes that eventually result in the heavy siltation of tanks and reservoirs in the microwatershed.

Fig. 2.5 Natural vegetation of Maddenahalli Microwatershed

2.7 Land Utilization

About 64 per cent area (Table 2.2) in Gubbi taluk is cultivated at present. An area of about 4 per cent is currently barren. Forests occupy an area of about 8 per cent. Most of the mounds, ridges and bouldery areas have very poor vegetative cover. Major crops grown in the area are Ragi, Groundnut, Maize, Sorghum, Redgram, Horse gram, Sunflower, Field bean, Cowpea, Mango, Banana, Mulberry and Plantation crops like Coconut, Banana and Arecanut. The cropping intensity is 116 per cent in the taluk. While carrying out land resource inventory, the land use/land cover particulars are collected from all the survey numbers and a current land use map of the Maddenahalli microwatershed is prepared. The current land use map generated shows the arable and non-arable lands, other land uses and different types of crops grown in the area (Fig 2.6). The different crops and cropping systems adopted in the microwatershed is presented in Figures 2.8.a &b. Simultaneously, enumeration of wells (bore wells and open wells) and existing conservation structures in the microwatershed are made and their location in different survey numbers is located on the cadastral map. Map showing the location of wells and other water bodies and conservation structures in Maddenahalli microwatershed is given in Fig.2.7.

Sl. No.	Agricultural land use	Area (ha)	Per cent
1	Total geographical area	122057	-
2	Total cultivated area	78418	64.24
3	Area sown more than once	12934	-
4	Cropping intensity	-	116.49
5	Trees and grooves	2811	2.30
6	Forest	10090	8.26
7	Cultivable wasteland	2731	2.23
8	Permanent Pasture land	3850	3.15
9	Barren land	4971	4.07
10	Non- Agriculture land	17390	14.24

 Table 2.2 Land Utilization in Gubbi Taluk

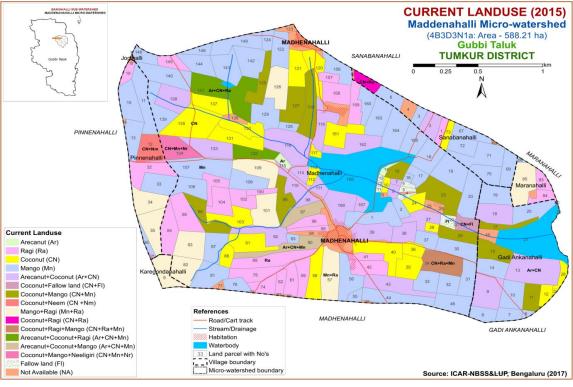


Fig.2.6 Current Land Use - Maddenahalli Microwatershed

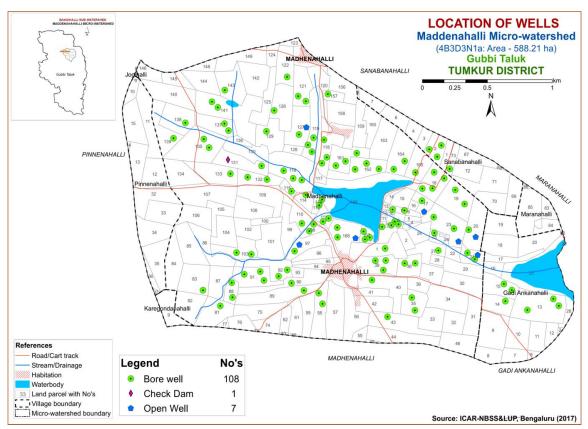


Fig.2.7 Location of Wells and Conservation Structures - Maddenahalli Microwatershed

Fig.2.8.a Different crops and cropping systems in Maddenahalli Microwatershed

Fig.2.8.b Different crops and cropping systems in Maddenahalli Microwatershed

SURVEY METHODOLOGY

The purpose of land resource inventory is to delineate similar areas (soil series and phases), which respond or expected to respond similarly to a given level of management. This was achieved in Maddenahalli microwatershed by the detailed study of all the soil characteristics (depth, texture, colour, structure, consistence, coarse fragments, porosity, soil reaction, soil horizons etc.) and site characteristics (slope of the land, erosion, drainage, occurrence of rock fragments etc.). This is followed by grouping of similar areas based on soil-site characteristics into homogeneous (management units) units, and showing their extent and their geographic distribution on the microwatershed cadastral map. The detailed survey at 1:7920 scale was carried out in an area of 588 ha. The methodology followed for carrying out land resource inventory was as per the guidelines given in Soil Survey Manual (IARI, 1971; Soil Survey Staff, 2006; Natarajan *et al.*, 2015) which is briefly described below.

3.1 Base Maps

The detailed survey of the land resources occurring in the microwatershed was carried out by using digitized cadastral map as a base. The cadastral map shows field boundaries with their survey numbers, location of tanks, streams and other permanent features of the area (Fig. 3.1). Apart from the cadastral map, remote sensing data products from Cartosat-1 and LISS IV merged at the scale of 1:7920 were used in conjunction with the cadastral map to identify the landscapes, landforms and other surface features. The imagery helped in the identification and delineation of boundaries between hills, uplands and lowlands, water bodies, forest and vegetated areas, roads, habitations and other cultural features of the area (Fig.3.2).The cadastral map was overlaid on the satellite imagery (Fig.3.3) that helps to identify the parcel boundaries and other permanent features in the field. Apart from cadastral maps and images, toposheets of the area (1:50,000 scale) were also used for initial traversing, identification of geology, landscape, landforms, drainage features, present land use and also for selection of transects in the microwatershed.

3.2 Image Interpretation for Physiography

False Colour Composites (FCCs) of Cartosat-I and LISS-IV merged satellite data covering the microwatershed area was visually interpreted using image interpretation elements along with the geology map and all the available collateral data with local knowledge. The delineated physiographic boundaries were transferred on to a cadastral map overlaid on satellite imagery. Physiographically, the area has been identified as granite gneiss landscape and is divided into land forms such as ridges, mounds, uplands and valleys based on slope and other relief features. They were further subdivided into physiographic/ image interpretation units based on image characteristics. The image interpretation legend for physiography is given below.

Image Interpretation Legend for Physiography G- Granite gneiss landscape

G1			Hills/ Ridges/ Mounds
	G11		Summits
	G12		Side slopes
		G121	Side slopes with dark grey tones
G2			Uplands
	G21		Summits
	G22		Gently sloping uplands
		G221	Gently sloping uplands, yellowish green (eroded)
		G222	Gently sloping uplands, yellowish white (severely
			eroded)
	G23		Very gently sloping uplands
		G231	Very gently sloping uplands, yellowish green
		G232	Very gently sloping uplands, medium green and pink
		G233	Very gently sloping uplands, pink and green (scrub
			land)
		G234	Very gently sloping uplands, medium greenish grey
		G235	Very gently sloping uplands, yellowish white (eroded)
		G236	Very gently sloping uplands, dark green
		G237	
			garden)
		G238	Very gently sloping uplands, pink and bluish white
			(eroded)
	G24		Valleys/ lowlands
		G241	Valleys, pink tones
		G242	Valleys gray mixed with pink tones

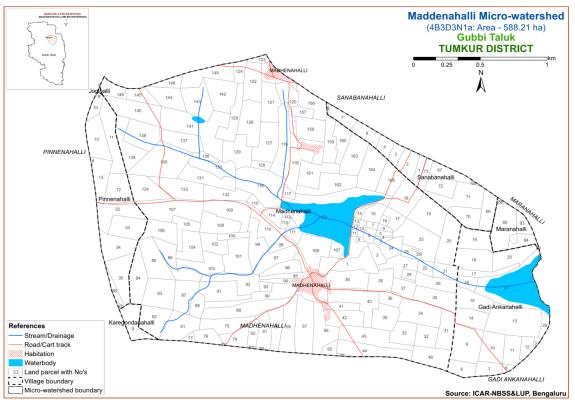


Fig 3.1 Scanned and Digitized Cadastral map of Maddenahalli Microwatershed

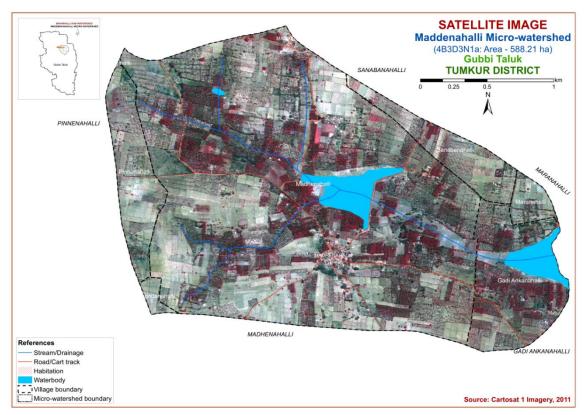


Fig.3.2 Satellite Image of Maddenahalli Microwatershed

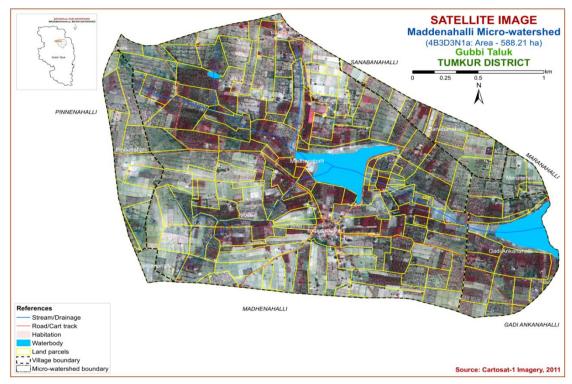


Fig.3.3 Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Maddenahalli Microwatershed

3.3 Field Investigation

The field boundaries and survey numbers given on the cadastral sheet were located on the ground by following permanent features like roads, cart tracks, nallas, streams, tanks etc., and wherever changes were noticed, they were incorporated on the microwatershed cadastral map. Preliminary traverse of the microwatershed was carried out with the help of cadastral map, imagery and toposheets. While traversing, landforms and physiographic units identified were checked and preliminary soil legend was prepared by studying soils at few selected places. Then, intensive traversing of each physiographic unit like hills, ridges, uplands and valleys was carried out. Based on the variability observed on the surface, transects (Fig. 3.4) were selected across the slope covering all the landform units in the microwatershed (Natarajan and Dipak Sarkar, 2010).

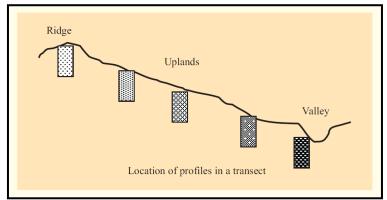


Fig: 3.4. Location of profiles in a transect

In the selected transect, soil profiles (Fig. 3.4) were located at closely spaced intervals to take care of any change in the land features like break in slope, erosion, gravel, stones etc. In the selected sites, profiles (vertical cut showing the soil layers from surface to the rock) were opened up to 200 cm or to the depth limited by rock or hard substratum and studied in detail for all their morphological and physical characteristics. The soil and site characteristics were recorded for all profile sites on a standard proforma as per the guidelines given in USDA Soil Survey Manual (Soil Survey Staff, 2012). Apart from the transect study, profiles were also studied at random, almost like in a grid pattern, outside the transect areas.

Based on the soil characteristics, the soils were grouped into different soil series. Soil series is the most homogeneous unit having similar horizons and properties and behaves similarly for a given level of management. Soil depth, texture, colour, kind of horizon and horizon sequence, amount and nature of gravel present, nature of substratum etc, were used as the major differentiating characteristics for identifying soil series occurring in the area. The differentiating characteristics used for identifying the soil series are given in Table 3.1. Based on the above characteristics, 6 soil series were identified in the Maddenahalli microwatershed.

Soils of Granite gneiss Landscape							
Sl.No	Soil Series	Depth (cm)	Colour (moist)	Texture (control section)	Gravel (%) (control section)	Horizon sequence	Calcareo- usness
1	Bidanagere	75-100	5YR3/3,3/4,4/3,5/4	scl-sc	35-60	Ap-Bt-Cr	-
	(BDG)		2.5YR3/4				
2	Balapur (BPR)	100-150	2.5YR2.5/4,3/4	sc-c	>35	Ap-Bt-Cr	-
3	Muradi	>150	2.5YR3/6,4/6,5/6,	scl-sc	-	Ap-Bt	-
	(MRD)		5/8				
4	Ranatur (RTR)	>150	2.5YR2.5/3,2.5/4, 3/3,4/6	с	-	Ap-Bt	-
5	Kadagathur (KDT)	>150	10 YR 3/1, 3/2, 3/3, 7.5YR 3/3, 3/4	sc-c	-	Ap-Bw	-
Low land Series							
1	Thimmasandra (TSD)	>150	10YR2/12/2,3/1, 3/2,4/1, 4/2,4/3	SC-C	-	Ap-Bw	-

Table 3.1 Differentiating Characteristics used for identifying Soil Series (Characteristics are of Series Control Section)

3.4 Soil Mapping

The area under each soil series was further separated into 18 soil phases and their boundaries delineated on the cadastral map based on the variations observed in the texture of the surface soil, slope, erosion, presence of gravel, stoniness etc. A soil phase is a subdivision of soil series based mostly on surface features that affect its use and management. The soil mapping units are shown on the map (Fig.3.5) in the form of symbols. During the survey about 8 profile pits, few minipits and a few auger bores representing different landforms occurring in the microwatershed were studied. In addition to the profile study, spot observations in the form of minipits, road cuts, terrace cuts etc., were studied to validate the soil boundaries on the soil map. The soil map shows the geographic distribution of 18 mapping units representing 6 soil series occurring in the microwatershed. The soil map unit (soil legend) description is presented in Table 3.2. The soil phase map (management units) shows the distribution of 18 soil phases mapped in the microwatershed. Each mapping unit (soil phase) delineated on the map has similar soil and site characteristics. In other words, all the farms or survey numbers included in one phase will have similar management needs and have to be treated accordingly.

The 18 soil phases identified and mapped in the microwatershed were regrouped into 5 Land Use Classes (LUC's) for the purpose of preparing a Proposed Crop Plan for sustained development of the microwatershed. The database (soil phases) generated under LRI was utilized for identifying Land Use Classes (LUCs) based on the management needs. One or more than one soil site characteristic having influence on the management have been choosen for identification and delineation of LUCs. For Maddenahalli microwatershed, five soil and site characteristics, namely soil depth, soil texture, slope, erosion and gravel content have been considered for defining LUCs. The land use classes are expected to behave similarly for a given level of management.

3.5 Laboratory Characterization

Soil samples were collected from representative master profiles for each soil series for laboratory characterization by following the methods outlined in the Laboratory Manual (Sarma *et al*, 1987). Surface soil samples collected from farmer's fields (88 samples) for fertility status (major and micronutrients) at 250 m grid interval were analyzed in the laboratory (Katyal and Rattan, 2003). By linking the soil fertility data to the survey numbers through GIS, soil fertility maps were generated using krigging method for the microwatershed.

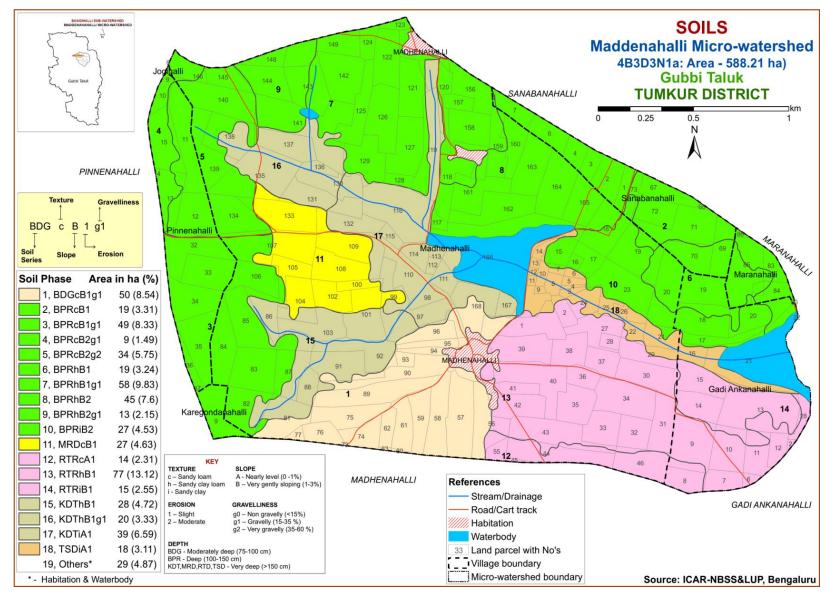


Fig 3.5 Soil Phase or Management Units Map - Maddenahalli Microwatershed

Table 3.2 Soil map unit description of Maddenahalli Microwatershed
--

Soil No	Soil Series	Soil Phase	oil Phase Mapping Unit Description SOILS OF GRANITE GNEISS LANDSCAPE						
	BDG	Bidanagere so have dark red	bils are moderately deep (75-100 cm), well drained, dish brown gravelly sandy clay loam to sandy clay g on very gently sloping uplands under cultivation	50 (8.54)					
1		BDGcB1g1	Sandy loam surface, slope 1-3%, slight erosion, gravelly (15-35%)	50 (8.54)					
	BPR	reddish brow	are deep (100-150 cm), well drained, have dark n to dark red gravelly sandy clay to clay soils very gently sloping uplands under cultivation	273 (46.23)					
2		BPRcB1	Sandy loam surface, slope 1-3%, slight erosion	19 (3.31)					
3		BPRcB1g1	Sandy loam surface, slope 1-3%, slight erosion, gravelly (15-35%)	49 (8.33)					
4		BPRcB2g1	Sandy loam surface slope 1-3% moderate						
5		BPRcB2g2 Sandy loam surface, slope 1-3%, moderate erosion, very gravelly (35-60%)							
6		BPRhB1 Sandy clay loam surface, slope 1-3%, slight erosion							
7		BPRhB1g1	Sandy clay loam surface, slope 1-3%, slight						
8		BPRhB2	Sandy clay loam surface, slope 1-3%, moderate						
9		BPRhB2g1	Sandy clay loam surface, slope 1-3%, moderate erosion, gravelly (15-35%)	(7.60) 13 (2.15)					
10		BPRiB2	Sandy clay surface, slope 1-3%, moderate erosion	27 (4.53)					
	MRD	Muradi soils are very deep (>150 cm), well drained, have red to dark red sandy clay loam to sandy clay soils occurring on very gently sloping uplands under cultivation							
11		MRDcB1	Sandy loam surface, slope 1-3%, slight erosion	27 (4.63)					
	RTR	reddish brow	Ranatur soils are very deep (>150 cm), well drained, have dark reddish brown to dark red clay soils occurring on very gently sloping uplands under cultivation						
12		RTRcA1	Sandy loam surface, slope 0-1%, slight erosion	14 (2.31)					
13		RTRhB1	Sandy clay loam surface, slope 1-3%, slight erosion	77 (13.12)					

14		RTRiB1	Sandy clay surface, slope 1-3%, slight erosion	15 (2.55)							
		Kadagathur s	Kadagathur soils are very deep (>150 cm), moderately well								
	VDT	drained, have	dark brown to very dark grayish brown sandy clay	87							
	KDT	to clay soils occurring on nearly level to very gently sloping									
		uplands under	cultivation								
15		KDThB1	Sandy clay loam surface, slope 1-3%, slight	28							
15		KDTIIDT	erosion	(4.72)							
16		KDThB1g1	Sandy clay loam surface, slope 1-3%, slight	20							
10		KDTIIDIgi	erosion, gravelly (15-35%)	(3.33)							
17		KDTiA1 Sandy clay surface, slope 0-1%, slight erosion									
17			Sandy Clay Surface, slope 0-1%, slight elosion								
		Thimmasandr	a soils are very deep (>150 cm), moderately well								
	TSD	drained, have	very dark brown to very dark grayish brown sandy	18							
	150	clay to clay soils occurring on nearly level to very gently sloping									
		lowlands unde	er cultivation								
18		TSDiA1	Sandy clay surface, slope 0-1%, slight erosion	18							
10		150111	Sundy Surface, stope of 170, singlit crosion	(3.11)							
19		Others	Habitation and waterbody								
17		Cillers	nucleuron and wateroody	(4.87)							

THE SOILS

Detailed information pertaining to the nature, extent and their distribution of different kinds of soils occurring in Maddenahalli microwatershed is provided in this chapter. The microwatershed area has been identified as granite gneiss landscape based on geology. In all, 6 soil series are identified. Soil formation is the result of the combined effect of environmental and terrain factors that are reflected in soil morphology. In the granite gneiss landscape it is by parent material, relief and climate.

A brief description of each of the 6 soil series identified followed by 18 soil phases (management units) mapped under each series (Fig. 3.5) are furnished below. The soils in any one map unit differ from place to place in their depth, texture, slope, gravelliness, erosion or any other site characteristic that affect management. The soil phase map can be used for identifying the suitability of areas for growing specific crops or for other alternative uses and also for deciding the type of conservation structures needed. The detailed information on soil and site-characteristics like soil depth, surface soil texture, slope, erosion, gravelliness, AWC, LCC etc, with respect to each of the soil phase identified is given village/survey number wise for the microwatershed in Appendix-I.

4.1 Soils of Granite Gneiss Landscape

In this landscape, 6 soil series are identified and mapped. Brief description of each series identified is given below. Of these, Balapur (BPR) series occupy a major area of about 273 ha (46%) followed by Ranatur (RTR) 106 ha (18%). The brief description of each soil series and number of phases identified in the microwatershed are given below. The mapping unit description (Soil Legend) of the soil phases identified and mapped under each series is given in Table 3.2.

4.1.1 Bidanagere (BDG) Series: Bidanagere soils are moderately deep (75-100 cm), well drained, have dark reddish brown gravelly sandy clay loam to sandy clay soils. They have developed from weathered granite gneiss and occur on very gently sloping uplands under cultivation.

The thickness of the solum ranges from 78 to 99 cm. The thickness of A horizon ranges from 12 to 19 cm. Its colour is in 2.5 YR and 5 YR hue with value 2 to 3 and chroma 3 to 4. The texture varies from sandy clay loam to sandy clay with 10 to 20 per cent gravel. The thickness of B horizon ranges from 68 to 85 cm. Its colour is in 5 YR and 2.5 YR hue with value 3 to 5 and chroma 3 to 4. Its texture is gravelly sandy clay to sandy clay loam with gravel content of 35-60 per cent. The available water capacity is very low (<50 mm/m). Only one phase was identified and mapped.

Landscape Soil Profile Characteristics of Bidanagere (BDG) Series

4.1.2 Balapur (BPR) Series: Balapur soils are deep (100-150 cm), well drained, have dark reddish brown to dark red gravelly sandy clay to clay soils. They are developed from weathered granite gneiss and occur on very gently to gently sloping uplands.

The thickness of the solum ranges from 102 to 147 cm. The thickness of A horizon ranges from 12 to 17 cm. Its colour is in 5 YR and 2.5 YR hue with value and chroma 3 to 4. The texture ranges from loamy sand to sandy clay with 15 to 50 per cent gravel. The thickness of B horizon ranges from 90 to 132 cm. Its colour is in 2.5 YR hue with value 2.5 to 3 and chroma 4 to 6. Texture is sandy clay to clay with 35 to 50 per cent gravel. The available water capacity is low (51-100 mm/m). Nine phases were identified and mapped.

Landscape and Soil Profile Characteristics of Balapur (BPR) Series

4.1.3 Muradi (MRD) Series: Muradi soils are very deep (>150 cm), well drained, have red to dark red sandy clay loam to sandy clay soils. They have developed from weathered granite gneiss and occur on very gently sloping uplands under cultivation.

The thickness of the solum ranges from 120 to 180 cm. The thickness of A horizon ranges from 16 to 26 cm. Its colour is in 2.5 YR hue with value 3 and chroma 4. The texture is sandy loam. The thickness of B horizon ranges from 112 to 160 cm. Its colour is in 2.5 YR hue with value 3 to 5 and chroma 6 to 8. Its texture is sand clay loam to sandy clay. The available water capacity is medium (101-150 mm/m). Only one phase was identified and mapped.

Landscape Soil Profile Characteristics of Muradi (MRD) Series

4.1.4 Ranatur (RTR) Series: Ranatur soils are very deep (> 150 cm), well drained, have dark reddish brown to dark red clayey soils. They have developed from weathered granite gneiss and occur on very gently sloping uplands. The Ranatur series has been tentatively classified as a member of the fine, mixed, isohyperthermic family of Rhodic Paleaustalfs.


The thickness of the solum is more than 150 cm. The thickness of A horizon ranges from 8 to 14 cm. Its colour is in 5 YR and 2.5 YR hue with value 2.5 to 4 and chroma 3 to 6. The texture varies from sandy loam to sand clay. The thickness of B horizon is more than 150 cm. Its colour is in 2.5 YR hue with value 2.5 to 3 and chroma 3 to 6. Its texture is clay. The available water capacity is medium (101-150 mm/m). Three phases were identified and mapped.

Landscape and soil profile characteristics of Ranatur (RTR) Series

4.1.5 Kadagathur (KDT) Series: Kadagathur soils are very deep (>150 cm), moderately well drained, have dark brown to very dark grayish brown sandy clay to clay soils. They have developed from weathered granite gneiss and occur on nearly level to very gently sloping uplands under cultivation.

The thickness of the solum is more than 150 cm. The thickness of A horizon ranges from 8 to 14 cm. Its colour is in 10 YR hue with value 3 and chroma 4. The texture varies from sandy loam to sandy clay loam. The thickness of B horizon is more than 150 cm. Its colour is in 10 YR and 7.5 YR hue with value 3 and chroma 1 to 4. Its texture is sandy clay to clay. The available water capacity is very high (>200 mm/m). Three phases were identified and mapped.

Landscape and soil profile characteristics of Kadagathur (KDT) Series

4.1.6 Thimmasandra (TSD) Series: Thimmasandra soils are very deep (>150 cm), moderately well drained, have very dark brown to very dark grayish brown sandy clay to clay soils. They have developed from weathered granite gneiss and occur on nearly level to very gently sloping lowlands under cultivation.

The thickness of the solum ranges from 150-200 cm. The thickness of A horizon ranges from 11 to 17 cm. Its colour is in 10 YR hue with value 3 and chroma 3. The texture is sandy clay. The thickness of B horizon is more than 150 cm. Its colour is in 10 YR hue with value 2 to 4 and chroma 1 to 3. Its texture is sandy clay to clay. The available water capacity is very high (>200 mm/m). Only one phase was identified and mapped.

Chapter 5

INTERPRETATION FOR LAND RESOURCE MANAGEMENT

The most important soil and site characteristics that affect the land use and conservation needs of an area are land capability, soil depth, soil texture, coarse fragments, available water capacity, soil slope, soil erosion, soil reaction etc. These are interpreted from the data base generated through land resource inventory and several interpretative and thematic maps are generated. These would help in identifying the areas suitable for growing crops and, soil and water conservation measures and structures needed thus helping to maintain good soil health for sustained crop production. The various interpretative and thematic maps generated are described below.

5.1 Land Capability Classification

Land capability Classification is an interpretative grouping of soil map units (soil phases) mainly based on inherent soil characteristics, external land features and environmental factors that limit the use of land for agriculture, pasture, forestry, or other uses on a sustained basis (IARI, 1971). The land and soil characteristics used to group the land resources in an area into various land capability classes, subclasses and units are *Soil characteristics:* Depth, texture, gravelliness, calcareousness.

Land characteristics: Slope, erosion, drainage, rock outcrops.

Climate: Total rainfall and its distribution, and length of crop growing period.

The Land capability classification system is divided into land capability classes, subclasses and units based on the level of information available. Eight land capability classes are recognized. They are

- *Class I*: They are very good lands that have no limitations or very few limitations that restrict their use.
- *Class II*: They are good lands that have minor limitations and require moderate conservation practices.
- *Class III*: They are moderately good lands that have moderate limitations that reduce the choice of crops or that require special conservation practices.
- *Class IV*: They are fairly good lands that have very severe limitations that reduce the choice of crops or that require very careful management.
- *Class V*: Soils in these lands are not likely to erode, but have other limitations like wetness that are impractical to remove and as such not suitable for agriculture, but suitable for pasture or forestry with minor limitations.
- *Class VI*: The lands have severe limitations that make them generally unsuitable for cultivation, but suitable for pasture or forestry with moderate limitations.
- *Class VII*: The lands have very severe limitations that make them unsuitable for cultivation, but suitable for pasture or forestry with major limitations.

Class VIII: Soil and other miscellaneous areas (rock lands) that have very severe limitations that nearly preclude their use for any crop production, but suitable for wildlife, recreation and installation of wind mills.

The land capability subclasses are recognised based on the dominant limitations observed within a given land capability class. The subclasses are designated by adding a lower case letter like 'e', 'w', 's', or 'c' to the class numeral. The subclass "e" indicates that the main hazard is risk of erosion, "w" indicates drainage or wetness as a limitation for plant growth, "s" indicates shallow soil depth, coarse or heavy textures, calcareousness, salinity/alkalinity or gravelliness and "c" indicates limitation due to climate.

The land capability subclasses have been further subdivided into land capability units based on the kinds of limitations present in each subclass. Ten land capability units are used in grouping the soil map units. They are stony or rocky (0), erosion hazard (slope, erosion) (1), coarse texture (sand, loamy sand, sandy loam) (2), fine texture (cracking clay, silty clay) (3), slowly permeable subsoil (4), coarse underlying material (5), salinity/alkali (6), stagnation, overflow, high ground water table (7), soil depth (8) and fertility problems (9). The capability units thus identified have similar soil and land characteristics that respond similarly to a given level of management. The soils of the microwatershed have been classified upto land capability subclass level.

The 18 soil map units identified in the Maddenahalli microwatershed are grouped under 2 land capability classes and 4 land capability subclasses. About 560 ha (95%) in the microwatershed is suitable for agriculture and 29 ha (5%) is not suitable for agriculture (Fig. 5.1).

Good cultivable lands (Class II) cover an area of about 40 per cent and are distributed in the central, southern and southeastern part of the micowatershed with minor problems of soil and wetness. Moderately good cultivable lands (Class III) cover an area of about 55 per cent and are distributed in the northern, southern, southwestern and northwestern part of the microwatershed with moderate problems of erosion and soil.

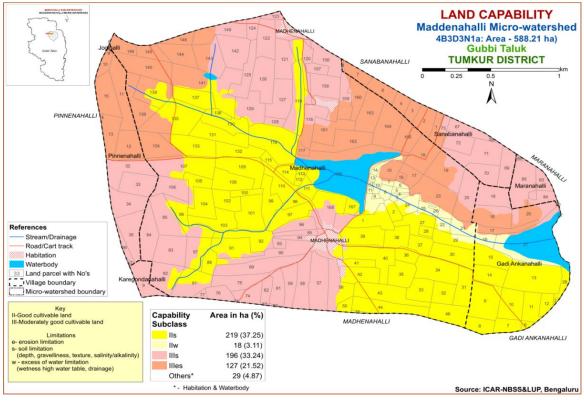


Fig. 5.1 Land Capability map of Maddenahalli Microwatershed

5.2 Soil Depth

Soil depth refers to the depth of the soil occurring above the parent material or hard rock. The depth of the soil determines the effective rooting depth for plants and in accordance with soil texture, mineralogy and gravel content, the capacity of the soil column to hold water and nutrient availability. Soil depth is one of the most important soil characteristic that is used in differentiating soils into different soil series. The soil depth classes used in identifying soils in the field are very shallow (<25 cm), shallow (25-50 cm), moderately shallow (50-75 cm), moderately deep (75-100 cm), deep (100-150 cm) and very deep (>150 cm). They were used to classify the soils into different depth classes and a soil depth map was generated. The area extent and their geographical distribution in the microwatershed is given in Fig. 5.2.

Moderately deep (75-100 cm) soils occupy a small area of about 50 ha (9%) and are distributed in the southern part of the microwatershed. Deep (100-150 cm) soils occupy a maximum area of 272 ha (46%) and are distributed in the northern, northeastern and western part of the microwatershed. Very deep (>150 cm) soils cover an area of 237 ha (40%) and are distributed in the central and southern part of the microwatershed.

The most productive lands 509 ha (86%) with respect to soil rooting depth where all climatically adapted annual and perennial crops can be grown are very deep (>150 cm depth) and deep (100-150 cm) occurring in major part of the microwatershed.

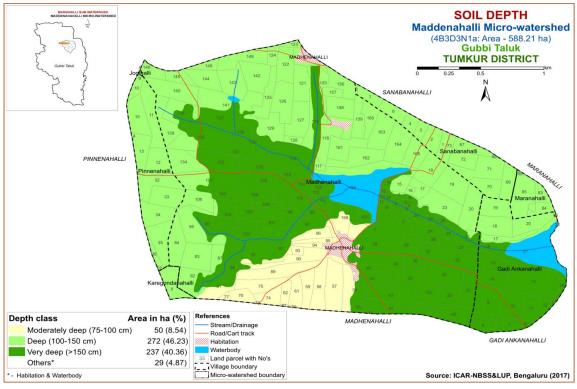


Fig. 5.2 Soil Depth map of Maddenahalli Microwatershed

5.3 Surface Soil Texture

Texture is an expression to indicate the coarseness or fineness of the soil as determined by the relative proportion of primary particles of sand, silt and clay. It has a direct bearing on the structure, porosity, adhesion and consistence. The surface layer of a soil to a depth of about 25 cm is the layer that is most used by crops and plants. The surface soil textural class provides a guide to understanding soil-water retention and availability, nutrient holding capacity, infiltration, workability, drainage, physical and chemical behaviour, microbial activity and crop suitability. The textural classes used for LRI were used to classify and a surface soil texture map was generated. The area extent and their geographical distribution in the microwatershed is shown in Figure 5.3.

Maximum area of about 461 ha (78%) has soils that are loamy at the surface. They are distributed in the major part of the microwatershed and an area of 99 ha (17%) has soils that are clayey at the surface and are distributed in the central and eastern part of the microwatershed (Fig. 5.3).

The productive lands (17%) with respect to surface soil texture are the clayey soils that have high potential for soil-water retention and availability, and nutrient retention and availability, but more have problems of drainage, infiltration, workability and other physical problems. The other most productive lands (78%) are loamy soils which also have high potential for AWC, nutrient availability but have no drainage or other physical problems.

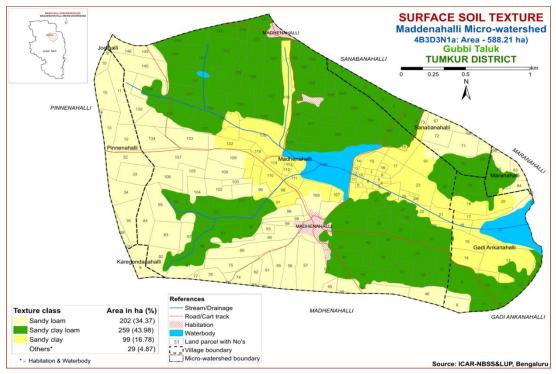


Fig. 5.3 Surface Soil Texture map of Maddenahalli Microwatershed

5.4 Soil Gravelliness

Gravel is the term used for describing coarse fragments between 2 mm and 7.5 cm diameter and stones for those between 7.5 cm and 25 cm. The presence of gravel and stones in soil reduces the volume of soil responsible for moisture and nutrient storage, drainage, infiltration and runoff, and hinders plant growth by impeding root growth and seedling emergence, intercultural operations and farm mechanization. The gravelliness classes used in LRI were used to classify the soils and using these classes a gravelliness map was generated. The area extent and their geographic distribution in the microwatershed is shown in Figure 5.4.

An area in the microwatershed has soils that are very gravelly (35-60%) covering a very small area of about 34 ha (6%) and are distributed in the northeastern part of the microwatershed. Maximum area of about 328 ha (56%) is non gravelly (<15%) and distributed in the central, southeastern and northeastern part of the microwatershed. Gravelly (15-35%) soils covering an area of about 198 ha (34%) are distributed in the northwestern and southwestern part of the microwatershed (Fig 5.4).

The problem soils (6%) that are very gravelly (35-60%) where only short duration crops can be grown and are distributed in the northwestern part of the microwatershed. The most productive soils (56%) that are non gravelly (<15%) and are distributed in the central, southeastern and northeastern part of the microwatershed where all climatically adopted crops can be grown.

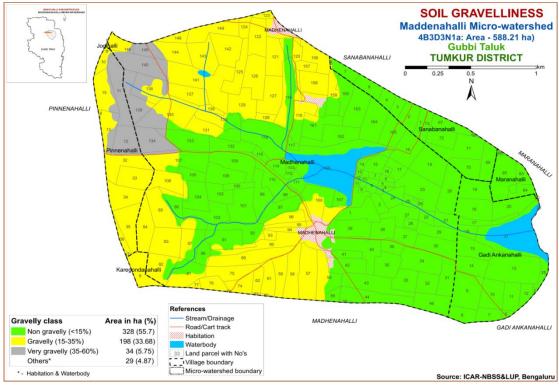


Fig. 5.4 Soil Gravelliness map of Maddenahalli Microwatershed

5.5 Available Water Capacity

The soil available water capacity (AWC) is estimated based on the ability of the soil column to retain water between the tensions of 0.33 and 15 bar in a depth of 100 cm or the entire solum if the soil is shallower. The AWC of the soils (soil series) as estimated by considering the soil texture, mineralogy, soil depth and gravel content (Sehgal *et al.*, 1990) and accordingly the soil map units were grouped into five AWC classes *viz*, very low (<50 mm/m), low (50-100 mm/m), medium (100-150 mm/m), high (150-200 mm/m) and very high (>200 mm/m) and using these values, an AWC map was generated. The area extent and their geographic distribution of different AWC classes in the microwatershed is given in Figure 5.5.

An area of about 50 ha (9%) in the microwatershed has soils that are very low (<50 mm/m) in available water capacity and are distributed in the southern part of the microwatershed. Maximum area of about 272 ha (46%) are low (51-100 mm/m) in available water capacity and are distributed in major part of the microwatershed. An area of about 133 ha (23%) is medium (101-150 mm/m) in available water capacity and are distributed followed by an area of 104 ha (18%) very high (>200 mm/m) and are distributed in the central part of the microwatershed.

About 322 ha (55%) area in the microwatershed has soils that are problematic with regard to available water capacity. Here, only short or medium duration crops can be grown and the probability of crop failure is very high. These areas are best put to other alternative uses. The most productive lands cover about 18 per cent area where all climatically adopted long duration crops can be grown successfully.

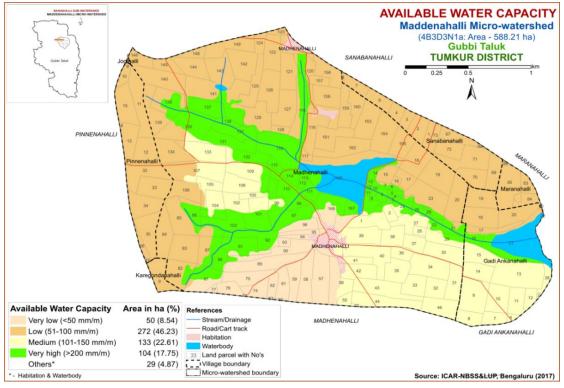


Fig. 5.5 Soil Available Water Capacity map of Maddenahalli Microwatershed

5.6 Soil Slope

Soil slope refers to the inclination of the surface of the land. It is defined by gradient, shape and length, and is an integral feature of any soil as a natural body. Slope is considered important in soil genesis, land use and land development. The length and gradient of slope influences the rate of runoff, infiltration, erosion and deposition. The soil map units were grouped into four slope classes and a slope map was generated showing the area extent and their geographic distribution in the microwatershed (Fig. 5.6).

Major area of about 489 ha (83%) falls under very gently sloping (1-3% slope) lands and is distributed in the major part of the microwatershed and an area of about 71 ha (12%) is under nearly level (0-1% slope) and distributed in the central part of the microwatershed.

Entire area in the microwatershed has soils that have high potential in respect of soil slopes. In these areas, all climatically adapted annual and perennial crops can be grown without much soil and water conservation and other land development measures.

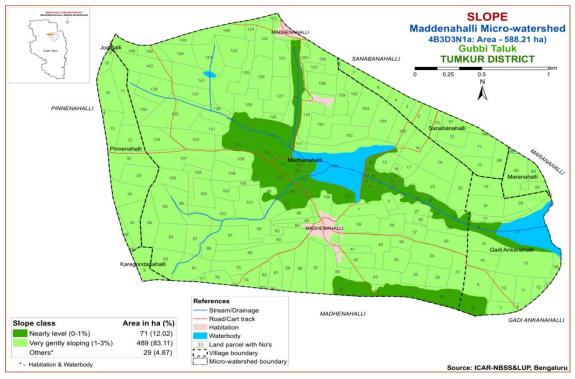


Fig. 5.6 Soil Slope map of Maddenahalli Microwatershed

5.7 Soil Erosion

Soil erosion refers to the wearing away of the earth's surface by the forces of water, wind and ice involving detachment and transport of soil by raindrop impact. It is used for accelerated soil erosion resulting from disturbance of the natural landscape by burning, excessive grazing and indiscriminate felling of forest trees and tillage, all usually by man. The erosion classes showing an estimate of the current erosion status as judged from field observations in the form of rills, gullies or a carpet of gravel on the surface are recorded. Four erosion classes, viz, slight erosion (e1), moderate erosion (e2), severe erosion (e3) and very severe erosion (e4) are recognized. The soil map units were grouped into different erosion classes and a soil erosion map generated. The area extent and their spatial distribution in the microwatershed is given in Figure 5.7.

Soils that are moderately eroded (e2 Class) cover an area of about 127 ha (22%) in the microwatershed. They are distributed in the northern part of the microwatershed. Slightly eroded (e1 Class) soils cover a maximum area of about 433 ha (74%) and are distributed in the major part of the microwatershed.

An area of about 127 ha (22%) in the microwatershed is problematic because of moderate erosion. For these areas taking up soil and water conservation and other land development measures are needed.

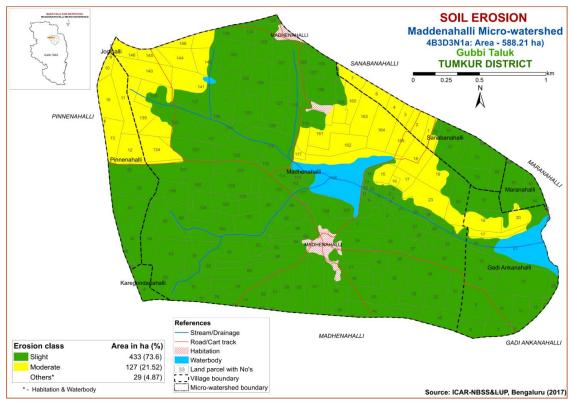


Fig. 5.7 Soil Erosion map of Maddenahalli Microwatershed

FERTILITY STATUS

Soil fertility plays an important role in increasing crop yield. The adoption of high yielding varieties that require high amounts of nutrients has resulted in deficiency symptoms in crops and plants due to imbalanced fertilization and poor inherent fertility status as the area is characterised by low rainfall and high temperatures. Hence, it is necessary to know the fertility (macro and micro nutrients) status of the soils of the watersheds for assessing the kind and amount of fertilizers required for each of the crop intended to be grown. For this purpose, the surface soil samples collected from the grid points (one soil sample at every 250 m interval) all over the microwatershed through land resource inventory in the year 2014 were analysed for pH, EC, organic carbon, available phosphorus and potassium, and for micronutrients like zinc, boron, copper, iron and manganese, and secondary nutrient sulphur.

Soil fertility data generated has been assessed and individual maps for all the nutrients for the microwatershed have been generated using kriging method under GIS. The village/survey number wise fertility data for the microwatershed is given in Appendix-II.

6.1 Soil Reaction (pH)

The soil analysis of the Maddenahalli microwatershed for soil reaction (pH) showed that an area of about 37 ha (6%) is neutral (pH 6.5-7.3) and are distributed in the central part of the microwatershed. An area of 168 ha (28%) is slightly acid (pH 6.0-6.5) and are distributed in the eastern, central and northern part of the microwatershed, a maximum area of 237 ha (40%) is moderately acid (pH 5.5-6.0) and are distributed in the major part of the microwatershed. An area of about 168 ha (28%) is strongly acid (pH 5.0-5.5) and are distributed in the southern and northeastern part of the microwatershed (Fig.6.1).

6.2 Electrical Conductivity (EC)

The Electrical Conductivity of the soils of the entire microwatershed area is <2 dSm⁻¹ (Fig 6.2) and as such the soils are nonsaline.

6.3 Organic Carbon

The soil organic carbon (An index of available Nitrogen) content in the microwatershed is medium (0.5-0.75%) covering a maximum area of about 186 ha (32%) and is distributed in the northern and eastern part of the microwatershed. It is low (<0.5%) in a maximum area of about 373 ha (63%) area and distributed in the major part of the microwatershed (Fig.6.3).

6.4 Available Phosphorus

Available phosphorus content is high (>57 kg/ha) in the entire microwatershed (Fig 6.4).

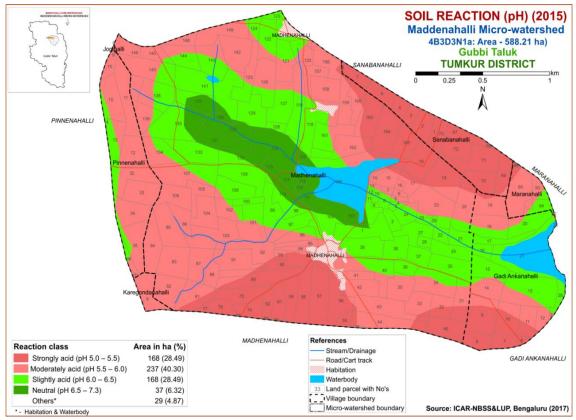


Fig.6.1 Soil Reaction (pH) map of Maddenahalli Microwatershed



Fig.6.2 Electrical Conductivity (EC) map of Maddenahalli Microwatershed

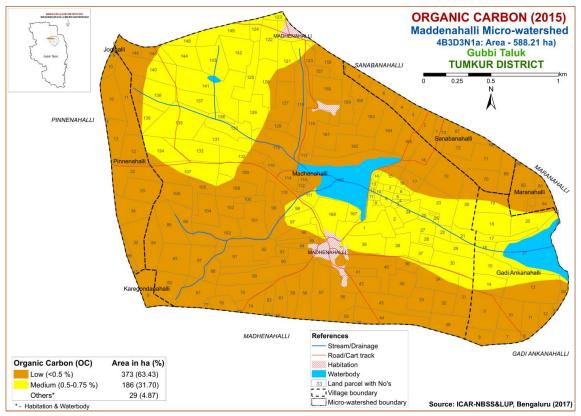


Fig.6.3 Soil Organic Carbon map of Maddenahalli Microwatershed

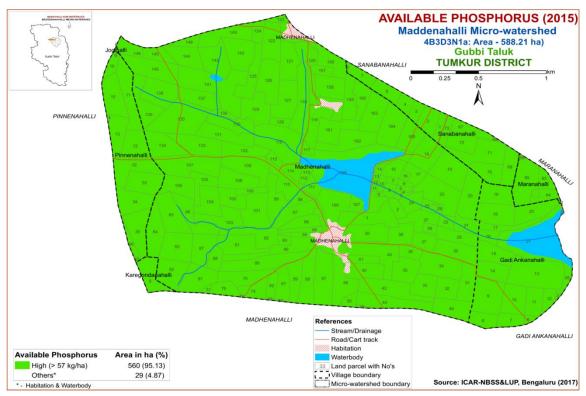


Fig.6.4 Soil Available Phosphorus map of Maddenahalli Microwatershed

6.5 Available Potassium

Available potassium content is medium (145-337 kg/ha) in maximum area of about 428 ha (73%) and is distributed in the major part of the microwatershed (Fig.6.5). High available potassium (>337 kg/ ha) is in an area of 20 ha (3%) and is distributed in the central part of the microwatershed. It is low in an area of 111 ha (19%) and is distributed in the southern and northern part of the microwatershed.

6.6 Available Sulphur

Major area of about 552 ha (94%) is medium (10-20 ppm) in available sulphur and is distributed in the major part of the microwatershed and high (>20 ppm) in a very minor area of 8 ha (1%) (Fig. 6.6).

6.7 Available Boron

Available boron content is medium (0.5-1.0 ppm) in very minor area of 1 ha (<1%) and maximum area of about 559 ha (95%) is low (<0.5 ppm) in available boron and is distributed in the major part of the microwatershed (Fig. 6.7).

6.8 Available Iron

Available iron content is sufficient (>4.5 ppm) in the entire area in the microwatershed (Fig 6.8).

6.9 Available Manganese

Available manganese content is sufficient (>1.0 ppm) in the entire microwatershed area (Fig 6.9).

6.10 Available Copper

Available copper content is sufficient (>0.2 ppm) in the entire microwatershed area (Fig 6.10).

6.11 Available Zinc

Available zinc content is deficient (<0.6 ppm) in an area of 255 ha (43%) and are distributed in the northeastern, southern and eastern part of the microwatershed and major area of 304 ha (52%) is sufficient (>0.6 ppm) and are distributed in the central and northwestern part of the microwatershed (Fig 6.11).

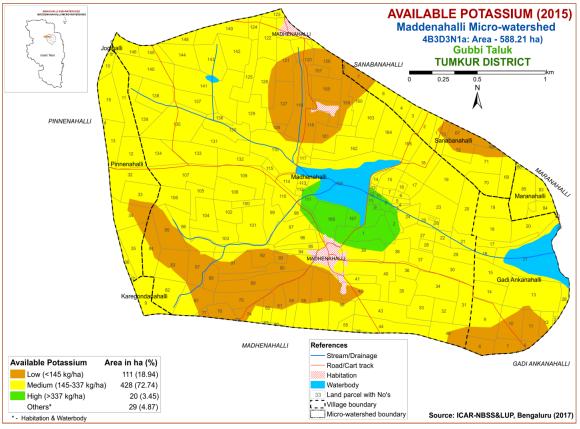


Fig.6.5 Soil Available Potassium map of Maddenahalli Microwatershed

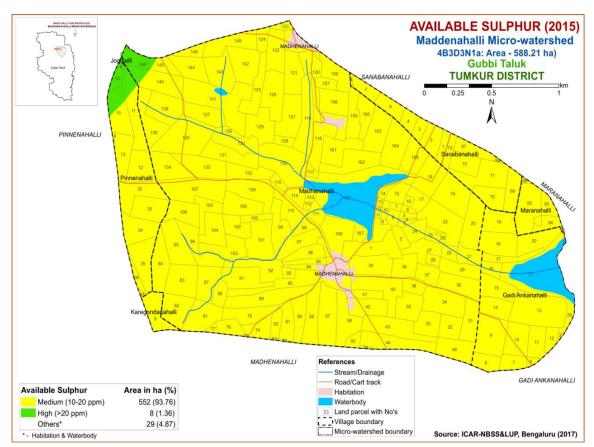


Fig.6.6 Soil Available Sulphur map of Maddenahalli Microwatershed

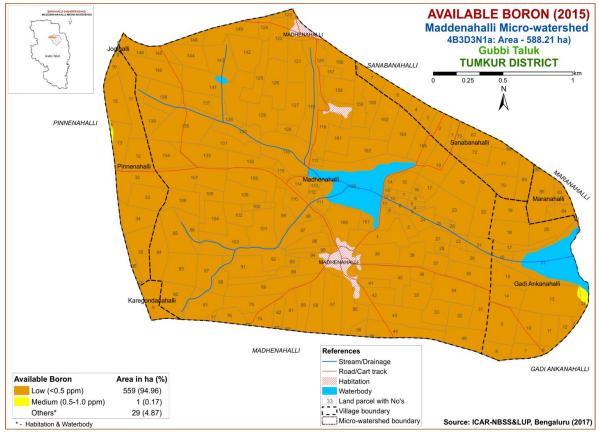


Fig.6.7 Soil Available Boron map of Maddenahalli Microwatershed

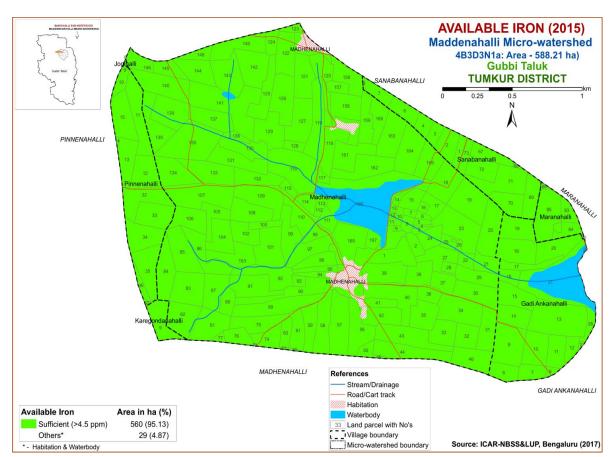


Fig.6.8 Soil Available Iron map of Maddenahalli Microwatershed

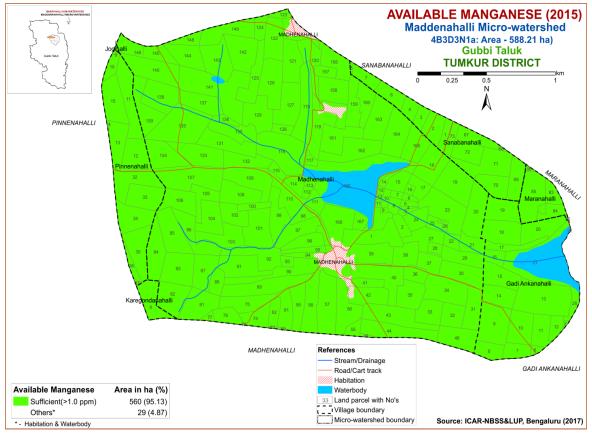


Fig.6.9 Soil Available Manganese map of Maddenahalli Microwatershed

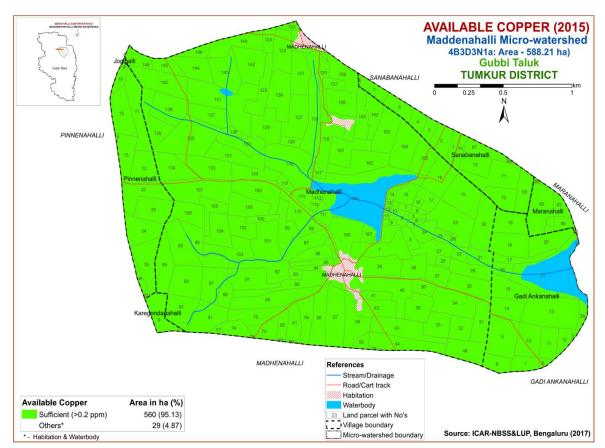


Fig.6.10 Soil Available Copper map of Maddenahalli Microwatershed

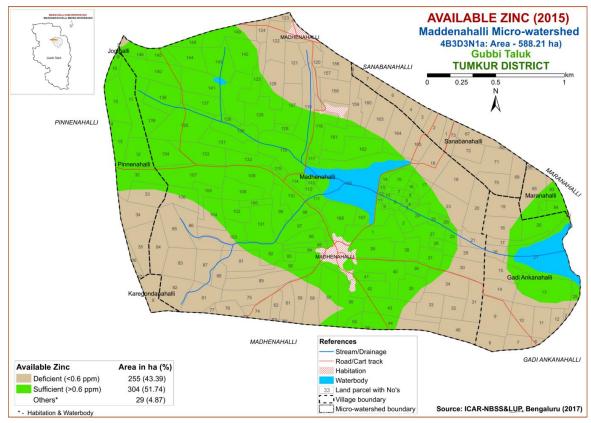


Fig.6.11 Soil Available Zinc map of Maddenahalli Microwatershed

LAND SUITABILITY FOR MAJOR CROPS

The soil and land resource units (soil phases) of Maddenahalli microwatershed were assessed for their suitability for growing food, fodder, fibre and other horticulture crops by following the procedure as outlined in FAO, 1976 and 1983. Crop requirements were developed for each of the crop from the available research data and also by referring to Naidu et. al. (2006) and Natarajan et. al (2015). The crop requirements were matched with the soil and land characteristics (Table 7.1) to arrive at the crop suitability. In FAO land suitability classification, two orders are recognized. Order S- Suitable and Order N-Not suitable. The orders have classes, subclasses and units. Order-S has three classes, class S1- Highly Suitable, class S2- Moderately Suitable and class S3- Marginally Suitable. Order N has two classes, N1- Currently not Suitable and N2- Permanently not Suitable. There are no subclasses within the class S1 as they will have very minor or no limitations for crop growth. Classes S2 and S3 are divided into subclasses based on the kinds of limitations encountered. The limitations that affect crop production are 'c' for erratic rainfall and its distribution and length of growing period (LGP), 'e' for erosion hazard, 'r' for rooting condition, 't' for lighter or heavy texture, 'g' for gravelliness or stoniness, 'n' for nutrient availability, 'l' for topography, 'm' for moisture availability, 'z' for calcareousness and 'w' for drainage. These limitations are indicated as lower case letters to the class symbol. For example, moderately suitable lands with the limitations of soil depth and erosion are designated as S2re. For the microwatershed, the soil mapping units were evaluated and classified up to subclass level.

Using the above criteria, the soil map units of the microwatershed were evaluated and land suitability maps for 34 major annual and perennial crops were generated. The detailed information on the kind of suitability of each of the soil phase for the crops assessed are given village/ survey number wise for the microwatershed in Appendix-III.

7.1 Land Suitability for Sorghum (Sorghum bicolor)

Sorghum is one of the major crops grown in Karnataka in an area of 10.47 lakh ha in Bijapur, Gulbarga, Raichur, Bidar, Belgaum, Dharwad, Bellary, Chitradurga, Mysore and Tumakuru districts. The crop requirements for growing sorghum (Table 7.2) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing sorghum was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.1.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing sorghum and are distributed in the central, southern and southeastern part the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing sorghum and are distributed in the eastern part the microwatershed.

	Climate	Growing	Drai-		Soil	texture	Gravel	liness							CEC	
Soil Map Units	(P) (mm)	period (Days)	nage Class	Soil depth (cm)	Surf- ace	Sub- surface	Surface (%)	Sub- surface (%)	AWC (mm/m)	Slope (%)	Erosion	р Н	E C	ESP	[Cmol (p ⁺) kg ⁻ ¹]	BS (%)
BDGcB1g1	813	150	WD	75-100	sl	scl-sc	15-35	35-60	<50	1-3	slight					
BPRCB1	813	150	WD	100-150	sl	SC-C	-	>35	51-100	1-3	slight					
BPRCB1g1	813	150	WD	100-150	sl	SC-C	15-35	>35	51-100	1-3	slight					
BPRCB2g1	813	150	WD	100-150	sl	SC-C	15-35	>35	51-100	1-3	moderate					
BPRcB2g2	813	150	WD	100-150	sl	SC-C	35-60	>35	51-100	1-3	moderate					
BPRhB1	813	150	WD	100-150	scl	SC-C	-	>35	51-100	1-3	slight					
BPRhB1g1	813	150	WD	100-150	scl	SC-C	15-35	>35	51-100	1-3	slight					
BPRhB2	813	150	WD	100-150	scl	SC-C	-	>35	51-100	1-3	moderate					
BPRhB2g1	813	150	WD	100-150	scl	SC-C	15-35	>35	51-100	1-3	moderate					
BPRiB2	813	150	WD	100-100	scl	SC-C	-	>35	51-100	1-3	moderate					
MRDcB1	813	150	WD	>150	sl	scl-sc	-	-	101-150	1-3	slight					
RTRcA1	813	150	WD	>150	sl	с	-	-	101-150	0-1	slight					
RTRhB1	813	150	WD	>150	scl	с	-	-	101-150	1-3	slight					
RTRiB1	813	150	WD	>150	sc	с	-	-	101-150	1-3	slight					
KDThB1	813	150	MWD	>150	scl	SC-C	-	-	>200	1-3	slight					
KDThB1g1	813	150	MWD	>150	scl	SC-C	15-35	-	>200	1-3	slight					
KDTiA1	813	150	MWD	>150	sc	SC-C	-	-	>200	0-1	slight					
TSDiA1	813	150	WD	>150	SC	sc-c	-	-	>200	0-1	slight					

Table 7.1 Soil-Site Characteristics of Maddenahalli Microwatershed

*Symbols and abbreviations are according to Field Guide for LRI under Sujala-III Project, Karnataka

They have minor limitations of wetness. Marginally suitable lands (Class S3) for growing sorghum occupy major area of about 322 ha (55%) and occur in the major part of the microwatershed. They have moderate limitations of rooting depth and gravelliness.

Crop require	ement	Rating					
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)		
Slope	%	2-3	3-8	8-15	>15		
LGP	Days	120-150	120-90	<90			
Soil drainage	Class	Well to mod. well drained	imperfect	Poorly/ excessively	V.poorly		
Soil reaction	рН	6.0-8.0	5.5-5.9 8.1-8.5	<5.5 8.6-9.0	>9.0		
Surface soil texture	Class	C, cl, sicl, sc	l, sil, sic	Sl, 1s	S, ragmental skeletal		
Soil depth	Cm	100-75	50-75	30-50	<30		
Gravel content	% vol.	5-15	15-30	30-60	>60		
Salinity (EC)	dSm ⁻¹	2-4	4-8	8-10	>10		
Sodicity (ESP)	%	5-8	8-10	10-15	>15		

Table 7.2 Crop suitability criteria for Sorghum

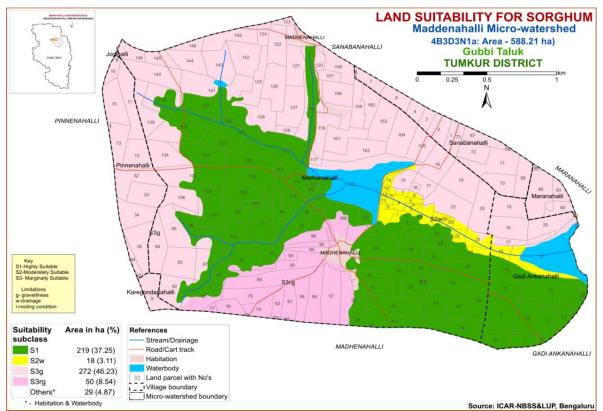


Fig. 7.1 Land Suitability map of Sorghum

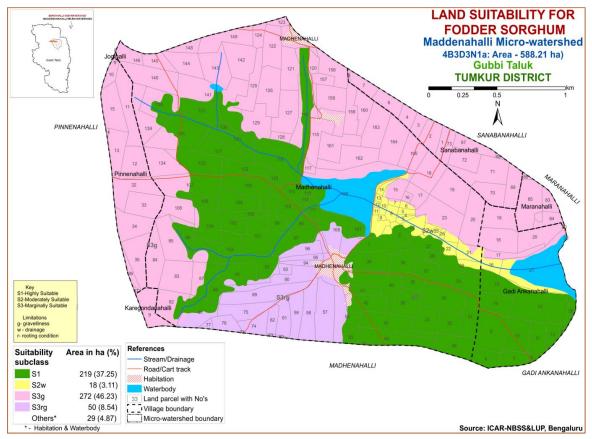
7.2 Land Suitability for Fodder Sorghum (Sorghum bicolor)

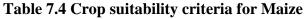
Fodder Sorghum is one of the major fodder crops grown in South Karnataka in Tumakuru, Chikkaballapur, Mysore, Mandya, Bengaluru Rural and Kolar districts. The crop requirements for growing Fodder sorghum (Table 7.3) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing sorghum was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.2.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing Fodder sorghum and are distributed in the central, southern and southeastern part the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing Fodder sorghum and are distributed in the eastern part the microwatershed. They have minor limitation of wetness. Marginally suitable lands (Class S3) for growing Fodder sorghum occupy major area of about 322 ha (55%) and occur in the major part of the microwatershed. They have moderate limitations of rooting depth and gravelliness.

Crop requirem	ent	Rating				
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)	
Slope	%	2-3	3-8	8-15	>15	
LGP	Days	120-150	120-90	<90		
Soil drainage	Class	Well to mod.Well drained	imperfect	Poorly/excessively	V.poorly	
Soil reaction	pН	6.0-8.0	5.5-5.9 8.1-8.5	<5.5 8.6-9.0	>9.0	
Surface soil texture	Class	C, cl, sicl, sc	l, sil, sic	S1, 1s	S, fragmental skeletal	
Soil depth	Cm	100-75	50-75	30-50	<30	
Gravel content	% vol.	5-15	15-30	30-60	>60	
Salinity (EC)	dSm ⁻¹	2-4	4-8	8-10	>10	
Sodicity (ESP)	%	5-8	8-10	10-15	>15	

 Table 7.3 Crop suitability criteria for Fodder Sorghum




Fig. 7.2 Land Suitability map of Fodder Sorghum

7.3 Land Suitability for Maize (Zea mays)

Maize is the most important food crop grown in an area of 13.37 lakh ha in almost all the districts of the State. The crop requirements for growing maize (Table 7.4) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing maize was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.3.

An area of about 237 ha (40%) is moderately suitable (Class S2) for growing maize and are distributed in the central, southern and southeastern part the microwatershed. They have minor limitations texture and wetness. Marginally suitable lands (Class S3) for growing maize occupy major area of about 322 ha (55%) and occur in the major part of the microwatershed and have moderate limitations of rooting depth and gravelliness.

Crop requiren	nent	Rating				
Soil–site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)	
Slope	%	<3	3.5	5-8		
LGP	Days	>100	100-80	60-80		
Soil drainage	Class	Well drained	Mod. to imperfectly	Poorly/ excessively	V.poorly	
Soil reaction	pН	5.5-7.5	7.6-8.5	8.6-9.0		
Surface soil texture	Class	l, cl, scl, sil	Sl, sicl, sic	C(s-s), ls	S,fragmental	
Soil depth	Cm	>75	50-75	25-50	<25	
Gravel content	% vol.	<15	15-35	35-50	>50	
Salinity (EC)	dSm ⁻¹	<1.0	1.0-2.0	2.0-4.0		
Sodicity (ESP)	%	<10	10-15	>15		

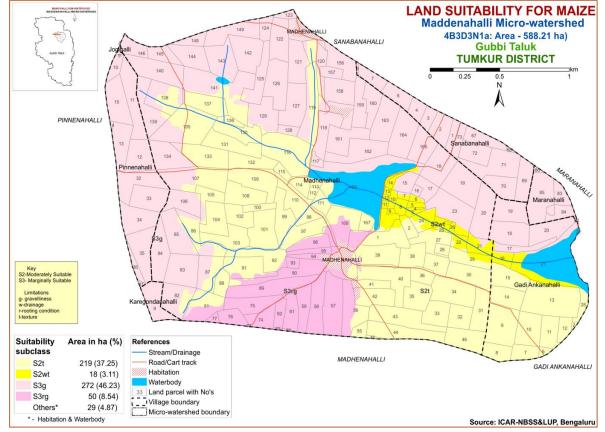


Fig. 7.3 Land Suitability map of Maize

7.4 Land Suitability for Upland Paddy (Oryaza Sativa)

Upland paddy is the most important food crop grown in an area of 13.26 lakh ha in major parts of the district of the State under rainfed condition. The crop requirements for growing Upland paddy (Table 7.5) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Upland paddy was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.4.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing Upland paddy and are distributed in the central, southern and southeastern part the microwatershed. A small area of about 68 ha (12%) is moderately suitable (Class S2) for growing Upland paddy and are distributed in the southern and eastern part the microwatershed. They have minor limitations gravelliness and wetness. Marginally suitable lands (Class S3) for growing Upland paddy occupy major area of about 272 ha (46%) and occur in the southern, southeastern, western and northwestern part of the microwatershed. They have moderate limitation of gravelliness.

Crop requiren	nent	Rating				
Soil –site characteristics	Unit	Highly suitable S1	Moderately suitable S2	Marginally suitable S3	Not suitable N	
Slope	%	1-3	1-3	3-5	>5	
Soil drainage	class	Well to mod.	poorly	Very poorly		
Soil reaction	рН	5.5-6.5	6.5-7.3 4.5-5.4	7.3-8.4	>8.4	
Surface soil texture	Class	C, sic, cl, sicl, sc	Scl, sil, l	S1, 1s	S	
Soil depth	Cm	>75	50-75	25-50	<25	
Gravel content	% vol.	<15	15-35	35-60	60-80	

Table 7.5 Land suitability criteria for Upland paddy

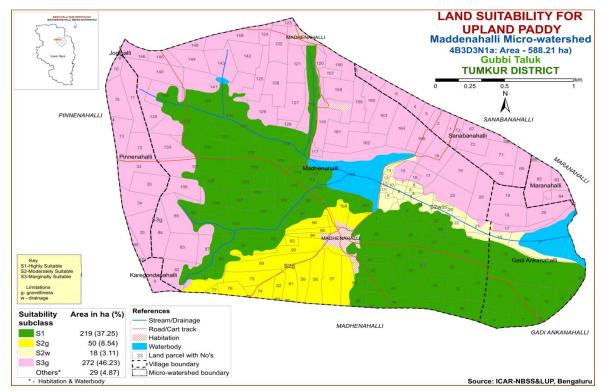


Fig. 7.4 Land Suitability map of Upland paddy

7.5 Land Suitability for Finger millet (*Eleusine Coracana*)

Finger millet is the most important food crop grown in an area of 7.08 lakh ha in almost all the districts of south Karnataka. The crop requirements for growing Finger millet (Table 7.6) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Finger millet was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.5.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing Finger millet and are distributed in the central, southern and southeastern part the microwatershed. A small area of about 68 ha (12%) is moderately suitable (Class S2) for growing Finger millet and are distributed in the southern and eastern part the microwatershed. They have minor limitations of gravelliness and wetness. Marginally suitable lands (Class S3) for growing Finger millet occupy a maximum area of about 272 ha (46%) and occur in the northern and northeastern part of the microwatershed. They have moderate limitation of gravelliness.

Crop requiren	nent	Rating				
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)	
Slope	%	<3	3-5	5-10	>10	
LGP	Days	>110	90-110	60-90	<60	
Soil drainage	class	Well to mod. drained	Imperfectly drained	Poorly/excessively	V. poorly	
Soil reaction	pН	5.5-7.3	7.3-8.4	8.4-9.0	>9.0	
Surface soil texture	Class	l, sil, sl, cl, sicl, scl	sic, c, sc	ls, s,c >60%		
Soil depth	Cm	>75	50-75	25-50	<25	
Gravel content	% vol.	<15	15-35	35-60	>60	
Salinity (ECe)	dsm ⁻¹	<1.0	1.0-2.0	2.0-4.0		
Sodicity (ESP)	%	<10	10-15	15-25	>25	

Table 7.6 Land suitability criteria for Finger millet

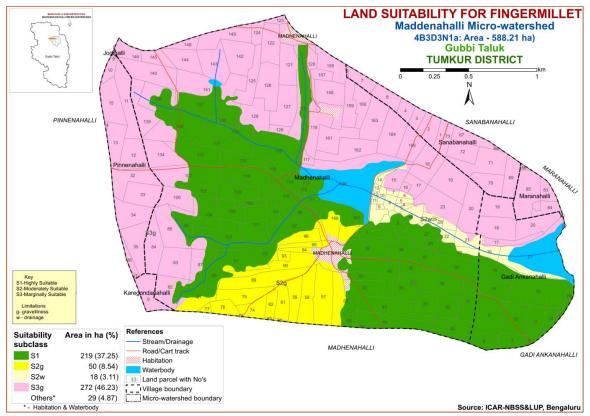


Fig. 7.5 Land Suitability map of Finger millet

7.6 Land suitability criteria for Red gram (Cajanus Cajan)

Red gram is the most important pulse crop grown in an area of 7.28 lakh ha in almost all the districts of the State. The crop requirements for growing Red gram (Table 7.7) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing red gram was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.6.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing red gram and are distributed in the central, southern and southeastern part the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing red gram and are distributed in the eastern part the microwatershed. They have minor limitation of wetness. Marginally suitable lands (Class S3) for growing red gram occupy a maximum area of about 322 ha (55%) and occur in the major part of the microwatershed. They have moderate limitation of gravelliness.

Crop requiren	nent		Rating					
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)			
Slope	%	<3	3-5	5-10	>10			
LGP	Days	>210	180-210	150-180	<150			
Soil drainage	Class	Well drained	Mod. well drained	Imperfectly drained	Poorly drained			
Soil reaction	рН	6.5-7.5	5.0-6.5 7.6-8.0	8.0-9.0	>9.0			
Sub Surface soil texture	Class	l, scl, sil, cl, sl	sicl, sic, c(m)	ls				
Soil depth	Cm	>100	75-100	50-75	<50			
Gravel content	% vol.	<15	15-35	3-60	>60			
Salinity (EC)	dsm ⁻¹	<1.0	1.0-2.0	>2.0				
Sodicity (ESP)	%	<10	10-15	>15				

Table 7.7 Land suitability criteria for Red gram

Fig. 7.6 Land Suitability map of Redgram

7.7 Land suitability for Horse gram (*Macrotyloma uniflorum*)

Horse gram is the most important pulse crop grown in an area of 1.8 lakh ha in almost all the districts of the State. The crop requirements for growing horse gram were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing horse gram (Table 7.8) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.7.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing horse gram and are distributed in the central, southern and southeastern part the microwatershed. Maximum area of about 340 ha (58%) is moderately suitable (Class S2) for growing horse gram and are distributed in the major part of the microwatershed. They have minor limitations of gravelliness and wetness.

Crop requirem	ent		Rating						
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)				
Slope	%	<3	3-5	5-10	>10				
LGP	Days								
Soil drainage	Class	Well	imperfectly	Poorly	Very				
		drained/mod.	drained	drained	Poorly				
		well drained			drained				
Soil reaction	pН	6.0-8.5	8.5-9.0	9.1-9.5	>9.5				
			5.5-5.9	5.0-5.4					
Surface soil texture	Class	l, sl, scl, cl,	Ls, sic, sicl, c,	Heavy clays	-				
		sc	1s	(>60%)					
Soil depth	Cm	50-75	25-50	<25	-				
CaCO ₃ in root zone	% vol.	<15	15-25	25-30	>30				
Salinity (ECe)	dsm ⁻¹	<1.0	1.0-2.0	>2.0					
Sodicity (ESP)	%	<10	10-15	>15	-				

Table 7.8 Land suitability criteria for Horse gram

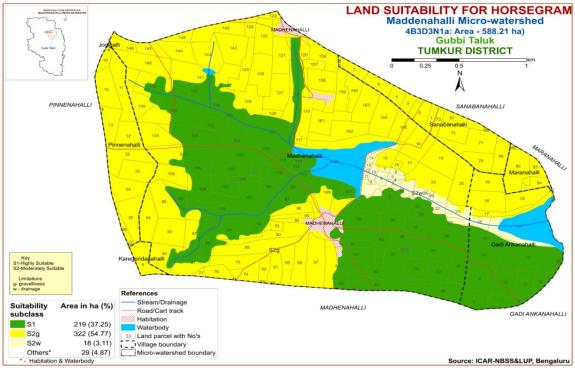


Fig. 7.7 Land Suitability map of Horsegram

7.8 Land suitability for Field Bean (Dolichos lablab)

Field Bean is the most important pulse crop grown in an area of 0.59 lakh ha in almost all the districts of the State. The crop requirements (Table 7.9) for growing field bean were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing field bean was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Fig. 7.8.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing field bean and are distributed in the central, southern and southeastern part the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing field bean and are distributed in the eastern part the microwatershed. They have minor limitation of wetness. Marginally suitable lands (Class S3) for growing field bean occupy major area of about 322 ha (55%) and occur in the major part of the microwatershed and have moderate limitation of gravelliness.

Crop requireme	ent	Rating				
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)	
Slope	%	<3	3-5	5-10	>10	
LGP	Days	>120	90-120	70-90	<70	
Soil drainage	Class	Well drained/mod. well drained	imperfectly drained	Poorly drained	Very Poorly drained	
Soil reaction	pН	6.0-8.5	8.5-9.0 5.5-5.9	9.1-9.5 5.0-5.4	>9.5	
Sub Surface soil texture	Class	l, sl, scl, cl, sc	sic, sicl, c	Heavy clays (>60%), ls	s	
Soil depth	Cm	>75	50-75	25-50	<25	
CaCO3 in root zone	% vol.	<15	15-35	35-50	>50	
Salinity (EC)	dsm- 1	<1.0	1.0-2.0	>2.0		
Sodicity (ESP)	%	<10	10-15	15-20	>20	

Table 7.9 Land suitability criteria for Field Bean

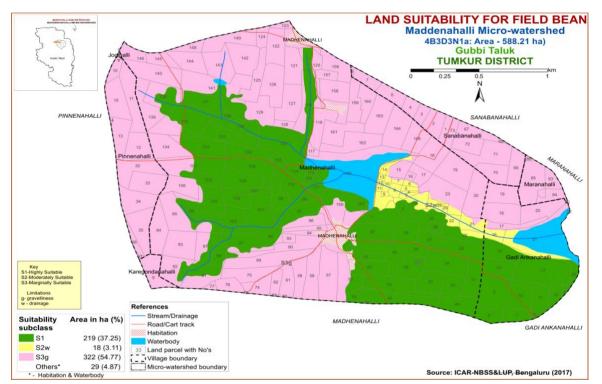


Fig. 7.8 Land Suitability map of Field bean

7. 9 Land Suitability for Cowpea (Vigna radiata)

Cowpea is the most important pulse crop grown in an area of 0.80 lakh ha in almost all the districts of the State. The crop requirements for growing cowpea were

matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing cowpea was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Fig. 7.9.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing Cowpea and are distributed in the central, southern and southeastern part the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing Cowpea and are distributed in the eastern part the microwatershed. They have minor limitation of wetness. Marginally suitable lands (Class S3) for growing Cowpea occupy major area of about 322 ha (55%) and occur in the major part of the microwatershed. They have moderate limitation of gravelliness.

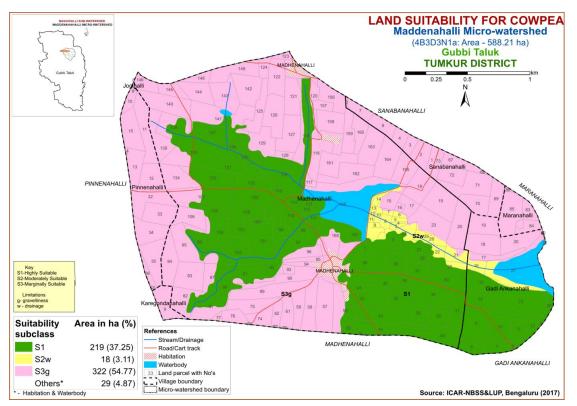


Fig. 7.9 Land Suitability map of Cowpea

7.10 Land Suitability for Groundnut (Arachis hypogaea)

Groundnut is one of the major oilseed crop grown in an area of 6.54 lakh ha in Karnataka in most of the districts either as rain fed or irrigated crop. The crop requirements for growing groundnut (Table 7.10) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing groundnut was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.10.

An area of about 86 ha (15%) is highly suitable (Class S1) for growing Groundnut and are distributed in the central part the microwatershed. Major area of about 322 ha (55%) is moderately suitable (Class S2) for groundnut and are distributed in the major part of the microwatershed. They have minor limitations of rooting depth, gravelliness and texture. Marginally suitable lands (Class S3) for growing groundnut occupy an area of about 151 ha (26%) and are distributed in the central and southern part of the microwatershed. They have moderate limitations of texture and wetness.

Crop requirem	ent		Ratin	g	
Soil–site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)
Slope	%	<3	3-5	5-10	>10
LGP	Days	100-125	90-105	75-90	
Soil drainage	Class	Well drained	Mod. Well drained	Imperfectly drained	Poorly drained
Soil reaction	рН	6.0-8.0	8.1-8.5 5.5-5.9	>8.5 <5.5	
Surface soil texture	Class	l, cl, sil, sc, sicl	Sc, sic, c,	S, ls, sl c (>60%)	S, fragmental
Soil depth	Cm	>75	50-75	25-50	<25
Gravel content	% vol.	<35	35-50	>50	
CaCO ₃ in root zone	%	high	Medium	low	
Salinity (EC)	dSm ⁻¹	<2.0	2.0-4.0	4.0-8.0	
Sodicity (ESP)	%	<5	5-10	>10	

Table 7.10 Crop suitability criteria for Groundnut

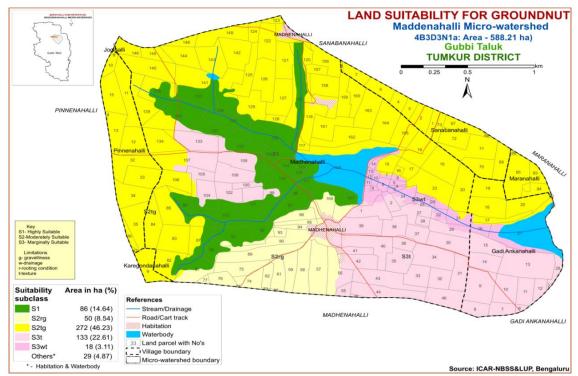


Fig. 7.10 Land Suitability map of Groundnut

7.11 Land Suitability for Sunflower (*Helianthus annus*)

Sunflower is the most important oilseed crop grown in an area of 3.56 lakh ha in the State in all the districts. The crop requirements for growing sunflower (Table 7.11) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sunflower was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.11.

About 219 ha (37%) area is highly suitable (Class S1) for growing sunflower and is distributed in the central, southern and southeastern part of the microwatershed. Moderately suitable (Class S2) lands for growing sunflower are found to occur in a very small area of about 18 ha (3%). They have minor limitation of wetness and are distributed in the eastern part of the microwatershed. The marginally suitable (Class S3) lands cover a maximum area of about 322 ha (55%) and occur in the major part of the microwatershed. They have moderate limitations of gravelliness and rooting depth.

Crop requirem	ent		Ratin	g	
Soil–site characteristics	Unit	Highly suitable (S1)	suitable Moderately suitable (S2)		Not suitable (N)
Slope	%	<3	3-5	5-10	>10
LGP	Days	>90	80-90	70-80	<70
Soil drainage	Class	Well drained	Mod. well rained	Imperfectly drained	Poorly drained
Soil reaction	рН	6.5-8.0	8.1-8.55.5-6.4	8.6-9.0;4.5- 5.4	>9.0<4.5
Surface soil texture	Class	l, cl, sil, sc	Scl, sic, c,	c (>60%), sl	ls, s
Soil depth	Cm	>100	75-100	50-75	<50
Gravel content	% vol.	<15	15-35	35-60	>60
Salinity (EC)	dSm ⁻¹	<1.0	1.0-2.0	>2.0	
Sodicity (ESP)	%	<10	10-15	>15	

Table 7.11 Crop suitability criteria for Sunflower

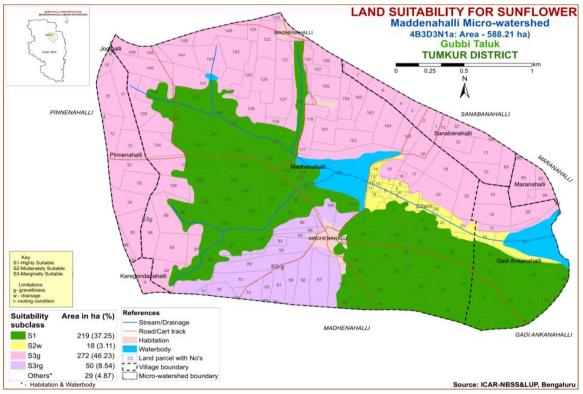


Fig. 7.11 Land Suitability map of Sunflower

7.12 Land Suitability for Onion (Allium cepa)

Onion is the most important vegetable crop grown in Raichur, Dharwad, Belgaum, Gulbarga, Bijapur, Bidar, Bellary, Chitradurga and Tumakuru districts. The crop requirements for growing onion (Table 7.12) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing onion was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.12.

An area of about 133 ha (23%) has soils that are highly suitable (Class S1) and are distributed in the central part of the microwatershed. An area of about 104 ha (18%) has soils that are moderately suitable (Class S2) for growing onion with minor limitations of gravelliness and rooting depth. They are distributed in the northern, northeastern and western part of the microwatershed. The marginally suitable (Class S3) lands cover a maximum area of about 322 ha (55%) and occur in the northern and central part of the microwatershed. They are distributed in the northern and solut 322 ha (55%) and occur in the northern and central part of the microwatershed.

Crop requirem	ent		Rating				
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)		
Mean temperature	⁰ c	20-30	30-35	35-40	>40		
in growing season							
Slope	%	<3	3-5	5-10	>10		
Soil drainage	Class	Well drained	Moderately	Poor	Very poorly		
			/imperfectly	drained	drained		
Soil reaction	pН	6.5-7.3	7.3-7.8	7.8-8.4	>8.4		
			5.0-5.4	<5.0			
Surface soil	Class	Scl, sil, sl	sc, sicl, c (red	sc, c (black	ls		
texture			soil)	soil)			
Soil depth	Cm	>75	50-75	25-50	<25		
Gravel content	%	<15	15-35	35-60	60-80		
	vol.						
Salinity (ECe)	dsm ⁻¹	<1.0	1.0-2.0	2.0-4.0	<4		
Sodicity (ESP)	%	<5	5-10	10-15	>15		

Table 7.12 Land suitability criteria for Onion

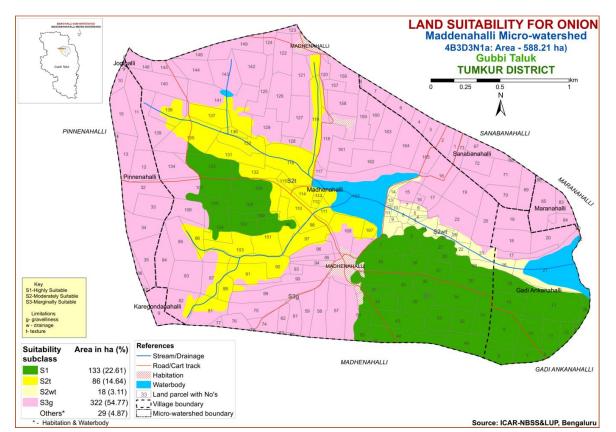


Fig. 7.12 Land Suitability map of Onion

7.13 Land Suitability for Chilli (Capscicum annuum L.)

Chilli is the most important commercial crop grown in an area of 0.42 lakh ha in the State in all the districts. The crop requirements for growing Chilli (Table 7.13) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Chilli was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.13.

An area of about 219 ha (37%) has soils that are highly suitable (Class S1) and are distributed in the central, southern and southeastern part of the microwatershed. A very small area of about 18 ha (3%) has soils that are moderately suitable (Class S2) for growing Chilli with minor limitation of wetness. They are distributed in the eastern part of the microwatershed. The marginally suitable (Class S3) lands cover a maximum area of about 322 ha (55%) and occur in the major part of the microwatershed and have moderate limitation of gravelliness.

Crop requiren	nent			Rating	
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately Suitable (S2)	Marginally suitable (83)	Not suitable (N)
Slope	%	<3	3-5	5-10	
LGP	Days	>150	120-150	90-120	<90
Soil drainage	class	Well	Mod. to	Poor	Very poorly
		drained	imperfectly	drained/excessively	drained
			drained		
Soil reaction	pН	6.0-7.0	7.1-8.0	8.1-9.0	>9.0
				5.0-5.9	
Surface soil	Class	L, scl, cl,	sl, sc,	C(ss), ls, s	
texture		sil	sic,c(m/k)		
Soil depth	Cm	>75	50-75	25-50	<25
Gravel content	%	<15	15-35	>35	
	vol.				
Salinity (ECe)	dsm ⁻¹	<1.0	1.0-2.0	2.0-4.0	<4
Sodicity (ESP)	%	<5	5-10	10-15	

Table 7.13 Land suitability criteria for Chillies

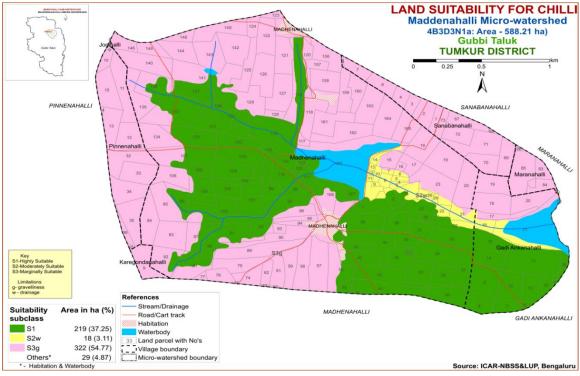


Fig. 7.13 Land Suitability map of Chilli

7.14 Land suitability for Brinjal (Solanum melongena)

Brinjal is the most important vegetable crop grown in all the districts. The crop requirements for growing Brinjal (Table 7.14) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Brinjal was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.14.

An area of about 219 ha (37%) has soils that are highly suitable (Class S1) and are distributed in the central, southern and southeastern part of the microwatershed. A very small area of about 18 ha (3%) has soils that are moderately suitable (Class S2) for growing Brinjal with minor limitations of wetness. They are distributed in the eastern part of the microwatershed. The marginally suitable (Class S3) lands cover a maximum area of about 322 ha (55%) and occur in the major part of the microwatershed. They have moderate limitation of gravelliness.

Crop require	ement			Rating	g	
Soil-site ch	aracteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	V. Poorly drained
Nutrient	Texture	Class	Sl, scl, cl, sc	C (red)	Ls, c (black)	-
availability	pН	1:2.5	6.0-7.3	7.3-8.4 5.5-6.0	8.4-9.0	>9.0
Pooting	Soil depth	Cm	>75	50-75	25-50	<25
Rooting conditions	Gravel content	% vol.	<15	15-35	35-60	>60
Erosion	Slope	%	0-3	3-5	5-10	>10

 Table 7.14 Land suitability criteria for Brinjal

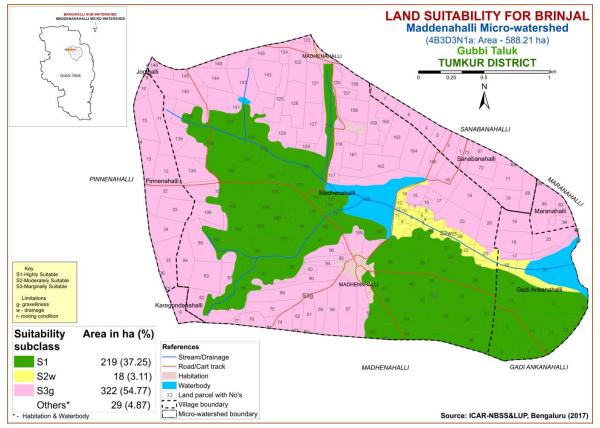


Fig. 7.15 Land Suitability map of Brinjal

7.15 Land suitability for Tomato (Lycopersicon esculentum)

Tomato is the most important vegetable crop grown in an area of 0.65 lakh ha in almost all the districts of the State. The crop requirements for growing Tomato (Table 7.15) were matched with the soil-site characteristics (Table 7.1) and a land suitability map

for growing Tomato was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.15.

An area of about 219 ha (37%) has soils that are highly suitable (Class S1) and are distributed in the central, southern and southeastern part of the microwatershed. A very small area of about 18 ha (3%) has soils that are moderately suitable (Class S2) for growing Tomato with minor limitation of wetness. They are distributed in the eastern part of the microwatershed. The marginally suitable (Class S3) lands cover a maximum area of about 322 ha (55%) and occur in the major part of the microwatershed. They have moderate limitation of gravelliness.

Crop	o requirement			Rati	ng	
Soi	l-site	Unit	Highly	Moderately	Marginally	Not
	characteristics		suitable	Suitable	suitable	suitable
Charac			(S1)	(S2)	(S3)	(N)
	Temperature	⁰ c	25-28	29-32	15-19	<15
climate	in growing season			20-24	33-36	>36
Soil	Growing	Days	>150	120-150	90-120	
moisture	period					
Soil	Soil	class	Well	Moderately	Poorly	V. poorly
aeration	drainage		drained	well drained	drained	drained
	Texture	Class	l, sl, cl, scl	Sic, sicl, sc,	C (ss), ls	S
				c(m/k)		
Nutrient	pН	1:2.5	6.0-7.3	5.5-6.0	8.4-9.0	>9.0
availability				7.3-8.4		
	CaCO ₃ in	%	Non	Slightly	Strongly	
	root zone		calcareous	calcareous	calcareous	
Rooting	Soil depth	Cm	>75	50-75	25-50	<25
conditions	Gravel	%	<15	15-35	>35	
conditions	content	vol.				
Soil	Salinity	ds/m	Non saline	slight	strongly	
toxicity	Sodicity	%	<10	10-15	>15	-
toxicity	(ESP)					
Erosion	Slope	%	1-3	3-5	5-10	>10

Table 7.15 Land suitability criteria for Tomato

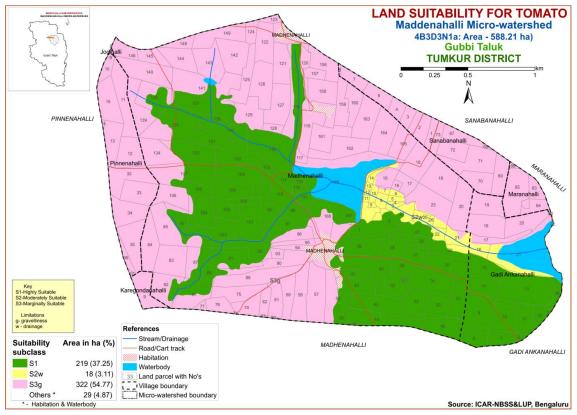


Fig. 7.15 Land Suitability map of Tomato

7.16 Land suitability for Mango (Mangifera indica)

Mango is the most important fruit crop grown in about 1.73 lakh ha area in almost all the districts of the State. The crop requirements (Table 7.16) for growing mango were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing mango was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed is given in Figure 7.16.

An area of about 219 ha (37%) in the microwatershed is highly suitable (Class S1) for growing mango and are distributed in the central, southeastern and southern part of the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing mango and are distributed in the eastern part the microwatershed. They have minor limitations of wetness and texture. The marginally suitable (Class S3) lands cover a maximum area of about 322 ha (55%) and are distributed in the major part of the microwatershed. They have moderate limitations of rooting depth and gravelliness.

Cro	op requirement		Rating				
			Highly	Moderately	Marginally	Not	
Soil-site o	Soil-site characteristics		suitable	Suitable	suitable	suitable	
			(S1)	(S2)	(S3)	(N)	
Climate	Temp. in growing season	⁰ C	28-32	24-27 33-35	36-40	20-24	
Chinate	Min. temp. before flowering	⁰ C	10-15	15-22	>22		
Soil moisture	Growing period	Days	>180	150-180	120-150	<120	
Soil aeration	Soil drainage	Class	Well drained	Mod. To imperfectly drained	Poor drained	Very poorly drained	
	Water table	М	>3	2.50-3.0	2.5-1.5	<1.5	
	Texture	Class	Sc, l, sil, cl	Sl, sc, sic, l, c	C (<60%)	C (>60%),	
Nutrient	рН	1:2.5	5.5-7.5	7.6-8.55.0- 5.4	8.6-9.04.0- 4.9	>9.0<4.0	
availability	OC	%	High	medium	low		
	CaCO ₃ in root zone	%	Non calcareous	<5	5-10	>10	
Rooting	Soil depth	cm	>200	125-200	75-125	<75	
conditions	Gravel content	%vol	Non- gravelly	<15	15-35	>35	
Soil toxicity	Salinity	dS/m	Non saline	<2.0	2.0-3.0	>3.0	
UNICITY	Sodicity	%	Non sodic	<10	10-15	>15	
Erosion	Slope	%	<3	3-5	5-10		

Table 7.16 Crop suitability criteria for Mango

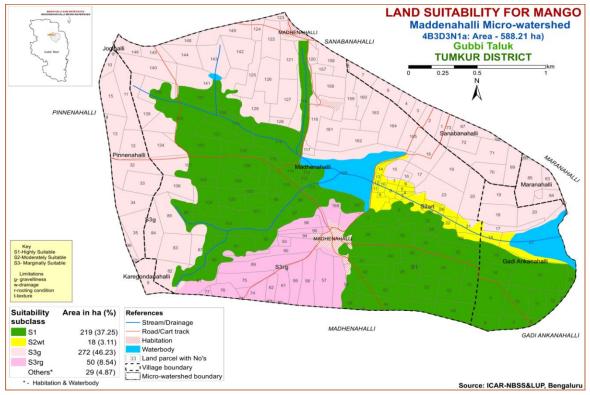


Fig. 7.16 Land Suitability map of Mango

7.17 Land suitability for Sapota (Manilkara zapota)

Sapota is the most important fruit crop grown in an area of 29373 ha in almost all the districts of the State. The crop requirements (Table 7.17) for growing sapota were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sapota was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.17.

An area of about 219 ha (37%) in the microwatershed is highly suitable (Class S1) for growing Sapota and are distributed in the central, southeastern and southern part of the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing Sapota and are distributed in the eastern part the microwatershed and have minor limitations of wetness and texture. The marginally suitable (Class S3) lands cover a maximum area of about 322 ha (55%) and are distributed in the major part of the microwatershed. They have moderate limitations of rooting depth and gravelliness.

Croj	p requirement			Rating				
Soil -site cl	haracteristics	Unit	Highly suitable	Moderately suitable	Marginally suitable	Not suitable		
			(S1)	(S2)	(S3)	(N)		
Climate	Temperature in growing season	⁰ C	28-32	33-36 24-27	37-42 20-23	>42 <18		
Soil moisture	Growing period	Days	>150	120-150	90-120	<120		
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Imperfectly drained	Poorly drained		
	Texture	Class	Scl, l, cl, sil	Sl, sicl, sc	C (<60%)	ls, s, C (>60%)		
Nutrient availability	pН	1:2.5	6.0-7.5	7.6-8.0 5.0-5.9	8.1-9.0 4.5-4.9	>9.0 <4.5		
	CaCO ₃ in root zone	%	Non calcareous	<10	10-15	>15		
Rooting	Soil depth	Cm	>150	75-150	50-75	<50		
conditions	Gravel content	% vol.	Non gravelly	<15	15-35	<35		
Soil toxicity	Salinity	dS/m	Non saline	Up to 1.0	1.0-2.0	2.0-4.0		
Soli toxicity	Sodicity	%	Non sodic	10-15	15-25	>25		
Erosion	Slope	%	<3	3-5	5-10	>10		

Table 7.17 Crop suitability criteria for Sapota

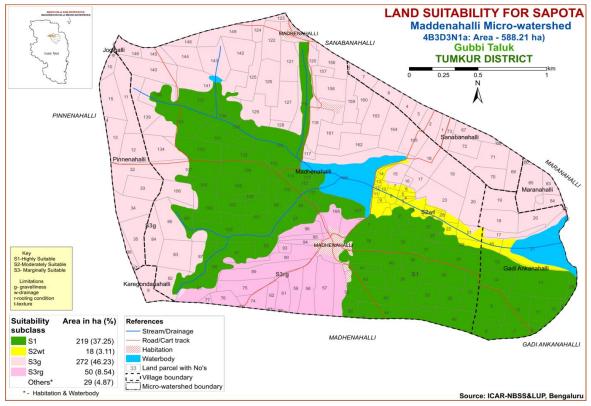


Fig. 7.18 Land Suitability map of Sapota

7.18 Land suitability for Guava (*Psidium guajava*)

Guava is the most important fruit crop grown in an area of 6558 ha in almost all the districts of the State. The crop requirements (Table 7.18) for growing guava were matched with the soil-site characteristics (7.1) and a land suitability map for growing guava was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.18.

An area of about 86 ha (15%) in the microwatershed is highly suitable (Class S1) for growing guava and are distributed in the central part of the microwatershed. A maximum area of about 423 ha (72%) is moderately suitable (Class S2) for growing guava and are distributed in the major part and have minor limitations of gravelliness, texture and wetness. The marginally suitable (Class S3) lands cover an area of about 50 ha (9%) and are distributed in the southern part of the microwatershed. They have moderate limitations of rooting depth and gravelliness.

Crop	o requirement			Rati	ng	
Soil –site cl	naracteristics	Unit	Highly suitable	Moderately Suitable	Marginally suitable	Not suitable
			(S1)	(S2)	(S3)	(N)
Climate	Temperature in growing season	⁰ C	28-32	33-36 24-27	37-42 20-23	
Soil moisture	Growing period	Days	>150	120-150	90-120	<90
Soil aeration	Soil drainage	Class	Well drained	Mod. to imperfectly	poor	Very poor
	Texture	Class	Scl, l, cl, sil	S1,sicl,sic.,sc,c	C (<60%)	C (>60%)
Nutrient availability	рН	1:2.5	6.0-7.5	7.6-8.0: 5.0-5.9	8.1-8.5: 4.5-4.9	>8.5:<4.5
	CaCO ₃ in root zone	%	Non calcareous	<10	10-15	>15
Rooting	Soil depth	Cm	>100	75-100	50-75	<50
conditions	Gravel content	% vol.	<15	15-35	>35	
Soil	Salinity	dS/m	<2.0	2.0-4.0	4.0-6.0	
toxicity	Sodicity	%	Non sodic	10-15	15-25	>25
Erosion	Slope	%	<3	3-5	5-10	>10

 Table 7.18 Crop suitability criteria for Guava

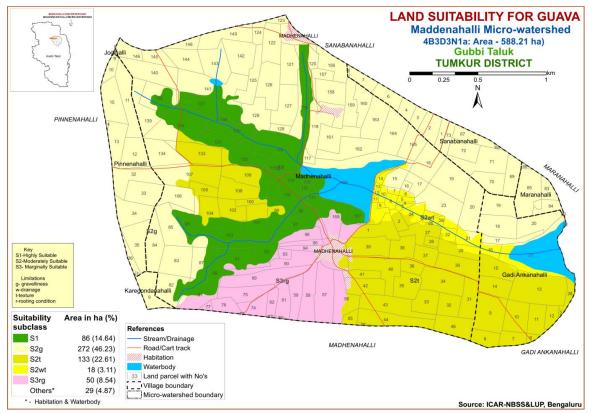


Fig. 7.18 Land Suitability map of Guava

7.19 Land Suitability for Pomegranate (Punica granatum)

Pomegranate is one of the commercially grown fruit crop in Karnataka in an area of 0.18 lakh ha mainly in Bijapur, Bagalkot, Koppal, Gadag and Chitradurga districts. The crop requirements for growing pomegranate (Table 7.19) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing pomegranate was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.19.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing pomegranate and are distributed in the central, southern and southeastern part of the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing pomegranate and are distributed in the eastern part of the microwatershed. They have minor limitations of wetness and texture. Marginally suitable (Class S3) lands for growing pomegranate occupy a maximum area of about 322 ha (55%) and are distributed in the major part of the microwatershed. They have minor limitations of wetness.

Crop	o requirement			Rating				
Soil –site cl	Soil –site characteristics		Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)		
Climate	Temperature in growing season	⁰ C	30-34	35-38 25-29	39-40 15-24			
Soil moisture	Growing period	Days	>150	120-150	90-120	<90		
Soil aeration	Soil drainage	class	Well drained	imperfectly drained				
Nutrient availability	Texture	Class	Sl, scl, l, cl	C, sic, sicl	Cl, s, ls	S, fragmental		
	pН	1:2.5	5.5-7.5	7.6-8.5	8.6-9.0			
Rooting	Soil depth	Cm	>100	75-100	50-75	<50		
conditions	Gravel content	% vol.	nil	15-35	35-60	>60		
Soil	Salinity	dS/m	Nil	<9	>9	<50		
toxicity	Sodicity	%	nil					
Erosion	Slope	%	<3	3-5	5-10			

 Table 7.19 Crop suitability criteria for Pomegranate

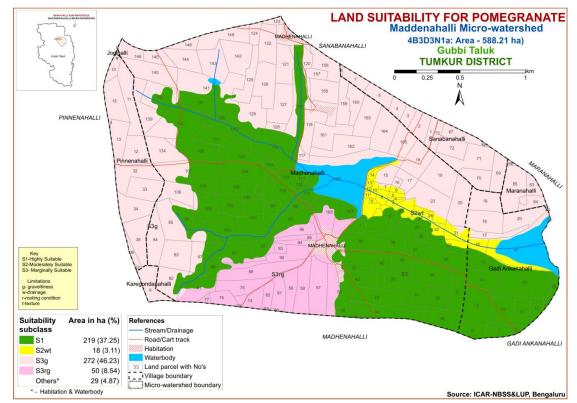


Fig. 7.19 Land Suitability map of Pomegranate

7.20 Land Suitability for Banana (Musa paradisiaca)

Banana is one of the major fruit crop grown in an area of 1.02 lakh ha in Karnataka State. The crop requirements for growing banana (Table 7.20) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing banana was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.20.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing banana and are distributed in the central, southern and southeastern part of the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing banana and are distributed in the eastern part of the microwatershed. They have minor limitations of wetness and texture. Marginally suitable (Class S3) lands for growing banana occupy a maximum area of about 322 ha (55%) and are distributed in the major part of the microwatershed. They have minor limitations of rooting depth and gravelliness.

Cro	op requirement		Rating				
Soil -site o	Soil –site characteristics		Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)	
Climate	Temperature in growing season	⁰ C	26-33	34-36 24-25	37-38	>38	
Soil aeration	Soil drainage	Class	Well drained	Moderately to imperfectly drained	Poorly drained	Very poorly drained	
Nutrient	Texture	Class	l,cl, scl,sil	Sicl, sc, c(<45%)	C (>45%), sic, sl	ls, s	
availability	рН	1:2.5	6.5-7.0	7.1-8.5 5.5-6.4	>8.5 <5.5		
Rooting	Soil depth	Cm	>125	76-125	50-75	<50	
conditions	Stoniness	%	<10	10-15	15-35	>35	
Soil	Salinity	dS/m	<1.0	1-2	>2		
toxicity	Sodicity	%	<5	5-10	10-15	>15	
Erosion	Slope	%	<3	3-5	5-15	>15	

Table 7.20	Crop	suitability	y criteria i	for l	Banana
-------------------	------	-------------	--------------	-------	--------

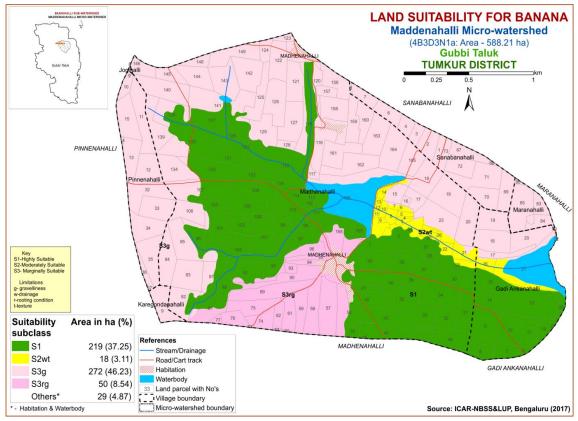


Fig. 7.20 Land Suitability map of Banana

7.21 Land Suitability for Jackfruit (Artocarpus heterophyllus)

Jackfruit is the most important fruit crop grown in 5368 ha in all the districts of the state. The crop requirements for growing jackfruit were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing jackfruit (Table 7.21) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.21.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing Jackfruit and are distributed in the central, southern and southeastern part of the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing Jackfruit and are distributed in the eastern part of the microwatershed. They have minor limitation of wetness. Marginally suitable (Class S3) lands for growing Jackfruit occupy a maximum area of about 322 ha (55%) and are distributed in the major part of the microwatershed. They have minor limitations of rooting depth and gravelliness.

Cro	op requirement			Rating					
			Highly	Moderately	Marginally	Not			
Soil site c	haracteristics	unit	suitable (S1)	Suitable	suitable	suitable			
			suitable (51)	(S2)	(S3)	(N)			
Soil	Soil drainage	class	well	Mod. well	Poorly	V.			
aeration						Poorly			
	Texture	Class	Scl, cl, sc, c	-	Sl, ls, c	-			
Nutrient			(red)		(black)				
availability	рН	1:2.5	5.5-7.3	5.0-5.5	7.8-8.4	>8.4			
				7.3-7.8					
Pooting	Soil depth	Cm	>100	75-100	50-75	<50			
Rooting conditions	Gravel content	%	<15	15-35	35-60	>60			
conditions		vol.							
Erosion	Slope	%	0-3	3-5	>5	-			

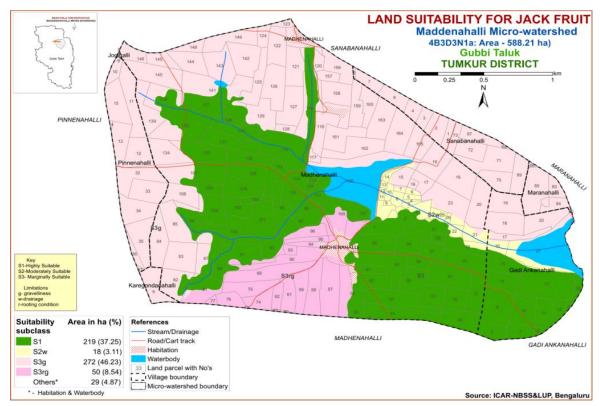


Fig. 7.21 Land Suitability map of Jackfruit

7.22 Land Suitability for Jamun (Syzygium cumini)

Jamun is an important fruit crop grown in almost all the districts of the State. The crop requirements for growing jamun were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing jamun (Table .22) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.22.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing Jamun and are distributed in the central, southern and southeastern part of the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing Jamun and are distributed in the eastern part of the microwatershed. They have minor limitations of wetness and texture. Marginally suitable (Class S3) lands for growing Jamun occupy a maximum area of about 322 ha (55%) and are distributed in the major part of the microwatershed. They have minor limitations of rooting depth and gravelliness.

Cre	op requirement		Rating				
Soil –site characteristics		unit	Highly suitable (S1)	Moderately Suitable (S2)	Marginally suitable (S3)	Not suitable (N)	
Soil aeration	Soil drainage	Class	Well	Mod. well	Poorly	V.Poorly	
Nutrient	Texture	Class	Scl, cl, sc, C (red)	Sl, C (black)	ls	-	
availability	рН	1:2.5	6.0-7.8	5.0-6.0	7.8-8.4	>8.4	
Rooting	Soil depth	Cm	>150	100-150	50-100	<50	
conditions	Gravel content	% vol.	<15	15-35	35-60	>60	
Erosion	Slope	%	0-3	3-5	5-10	>10	

 Table .22
 Land suitability criteria for Jamun

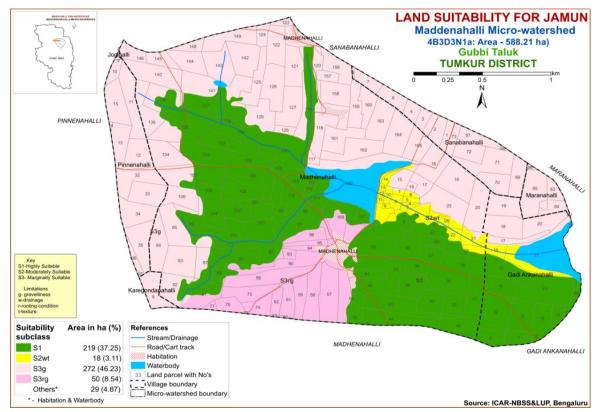


Fig. 7.22 Land Suitability map of Jamun

7.23 Land Suitability for Musambi (Citrus limetta)

Musambi is the most important fruit crop grown in an area of 5446 ha in almost all the districts of the state. The crop requirements for growing musambi were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing musambi (Table 7.23) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.23.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing Musambi and are distributed in the central, southern and southeastern part of the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) and are distributed in the eastern part of the microwatershed. They have minor limitation of wetness. Marginally suitable (Class S3) lands occupy a maximum area of about 322 ha (55%) and are distributed in the major part of the microwatershed and have minor limitations of rooting depth and gravelliness.

Crop 1	requiremen	ıt	Rating						
	Soil —site characteristics		Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable(N)			
Soil aeration	Soil drainage	Class	Well drained	Mod. to imperfectly drained	poorly	Very poorly			
Nutrient availability	Texture pH	Class 1:2.5	Scl, 1, sicl, cl, s 6.0-7.5	Sc, sc, c 5.5-6.47.6-8.0	C(>70%) 4.0-5.4 8.1-8.5	S, 1s <4.0 >8.5			
Rooting	Soil depth	Cm	>150	100-150	50-100	<50			
conditions Erosion	Gravel content Slope	% vol. %	Non gravelly	3-5	35-55 5-10	>55			

Table 7.23 Crop suitability criteria for Musambi

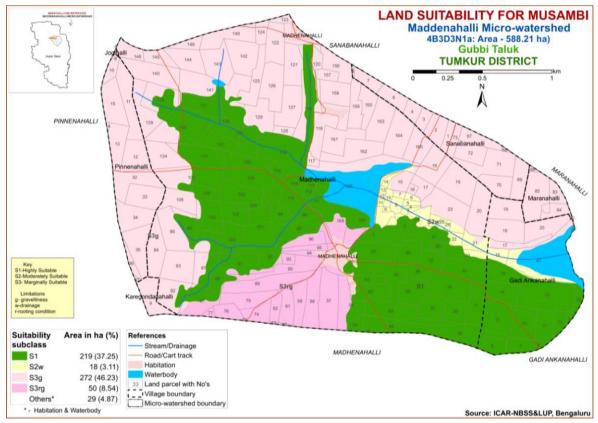


Fig. 7.23 Land Suitability map of Musambi

7.24 Land Suitability for Lime (Citrus sp)

Lime is one of the most important fruit crop grown in an area of 11752 ha in almost all the districts of the State. The crop requirements for growing lime (Table 7.24) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing lime was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7. 24.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing Lime and are distributed in the central, southern and southeastern part of the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing lime and are distributed in the eastern part of the microwatershed. They have minor limitations of wetness and texture. Marginally suitable (Class S3) lands for growing lime occupy a maximum area of about 322 ha (55%) and are distributed in the major part of the microwatershed. They have minor limitations of rooting depth and gravelliness.

Crop	o requirement			Rat	ing	
Soil –site characteristics		Unit	Highly suitable	Moderately suitable	Marginally suitable	Not suitable(N)
			(S1)	(S2)	(S3)	2
	Temperature	⁰ C	28-30	31-35	36-40	>40
Climate	in growing			24-27	20-23	<20
	season					
Soil	Growing	Days	240-265	180-240	150-180	<150
moisture	period					
Soil	Soil	Class	Well drained	Mod. to	poorly	Very poorly
aeration	drainage			imperfectly		
aeration				drained		
	Texture	Class	Scl, l, sicl,	Sc, sc, c	C(>70%)	S, ls
			cl, s			
Nutrient	рН	1:2.5	6.0-7.5	5.5-6.47.6-	4.0-5.4	<4.0
availability				8.0	8.1-8.5	>8.5
	CaCO ₃ in	%	Non	Upto 5	5-10	>10
	root zone		34calcareous			
Rooting	Soil depth	Cm	>150	100-150	50-100	<50
conditions	Gravel	%	Non	15-35	35-55	>55
conditions	content	vol.	gravelly			
Soil	Salinity	dS/m	Non saline	Upto 1.0	1.0-2.5	>2.5
toxicity	Sodicity	%	Non sodic	5-10	10-15	>15
Erosion	Slope	%	<3	3-5	5-10	

Table 7.24 Crop suitability criteria for Lime

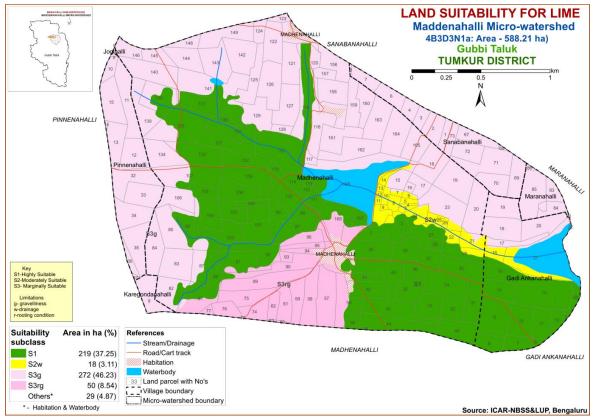


Fig. 7.24 Land Suitability map of Lime

7.25 Land Suitability for Cashew (Anacardium occidentale)

Cashew is one of the most important fruit crop grown in an area of 7052 ha in almost all the districts of the State. The crop requirements for growing cashew were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing cashew (Table 7.25) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.25.

An area of about 86 ha (15%) is highly suitable (Class S1) for growing cashew and are distributed in the central part of the microwatershed. A major area of 405 ha (69%) is moderately suitable for growing cashew and are distributed in major part of the microwatershed. They have minor limitations of texture and gravelliness. The marginally suitable (Class S3) lands cover an area of about 50 ha (9%) and occur in the southern part of the microwatershed. They have moderate limitations of gravelliness and rooting depth. A very small area of about 18 ha (3%) is not suitable for growing cashew and occur in the eastern part of the microwatershed and have very severe limitation of wetness.

Cre	op requirement		Rating				
			Highly	Moderately	Marginally	Not	
Soil -site	characteristics	unit	suitable	Suitable	suitable	suitable	
			(S1)	(S2)	(S3)	(N)	
Soil	Soil drainage	Class	Well	Mod. well	Poorly	V.Poorly	
aeration			drained	drained	drained	drainage	
Nutrient	Texture	Class					
availability	рН	1:2.5	5.5-6.5	5.0-5.5	7.3-7.8	>7.8	
availability				6.5-7.3			
Rooting	Soil depth	Cm	>100	75-100	50-75	<50	
conditions	Gravel content	%	<15	15-35	35-60	>60	
conditions		vol.					
Erosion	Slope	%	0-3	3-10	>10		

Table 7.25 Land suitability criteria for Cashew

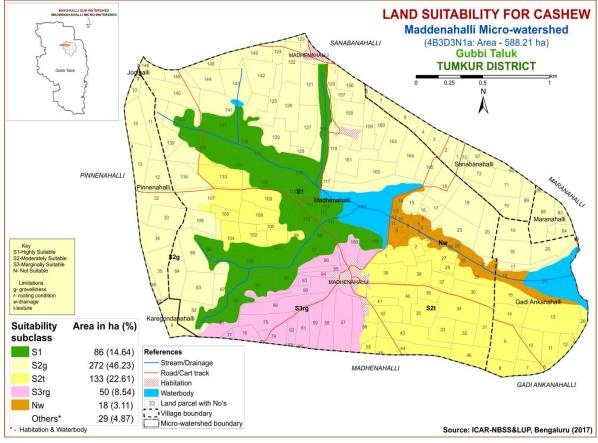


Fig. 7.25 Land Suitability map of Cashew

7.26 Land Suitability for Custard Apple (Annona reticulata)

Custard apple is one of the most important fruit crop grown in almost all the districts of the State. The crop requirements for growing custard apple were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing custard

apple (Table 26) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.26.

An area of 219 ha (37%) is highly suitable (Class S1) for growing custard apple and are distributed in the central, southern and southeastern part of the microwatershed. A maximum area of about 340 ha (58%) has soils that are moderately suitable (Class S2) for growing custard apple with minor limitations of wetness and gravelliness and are distributed in the major part of the microwatershed.

Crop	requirement		•	Rating				
			Highly	Moderately	Marginally	Not		
Soil –site ch	aracteristics	unit	suitable	Suitable	suitable	suitable		
			(S1)	(S2)	(S3)	(N)		
Soil aeration	Soil	Class	Well drained	Mod. well	Poorly	V. Poorly		
Son aeration	drainage			drained	drained	drained		
	Texture	Class	Scl, cl, sc, c	-	Sl, ls	-		
Nutrient			(red), c					
availability			(black)					
availability	рН	1:2.5	6.0-7.3	7.3-8.4	5.0-5.5	>9.0		
					8.4-9.0			
Desting	Soil depth	Cm	>75	50-75	25-50	<25		
Rooting conditions	Gravel	%	<15-35	35-60	60-80	-		
conditions	content	vol.						
Erosion	Slope	%	0-3	3-5	>5			

Table 7.26 Land suitability criteria for Custard apple

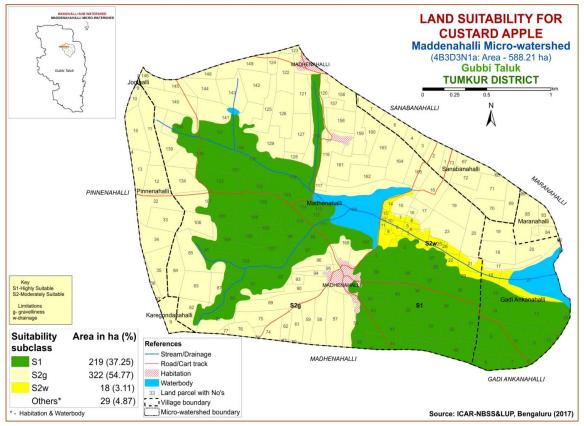


Fig. 7.26 Land Suitability map of Custard Apple

7.27 Land Suitability for Amla (*Phyllanthus emblica*)

Amla is one of the fruit crop grown in almost all the districts of the State. The crop requirements for growing amla were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing amla (Table 7.27) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.27.

An area of 219 ha (37%) is highly suitable (Class S1) for growing Amla and are distributed in the central, southern and southeastern part of the microwatershed. A maximum area of about 340 ha (58%) has soils that are moderately suitable (Class S2) for growing Amla with minor limitations of wetness and gravelliness and are distributed in the major part of the microwatershed.

Crop	requirement	ţ		Rating					
Soil –	Soil –site		Highly	Moderately	Marginally	Not			
characte		unit	suitable	Suitable	suitable	suitable			
characte	115005		(S1)	(S2)	(S3)	(N)			
Soil aeration	Soil	Class	Well	Mod.well	Poorly drained	V. Poorly			
Son aeration	drainage		drained	drained		drained			
Nutrient	Texture	Class	Scl, cl, sc,	C (black)	ls, sl	-			
availability			c (red)						
availability	pН	1:2.5	5.5-7.3	5.0-5.5	7.8-8.4	>8.4			
	Soil	Cm	>75	50-75	25-50	<25			
Rooting	depth								
conditions	Gravel	%	<15-35	35-60	60-80				
	content	vol.							
Erosion	Slope	%	0-3	3-5	5-10	>10			

Table 7. 27 Land suitability criteria for Amla

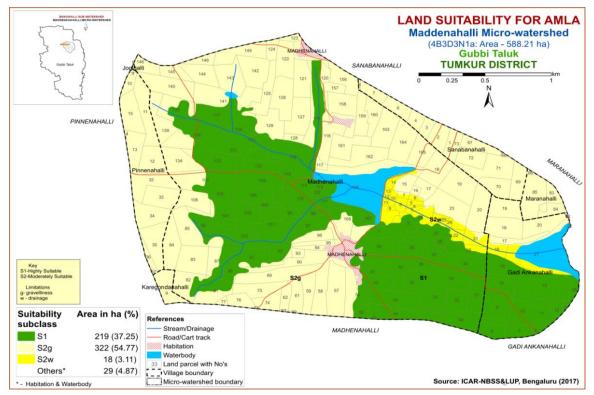
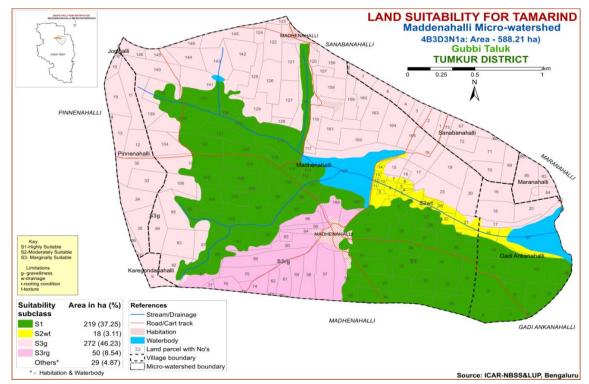
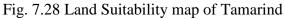


Fig. 7.27 Land Suitability map of Amla


7.28 Land Suitability for Tamarind (Tamarindus indica)


Tamarind is the most important spice crop grown in 14897 ha in all the districts of the state. The crop requirements for growing tamarind were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing tamarind (Table 7.28) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.28.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing Tamarind and are distributed in the central, southern and southeastern part of the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing Tamarind and are distributed in the eastern part of the microwatershed and have minor limitations of wetness and texture. Marginally suitable (Class S3) lands for growing Tamarind occupy a maximum area of about 322 ha (55%) and are distributed in the major part of the microwatershed. They have minor limitations of rooting depth and gravelliness.

Cr	op requirement		Rating			
Soil –site characteristics		unit	Highly suitable S1	Moderately Suitable S2	Marginally suitable S3	Not suitable N
Soil aeration	Soil drainage	Class	Well drained	Mod.well drained	Poorly drained	V.Poorly drained
Nutrient	Texture	Class	Scl, cl,sc, c (red)	Sl, c (black)	ls	-
availability	рН	1:2.5	6.0-7.3	5.0-6.0 7.3-7.8	7.8-8.4	>8.4
Desting	Soil depth	Cm	>150	100-150	75-100	<50
Rooting conditions	Gravel content	% vol.	<15	15-35	35-60	60-80
Erosion	Slope	%	0-3	3-5	5-10	>10

Table 7.28 Land suitability criteria for Tamarind

7.29 Land suitability for Marigold (Tagetes sps.)

Marigold is the most important flower crop grown in an area of 9108 ha in almost all the districts of the state. The crop requirements (Table 7.29) for growing marigold were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing marigold was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.29.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing Marigold and are distributed in the central, southern and southeastern part of the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing Marigold and are distributed in the eastern part of the microwatershed and have minor limitations of wetness and texture. Marginally suitable (Class S3) lands for growing Marigold occupy a maximum area of about 322 ha (55%) and are distributed in the major part of the microwatershed. They have minor limitation of gravelliness.

Croj	p requirement		Rating				
Soil –site characteristics		unit	Highly suitable S1	Moderately Suitable S2	Marginally suitable S3	Not suitable N	
Climate	Temperature in growing season		18-23	17-15 24-35	35-40 10-14	>40 <10	
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Imperfectly drained	Poorly drained	
	Texture	Class	1,sl, scl, cl, sil	sicl, sc, sic, c	С	ls, s	
Nutrient availability	рН	1:2.5	7.0-7.5	5.5-5.9 7.6-8.5	<5 >8.5	-	
	CaCO ₃ in root zone	%	Non calcareous	Slightly calcareous	Strongly calcareous	-	
Rooting conditions	Soil depth Gravel content	Cm % vol.	>75 <15	50-75 15-35	25-50 >35	<25 -	
Soil toxicity	Salinity Sodicity (ESP)	ds/m %	Non saline <10	Slightly 10-15	Strongly >15	-	
Erosion	Slope	%	1-3	3-5	5-10	-	

 Table 7.29 Land suitability criteria for Marigold

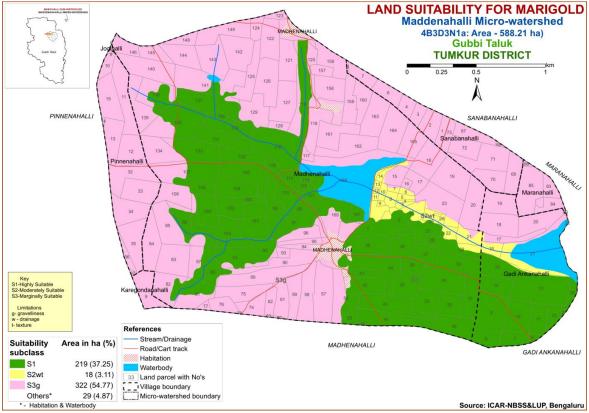


Fig. 7.29 Land Suitability map of Marigold

7.30 Land Suitability for Chrysanthemum (Dendranthema grandiflora)

Chrysanthemum is the most important flower crop grown in an area of 803 ha in almost all the districts of the State. The crop requirements (7.30) for growing chrysanthemum were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing chrysanthemum was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.30.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing chrysanthemum and are distributed in the central, southern and southeastern part of the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing chrysanthemum and are distributed in the eastern part of the microwatershed. They have minor limitations of wetness and texture. Marginally suitable (Class S3) lands for growing chrysanthemum occupy a maximum area of about 322 ha (55%) and are distributed in the major part of the microwatershed. They have minor limitation of gravelliness.

Crop requirement			Rating				
	Soil –site characteristics		Highly suitable S1	Moderately Suitable S2	Marginally suitable S3	Not suitable N	
Climate	Temperature in growing season		18-23	17-15 24-35	35-40 10-14	>40 <10	
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Imperfectly drained	Poorly drained	
	Texture	Class	l,sl, scl, cl, sil	sicl, sc, sic, c	С	ls, s	
Nutrient availability	pН	1:2.5	7.0-7.5	5.5-5.9 7.6-8.5	<5 >8.5		
	CaCO ₃ in root zone	%	Non calcareous	Slightly calcareous	Strongly calcareous		
Desting	Soil depth	Cm	>75	50-75	25-50	<25	
Rooting conditions	Gravel content	% vol.	<15	15-35	>35		
Soil	Salinity	ds/m	Non saline	slightly	strongly		
toxicity	Sodicity (ESP)	%	<10	10-15	>15	-	
Erosion	Slope	%	1-3	3-5	5-10		

Table 7.30 Land suitability criteria for Chrysanthemum

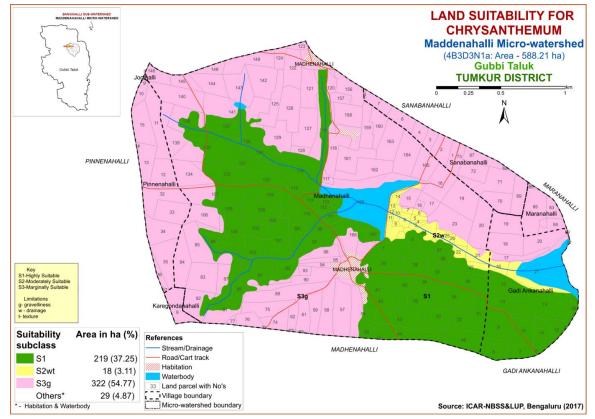


Fig. 7.30 Land Suitability map of Chrysanthemum

7. 31 Land Suitability for Jasmine (Jasminum sp.)

Jasmine is the most important flower crop grown in an area of 803 ha in almost all the districts of the State. The crop requirements (Table 7.31) for growing chrysanthemum were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing chrysanthemum was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.31.

An area of about 219 ha (37%) is highly suitable (Class S1) for growing Jasmine and are distributed in the central, southern and southeastern part of the microwatershed. A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing Jasmine and are distributed in the eastern part of the microwatershed. They have minor limitations of wetness and texture. Marginally suitable (Class S3) lands for growing Jasmine occupy a maximum area of about 322 ha (55%) and are distributed in the major part of the microwatershed. They have minor limitation of gravelliness.

Crop requirement			Rating				
		Unit	Highly suitable	Moderately Suitable	Marginally suitable	Not suitable	
			(S1)	(S2)	(83)	(N)	
	Temperature		18-23	17-15	35-40		
Climate	in growing			24-35	10-14		
	season						
Soil	Soil drainage	Class	Well	Moderately	Imperfectly	Poorly	
aeration			drained	drained	drained	drained	
	Texture	Class	Scl, l, scl,	sicl, sc, sic,	C(ss),	ls, s	
			cl, sil	c (m/k)			
Nutrient	рН	1:2.5	6.0-7.5	5.5-5.9	<5		
availability				7.6-8.5	>8.5		
	CaCO ₃ in	%	Non	Slightly	Strong		
	root zone		calcareous	calcareous	calcareous		
Rooting	Soil depth	Cm	>75	50-75	25-50	<25	
conditions	Gravel	%	<15	15-35	>35		
conditions	content	vol.					
Soil	Salinity	ds/m	Non saline	Slight	Strongly		
toxicity	Sodicity	%	Non sodic	Slight	Strongly		
Erosion	Slope	%	1-3	3-5	5-10		

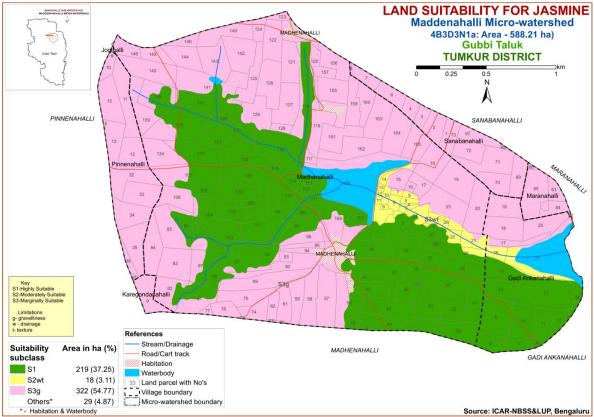


Fig. 7.31 Land Suitability map of Jasmine

7.32 Land Suitability for Coconut (Cocos nucifera)

Coconut is the most important flower crop grown in almost all the districts of the State. The crop requirements (7.32) for growing Coconut were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Coconut was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.32.

An area of about 86 ha (15%) is highly suitable (Class S1) for growing coconut and are distributed in the central part of the microwatershed. An area of about 151 ha (26%) is moderately suitable (Class S2) for growing coconut and are distributed in the central, southern and southeastern part of the microwatershed. They have minor limitations of wetness and texture. Marginally suitable (Class S3) lands for growing coconut occupy a maximum area of about 322 ha (55%) and are distributed in the major part of the microwatershed. They have minor limitation of gravelliness.

Crop requirem	lent	Rating					
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately Suitable (S2)	Marginally suitable (S3)	Not suitable (N)		
Slope	%	0-3	3-5	5-10	>10		
Soil drainage	class	Well drained	Mod. drained	Poorly	Very poorly		
Soil reaction	pН	5.1-6.5	6.6-7.5	7.6-8.5	-		
Surface soil texture	Class	Sc, cl, scl	C (red), sl	C (black), ls	-		
Soil depth	Cm	>100	75-100	50-75	<50		
Gravel content	% vol.	<15	15-35	35-60	>60		

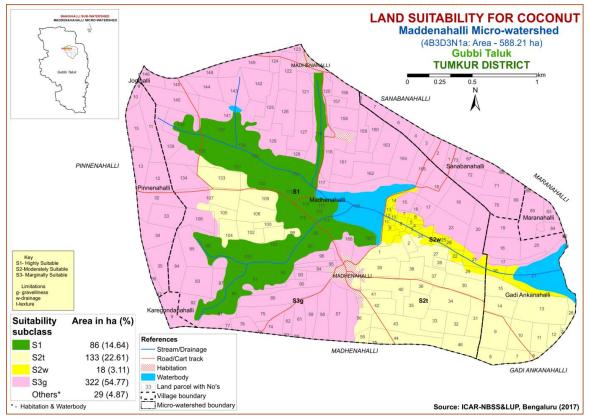


Fig. 7.32 Land Suitability map of Coconut

7.33 Land Suitability for Areca nut (Areca catechu)

Areca nut is the most important nut crop grown in few districts of the State. The crop requirements (7.33) for growing Areca nut were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Areca nut was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.33.

An area of about 86 ha (15%) is highly suitable (Class S1) for growing areca nut and are distributed in the central part of the microwatershed. An area of about 151 ha (26%) is moderately suitable (Class S2) for growing areca nut and are distributed in the

central, southern and southeastern part of the microwatershed. They have minor limitations of wetness and texture. Marginally suitable (Class S3) lands for growing areca nut occupy a maximum area of about 322 ha (55%) and are distributed in major part of the microwatershed. They have minor limitation of gravelliness.

Crop requirem	ent	Rating					
Soil –site unit characteristics		HighlyModeratelysuitableSuitableS1S2		Marginally suitable S3	Not suitable N		
Slope	%	0-3	3-5	5-10	>10		
Soil drainage	class	Well drained	Mod. to poorly drained	-	Very poorly		
Soil reaction	pН	5.0-6.5	6.6-7.5	7.6-8.5			
Surface soil texture	Class	Sc, cl, scl	C (red), sl	C (black), ls	-		
Soil depth	Cm	>100	75-100	50-75	<50		
Gravel content	% vol.	<15	15-35	35-60	>60		

Table 7.33 Land suitability criteria for Areca nut

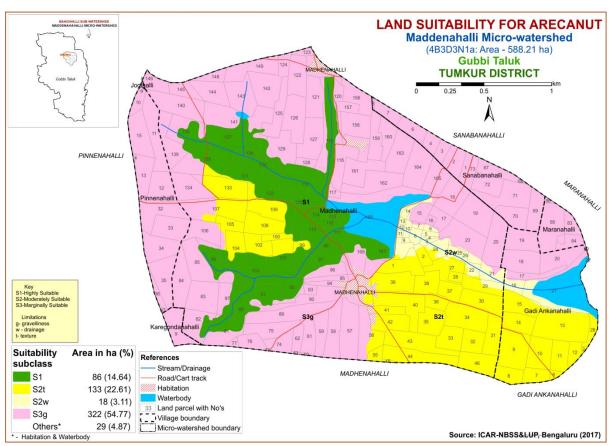
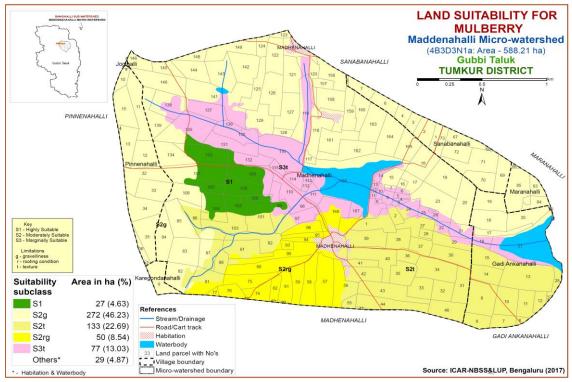
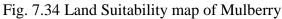


Fig. 7.33 Land Suitability map of Arecanut

7.34 Land Suitability for Mulbery (Morus nigra)

Mulbery is the most important leaf crop grown in about 1.66 lakh ha in all the districts of the state for feeding silk worms. The crop requirements for growing mulbery


(Table 7.34) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing mulbery was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.11.


Highly suitable (Class S1) lands occupy an area of about 27 ha (5%) for growing mulbery and occur in the central part of the microwatershed. Moderately suitable (Class S2) lands occupy maximum area of about 455 ha (77%) and occur in all parts of the microwatershed. They have minor limitations of gravelliness and texture. Marginally suitable lands cover an area of about 77 ha (13%) and occur in the northern and central part of the microwatershed. They have moderate limitation of texture.

Croj	o requirement		Rating					
Soil –site characteristics		unit	Highly suitable (S1)	Moderately Suitable (S2)	Marginally suitable (S3)	Not suitable (N)		
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	V. Poorly drained		
Nutrient	Texture	Class	Sc, cl, scl	C (red)	C (black), sl, ls	-		
availability	pН	1:2.5						
Desting	Soil depth	Cm	>100	75-100	50-75	<50		
Rooting conditions	Gravel content	% vol.	0-35	35-60	60-80	>80		
Erosion	Slope	%	0-3	3-5	5-10	>10		

Table 34 Land suitability criteria for Mulberry

Note: Suitability evaluation only for Mulberry leaf not for Silk worm rearing

7.35 Land Use Classes (LUCs)

The 18 soil map units identified in Maddenahalli microwatershed have been regrouped into 5 Land Use Classes (LUC's) for the purpose of preparing a Proposed Crop Plan. Land Use Classes are grouped based on the similarities in respect of the type of soil, the depth of the soil, the surface soil texture, gravel content, AWC, slope, erosion etc. and a Land Use Classes map (Fig.7.28) has been generated. These land use classes are expected to behave similarly for a given level of management.

The map units that have been grouped into 5 land use classes along with brief description of soil and site characteristics are given below.

LUC	Soil map unit	Soil map units	Soil and site characteristics
NO.	number		
1	11,12,13,14	MRDcB1	Very deep, red clay to sandy clay loam
		RTRcA1	soils with slopes of 0-3% and slight
		RTRhB1	erosion
		RTRiB1	
2	15,16,17,	KDThB1	Very deep, sandy clay loam soils with
		KDThB1g1	slopes of 0-3%, gravelly (15-35%) and
		KDTiA1	slight erosion
3	18	TSDiA1	Very deep, black clayey soils and low
			land soils with slopes of 0-1% and
			slight erosion
4	2, 3, 4, 5, 6, 7,	BPRcB1	Deep, red gravelly sandy clay loam to
	8, 9, 10	BPRcB1g1	sandy clay soils with slopes of 1-3%,
		BPRcB2g1	gravelly to very gravelly (15-60%) and
		BPRcB2g2	slight to moderate erosion
		BPRhB1	
		BPRhB1g1	
		BPRhB2	
		BPRhB2g1	
		BPRiB2	
5	1	BDGcB1g1	Moderately deep gravelly red sandy
			loam soils with slopes of 1-3%,
			gravelly (15-35%) and slight erosion

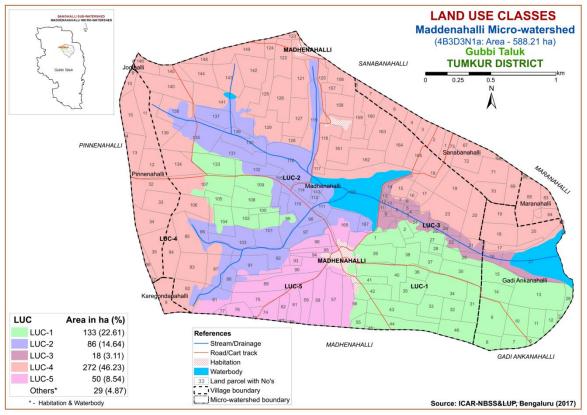


Fig. 7.36 Land Use Classes Map - Maddenahalli Microwatershed

7.36 Proposed Crop Plan for Maddenahalli Microwatershed

After assessing the land suitability for the 34 crops, a proposed crop plan has been prepared for the 5 identified LUCs by considering only the highly (Class S1) and moderately (Class S2) suitable lands for each of the 34 crops. The resultant proposed crop plan is presented below in Table 7.35.

LUC No	Mapping Units	Survey Number	Soil Characteristics	Field Crops	Forestry/ Grasses	Horticulture Crops with suitable interventions	Suitable Interventions
LUC1	MRDcB1	Gadi Ankanahalli:	Very deep, red clay	Sole Crops: Ragi,	Neem, Silver	Vegetables: Onion,	Summer
133 ha	RTRcA1	2,6,7,8,9,10,11,12,13,14,	to sandy clay loam	Upland paddy,	Oak	Tomato, Brinjal	ploughing,
(23%)	RTRhB1	15,28	soils with slopes of	Maize, Sorghum,	Grasses	Chillies, Coriander,	cultivation on
	RTRiB1	Madhenahalli:	0-3% and slight	Fodder sorghum,	Styloxanthes	Drumstick	raised
		1,2,27,28,29,30,31,32,33,	erosion	Sunflower,	hamata,	Flower crops:	beds with
		34,35,36,37,38,39,40,41,		Groundnut,	Styloxanthes	Chrysanthemum,	mulches,
		42,43,44,45,46,55,100,102		Redgram,	Scabra,	Jasmine, China aster,	Drip irrigation and
		,104,105,107,108,109,133		Fieldbean, Cowpea	Hybrid Napier,	Marigold, Crossandra	suitable
				Intercropping:	Sesbania,	Fruit crops/	conservation
				Redgram+Fodder		Plantation crops:	practices
				sorghum		Mango, Sapota,	(Crescent
				Ragi+Cowpea		Guava, Cashew,	Bunding with
				Ragi+Redgram		Pomegranate	Catch Pit etc)
				Ragi+Fieldbean		Jackfruit, Musambi,	
						Arecanut, Coconut	
LUC 2	KDThB1	Madhenahalli:	Very deep, sandy	Sole crops:	Hebbevu,	Vegetables: Brinjal,	Application of
86 ha	KDThB1g1	81,86,87,88,91,92,97,98,	clay loam soils with	Sorghum,	Silveroak	Tomato, chillies,	FYM and
(15%)	KDTiA1	99,101,103,110,111,112,	slopes of 0-3%,	Sunflower, Fodder	Grasses:	Cucurbits	micronutrients,
		113,114,115,116,119,130,	gravelly (15-35%)	sorghum, Redgram,	Styloxanthes	Flower crops:	drip irrigation,
		131,132,135,136,137,167,	and slight erosion	Field bean, Horse	hamata,	Marigold,	Mulching, suitable
		168		gram	Styloxanthes	Chrysanthemum	conservation
					scabra,	Fruit crops:	practises
				Intercropping:	Hybrid napier	Pomegranate,	
				Redgram+Fodder		Tamarind, Custard	
				sorghum		Apple, Amla, Lime,	
						Musambi Arecanut,	
						Coconut	

Table 7.35 Proposed Crop Plan for Maddenahalli Microwatershed

LUC 3 18 ha (3%)	TSDiA1	Gadi Ankanahalli: 16 Madhenahalli: 3,4,5,6,7,8,9,10,11,12,13, 14,21,22,24,25,26	clayey soils and low land soils with slopes of 0-1% and slight erosion		Hebbevu, Silveroak Grasses: Styloxanthes hamata, Styloxanthes scabra, Hybrid napier	Fruit crops/ plantation crops: Tamarind, Custard Apple, Amla, Arecanut, Coconut	Providing proper drainage, addition of organic manures, green leaf manuring, suitable conservation practices
272 ha (46%)	BPRcB1 BPRcB2g1 BPRcB2g2 BPRhB1 BPRhB1g1 BPRhB2 BPRhB2g1 BPRiB2	Gadi Ankanahalli: 17,18,19,20 Jogihalli: 8 Karegondanahalli: 9 Madhenahalli: 15,16,17,18,19,20,23,82, 83,84,85,106,117,118,120, 121,122,123,124,125,126, 127,128,129,134,138,139, 140,141,142,143,144,145, 146,148,149,156,157,158, 159,160,161,162,163,164, 165 Maranahalli: 80,83,84,85,86 Pinnenahalli: 9,10,11,12,13,14,15,32,33, 34,35,36,37 Sanabanahalli: 1,2,3,4,6,7,8,67,68,69,70,7 1,72,73	sandy clay soils with slopes of 1- 3%, gravelly to very gravelly (15-60%)	paddy, Ragi, Maize, Sorghum, Groundnut, Fieldbean, Cowpea,	Glyricidia, Grasses: Styloxanthes hamata, Styloxanthes scabra, Hybrid Napier	Vegetables: Tomato, Brinjal, Drumstick, Chillies, Curry leaf Flower crops: Chrysanthemum, Marigold, Crossandra, Fruit crops/ Plantation crops: Tamarind, Custard Apple, Amla, Lime, Musambi, Arecanut, Coconut	Drip irrigation, Mulching, suitable conservation practices (Crescent Bunding with Catch Pit etc)

LUC 5	BDGcB1g1	Madhenahalli:	Moderately deep	Sole crops: Upland	Glyricidia,	Vegetables: Tomato,	Drip irrigation,
50 ha		56,57,58,59,60,61,62,63,7	gravelly red sandy	paddy, Ragi, Maize,	Grasses:	Brinjal, Drumstick,	Mulching,
(9%)		3,74,75,76,77,89,90,93,94,	loam soils with	Sorghum,	Styloxanthes	Chillies, Curry leaf	suitable
		95,96	slopes of 1-3%,	Groundnut, Field	hamata,	Flower crops:	conservation
			gravelly (15-35%)	bean, Cowpea,	Styloxanthes	Chrysanthemum,	practices
			and slight erosion	Fodder sorghum,	scabra,	Marigold, Crossandra,	(Crescent Bunding
				Horse gram	Hybrid Napier	Fruit crops: Banana,	with
						Custard Apple, Amla,	Catch Pit etc)
						Lime, Musambi	

SOIL HEALTH MANAGEMENT

8.1 Soil Health

Soil is fundamental to crop production. Without soil, no food could be produced nor would livestock be fed on a large scale. Because it is finite and fragile, soil is a precious resource that requires special care from its users.

Soil health or the capacity of the soil to function is critical to human survival. Soil health has been defined as: "the capacity of the soil to function as a living system without adverse effect on the ecosystem". Healthy soils maintain a diverse community of soil organisms that help to form beneficial symbiotic associations with plant roots, recycle essential plant nutrients, improve soil structure with positive repercussions for soil, water and nutrient holding capacity and ultimately improve crop production and also contribute to mitigating climate change by maintaining or increasing its carbon content.

Functional interactions of soil biota with organic and inorganic components, air and water determine a soil's potential to store and release nutrients and water to plants and to promote and sustain plant growth. Thus, maintaining soil health is vital to crop production and conserve soil resource base for sustaining agriculture.

The most important characterististics of a healthy soil are

- Good soil tilth
- Sufficient soil depth
- Good water storage and good drainage
- Adequate supply, but not excess of nutrients
- Large population of beneficial organisms
- Small proportion of plant pathogens and insect pests
- Low weed pressure
- Free of chemicals and toxins that may harm the crop
- Resistance to degradation
- Resilience when unfavourable conditions occur

Characteristics of Maddenahalli Microwatershed

- The soil phases identified in the microwatershed belonged to the soil series of BPR 273 ha (46%), RTR 106 ha (18%), KDT 87 ha (15%), BDG 50 ha (9%), MRD 27 ha (5%) and TSD 18 ha (3%).
- ✤ As per land capability classification, entire area in the microwatershed falls under arable land category (Class II & III). The major limitations identified in the arable lands were soil, wetness and erosion.
- On the basis of soil reaction, maximum area of about 573 ha (97%) is slightly acid to strongly acid (pH 5.0 -6.5) and about 37 ha (34%) is under neutral (pH 6.5-7.3).

Soil Health Management

The following actions are required to improve the current land husbandry practices that provide a sound basis for the successful adoption of sustainable crop production system.

Acid soils

1. Growing crops suitable for particular soil pH.

2. Ameliorating the soils through the application of amendments (liming materials). Liming materials:

- 1. $CaCO_3$ (Calcium Carbonate). More than 90% use in India.
- 2. Dolomite $[Ca Mg (Co_3)_2]$
- 3. Quick lime (Cao)
- 4. Slaked lime [Ca (OH)₂]

For normal pH and pH-4.8 (35 t/ha) and pH -6 .0-7.0 (4 t/ha) lime is required.

Alkaline soils

(Slightly alkaline to moderately alkaline soils)

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers (Azospirullum, Azatobacter, Rhizobium).
- 3. Application of 25% extra N and P (125 % RDN&P).
- 4. Application of $ZnSO_4 12.5$ kg/ha (once in three years).
- 5. Application of Boron 5kg/ha (once in three years).

Neutral soils

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers, (Azospirullum, Azotobacter, Rhizobium).
- 3. Application of 100 per cent RDF.
- 4. Need based micronutrient applications.

Besides the above recommendations, the best transfer of technology options are also to be adopted.

Soil Degradation

Soil erosion is not a major factor affecting the soil health in the microwatershed. Out of total 588 ha area in the microwatershed, a very small area of about 127 ha is suffering from moderate erosion. These areas need immediate soil and water conservation and, other land development and land husbandry practices for restoring soil health.

Dissemination of information and communication of benefits

Any large scale implementation of soil health management requires that supporting information is made available widely, particularly through channels familiar to farmers and extension workers. Given the very high priority attached to soil health especially by the Central Government on issuing Soil-Health Cards to all the farmers, media outlets like Regional, State and National Newspapers, Radio and Dooradarshan programs in local languages but also modern information and communication technologies such as Cellular phones and the Internet, which can be much more effective in reaching the younger farmers.

Inputs for Net Planning (Saturation Plan) and Interventions needed

Net planning in IWMP is focusing on preparation of

- 1. Soil and Water Conservation Plans for each plot or farm.
- 2. Productivity enhancement measures/ interventions for existing crops/livestock/other farm enterprises.
- 3. Diversification of farming mainly with perennial horticultural crops and livestock.
- 4. Improving livelihood opportunities and income generating activities.

In this connection, how various outputs of Sujala-III are of use in addressing these objectives of Net Planning (Saturation Plan) are briefly presented below.

- Soil Depth: The depth of a soil decides the amount of moisture and nutrients it can hold, what crops can be taken up or not, depending on the rooting depth and the length of growing period available for raising any crop. Deeper the soil, better for a wide variety of crops. If sufficient depth is not available for growing deep rooted crops, either choose medium or short duration crops or deeper planting pits need to be opened and additional good quality soil brought from outside has to be filled into the planting pits.
- Surface soil texture: Lighter soil texture in the top soil means, better rain water infiltration, less run-off and soil moisture conservation, less capillary rise and less evaporation losses. Lighter surface textured soils are amenable to good soil tilth and are highly suitable for crops like groundnut and root vegetables (carrot, raddish, potato etc) but not ideal for crops that need stagnant water like lowland paddy. Heavy textured soils are poor in water infiltration and percolation. They are prone for sheet erosion; such soils can be improved by sand mulching. The technology that is developed by the AICRP-Dryland Agriculture, Vijayapura, Karnataka can be adopted.
- Gravelliness: More gravel content is favorable for run-off harvesting but poor in soil moisture storage and nutrient availability. It is a significant parameter that decides the kind of crop to be raised.
- Land Capability Classification: The land capability map shows the areas suitable and not suitable for agriculture and the major constraints in each of the plot/survey number. Hence, one can decide what kind of enterprise is possible in each of these units. In general, erosion and soil are the major constraints in Maddenahalli microwatershed.
- ♦ Organic Carbon: The OC content is medium (0.5-0.75%) in about 186 ha (32%) area and low (<0.5%) in about 373 ha (63%). The areas that are low and medium in</p>

OC needs to be further improved by applying farmyard manure and rotating crops with cereals and legumes or mixed cropping.

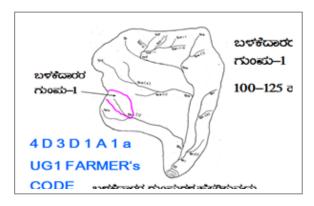
- Promoting green manuring: Growing of green manuring crops costs Rs. 1250/ha (green manuring seeds) and about Rs. 2000/ha towards cultivation that totals to Rs. 3250/- per ha. On the other hand, application of organic manure @ 10 tons/ha costs Rs. 5000/ha. The practice needs to be continued for 2-3 years or more. Nitrogen fertilizer needs to be supplemented by 25% in addition to the recommended level in 559 ha area where OC is medium (0.5-0.75%) and low (<0.5%). For example, for rainfed maize, recommended level is 50 kg N per ha and an additional 12 kg /ha needs to be applied for all the crops grown in these plots.</p>
- ✤ Available Phosphorus: The available phosphorus is high (>57 kg/ha) in the entire area.
- Available Potassium: Available potassium is medium in maximum area of 428 ha (73%) in the microwatershed, about 111 ha (19%) area is low (<145 kg/ha) in available potassium and an area of about 20 ha (3%) is high (>337 kg/ha) in available potassium. Hence, in all these plots, where available potassium is low and medium, for all the crops, additional 25 % potassium may be applied.
- Available Sulphur: Available sulphur is a very critical nutrient for oilseed crops. It is medium in 552 ha (94%). These areas need to be applied with magnesium sulphate or gypsum or Factamphos (p) fertitilizer (13% sulphur) for 2-3 years for the deficiency to be corrected.
- ★ Available Boron: Available boron is low in the entire 559 ha (95%) in the microwatershed. These areas need to be applied with sodium borate @ 10 kg/ha as soil application or 0.2% borax as foliar application to correct the boron deficiency.
- **Available Iron:** Entire area is sufficient in available iron in the microwatershed.
- Available Zinc: It is deficient (<0.6 ppm) in 255 ha (43%) area of the microwatershed. Application of zinc sulphate @25kg/ha is to be recommended and about 304 ha (52%) area is sufficient (>0.6 ppm) in available Zinc.
- Soil acidity: The microwatershed has 573 ha (97%) area with soils that are slightly to strongly acid. These areas need application of lime (Calcium Carbonate).
- Land Suitability for various crops: Areas that are highly, moderately and marginally suitable for growing various crops are indicated. Along with the suitability, various constraints that are limiting the productivity are also indicated. For example, in case of cotton, gravel content, rooting depth and salinity/alkalinity are the major constraints in various plots. With suitable management interventions, the productivity can be enhanced. In order to increase water holding capacity of light textured soils, growing of green manure crops and application of organic manure is recommended.

Chapter 9

SOIL AND WATER CONSERVATION TREATMENT PLAN

For preparing soil and water conservation treatment plan for Maddenahalli microwatershed, the land resource inventory database generated under Sujala-III project has been transformed as information through series of interpretative (thematic) maps using soil phase map as a base. The various thematic maps (1:7920 scale) generated were

- > Soil depth
- Surface soil texture
- Soil gravelliness
- Available water capacity
- Soil slope
- Soil erosion
- Land capability
- Present land use and land cover
- Crop suitability
- Rainfall
- > Hydrology
- Water Resources
- Socio-economic data
- Contour plan with existing features- network of waterways, pothissa boundaries, cut up/ minor terraces etc.
- Cadastral map (1:7920 scale)
- Satellite imagery (1:7920 scale)

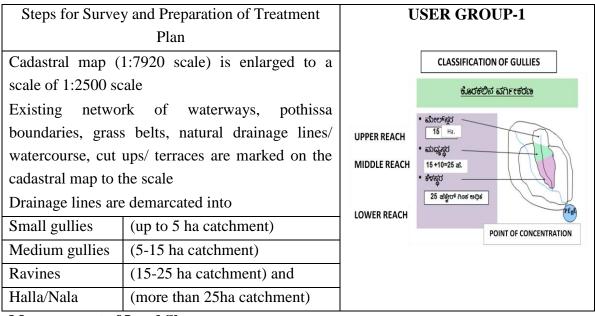

Apart from these, Hand Level/ Hydro Marker/ Dumpy Level/ Total Station and Kathedars' List is collected.

Steps for Survey and Preparation of Treatment Plan

The boundaries of Land User Groups' and Survey No. boundaries are traced in the

field.

- Naming of user groups and farmers
- Identification of arable and non arable lands
- Identification of drainage lines and gullies
- Identification of non treatable areas
- Identification of priority areas in the arable lands
- Treatment plan for arable lands
- Location of water harvesting and recharge structures



9.1 Treatment Plan

The treatment plan recommended for arable lands is briefly described below.

9.1.1 Arable Land Treatment

A. BUNDING

Measurement of Land Slope

Land slope is estimated or determined by the study and interpretation of contours or by measurement in the field using simple instruments like Hand Level or Hydromarker.

Vertical and Horizontal intervals between bunds as recommended by the Watershed Development Department.

Slope percentage	Vertical interval (m)	Corresponding Horizontal Distance (m)
2 - 3%	0.6	24
3 - 4%	0.9	21
4 - 5%	0.9	21
5 - 6%	1.2	21
6 - 7%	1.2	21

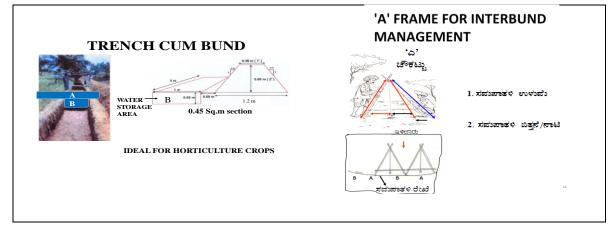
Note: (i) The above intervals are maximum.

(ii) Considering the slope class and erosion status (A1... A= 0-1% slope, 1= slight erosion) the intervals have to be decided.

Bund length recording: Considering the contour plan and the existing grass belts/partitions, the bunds are aligned and lengths are measured.

Section of the Bund

Bund section is decided considering the soil texture class and gravelliness class $(bg_{0...}, b_{=} \text{ loamy sand}, g_{0} = <15\%$ gravel). The recommended Sections for different soils are given below.


Top width (m)	Base width (m)	Height (m)	Side slope (Z:1;H:V)	Cross section (sq m)	Soil Texture	Remarks
0.3	0.9	0.3	01:01	0.18	Sandy loam	Vegetative
0.3	1.2	0.3	1.5:1	0.225	Sandy clay	bund
0.3	1.2	0.5	0.9:1	0.375	Red gravelly soils	
0.3	1.2	0.6	0.75:1	0.45		
0.3	1.5	0.6	01:01	0.54	Red sandy loam	
0.3	2.1	0.6	1.5:1	0.72	Very shallow black soils	
0.45	2	0.75	01:01	0.92		
0.45	2.4	0.75	1.3:1	1.07	Shallow black soils	
0.6	3.1	0.7	1.78:1	1.29	Medium black soils	
0.5	3	0.85	1.47:1	1.49		

Recommended Bund Section

Formation of Trench cum Bund

Dimensions of the Borrow Pits/ Trenches to be excavated (machinery are decided considering the Bund Section).

Details of Borrow Pit dimensions are given below

Bund section	Bund length	Earth quantity			Pit		Berm (pit to pit)	Soil depth Class
m ²	m	m ³	L(m)	W(m)	D(m)	QUANTITY (m ³)	m	
0.375	6	2.25	5.85	0.85	0.45	2.24	0.15	Shallow
0.45	6	2.7	5.4	1.2	0.43	2.79	0.6	Shallow
0.45	6	2.7	5	0.85	0.65	2.76	1	Moderately Shallow
0.54	5.6	3.02	5.5	0.85	0.7	3.27	0.1	Moderately shallow
0.54	5.5	2.97	5	1.2	0.5	3	0.5	Shallow
0.72	6.2	4.46	6	1.2	0.7	5.04	0.2	Moderately shallow
0.72	5.2	3.74	5.1	0.85	0.9	3.9	0.1	Moderately deep

Size of Borrow Pit/ Trench recommended for Trench cum Bund (by machinery)

B. Waterways

- 1. Existing waterways are marked on the cadastral map (1:7920 scale) and their dimensions are recorded.
- 2. Considering the contour plan of the MWS, additional waterways/ modernization of the existing ones can be thought of.
- 3. The design details are given in the Manual.

C. Farm Ponds

Waterways and the catchment area will give an indication on the size of the Farm Pond. Location of the pond can be decided based on the contour plan/ field condition and farmers' need/desire.

D. Diversion channel

Existing EPT/ CPT are marked on the cadastral map. Looking to the need, these can be modernized or fresh diversion channel can be proposed and runoff from this can be stored in Gokatte/ Recharge ponds.

9.1.2 Non-Arable Land Treatment

Depending on the gravelliness and crops preferred by the farmers, the concerned authorities can decide appropriate treatment plan. The recommended treatments may be Contour Trench, Staggered Trench, Crescent Bund, Boulder Bund or Pebble Bund are formed in the field.

9.1.3 Treatment of Natural Water Course/ Drainage Lines

a) The cadastral map has to be updated as regards the network of drainge lines (gullies/ nalas/ hallas) and existing structures are marked to the scale and storage capacity of the existing water bodies are documented.

- b) The drainage line will be demarcated into Upper Reach, Middle Reach and Lower Reach.
- c) Considering the Catchment, Nala bed and bank conditions, suitable structures are decided.
- d) Number of storage structures (Check dam/ Nala bund/ Percolation tank) will be decided considering the commitments and available runoff from water budgeting and quality of water in the wells and site suitability.
- e) Detailed Levelling Survey using Dumpy Level / Total Station has to be carried out to arrive at the site-specific designs as shown in the Manual.
- f) The location of ground water recharge structures are decided by examining the lineaments and fracture zones from geological maps.
- g) Rainfall intensity data of the nearest Rain Gauge station is considered for Hydrologic Designs.
- h) Silt load to the Storage/Recharge structures is reduced by providing vegetative, boulder and earthern checks in the natural water course. Location and design details are given in the Manual.

9.2 Recommended Soil and Water Conservation Measures

The appropriate conservation structures best suited for each of the land parcel/ survey number (Appendix-I) are selected based on the slope per cent, severity of erosion, amount of rainfall, land use and soil type. The different kinds of conservation structures recommended are

- 1. Graded / Strengthening of Bunds
- 2. Trench cum Bunds (TCB)
- 3. Trench cum Bunds / Strengthening
- 4. Crescent Bunds

A map (Fig. 9.1) showing soil and water conservation plan with different kinds of structures recommended has been generated which shows the spatial distribution and extent of area. A maximum area of about 442 ha (75%) requires trench cum bunding, about 71 ha (12%) area requires Bunding/ Strengthening of existing bunds and small area of about 47 ha (8%) area requires graded bunding. The conservation plan generated may be presented to all the stakeholders including farmers and after including their suggestions, the conservation plan for the microwatershed may be finalised in a participatory approach.

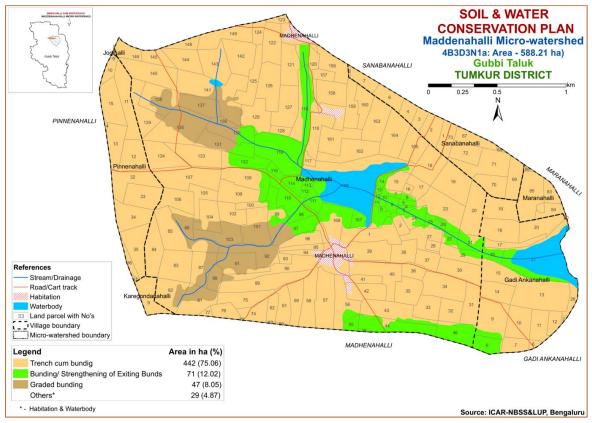


Fig. 9.1 Soil and Water Conservation Plan map of Maddenahalli Microwatershed

9.3 Greening of Microwatershed

As part of the greening programme in the watersheds, it is envisaged to plant a variety of horticultural and other tree plants that are edible, economical and produce lot of biomass which helps to restore the ecological balance in the watersheds. The lands that are suitable for greening programme are non-arable lands (land capability Classes V, VI, VII and VIII) and also the lands that are not suitable or marginally suitable for growing annual and perennial crops. The method of planting these trees is given below.

It is recommended to open pits during the 1^{st} week of March along the contour and heap the dug out soil on the lower side of the slope in order to harness the flowing water and facilitate weathering of soil in the pit. Exposure of soil in the pit also prevents spread of pests and diseases due to scorching sun rays. The pits should be filled with mixture of soil and organic manure during the second week of April and keep ready with sufficiently tall seedlings produced either in poly bags or in root trainer nurseries so that planting can be done during the 2^{nd} or 3^{rd} week of April depending on the rainfall.

The tree species suitable for the area considering rainfall, temperature and adaptability is listed below; waterlogged areas are recommended to be planted with species like Neral (*Sizyzium cumini*) and Bamboo. Dry areas are to be planted with species like Honge, Bevu, Seetaphal *etc*.

	Dry D	eciduous Species	Temp (°C)	Rainfall (mm)
1.	Bevu	Azadiracta indica	21–32	400-1,200
2.	Tapasi	Holoptelia integrifolia	20-30	500 - 1000
3.	Seetaphal	Anona Squamosa	20-40	400 - 1000
4.	Honge	Pongamia pinnata	20 - 50	500-2,500
5.	Kamara	Hardwikia binata	25 -35	400 - 1000
6.	Bage	Albezzia lebbek	20 - 45	500 - 1000
7.	Ficus	Ficus bengalensis	20 - 50	500-2,500
8.	Sisso	Dalbargia Sissoo	20 - 50	500 - 2000
9.	Ailanthus	Ailanthus excelsa	20 - 50	500 - 1000
10.	Hale	Wrightia tinctoria	25 - 45	500 - 1000
11.	Uded	Steriospermum chelanoides	25 - 45	500 - 2000
12.	Dhupa	Boswella Serrata	20 - 40	500 - 2000
13.	Nelli	Emblica Officinalis	20 - 50	500 -1500
14.	Honne	Pterocarpus marsupium	20 - 40	500 - 2000
	Moist I	Deciduous Species	Temp (°C)	Rainfall (mm)
15.	Teak	Tectona grandis	20 - 50	500-5000
16.	Nandi	Legarstroemia lanceolata	20 - 40	500 - 4000
17.	Honne	Pterocarpus marsupium	20 - 40	500 - 3000
18.	Mathi	Terminalia alata	20 - 50	500 - 2000
19.	Shivane	Gmelina arboria	20 - 50	500 - 2000
20.	Kindal	T.Paniculata	20 - 40	500 - 1500
21.	Beete	Dalbargia latifolia	20 - 40	500 - 1500
22.	Tare	T. belerica	20 - 40	500 - 2000
23.	Bamboo	Bambusa arundinasia	20 - 40	500 - 2500
24.	Bamboo	Dendrocalamus strictus	20 - 40	500 - 2500
25.	Muthuga	Butea monosperma	20 - 40	400 - 1500
26.	Hippe	Madhuca latifolia	20 - 40	500 - 2000
27.	Sandal	Santalum album	20 - 50	400 - 1000
28.	Nelli	Emblica officinalis	20 - 40	500 - 2000
29.	Nerale	Sizyzium cumini	20 - 40	500 - 2000
30.	Dhaman	Grevia tilifolia	20 - 40	500 - 2000
31.	Kaval	Careya arborea	20 - 40	500 - 2000
32.	Harada	Terminalia chebula	20 - 40	500 - 2000

References

- 1. FAO (1976) Framework for Land Evaluation, Food and Agriculture Organization, Rome.72 pp.
- FAO (1983) Guidelines for Land Evaluation for Rainfed Agriculture, FAO, Rome, 237 pp.
- IARI (1971) Soil Survey Manual, All India Soil and Land Use Survey Organization, IARI, New Delhi, 121 pp.
- Katyal, J.C. and Rattan, R.K. (2003) Secondary and Micronutrients; Reaserch Gap and future needs. Fert. News 48 (4); 9-20.
- Naidu, L.G.K., Ramamurthy, V., Challa, O., Hegde, R. and Krishnan, P. (2006) Manual Soil Site Suitability Criteria for Major Crops, NBSS Publ. No. 129, NBSS &LUP, Nagpur, 118 pp.
- 6. Natarajan, A. and Dipak Sarkar (2010) Field Guide for Soil Survey, National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur, India.
- Natarajan, A., Rajendra Hegde, Raj, J.N. and Shivananda Murthy, H.G. (2015)Implementation Manual for Sujala-III Project, Watershed Development Department, Bengaluru, Karnataka.
- Sarma, V.A.K., Krishnan, P. and Budihal, S.L. (1987) Laboratory Manual, Tech. Bull.
 23, NBSS & LUP, Nagpur.
- 9. Sehgal, J.L. (1990) Soil Resource Mapping of Different States of India; Why and How?, National Bureau of Soil Survey and Land Use Planning, Nagpur, 49 pp.
- Shivaprasad, C.R., R.S. Reddy, J. Sehgal and M. Velayuthum (1998) Soils of Karntaka for Optimising Land Use, NBSS Publ. No. 47b, NBSS & LUP, Nagpur, India.
- 11. Soil Survey Staff (2006) Keys to Soil Taxonomy, Tenth edition, U.S. Department of Agriculture/ NRCS, Washington DC, U.S.A.
- 12. Soil Survey Staff (2012) Soil Survey Manual, Handbook No. 18, USDA, Washington DC, USA.

Appendix I Maddenahalli Microwatershed Soil Phase Information

Village	Survey No	Total Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capa bility	Conservation Plan
Madhenahalli	1	5.12	RTRhB1	LUC-1	Very deep (>150 cm)	Sandy clayloam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	1 Bore well	IIs	Trench cum bundig
Madhenahalli	2	1.29	RTRhB1	LUC-1	Very deep (>150 cm)	Sandy clayloam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Trench cum bundig
Madhenahalli	3	0.45	TSDiA1	LUC-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Fallow land (Fl)	Not Available	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	4	0.21	TSDiA1	LUC-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Not Available (NA)	Not Available	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	5	0.48	TSDiA1	LUC-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Fallow land (Fl)	Not Available	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	6	0.45	TSDiA1	LUC-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Fallow land (Fl)	Not Available	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	7	0.43	TSDiA1	LUC-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut+Coconut (Ar+CN)	1 Bore well	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	8	0.89	TSDiA1	LUC-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut+Coconut (Ar+CN)	2 Bore well	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	9	0.21	TSDiA1	LUC-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Not Available (NA)	1 Bore well	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	10	0.63	TSDiA1	LUC-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Coconut (CN)	1 Bore well	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	11	0.22	TSDiA1	LUC-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Fallow land (Fl)	Not Available	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	12	0.19	TSDiA1	LUC-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Fallow land (Fl)	Not Available	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	13	0.23	TSDiA1	LUC-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Fallow land (Fl)	Not Available	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	14	0.51	TSDiA1	LUC-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut (Ar)	Not Available	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	15	1.88	BPRiB2	LUC-4	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut+Mango (CN+Mn)	Not Available	Illes	Trench cum bundig
Madhenahalli	16	0.45	BPRiB2	LUC-4	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	Not Available	Illes	Trench cum bundig
Madhenahalli	17	1.67	BPRiB2	LUC-4	Deep (100-150 cm)		Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	1 Open Well, 1 Bore well	Illes	Trench cum bundig

Village	Survey	Total Area	Soil Phase	LUC	Soil Depth	Surface Soil	Soil	Available Water	Slope	Soil Erosion	Current Land Use	WELLS	Land	Conservation Plan
village	No	(ha)	Soli Fliase	LUC	•	Texture	Gravelliness	Capacity		SOILEIOSIOII	Current Land Use	WELLS	Capa bility	conservation Fian
Madhenahalli	18	4.31	BPRiB2	LUC-4	Deep (100-150 cm)		Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	4 Bore well	Illes	Trench cum bundig
Madhenahalli	19	5.42	BPRiB2	LUC-4	Deep (100-150 cm)		Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	2 Bore well	Illes	Trench cum bundig
Madhenahalli	20	4.86	BPRhB1	LUC-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	1 Open Well,1 Bore well	IIIs	Trench cum bundig
Madhenahalli	21	2.07	TSDiA1	LUC-3			Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Coconut+Fallow land (CN+Fl)	2 Bore well,1 Open Well	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	22	1.14	TSDiA1	LUC-3	Very deep (>150 cm)	clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Fallow land (Fl)	Not Available	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	23	5.93	BPRiB2	LUC-4	Deep (100-150 cm)		Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut+Mango (CN+Mn)	1 Open Well,2 Bore well	Illes	Trench cum bundig
Madhenahalli	24	2.07	TSDiA1	LUC-3	Very deep (>150 cm)		Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Coconut (CN)	Not Available	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	25	0.96	TSDiA1	LUC-3	Very deep (>150 cm)		Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Not Available (NA)	1 Bore well	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	26	0.36	TSDiA1	LUC-3	Very deep (>150 cm)		Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Not Available (NA)	Not Available	IIw	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	27	3.07	RTRhB1	LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	1 Bore well	IIs	Trench cum bundig
Madhenahalli	28	0.72	RTRhB1	LUC-1		Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Trench cum bundig
Madhenahalli	29	2.92	RTRhB1	LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Mango (CN+Mn)	Not Available	IIs	Trench cum bundig
Madhenahalli	30	4	RTRhB1	LUC-1		Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Trench cum bundig
Madhenahalli	31	3.35	RTRhB1	LUC-1	Very deep	-	Non gravelly	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Trench cum bundig
Madhenahalli	32	2.6	RTRhB1	LUC-1	Very deep (>150 cm)	5	Non gravelly	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Trench cum bundig
Madhenahalli	33	2.98	RTRhB1	LUC-1	· ,		Non gravelly	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Trench cum bundig
Madhenahalli	34	5.25	RTRhB1	LUC-1	• •		Non gravelly	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi+Man go (CN+Ra+Mn)	Not Available	IIs	Trench cum bundig
Madhenahalli	35	3.41	RTRhB1	LUC-1	Very deep		Non gravelly	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Bore well	IIs	Trench cum bundig
Madhenahalli	36	1.72	RTRhB1	LUC-1	Very deep		Non gravelly	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Trench cum bundig
Madhenahalli	37	2.16	RTRhB1	LUC-1	Very deep		Non gravelly	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Trench cum bundig
Madhenahalli	38	2.82	RTRhB1	LUC-1	(>130 cm) Very deep (>150 cm)	Sandy	Non gravelly	Medium (101- 150 mm/m)	Very gently	Slight	Arecanut+Coconut	2 Bore well	IIs	Trench cum bundig
Madhenahalli	39	4.2	RTRhB1	LUC-1	Very deep	clay loam Sandy clay loam	Non gravelly	150 mm/m) Medium (101- 150 mm/m)	sloping (1-3%) Very gently sloping (1-3%)	Slight	(Ar+CN) Arecanut+Coconut (Ar+CN)	3 Bore well	IIs	Trench cum bundig

Village	Survey No	Total Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capa bility	Conservation Plan
Madhenahalli	40	5.15	RTRhB1	LUC-1	Very deep (>150 cm)		Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	Trench cum bundig
Madhenahalli	41	1.59	RTRhB1	LUC-1	Very deep (>150 cm)		Non gravelly	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	Trench cum bundig
Madhenahalli	42	3.47	RTRhB1	LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	Trench cum bundig
Madhenahalli	43	5.41	RTRhB1	LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	1 Bore well	IIs	Trench cum bundig
Madhenahalli	44	4.87	RTRcA1	LUC-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Nearly level (0- 1%)	Slight	Mango (Mn)	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	45	0.18	RTRcA1	LUC-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Nearly level (0- 1%)	Slight	Not Available (NA)	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	46	3.92	RTRcA1	LUC-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Nearly level (0- 1%)	Slight	Mango (Mn)	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	55	1	RTRcA1	LUC-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Nearly level (0- 1%)	Slight	Mango (Mn)	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	56	4.44	BDGcB1g1	LUC-5	Moderately deep (75-100 cm)		Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Madhenahalli	57	5.59	BDGcB1g1	LUC-5	Moderately deep (75-100 cm)		Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Mango+Ragi (Mn+Ra)	Not Available	IIIs	Trench cum bundig
Madhenahalli	58	4.06	BDGcB1g1	LUC-5	Moderately deep (75-100 cm)		Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Bore well	IIIs	Trench cum bundig
Madhenahalli	59	2.83	BDGcB1g1	LUC-5	Moderately deep (75-100 cm)		Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig
Madhenahalli	60	0.11	BDGcB1g1	LUC-5	Moderately deep (75-100 cm)		Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIIs	Trench cum bundig
Madhenahalli	61	2.57	BDGcB1g1	LUC-5	Moderately deep (75-100 cm)		Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig
Madhenahalli	62	1.43	BDGcB1g1	LUC-5	Moderately deep (75-100 cm)		Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig
Madhenahalli	63	0.1	BDGcB1g1	LUC-5	Moderately deep (75-100 cm)		Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIIs	Trench cum bundig
Madhenahalli	73	0.01	BDGcB1g1	LUC-5	Moderately deep (75-100 cm)		Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIIs	Trench cum bundig
Madhenahalli	74	2.36	BDGcB1g1	LUC-5	Moderately deep (75-100 cm)		Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig

Village	Survey No	Total Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capa bility	Conservation Plan
Madhenahalli	75		BDGcB1g1	LUC-5	deen 175-100	Sandy Ioam	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig
Madhenahalli	76	1.96	BDGcB1g1	LUC-5	Moderately deep (75-100 cm)	Sandy Ioam	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Madhenahalli	77	0.45	BDGcB1g1	LUC-5	Moderately deep (75-100 cm)		Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIIs	Trench cum bundig
Madhenahalli	81	4.51	KDThB1	LUC-2	, , , , , , , , , , , , , , , , , , ,	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	1 Bore well	IIs	Graded bunding
Madhenahalli	82	4.29	BPRcB1g1	LUC-4	Deep (100-150 cm)		Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango+Ragi (Mn+Ra)	Not Available	IIIs	Trench cum bundig
Madhenahalli	83	4.85	BPRcB1g1	LUC-4	Deep (100-150 cm)		Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango+Ragi (Mn+Ra)	1 Bore well	IIIs	Trench cum bundig
Madhenahalli	84	4.4	BPRcB1g1	LUC-4	Deep (100-150 cm)		Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig
Madhenahalli	85	4.83	BPRcB1g1	LUC-4	Deep (100-150 cm)	-	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig
Madhenahalli	86	4.17	KDThB1	LUC-2		Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Mango (CN+Mn)	Not Available	IIs	Graded bunding
Madhenahalli	87	3.62	KDThB1	LUC-2		Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Madhenahalli	88	1.68	KDThB1	LUC-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Bore well	IIs	Graded bunding
Madhenahalli	89	5.61	BDGcB1g1	LUC-5	neen 175-100		Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	1 Bore well	IIIs	Trench cum bundig
Madhenahalli	90	4.43	BDGcB1g1	LUC-5	doon (75-100	Sandy Ioam	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut+ Mango (Ar+CN+Mn)	1 Bore well	IIIs	Trench cum bundig
Madhenahalli	91	4.39	KDThB1	LUC-2	v i	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	3 Bore well	IIs	Graded bunding
Madhenahalli	92	4.11	KDThB1	LUC-2	v i	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	2 Bore well	IIs	Graded bunding
Madhenahalli	93	0.69	BDGcB1g1	LUC-5	Moderately deep (75-100 cm)	Sandy Ioam	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Madhenahalli	94	1.06	BDGcB1g1	LUC-5		Sandy loam	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIIs	Trench cum bundig
Madhenahalli	95	1.14	BDGcB1g1	LUC-5	doon 175-100	Sandy Ioam	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig
Madhenahalli	96	2.28	BDGcB1g1	LUC-5	1000 1 / 5- 1 UU		Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig
Madhenahalli	97	3.34	KDTiA1	LUC-2	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut+Coconut+ Mango (Ar+CN+Mn)	1 Bore well,1 Open Well	IIs	Bunding/ Strengthening of Exiting Bunds

Village	Survey No	Total Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capa bility	Conservation Plan
Madhenahalli	98	1.26	KDTiA1	LUC-2	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut+Coconut (Ar+CN)	2 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	99	3.46	KDTiA1	LUC-2	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Coconut+Mango (CN+Mn)	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	100	1.09	MRDcB1	LUC-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	Trench cum bundig
Madhenahalli	101	4.83	KDThB1	LUC-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango+Ragi (Mn+Ra)	Not Available	IIs	Graded bunding
Madhenahalli	102	2.63	MRDcB1	LUC-1	J	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	Trench cum bundig
Madhenahalli	103	3.65	KDThB1	LUC-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Bore well	IIs	Graded bunding
Madhenahalli	104	3.57	MRDcB1	LUC-1		Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	Trench cum bundig
Madhenahalli	105	2.32	MRDcB1	LUC-1	J I	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	Trench cum bundig
Madhenahalli	106	3.53	BPRcB1g1	LUC-4	Deep (100-150 cm)	Sandy loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Madhenahalli	107	7.02	MRDcB1	LUC-1		Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Trench cum bundig
Madhenahalli	108	3.75	MRDcB1	LUC-1	Very deep		Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Trench cum bundig
Madhenahalli	109	4.97	MRDcB1	LUC-1	Very deep		Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango+Ragi (Mn+Ra)	Not Available	IIs	Trench cum bundig
Madhenahalli	110	3.4	KDTiA1	LUC-2	,	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut+Coconut (Ar+CN)	1 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	111	1.46	KDTiA1	LUC-2	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut+Coconut (Ar+CN)	2 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	112	0.5	KDTiA1	LUC-2	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Coconut (CN)	1 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	113	0.61	KDTiA1	LUC-2	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Coconut (CN)	1 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	114	1.55	KDTiA1	LUC-2	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut+Coconut (Ar+CN)	1 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	115	0.79	KDTiA1	LUC-2	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut (Ar)	1 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	116	8.01	KDTiA1	LUC-2	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut+Coconut (Ar+CN)	3 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	117	0.62	BPRhB2	LUC-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut (CN)	Not Available	Illes	Trench cum bundig

Village	Survey No	Total Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capa bility	Conservation Plan
Madhenahalli	118		BPRhB1g1	LUC-4	Deep (100-150 cm)	Sandy clay loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	3 Bore well	IIIs	Trench cum bundig
Madhenahalli	119	5.31	KDTiA1	LUC-2		Sandy	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Coconut+Mango (CN+Mn)	3 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	120	3.18	BPRhB1g1	LUC-4	Deep (100-150 cm)	Sandy clay loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	Trench cum bundig
Madhenahalli	121	3.78	BPRhB1g1	LUC-4	Deep (100-150 cm)	Sandy clay loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Bore well	IIIs	Trench cum bundig
Madhenahalli	122	3.83	BPRhB1g1	LUC-4	Deep (100-150 cm)	Sandy clay loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	1 Bore well	IIIs	Trench cum bundig
Madhenahalli	123	0.71	BPRhB1g1	LUC-4	Deep (100-150 cm)	Sandy clay loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIIs	Trench cum bundig
Madhenahalli	124	1.37	BPRhB1g1	LUC-4	Deep (100-150 cm)	Sandy clay loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Madhenahalli	125	3.56	BPRhB1g1	LUC-4	Deep (100-150 cm)	Sandy clay loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Mango (CN+Mn)	Not Available	IIIs	Trench cum bundig
Madhenahalli	126	4.89	BPRhB1g1	LUC-4	Deep (100-150 cm)		Gravelly (15-	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango+Ragi (Mn+Ra)	1 Bore well	IIIs	Trench cum bundig
Madhenahalli	127	4.61	BPRhB1g1	LUC-4	Deep (100-150		Gravelly (15-	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Mango (CN+Mn)	1 Bore well,1 Open Well	IIIs	Trench cum bundig
Madhenahalli	128	0.92	BPRhB1g1	LUC-4	Deep (100-150 cm)		Gravelly (15-	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Madhenahalli	129	4.22	BPRhB1g1	LUC-4	Deep (100-150 cm)		Gravelly (15-	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	1 Bore well	IIIs	Trench cum bundig
Madhenahalli	130	3.37	KDThB1g1	LUC-2	Very deep		Gravelly (15-	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Graded bunding
Madhenahalli	131	4.16	KDThB1g1	LUC-2	Very deep		Gravelly (15-	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well,1 Check Dam	IIs	Graded bunding
Madhenahalli	132	3.15	KDTiA1	LUC-2	Very deep	Sandy	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut+Coconut+ Ragi (Ar+CN+Mn)	2 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Madhenahalli	133	4.72	MRDcB1	LUC-1			Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	1 Bore well	IIs	Trench cum bundig
Madhenahalli	134	4.24	BPRcB2g2	LUC-4	Deep (100-150		Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut+Mango+Ne eligiri (CN+Mn+Nr)	Not Available	IIIes	Trench cum bundig
Madhenahalli	135	8.3	KDThB1g1	LUC-2		Sandy clayloam	Gravelly (15- 35%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Bore well	IIs	Graded bunding
Madhenahalli	136	0.81	KDThB1g1	LUC-2	•	Sandy clayloam	Gravelly (15- 35%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIs	Graded bunding
Madhenahalli	137	3.67	KDThB1g1	LUC-2		Sandy clayloam	Gravelly (15- 35%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Bore well	IIs	Graded bunding
Madhenahalli	138	4.67		LUC-4	Deep (100-150 cm)	loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Arecanut+Coconut (Ar+CN)	1 Bore well	IIIes	Trench cum bundig
Madhenahalli	139	4.19	BPRcB2g2	LUC-4	Deep (100-150	Sandy	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	1 Bore well	Illes	Trench cum bundig
Madhenahalli	140	5.48	BPRcB2g2	LUC-4	Deep (100-150	Sandy	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	Not Available	Illes	Trench cum bundig
Madhenahalli	141	9.88	BPRhB2g1	LUC-4	Deep (100-150 cm)	Sandy clayloam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Arecanut+Coconut+ Ragi (Ar+CN+Mn)	2 Bore well	IIIes	Trench cum bundig

Village	Survey No	Total Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capa bility	Conservation Plan
Madhenahalli	142	. ,	BPRhB1g1	LUC-4	Deep (100-150 cm)	Sandy clayloam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Madhenahalli	143	4.64	BPRhB1g1	LUC-4	Deep (100-150 cm)	Sandy clayloam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	1 Bore well	IIIs	Trench cum bundig
Madhenahalli	144	3.55	BPRhB2g1	LUC-4	Deep (100-150 cm)	Sandy clayloam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	Not Available	IIIes	Trench cum bundig
Madhenahalli	145	2.08	BPRcB2g2	LUC-4	Deep (100-150 cm)		Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Ra)	Not Available	Illes	Trench cum bundig
Madhenahalli	146	1.94	BPRcB2g1	LUC-4	1	loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	Not Available	IIIes	Trench cum bundig
Madhenahalli	148	1.42	BPRhB2g1	LUC-4		clayloam	.,	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	Not Available	IIIes	Trench cum bundig
Madhenahalli	149	4.31	BPRhB1g1	LUC-4	Deep (100-150 cm)	clayloam		Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Madhenahalli	156	3.29	BPRhB1g1	LUC-4	Deep (100-150 cm)	clayloam		Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Madhenahalli	157	1.17	BPRhB1g1	LUC-4	Deep (100-150 cm)	clayloam	.,	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	1 Bore well	IIIs	Trench cum bundig
Madhenahalli	158	3.63	BPRhB1g1	LUC-4	Deep (100-150 cm)	clayloam		Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig
Madhenahalli	159	2.9	BPRhB2	LUC-4	Deep (100-150 cm)	clayloam	C	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Ra)	Not Available	IIIes	Trench cum bundig
Madhenahalli	160	2.6	BPRhB2	LUC-4		clayloam		Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	Not Available	IIIes	Trench cum bundig
Madhenahalli	161	4.02	BPRhB2	LUC-4		clay loam		Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut (CN)	3 Bore well	IIIes	Trench cum bundig
Madhenahalli	162	4.77	BPRhB2	LUC-4	Deep (100-150 cm)	clay loam	C	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Arecanut+Coconut (Ar+CN)	3 Bore well	IIIes	Trench cum bundig
Madhenahalli	163	4.4	BPRhB2	LUC-4	Deep (100-150 cm)	clay loam	. ,	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	Not Available	IIIes	Trench cum bundig
Madhenahalli	164	4.95	BPRhB2	LUC-4	Deep (100-150 cm) Deep (100-150	clay loam	Non gravelly (<15%) Non gravelly	Low (51-100 mm/m) Low (51-100	Very gently sloping (1-3%)	Moderate	Mango (Mn)	2 Bore well	IIIes	Trench cum bundig
Madhenahalli	165	3.44	BPRhB2 Water	LUC-4	cm)	clay loam	0 7	mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn) Coconut+Mango	1 Bore well	IIIes	Trench cum bundig
Madhenahalli	166	20.57	body	Others	6 Others	Others	Others	Others	Others	Others	(CN+Mn)	1 Bore well	Others	Others Bunding/
Madhenahalli	167	1.09	KDTiA1	LUC-2	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut+Coconut (Ar+CN)	3 Bore well	IIs	Strengthening of Exiting Bunds
Madhenahalli	168	4.73	KDTiA1	LUC-2	(>150 cm)	clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut+Coconut (Ar+CN)	1 Open Well,2 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Gadi Ankanahalli	2	0.17	RTRhB1	LUC-1	(>150 cm)	clay loam		Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Trench cum bundig
Gadi Ankanahalli	6	0.48	RTRhB1	LUC-1	(>150 cm)	clay loam	· · ·	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Trench cum bundig
Gadi Ankanahalli	7	1.96	RTRhB1	LUC-1	v	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Trench cum bundig

Village	Survey No	Total Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capa bility	Conservation Plan
Gadi Ankanahalli	8	2.23	RTRcA1	LUC-1			Non gravelly (<15%)	Medium (101- 150 mm/m)	Nearly level (0- 1%)	Slight	Mango (Mn)	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Gadi Ankanahalli	9	5.79	RTRhB1	LUC-1		Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	Not Available	IIs	Trench cum bundig
Gadi Ankanahalli	10	3.91	RTRhB1	LUC-1	· ·	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Trench cum bundig
Gadi Ankanahalli	11	2.78	RTRhB1	LUC-1		Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Mango (CN+Mn)	Not Available	IIs	Trench cum bundig
Gadi Ankanahalli	12	1.43	RTRhB1	LUC-1		Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Trench cum bundig
Gadi Ankanahalli	13	8.61	RTRiB1	LUC-1	· ·	Sandy clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	3 Bore well	IIs	Trench cum bundig
Gadi Ankanahalli	14	3.08	RTRiB1	LUC-1	· ·	Sandy clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	1 Bore well	IIs	Trench cum bundig
Gadi Ankanahalli	15	3.64	RTRiB1	LUC-1		Sandy clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Mango (CN+Mn)	2 Bore well	IIs	Trench cum bundig
Gadi Ankanahalli	16	1.4	TSDiA1	LUC-3	5 1	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Not Available (NA)	Not Available	IIw	Bunding/ Strengthening of Exiting Bunds
Gadi Ankanahalli	17	1.96	BPRiB2	LUC-4	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut+Mango (CN+Mn)	Not Available	IIIes	Trench cum bundig
Gadi Ankanahalli	18	4.39	BPRiB2	LUC-4	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Arecanut+Coconut (Ar+CN)	Not Available	IIIes	Trench cum bundig
Gadi Ankanahalli	19	3.7	BPRhB1	LUC-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Gadi Ankanahalli	20	3.84	BPRiB2	1.004	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	Not Available	IIIes	Trench cum bundig
Gadi Ankanahalli	21	12.4	Water body	Others	Others	Others	Others	Others	Others	Others	Not Available (NA)	Not Available	Others	Others
Gadi Ankanahalli	22	0.03	Water body	Others	Others	Others	Others	Others	Others	Others	Not Available (NA)	Not Available	Others	Others
Gadi Ankanahalli	28	1.22	RTRhB1	LUC-1		Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Trench cum bundig
Pinnenahalli	9	0.1	BPRcB2g1	1.1104	Deep (100-150 cm)		Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Not Available (NA)	Not Available	IIIes	Trench cum bundig
Pinnenahalli	10	1.26	BPRcB2g1	LUC-4	Deep (100-150 cm)		Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Ra)	Not Available	IIIes	Trench cum bundig
Pinnenahalli	11	5.07	BPRcB2g2	LUC-4	Deep (100-150 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	Not Available	IIIes	Trench cum bundig
Pinnenahalli	12	3.96	BPRcB2g2	LUC-4	Deep (100-150 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut+Neem (CN +Nm)	Not Available	IIIes	Trench cum bundig
Pinnenahalli	13	3.5	BPRcB2g1	1.004	Deep (100-150 cm)		Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	Not Available	Illes	Trench cum bundig
Pinnenahalli	14	0.11	BPRcB2g1	LUC-4	Deep (100-150 cm)		Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Not Available (NA)	Not Available	Illes	Trench cum bundig
Pinnenahalli	15	4.45	BPRcB2g1	LUC-4	Deep (100-150 cm)	-	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	Not Available	Illes	Trench cum bundig
Pinnenahalli	32	4.53	BPRcB1g1	LUC-4	Deep (100-150 cm)		Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig

Village	Survey No	Total Area	Soil Phase	LUC	Soil Depth	Surface Soil	Soil Gravelliness	Available Water	Slope	Soil Erosion	Current Land Use	WELLS	Land Capa	Conservation Plan
Pinnenahalli	33	(ha) 4.07	BPRcB1g1	LUC-4	Deep (100-150		Gravelly (15-	Capacity Low (51-100	Very gently	Slight	Mango (Mn)	Not Available	bility IIIs	Trench cum bundig
Pinnenahalli	34		BPRcB1g1	LUC-4	cm) Deep (100-150		35%) Gravelly (15-	mm/m) Low (51-100	sloping (1-3%) Very gently	Slight	Mango+Ragi	Not Available	IIIs	Trench cum bundig
				LUC-4	cm) Deep (100-150		35%) Gravelly (15-	mm/m) Low (51-100	sloping (1-3%) Very gently		(Mn+Ra) Mango+Ragi			
Pinnenahalli	35	4.52	BPRcB1g1	_	cm) Deep (100-150		35%) Gravelly (15-	mm/m) Low (51-100	sloping (1-3%) Very gently	Slight	(Mn+Ra)	Not Available	IIIs	Trench cum bundig
Pinnenahalli	36		BPRcB1g1	LUC-4	cm) Deep (100-150		35%) Gravelly (15-	mm/m) Low (51-100	sloping (1-3%) Very gently	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Pinnenahalli	37		BPRcB1g1	LUC-4	cm) Deep (100-150		35%) Non gravelly	mm/m) Low (51-100	sloping (1-3%) Very gently	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig
Sanabanahalli	1	1.14	BPRhB2	LUC-4	cm) Deep (100-150	clay loam	0 1	mm/m) Low (51-100	sloping (1-3%) Very gently	Moderate	Ragi (Ra) Arecanut+Coconut	Not Available	Illes	Trench cum bundig
Sanabanahalli	2	2.71	BPRhB2	LUC-4	cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	Moderate	(Ar+CN)	3 Bore well	Illes	Trench cum bundig
Sanabanahalli	3	1.26	BPRhB2	LUC-4	Deep (100-150 cm)	clay loam	· /	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	Not Available	Illes	Trench cum bundig
Sanabanahalli	4	1.46	BPRhB2	LUC-4	Deep (100-150 cm)	clay loam		Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Not Available (NA)	Not Available	Illes	Trench cum bundig
Sanabanahalli	6	2.26	BPRhB2	LUC-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Mango (Mn)	Not Available	Illes	Trench cum bundig
Sanabanahalli	7	1.84	BPRhB2	LUC-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut+Ragi (CN+Ra)	Not Available	Illes	Trench cum bundig
Sanabanahalli	8	0.14	BPRhB1g1	LUC-4	Deep (100-150 cm)	Sandy clay loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIIs	Trench cum bundig
Sanabanahalli	67	2.4	BPRcB1	LUC-4	Deep (100-150 cm)		Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Sanabanahalli	68	0.15	BPRcB1	LUC-4	Deep (100-150 cm)		Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIIs	Trench cum bundig
Sanabanahalli	69	2.98	BPRhB1	LUC-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Sanabanahalli	70	2.98	BPRhB1	LUC-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Sanabanahalli	71	5.34	BPRcB1	LUC-4	Deep (100-150 cm)	Sandy	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Sanabanahalli	72	2.88	BPRcB1	LUC-4	Deep (100-150 cm)	Sandy	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Sanabanahalli	73	1.34	BPRcB1	LUC-4	Deep (100-150 cm)		Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIIs	Trench cum bundig
Maranahalli	80	0.01	BPRcB1	LUC-4	Doop (100-150	Sandy	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIIs	Trench cum bundig
Maranahalli	83	1.5	BPRcB1	LUC-4	Deep (100-150 cm)	Sandy	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig
Maranahalli	84	1.61	BPRcB1	LUC-4	Deep (100-150	Sandy	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig
Maranahalli	85	5.46	BPRhB1	LUC-4	Deep (100-150 cm)		Non gravelly	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango+Ragi (Mn+Ra)	Not Available	IIIs	Trench cum bundig
Maranahalli	86	0.2	BPRcB1	LUC-4	Deep (100-150 cm)	Sandy	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Jogihalli	8	0.09	BPRcB2g1	LUC-4	Deep (100-150 cm)	Sandy	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Not Available (NA)	Not Available	Illes	Trench cum bundig
Karegondana halli	9	3.63	BPRcB1g1	LUC-4	Deep (100-150 cm)	Sandy	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango+Ragi (Mn+Ra)	Not Available	IIIs	Trench cum bundig

Х

Appendix II Maddenahalli Microwaterhed Soil Fertility Information

Village	Sur vey No	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Madhenahalli	1	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	2	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	3	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
ladhenahalli	4	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	5	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
ladhenahalli	6	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	7	Moderately acid (pH 5.5 – 6.0)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	8	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	9	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
adhenahalli	10	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	11	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	12	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
adhenahalli	13	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	14	Moderately acid (pH 5.5 – 6.0)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	15	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	16	Moderately acid (pH 5.5 – 6.0)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	17	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	18	Strongly acid (pH 5.0 – 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
adhenahalli	19	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
ladhenahalli	20	Moderately acid (pH 5.5 – 6.0)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
ladhenahalli	21	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Madhenahalli	22	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)

Village	Sur vey No	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Madhenahalli	23	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Madhenahalli	24	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	25	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	26	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	27	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	28	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	29	Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	30	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	0.75 %) Medium (0.5-	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Madhenahalli	31	6.0 - 6.5) Moderately acid	(<2 dsm) Non saline	0.75 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Madhenahalli	32	(pH 5.5 - 6.0) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Madhenahalli	33	(pH 5.5 - 6.0) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
		(pH 5.5 - 6.0) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Madhenahalli	34	(pH 5.5 – 6.0) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(<0.6 ppm) Sufficient
Madhenahalli	35	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhenahalli	36	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	37	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	38	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	39	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	40	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	41	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	42	Moderately acid (pH 5.5 – 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	43	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Madhenahalli	44	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	45	(pH 5.5 - 6.0) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Madhenahalli	46	(pH 5.5 - 6.0) Strongly acid (pH	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm) Deficient
maunenanan	TU	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)

Village	Sur vey No	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
		Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	55	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Strongly acid (pH	Non saline	2011 (1010 70)	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	56	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Strongly acid (pH	Non saline	1011 (1013 70)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	57	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Strongly acid (pH	Non saline	LOW (<0.5 /0)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	58	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Strongly acid (pH	Non saline	1011 (1013 70)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	59	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Strongly acid (pH	Non saline	2011 (1010 70)	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	60	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Strongly acid (pH	Non saline	1011 (1013 70)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	61	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Strongly acid (pH	Non saline	LOW (<0.5 /0)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Aadhenahalli	62	5.0 – 5.5)	(<2 dsm)	$L_{0W} (< 0.5.04)$	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	
				Low (<0.5 %)								(<0.6 ppm)
Madhenahalli	63	Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
		5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Madhenahalli	73	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
		5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Madhenahalli	74	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
		5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Madhenahalli	75	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
-iuunenunum		5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Madhenahalli	76	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
haunenanann	/0	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Madhenahalli	77	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
aunenanam		5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Madhenahalli	81	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Maunenanan	01	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Madhenahalli	82	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Maunenanan	02	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
	00	Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	83	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	84	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
	~ -	Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	85	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Moderately acid	Non saline	2011 (1010 70)	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	86	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Moderately acid	Non saline	1011 (1013 70)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Aadhenahalli	87	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Moderately acid	Non saline	LOW (<0.5 70)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Aadhenahalli	88		(<2 dsm)	Low (<0.5 %)			20 ppm)	ppm)		.0 ppm)		
		(pH 5.5 - 6.0)		LUW [\U.3 70]	kg/ha)	kg/ha)		Low (<0.5	(>4.5 ppm) Sufficient		(>0.2 ppm)	(<0.6 ppm) Deficient
Madhenahalli	89	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-			Sufficient(>1	Sufficient	
		5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Madhenahalli	90	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
		5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhenahalli	91	Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
		(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm

Village	Sur vey No	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
	INU	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	92	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately acid	Non saline	LOW (<0.5 %)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	93	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
				LUW (<0.5 %)								
Madhenahalli	94	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
	0-	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	95	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhenahalli	96	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
		(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
adhenahalli	97	Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
luunenunun	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhenahalli	98	Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
haunenanann	,0	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhenahalli	99	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
haunchanann	,,,	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
adhenahalli	100	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
aunenanam	100	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
adhenahalli	101	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
aunenanam	101	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
ladhenahalli	102	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
aunenanann	102	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Vadhanahalli	103	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	105	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhanahalli	104	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	104	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhanahalli	105	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	105	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
adhanahall:	100	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	106	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
<i>a</i> - 11 1 11:	107	Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	107	(pH 5.5 - 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
	400	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	108	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
	400	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Aadhenahalli	109	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Neutral (pH 6.5 -	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	110	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Neutral (pH 6.5 -	Non saline	Medium (0.5-	High (> 57	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	111	7.3)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Neutral (pH 6.5 -	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	112	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Neutral (pH 6.5 -	Non saline	2011 (1010 70)	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
ladhenahalli	113	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Neutral (pH 6.5 -	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
ladhenahalli	114	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Neutral (pH 6.5 -	Non saline	2010 [2010 /0]	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	115	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		7.5) Neutral (pH 6.5 –	Non saline	עסע ניטאַן אייטע 100	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
fadhenahalli	116	7.3)		$L_{OW} (< 0 = 0/)$								(>0.6 ppm)
		1.51	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.0 p

Village	Sur vey No	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
		Neutral (pH 6.5 -	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	117	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Slightly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	118	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Slightly acid (pH	Non saline	(High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	119	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Moderately acid	Non saline	2011 (1010 70)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	120	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Moderately acid	Non saline	Medium (0.5-	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	121	(pH 5.5 – 6.0)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	122	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	123	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	124	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)		20 ppm)		(>4.5 ppm)		(>0.2 ppm)	
		,	. ,			337 kg/ha)		ppm)	Sufficient	.0 ppm)		(<0.6 ppm)
Madhenahalli	125	Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5		Sufficient(>1	Sufficient	Sufficient
		(pH 5.5 - 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhenahalli	126	Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
		(pH 5.5 - 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
adhenahalli/	127	Slightly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
		6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhenahalli	128	Slightly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
-iuunenunum	120	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhenahalli	129	Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
haunenanann	147	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhenahalli	130	Neutral (pH 6.5 –	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
haunenanann	150	7.3)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhenahalli	131	Neutral (pH 6.5 –	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
viaunenanani	151	7.3)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhanahalli	132	Neutral (pH 6.5 -	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	132	7.3)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
	400	Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	133	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	134	(pH 5.5 - 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	135	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Neutral (pH 6.5 -	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	136	7.3)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Neutral (pH 6.5 -	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	137	7.3)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)		.0 ppm)		
				- i	0, ,				(>4.5 ppm)		(>0.2 ppm)	(>0.6 ppm)
Aadhenahalli	138	Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
		6.0 - 6.5) Moderately agid	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
adhenahalli/	139	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
		(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhenahalli	140	Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
		(pH 5.5 – 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhenahalli	141	Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
	- • •	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm

Village	Sur vey No	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
		Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	142	(pH 5.5 - 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	143	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	144	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately acid	Non saline	0.75 70	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Aadhenahalli	145	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately acid	Non saline	2011 (1010 70)	High (> 57	Medium (145-	High (>20	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	146	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	148	(pH 5.5 - 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	149	(pH 5.5 – 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately acid	Non saline	0.75 70	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Madhenahalli	156	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)		(>4.5 ppm)		(>0.2 ppm)	
		** /		LUW (<0.5 %)	0, ,	0, 1		ppm)		.0 ppm)		(<0.6 ppm)
Madhenahalli	157	Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
		(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm
Madhenahalli	158	Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
		(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
/ladhenahalli	159	Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
		(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm
Madhenahalli	160	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
		(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm
Madhenahalli	161	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
		6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhenahalli	162	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
		(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Madhenahalli	163	Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
haunenanann	105	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Madhenahalli	164	Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
aunenanam	104	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Madhenahalli	165	Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Maunenanain	105	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Madhenahalli	166	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Madhan 1 17	107	Neutral (pH 6.5 -	Non saline	Medium (0.5-	High (> 57	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	167	7.3)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm
		Neutral (pH 6.5 -	Non saline	Medium (0.5-	High (> 57	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Madhenahalli	168	7.3)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm
Gadi	_	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankanahalli	2	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Gadi		Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankanahalli	6	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Gadi		Strongly acid (pH	Non saline	2011 (1010 70)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankanahalli	7	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm
Gadi		Strongly acid (pH	Non saline	2010 (1010 /0)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankanahalli	8	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	LOW (<0.5 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Gadi			· · · · ·	TOM (<0.2 %)	0, ,	0, 1	11 /	11 /			Sufficient	
	9	Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1		Deficient
Ankanahalli		5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppn

Village	Sur vey	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
	No			Carbon	-		-			-		
Gadi	10	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankanahalli	10	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Gadi	11	Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankanahalli		(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Gadi	12	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankanahalli	14	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Gadi	13	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Ankanahalli	15	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Gadi	14	Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankanahalli	14	(pH 5.5 - 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Gadi	15	Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankanahalli	15	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Gadi	10	Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankanahalli	16	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Gadi	4.5	Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Ankanahalli	17	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Gadi		Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankanahalli	18	(pH 5.5 - 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Gadi		Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankanahalli	19	(pH 5.5 - 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Gadi		Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Ankanahalli	20	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Gadi		0.0 - 0.3 j	(<2 usinj	0.75 70	Kg/IIaj	557 Kg/Ildj	20 ppm)	ppinj	(>4.5 ppm)	.o ppinj	(>0.2 ppm)	(>0.0 µµm)
Ankanahalli	21	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Gadi Ankanahalli	22	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Gadi	28	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Ankanahalli	20	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Pinnenahalli	0	Moderately acid	Non saline		High (> 57	Medium (145-	High (>20	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Phillenanani	9	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Dinnenahalli	10	Moderately acid	Non saline		High (> 57	Medium (145-	High (>20	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Pinnenahalli	10	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
D' I II.		Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Pinnenahalli	11	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Pinnenahalli	12	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Slightly acid (pH	Non saline	(• • • • • • • • •	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Pinnenahalli	13	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Slightly acid (pH	Non saline	2011 (1010 70)	High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
Pinnenahalli	14	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately acid	Non saline	2011 (1010 70)	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Pinnenahalli	15	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
			Non saline	LOW (<0.5 70)	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient		Sufficient	Sufficient
Pinnenahalli	32	Moderately acid (pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)			(>4.5 ppm)	Sufficient(>1	(>0.2 ppm)	(>0.6 ppm)
		1		LUW (<0.5 %)		1	20 ppm)	ppm)		.0 ppm)		
Pinnenahalli	33	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
		(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Pinnenahalli	34	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
		(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Pinnenahalli	35	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
		(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)

Village	Sur vey No	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Pinnenahalli	36	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Pinnenahalli	37	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Sanabanahalli	1	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Sanabanahalli	2	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Sanabanahalli	3	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Sanabanahalli	4	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Sanabanahalli	6	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Sanabanahalli	7	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Sanabanahalli	8	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Sanabanahalli	67	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Sanabanahalli	68	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Sanabanahalli	69	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Sanabanahalli	70	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Sanabanahalli	71	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Sanabanahalli	72	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Sanabanahalli	73	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Maranahalli	80	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Maranahalli	83	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Maranahalli	84	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Maranahalli	85	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Maranahalli	86	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Jogihalli	8	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	High (>20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Karegondana halli	9	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)

Appendix III Maddenahalli Microwaterhed

																		.10w2																
														1	I Suit	abili	ty Ii	nform	natio	n														
														Cust									Chry	_			Fiel		Fing			Upla		
Village	Surv			C	6	C	C			C G	D. J.	A 1	11-0	ard-	Carl			Grou	0	CI. 1				Pom		Hors			er-	Dutut	Fodde			
	ey									Sunfl																-			Mille	· ·			· ·	
Madhanahalli	No	ngo			ham	nut	va	arina	e	ower	гат	а	ruit	е	ew	un	bi	t	on	ly	ato	gold	um	nate	na	m	n	anut	t	al	hum	y	ne	pea
Madhenahalli	1	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Madhenahalli	2	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Madhenahalli	3	S2 wt	S2 wt	S2 wt	S2w	S2w	S2 wt	S2w t	S2 w	S2w	S2w	S2 w	S2w	S2w	Nw	S2 wt	S2 w	S3w t	S2 wt	S2 w	S2w	S2 wt	S2w t	S2w t	S2w t	S2w	S2 w	S2w	S2w	S2w	S2w	S2w	S2w t	S2w
Madhenahalli	4	S2 wt		S2 wt	S2w	S2w	S2 wt	S2w t	S2 w	S2w	S2w	S2 w	S2w	S2w	Nw		S2 w	S3w t	S2 wt	S2 w	S2w	S2w t	S2w t	S2w t	S2w t	S2w	S2 w	S2w	S2w	S2w	S2w	S2w	S2w t	S2w
Madhenahalli	5	S2 wt	wt	S2 wt	S2w	S2w	S2 wt	t	S2 w	S2w	S2w	S2 w	S2w	S2w	Nw	wt	S2 w	S3w t	wt	S2 w	S2w	t	t	t	S2w t	S2w	S2 w	S2w	S2w	S2w	S2w	S2w	S2w t	S2w
Madhenahalli	6	S2 wt		S2 wt	S2w	S2w	S2 wt	S2w t	S2 w	S2w	S2w	S2 w	S2w	S2w	Nw	wt	S2 w	S3w t	wt	S2 w	S2w	t	t	t	S2w t	S2w	S2 w	S2w	S2w	S2w	S2w		S2w t	S2w
Madhenahalli	7	S2 wt	S2 wt	S2 wt	S2w	S2w	S2 wt	t	S2 w	S2w	S2w	S2 w	S2w	S2w	Nw	wt	S2 w	S3w t	wt	S2 w	S2w	S2w t	S2w t	t	S2w t	S2w	S2 w	S2w	S2w	S2w	S2w	S2w	S2w t	S2w
Madhenahalli	8	S2 wt		S2 wt	S2w	S2w	S2 wt	t	S2 w	S2w	S2w	S2 w	S2w	S2w	Nw	wt	S2 w	S3w t	wt	S2 w	S2w	t	t	t	S2w t	S2w	S2 w	S2w	S2w	S2w	S2w	S2w	S2w t	S2w
Madhenahalli	9	S2 wt	S2 wt	S2 wt	S2w	S2w	S2 wt	S2w t	S2 w	S2w	S2w	S2 w	S2w	S2w	Nw	S2 wt	S2 w	S3w t	S2 wt	S2 w	S2w	S2w t	S2w t	S2w t	S2w t	S2w	S2 w	S2w	S2w	S2w	S2w	S2w	S2w t	S2w
Madhenahalli	10	S2 wt		S2 wt	S2w	S2w	S2 wt	t	S2 w	S2w	S2w	S2 w	S2w	S2w	Nw	-	S2 w	S3w t	S2 wt	S2 w	S2w	S2w t	S2w t	t	S2w t	S2w	S2 w	S2w	S2w	S2w	S2w	S2w	S2w t	S2w
Madhenahalli	11	S2 wt	S2 wt	S2 wt	S2w	S2w	S2 wt	S2w t	S2 w	S2w	S2w	S2 w	S2w	S2w	Nw		S2 w	S3w t	S2 wt	S2 w	S2w	S2w t	S2w t	S2w t	S2w t	S2w	S2 w	S2w	S2w	S2w	S2w	S2w	S2w t	S2w
Madhenahalli	12	S2 wt		S2 wt	S2w	S2w	S2 wt	S2w t	S2 w	S2w	S2w	S2 w	S2w	S2w	Nw	-	S2 w	S3w t	S2 wt	S2 w	S2w	S2w t	S2w t	S2w t	S2w t	S2w	S2 w	S2w	S2w	S2w	S2w		S2w t	S2w
Madhenahalli	13	S2 wt	S2 wt	S2 wt	S2w	S2w	S2 wt	S2w t	S2 w	S2w	S2w	S2 w	S2w	S2w	Nw	S2 wt	S2 w	S3w t	S2 wt	S2 w	S2w	S2w t	S2w t	S2w t	S2w t	S2w	S2 w	S2w	S2w	S2w	S2w	S2w	S2w t	S2w
Madhenahalli	14	S2	S2	S2 wt	S2w		S2 wt	S2w	S2 w	S2w		S2 w		S2w		S2	S2 w	S3w		S2 w	S2w	S2w	S2w	S2w	s2w		S2 w		S2w				S2w t	S2w
Madhenahalli	15	S3		S3		S3g	S2	S3g	S3			S2 g			S2g		S3	S2tg		S3		52a	52a	S3g	с 52 л	S2g	S3		S3g		S3g	S3g		S3g
Madhenahalli	16	в S3 g	в S3 g	Б S3 g		S3g	g g	S3g	в S3 g		S3g	s S2 g			S2g	S3	s S3 g			S3				S3g		S2g	S3		S3g		S3g	S3g		S3g
Madhenahalli	17	53 σ	б S3 g	5 S3 σ		S3g	S2 g	S3g	5 S3 σ		S3g	S2		S2g	S2g	5 S3 σ	5 S3 σ	S2tg		5 S3 σ				S3g		S2g	S 3		S3g		S3g	S3g		S3g
Madhenahalli	18	53 σ	в S3 ø	в S3 ø	S3g		g g		s S3 g			s S2 g			S2g	s S3 g	в S3 g			в S3 g				S3g		S2g	в S3 g		S3g		S3g	S3g		S3g
Madhenahalli	19	53 σ	в S3 ø	в S3 ø		S3g	g g	S3g	s S3 g		S3g	s2 g		S2g	S2g		g g		s S3 g	в S3 g				S3g		S2g	Б S3 g		S3g		S3g		S3g	S3g
Madhenahalli	20	53 g	в S3 g	ь S3 g		S3g	s S2 g	S3g	S3 g			S2 g			S2g		ь S3 g			Б S3 g	S3g	S3g				S2g	5 S3 g		S3g		S3g		S3g	S3g
Madhenahalli	21	S2 wt		s S2 wt	S2w		s S2 wt		s S2 w		S2w	S2		S2w			s S2 w	S3w		s S2 w	S2w	S2w		-	S2w		s S2 w		S2w			S2w	S2w	S2w
Madhenahalli	22	S2	S 2	S2	S2w		S2	S2w	S2 w	S2w		S2		S2w		S2	S2 w	S3w	S2 wt	S2 w	S2w	S2w	S2w	S2w	t S2w		S 2		S2w				S2w	52 w
					54 W	54 **	1.1.1	L.		02 **	54 W	1.4.4	52 **	52 **	14 44			•	111	1.4.4	54 **	- e	•	- L	<u>د</u>	54 W		54 11	54 W	54 W	54 11	54 W	•	54 11

Image Mais Same Same Tam Same And Mais Same		Course													Cust			Marc	Crean					Chry			Harra	Fiel		Fing		Foddo	Upla		
No No No No No <td>Village</td> <td></td> <td></td> <td>Mai</td> <td>San</td> <td>Sorg</td> <td>Coco</td> <td>Gua</td> <td>Tam</td> <td>Lim</td> <td>Sunfl</td> <td>Redg</td> <td>Aml</td> <td>lackf</td> <td>ard-</td> <td>Cash</td> <td>Iam</td> <td></td> <td></td> <td>Oni</td> <td>Chil</td> <td>Tom</td> <td>Mari</td> <td></td> <td></td> <td>Bana</td> <td></td> <td></td> <td>Arec</td> <td>er- Mille</td> <td>Brini</td> <td></td> <td></td> <td>Iasmi</td> <td>i Cow</td>	Village			Mai	San	Sorg	Coco	Gua	Tam	Lim	Sunfl	Redg	Aml	lackf	ard-	Cash	Iam			Oni	Chil	Tom	Mari			Bana			Arec	er- Mille	Brini			Iasmi	i Cow
Mathemala I N N N N<												-		1.1											-		-							1	pea
addeenabili 26 36g	Madhenahalli	23	S 3	S 3	S 3			S 2		S 3			S2				S 3	S 3		S 3	S 3							S 3							
Mathemala 2-5 wit wit 2-20 3-20 1 1 2-20 2-2	maunenanam		g	g	g	S3g	S3g			g	S3g	S3g	g	S3g	S2g	S2g	g	-		g	g	S3g					S2g	-	S3g	S3g	S3g	S3g	S3g		S3g
Mathenhale 25 74 <	Madhenahalli	24		-		62	c		S2w		67	\$2	-	62	62	NITAT			S3w ₊		-	62	S2w	S2w	S2w	S2w	67	-	62	c7	62	\$2	62		S2w
Mathemation 2 vi Vi Vi <						32 W	32W		L S2w		52 W	32W		32 W	52W	INW			L S3w		_	52W	L S2w	ι S2w	ι S2w	L S2w	32W	-	32W	32 W	32W	52 W	32W		52W
Mathemala 20 vi vi vi vi <	Madhenahalli	25				S2w	S2w		t		S2w	S2w	-	S2w	S2w	Nw	-					S2w	t	t			S2w	-	S2w	S2w	S2w	S2w	S2w	t	S2w
indeman ind	Madhonahalli	26	S2	S2	S2			S2	S2w	S2			S2				S2	S 2	S3w	S2	S2		S2w	S2w	S2w	S2w								S2w	
addeenabili 28 3 21 31	Maunenanan		wt	wt	wt	S2w	S2w	wt	t	w	S2w	S2w	w	S2w	S2w	Nw	wt	w	t	wt	w	S2w	t	t	t	t	S2w	w	S2w	S2w	S2w	S2w	S2w	t	S2w
addeenabili 29 51	Madhenahalli	27	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Addenahalli 30 51	Madhenahalli	28	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
addenaballi 31	Madhenahalli	29	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Madhenahalli 31 81 82 81	Madhenahalli	30	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Madhenahalli 32 81 <td>Madhenahalli</td> <td>31</td> <td></td> <td></td> <td></td> <td></td> <td>S2t</td> <td></td> <td>S1</td> <td>S1</td> <td>S1</td> <td>S1</td> <td>S2t</td> <td>S1</td> <td>S1</td> <td>S1</td> <td>S1</td> <td>S1</td> <td>S1</td>	Madhenahalli	31					S2t																		S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Madhenahalli 33 51 52 51	Madhenahalli	32																																	S1
Madhenahalli 34 S1	Madhenahalli	33																															-	-	S1
Madhenahalli 35 81 82 81	Madhenahalli	34																						-		-				-	1	-	-	1	S1
Madhenahalli 36 51	Madhenahalli	35																																	S1
Madhenahalli 37 Sit S	Madhenahalli				-	1																								-		-	-	1	S1
Madhenahalli 38 51	Madhenahalli																																		S1
Madhenahalli 39 \$1 \$2t \$1 <td>Madhenahalli</td> <td></td> <td>-</td> <td></td> <td>-</td> <td>S1</td>	Madhenahalli																															-		-	S1
Madhenahalli 40 S1																										-	-	-		-	-	-		1	S1
Madhenahalli 41 S1	Madhenahalli																										-				-			-	S1
Madhenahalli 42 S1 S1 <ths1< th=""> S1 S1</ths1<>	Madhenahalli																															-			S1
Madhenahalli 43 S1	Madhenahalli																									-	-				-	-	-	1	S1
Madhenahalli 44 S1 S1 <ths1< th=""> S1 S1</ths1<>																																-			S1
Madhenahalli 56 51 52t 51 <td>Madhenahalli</td> <td></td> <td>S1</td>	Madhenahalli																																		S1
Madhenahalli 56 S3 S3 <ths3< th=""> S3 S3</ths3<>	Madhenahalli																															-		-	S1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																																			
Madhenahalli 51 52 51		_																																-	S1
Madhenahalli 56 rg			_				32t	_		_		21			51		_					51	21	51			31		32t	51	51	31	51	21	S1
Madhenahalli 57 53	Madhenahalli	56					S3g					S3g			S2g					g		S3g	S3g	S3g			S2g	g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g
rg rg rg g S3g rg g rg g S3g g g S2g g g S2g g rg rg g g S3g S3g g g S2g g S3g S3g s g s S2g s s s s s s s s s s s s s s s s s s s	Madhenahalli	57	S 3	S 3	S 3	S3r		S 3			S3r			S3r			S 3	S 3	S2r	S 3	S 3				S3r	S3r									
na na na na nar i na nar i na nar i na nar i nar na na na na na i nar nar i nar nar i na		0,				g	S3g		g			S3g		g	S2g				0	g		S3g	S3g	S3g	g	g	S2g		S3g	S2g	S3g	S3rg	S2g	S3g	S3g
	Madhenahalli	58		S3 rg	S3 rg	S3r g	S3g	S3 rg	S3r g		S3r g	S3g			S2g	S3r g			S2r g	S3 g	S3 g	S3g	S3g	S3g		S3r g	S2g	S3 g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g

	6													Cust				6					Chry	Deres			Fiel		Fing		P. J.J.	Upla		
Village	Surv		Mai	San	Sorg	Coco	Cua	Tam	Lim	Sunfl	Doda	Aml	Inch	ard-	Cach	Iam		Grou	Oni	Chil	Tom	Mari		Pom	Dana	Hors	d-	Aroc	er-	Drini	Fodde rSorg		Jasmi	Com
	ey No	ngo	ze	ota				Tam arind		ower	-		ruit	e appr	ew	un	bi	t	on	ly	ato	gold	um	nate	na	egra m	n	anut		al	hum	rauu	ne	pea
		S3	S3	S3	S3r	nut	S3		S3	S3r	Tam		S3r	C	S3r		S3	S2r		S3	ato	goiu	um		S3r		S 3	anut		ai	num	y	пс	pea
Madhenahalli	59	rg	rg	rg	g	S3g	rg	g	rg	g	S3g	g	g	S2g	g	rg	rg	g	g		S3g	S3g	S3g	g	g	S2g	g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g
			S 3	S 3	S3r		S 3	S3r		S3r			S3r	8	S3r		S 3	S2r	S 3	S 3					S3r	8	S 3		8			8		
Madhenahalli	60	rg	rg	rg	g	S3g	rg	g	rg	g	S3g	g	g	S2g	g	rg	rg	g	g		S3g	S3g	S3g		g	S2g		S3g	S2g	S3g	S3rg	S2g	S3g	S3g
Madhanahalli	(1	S 3	S 3	S 3	S3r		S 3	S3r		S3r		S2	S3r		S3r	S 3		S2r	S 3	S 3				S3r	S3r		S 3							
Madhenahalli	61	rg	rg	rg	g	S3g	rg	g	rg	g	S3g	g	g	S2g	g	rg	rg	g	g	g	S3g	S3g	S3g	g	g	S2g	g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g
Madhenahalli	62	S 3	S 3	S 3	S3r		S 3	S3r	S 3	S3r		S2	S3r		S3r	S 3	S 3	S2r	S 3	S 3				S3r	S3r		S 3							
Maunenanann	02		rg	rg	g	S3g	rg	g	rg	g	S3g		g	S2g	g		rg	g	g	g	S3g	S3g	S3g	g	g	S2g	g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g
Madhenahalli	63		S 3	S 3	S3r			S3r		S3r		S2	S3r		S3r	S 3	S 3	S2r	S 3	S 3					S3r		S 3							
		rg	rg	rg	g	S3g	rg	g	rg	g	S3g	g	g	S2g	g	rg	rg	g	g		S3g	S3g	S3g		g	S2g		S3g	S2g	S3g	S3rg	S2g	S3g	S3g
Madhenahalli	73	S 3	S 3	S 3	S3r	~				S3r	~~		S3r	~	S3r		S 3	S2r	S 3	S 3	~~		~		S3r		S 3	~				~	~	-
		rg	rg	rg	g	S3g	rg	g	rg	g	S3g	g		S2g	g	rg	rg	g	g		53g	S3g	53g			S2g	-	53g	S2g	53g	53rg	S2g	S3g	S3g
Madhenahalli	74	S3	S 3	S3	S3r	62.4	S 3	S3r		S3r	67.~		S3r	67.4	S3r		S3	S2r	S3	S3	67.4	62~	62.4		S3r	62~	S3	67.4	62.4	62.4	62	62~	67.4	62~
		rg	rg S3	rg S3	g S3r	S3g	rg S3	g 62 m	rg S3	<u>g</u>	S3g	g ca	g c2n	S2g	g c2n	rg S3	rg S3	g 62 m	g S3	g S3	53g	S3g	53g	0	g S3r	S2g	-	33g	S2g	53g	SSIG	S2g	S3g	S3g
Madhenahalli	75	S3 rg	ss rg	55 rg	331°	S3g	ss rg	S3r g	ss rg	S3r g	S3g	S2 g	S3r g	\$2a	S3r	ss rg	ss rg	S2r g	33 a		\$20	\$20	5 2a			S2g	S3	5 2a	S2g	\$20	\$2ra	S2g	52 0	S3g
			1g S3	S3	s S3r	35g	S3	0		g S3r	JJg		g S3r	S2g	g S3r			g S2r	в S3	g S3	JJg	S3g	35g	0	g S3r	32g	g S3	JJg	32g	33g	JJIg	32g	S3g	
Madhenahalli	76	rg	rg	rg	σ	S3g	rg	σ	rg	g	S3g	52 g	g	S2g	g	rg	rg	σ	σ		S3g	S3g	S3g		g	S2g		S3g	S2g	S3g	S3rg	S2g	S3g	S3g
		- 0	S3	S3	S3r	bbg		S3r		S3r	005		s S3r	5-5	S3r			S2r	Б S3	53	005	005	005		ь S3r	525	<u>Б</u> S3	505	025	005	borg	025	005	
Madhenahalli	77	rg	rg	rg	g	S3g	rg	g	rg	g	S3g	g		S2g	g			g	g		S3g	S3g	S3g		g	S2g		S3g	S2g	S3g	S3rg	S2g	S3g	S3g
Madhenahalli	81							Ŭ																	<u> </u>									
Maunenanann	01		S2t	S1	S1	S1	_	S1	S1	S1	S1	-	S1	S1	S1			S1		-	S1	S1	S1	S1	S1	S1		S1	S1	S1	S1	S1	S1	S1
Madhenahalli	82	S 3	S 3	S 3	C 2 -	cn -	S2	C 2 -	S 3	6 2 -	ca -	S2	co -	ca	6 2 -		S 3	C21-	S 3	S 3	co -	C 2 -	co -	6 2 -	co -	C 2 -	S 3	ca	C 2 -	6 2 -	C 2 -	6 2 -	co -	co -
		g c2	g c2	g c2	S3g	S3g	g	S3g	g S3	S3g	53g		S3g	S2g	52g			S2tg	g c2		53g	S3g	53g	53g	53g	52g	g c2	53g	S3g	53g	53g	S3g	S3g	S3g
Madhenahalli	83	S3	S3	S3	\$2.0	\$2.0	S2	\$2.0	33	\$2.0	\$20	S2	\$2a	\$2.0	\$2.0		S3	\$2ta		S3	\$2.0	\$20	\$2a	\$20	52 a	\$20	33	\$20	\$2.0	\$20	\$2 a	\$20	62 a	\$2a
		g S3	g S3	g S3	S3g	S3g	g \$2	S3g	8 52	S3g	Jog	g \$2	S3g	S2g	S2g		g S3	S2tg		g S3	SSE	S3g	oog	SSg	SSE	32g	g 52	SSE	S3g	SSE	SSE	S3g	S3g	S3g
Madhenahalli	84	33 σ	33 σ	g	S3g	S3g	g	S3g	g	S3g	\$ 3σ	32 g	S3g	S2g	S2g			S2tg			\$ 3σ	S3g	\$ 3σ	\$ 3σ	\$ 3σ	\$ 2σ	g	\$ 3σ	S3g	\$30	\$ 3σ	S3g	S3g	S3g
		<u>ь</u> S3	<u>ь</u> S3	Б S3	555	555	<u>Б</u> S2	555	<u>ь</u> S3	555	555	Б S2	555	525	525		ь S3	5215		<u>ь</u> S3	555	555	555	555	555	525	53	555	555	555	555	555	555	555
Madhenahalli	85	g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	-	S3g	S2g	S2g	g		S2tg	g		S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Madhenahalli	86																																	
Maunenanan	00	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Madhenahalli	87	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Madhenahalli	88																																	
Maunenanann	00				S1	S1		_	_	S1	S1			S1	S1			S1	S2t		S1	S1	S1		S1	S1	_	S1	S1	S1	S1	S1	S1	S1
Madhenahalli	89		S 3	S 3	S3r	cn -	S 3			S3r	ca -		S3r	cn	S3r			S2r		S 3	co -	C 2 -	co -		S3r	C 2 -	S 3	cn	C 2 -	6 2 -	C 2	6 2 -	co -	co -
			rg	rg	g C2-r	S3g	rg	g C2-r	rg	g C2=	S3g		g com	S2g	g C2-r			g com	g		53g	S3g	53g		g com	S2g	_	53g	S2g	53g	53rg	S2g	53g	S3g
Madhenahalli	90		S3	S3	S3r	\$2.0				S3r	S3g		S3r	S2g	S3r			S2r	S3 a	S3	\$2.0	\$20	\$2a		S3r	S2g	S3	S3g	S2g	S3g	S3rg	S2g	S3g	S3g
	~ .	rg	rg	rg	g	S3g	rg	g	rg	g	Jog	g	g	32g	g	rg	rg	g	g	g	S3g	S3g	S3g	g	g	32g	g	SSE	32g	SSg	331g	32g	SSg	33g
Madhenahalli	91	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Madhenahalli	92	S1	S2t	C1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	C1	S1	S1	S1	S1	S1	S1	S1	S1						
		-	52t S3	S1 S3	SI S3r	51	S1 S3			SI S3r	51		51 S3r	51	SI S3r			51 S2r		S1 S3	51	51	51		51 S3r	51	51 S3	51	51	51	51	51	31	51
Madhenahalli	93	rg	rg	rg	σ σ	S3g	rg	331 σ	rg	g	S3g	52 σ	g	S2g	σ σ	rg	rg	σ σ	33 0		S3g	S3g	\$ 3σ		331 g	S2g		\$ 3σ	S2g	\$30	S3rg	S2g	S3g	S3g
	-		S3	S3	s S3r	555	S3	s S3r		s S3r	505	<u>в</u> S2	s S3r	5	s S3r		S3	s S2r	5 S3	53	555	555	555	0	s S3r	5	5 S3	555	5-5	555	5015	5-5	555	555
Madhenahalli	94	rg	rg	rg	g	S3g	rg	g	rg	g	S3g	52 g	g	S2g	g	rg	rg	g	g		S3g	S3g	S3g		g	S2g		S3g	S2g	S3g	S3rg	S2g	S3g	S3g
	0-	S3	S 3	S3	S3r		S 3	0		S3r			S3r		S3r			S2r	S 3	S 3				0	S3r		S 3							
Madhenahalli	95		rg	rg	g	S3g	rg	g	rg	g	S3g	g	g	S2g	g			g	g		S3g	S3g	S3g		g	S2g		S3g	S2g	S3g	S3rg	S2g	S3g	S3g
I		. 3			.0	. 0	. 3	0	. 3	.0	. 0	.0	9				5	3	5	.0	. 0	. 0	. 0	3	3		3		. 0	. 0	. 0	. 0	. 0	. 0

														Cust									Chry	_			Fiel		Fing			Upla		
Village	Surv ey	Ma	Mai	San	Sorg	Coco	Gua	Tam	Lim	Sunfl	Redø	Aml	lackf	ard- appl	Cash	Iam		Grou	Oni	Chil	Tom	Mari		Pom egra	Bana	Hors egra		Arec	er- Mille	Brini	Fodde rSorg		Iasmi	Cow
	No	ngo			ham	nut		arind			ram		ruit	e	ew	un	bi	t	on	ly		gold		nate	na	m	n	anut		al	hum	y	ne	pea
Madhenahalli	96	S3 rg	S3 rg	S3 rg	S3r g	S3g		S3r g	S3 rg	S3r g	S3g	S2 g	S3r g	S2g	S3r g		S3 rg	S2r g	S3 g	S3 g	S3g	S3g	S3g	S3r g	S3r g	S2g	S3 g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g
Madhenahalli	97	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
Madhenahalli	98	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
Madhenahalli	99	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
Madhenahalli	100	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Madhenahalli	101	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
Madhenahalli	102	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Madhenahalli	103	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
Madhenahalli	104	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Madhenahalli	105	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Madhenahalli	106	S3 g	S3 g	S3 g	S3g	S3g	S2 g	S3g	S3 g	S3g	S3g	S2 g	S3g	S2g	S2g		S3 g	S2tg	S3 g	S3 g	S3g	S3g	S3g	S3g	S3g	S2g	S3 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Madhenahalli	107	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Madhenahalli	108	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Madhenahalli	109	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Madhenahalli	110	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
Madhenahalli	111	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
Madhenahalli	112	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
Madhenahalli	113	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
Madhenahalli	114	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
Madhenahalli	115	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
Madhenahalli	116	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
Madhenahalli	117	S3 σ	S3 σ	S3 g	S3g	S3g	S2 g	S3g	S3 g	\$ 3σ	S3g	S2 σ	S3g	\$ 2σ	\$2.σ		S3 g	S2tg		S3 g	\$ 3σ	\$ 3σ	\$ 3σ	S3g	\$ 3σ	\$2 σ	S3 σ	53σ	\$ 3σ	S3g	\$ 3σ	S3g	S3g	S3g
Madhenahalli	118	S3 g	S3 g	S3 g		S3g	S2 g		S3 g			S2	S3g		S2g	S 3	S 3	S2tg	S 3	S3 g	S3g				S3g		S 3				S3g			S3g
Madhenahalli	119	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
Madhenahalli	120		S3 g	S3 g	S3g	S3g	S2 g		S3 g	S3g		S2	S3g			S 3	S 3	S2tg	S 3	S3 g				S3g			S 3	S3g		S3g			S3g	S3g
Madhenahalli	121	S3 g	S3 g	S3 g		S3g	S2 g		S3 g			S2	S3g				S 3	S2tg	S 3	S3 g				S3g			S 3			S3g				S3g
Madhenahalli	122	S3 g	S3 g	S3 g		S3g	S2	S3g	S3 g		S3g	S2	S3g				S 3	S2tg	S 3	S3 g				S3g			S 3			S3g				S3g
Madhenahalli	123	S3 g	S3 g	S3 g	S3g		S2		S3 g	S3g		S2	S3g			S 3	S 3	S2tg	S 3	S3 g				S3g			S 3			S3g			S3g	S3g
1	1	8	8	8	208		8		ð	228		0		8		8	0		ð	ð	228	208	208				8	208	228	555		208		

Madhenahalli 131 S1 S2t S1	al hum y ne pea S3g S3g S3g S3g S3g S3g
NongozeotahamnutvaarindeowerramaruiteewunbitonlyatogoldumnatenamannuttMadhenahalli124 $\frac{33}{g}$ $\frac{53}{g}$ $\frac{53}{g}$ $\frac{53}{g}$ $\frac{53}{g}$ $\frac{52}{g}$ $\frac{53}{g}$ $\frac{53}{g}$ $\frac{53}{g}$ $\frac{53}{g}$ $\frac{52}{g}$ $\frac{53}{g}$ $$	al hum y ne pea S3g S3g S3g S3g S3g S3g S1 S1 S1 S1 S1
Madhenahalli 124 $S3$ <td>S3g S3g S3g S3g S3g S3g S3g S3g S3g S3g S3g S3g S1 S1 S1 S1 S1</td>	S3g S3g S3g S3g S3g S3g S1 S1 S1 S1 S1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S3g S3g S3g S3g S3g S1 S1 S1 S1 S1
Madhenahalli 125 g g g g s3g	S3g S3g
Madhenahalli 126 $ \begin{bmatrix} 33 \\ $	S3g S3g
Madhenahalli 126 g	S3g S3g
Madhenahalli 127 g	S3g S3g
g g	S3g S3g
Madhenahalli 128 g	S3g S3g
Madhenahalli 129 S3 S3 <td>S3g S3g S3g</td>	S3g S3g
madhenahalli 130 S1 S2t S1 S1 <ths1< th=""> S1 S1<td>S1 S1 S1 S1 S1</td></ths1<>	S1 S1 S1 S1 S1
Madhenahalli 131 S1 S2t S1 S1 <ths1< th=""> S1 S1<td></td></ths1<>	
	S1 S1 S1 S1 S1
	· · · · · · · · · · · · · · · · · · ·
	S1 S1 S1 S1 S1
	S1 S1 S1 S1 S1 S1
	S3g S3g S3g S3g S3g
Madhenahalli 135 S1 S2t S1	S1 S1 S1 S1 S1
	S1 S1 S1 S1 S1
Madhenahalli 137 S1 S2t S1	S1 S1 S1 S1 S1
<u> </u>	
Madhenahalli 138 g	S3g S3g S3g S3g S3g
Madhenahalli 139 $\begin{bmatrix} S3 & S3 & S3 & S2 & S3 & S2 & S3 & S2 & S3 & S2 & S3 & S3$	
Hadnenann 13'' g g g g S3g S3g g S3g g S3g S3g <td>S3g S3g S3g S3g S3g</td>	S3g S3g S3g S3g S3g
Madhenahalli 140 g g g S3g S3g g S3g s3g S2g S2g g g S2g g g S2tg g g S3g S3g S3g S3g S3g S3g S3g S3g S3	S3g S3g S3g S3g S3g
Madhanahalli 141 S3 S3 S3 S2 S3 S2 S3 S2 S3	
g g g 53g 53g g 53g g 53g g 53g g 53g g 53g g 53g 52g g g 52g g g 52tg g g 53g 53g 53g 53g 53g 53g 52g g 53g 53g 53g 53g 53g 53g 53g 53g 53g	S3g S3g S3g S3g S3g
Madhenahalli 142 S3 S3 <td>S3g S3g S3g S3g S3g</td>	S3g S3g S3g S3g S3g
<u>53</u> <u>53</u> <u>52</u> <u>53</u> <u>52</u> <u>53</u> <u>53</u> <u>53</u> <u>53</u> <u>53</u> <u>53</u> <u>53</u> <u>53</u>	
Madhenahalli 143 g g g S3g S3g g S3g s3g S3g S2g S2g g g S2g g g S2tg g g S3g S3g S3g S3g S3g S3g S3g S2g g S3g S3g S3g S3g S3g S3g S3g S3g S3g	S3g S3g S3g S3g S3g
Madhenahalli 144 $\begin{bmatrix} S3 & S3 & S3 & S2 & S3 & S2 & S3 & S2 & S3 & S2 & S3 & S3$	52a 52a 52a 52a 52a
Mathematian 144 g <	S3g S3g S3g S3g S3g
Madhenahalli 145 g g g S3g S3g g S3g S2g S2g g g S2tg g g S2tg g g S3g S3g S3g S3g S3g S3g S3g S3g S3	S3g S3g S3g S3g S3g
Madhenahalli 146 53 53 53 52 53 52 52 53 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53	
g g g 53g 53g g 53g g 53g g 53g g 53g g 53g g 53g 52g g 52g g 52g g 52g g 53g 53g 53g 53g 53g 53g 53g 52g g 53g	S3g S3g S3g S3g S3g
Madhenahalli 148 53 <td>S3g S3g S3g S3g S3g</td>	S3g S3g S3g S3g S3g
Madhenahalli 149 g g g S3g S3g g S3g s3g S3g S2g S2g s2g g g S2g g g S2tg g g S3g S3g S3g S3g S3g S3g S3g S3g S3	S3g S3g S3g S3g S3g

														Cust									Chry				Fiel		Fing			Upla		
Village	Surv		Mai	Can	Cong	Com	Cura	Tom	I im	Cumfl	Doda	Aml	Inch	ard-	Cach	Iam		Grou	0;	Chil	Tom	Mori		Pom	Dana	Hors		1.000	er-	Duini	Fodde		Inomi	Com
_	ey No			-	ham					ower	-		ruit	e appr	ew	un	bi	t	on		ato	Mari gold		nate	na	m	n	anut		al	rSorg hum	Padd	ne	pea
No. 11. 11. 11.		S3	S3	S3	nam	nut	S2	uimu	S 3	ower	Tam	S2	Ture	- C		-	S3		S 3	S3	ato	golu	um	Indee	nu		S 3	anat		ui	num	y	пс	peu
Madhenahalli	156	g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	g	S3g	S2g	S2g	g	g	S2tg	g	g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Madhenahalli	157	S 3	S 3	S 3			S2		S 3			S2				S 3	S 3		S 3	S 3							S 3							
Maunenanann	13/	g	g	g	S3g	S3g	g	S3g	g	S3g	S3g		S3g	S2g	S2g	0	g	S2tg	g	g	S3g	S3g	S3g	S3g	S3g	S2g		S3g	S3g	S3g	S3g	S3g	S3g	S3g
Madhenahalli	158	S3	S3	S3	67~	62.4	S2	67.~	S3	62.4	62.~	S2	62 ~	67.~	62 ~		S3	C74-7	S3	S3	62.4	62~	62.2	62.4	62 ~	62.4	S3	62~	62.4	62~	62.4	67.~	62 ~	62 ~
		g S3	g S3	g S3	S3g	S3g	g \$2	S3g	g S3	S3g	S3g	g S2	S3g	S2g	52g	g S3	g S3	S2tg	g S3	g S3	53g	S3g	33g	53g	33g	52g	g S3	53g	53g	S3g	53g	S3g	S3g	S3g
Madhenahalli	159	g	25 g	g	S3g	S3g	g	S3g		S3g	S3g		S3g	S2g	S2g	g		S2tg		g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Madhanahalli	160	S 3	S 3	S 3		0	S2	0	S 3	0		S2		- 0	- 0		S 3		S 3	S 3					8	- 8	S3		0			0	0	
Madhenahalli	100	g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	g	S3g	S2g	S2g	g	g	S2tg	g	g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Madhenahalli	161	S 3	S 3	S 3			S 2		S 3			S2				S 3	S 3		S 3	S 3							S 3							
		g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	g	S3g	S2g	S2g	g	g	S2tg	g	g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Madhenahalli	162	S3 σ	S3 σ	S3 σ	S3g	\$ 2σ	S2 g	S3g	S3 g	S3g	S3g	S2 g	S3g	S2g	\$2σ	S3 g	S3 g	S2tg	S3 σ	S3 g	\$20	S3g	\$30	\$ 2σ	\$ 2σ	\$2σ	S3 σ	\$30	\$30	S3g	\$30	S3g	S3g	S3g
		53	<u>в</u> S3	<u>в</u> S3	555	555	52	555	53	555	55g	s S2	55g	54g	545		5 S3	JZtg	g S3	53	555	555	55g	555	555	54g	5 S3	555	555	555	558	555	555	558
Madhenahalli	163	g	g	g	S3g	S3g	g	S3g		S3g	S3g	g	S3g	S2g	S2g	g		S2tg		g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Madhenahalli	164	S 3	S 3	S 3			S2		S 3			S2				S 3	S 3		S 3	S 3							S 3							
Maunenanann	104	g	g	g	S3g	S3g	g	S3g	g	S3g	S3g		S3g	S2g	S2g	g	g	S2tg		g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Madhenahalli	165	S 3	S 3	S 3	co -	ca -	S2	co -	S 3	cn -	cn -	S2	co -	6 2 -	co -		S 3	C21-	S 3	S 3	C 2 -	CD -	cn -	6 2 -	co -	6 2 -	S 3	C 2 -	co -	co -	62 -	cn -	co -	6 2 -
		g Ot	g Ot	g Ot	S3g	S3g	g Ot	S3g	g Ot	S3g	S3g	g Ot	S3g	S2g	52g	g Ot	g Ot	S2tg	g Ot	g Ot	S3g	S3g	S3g	S3g	S3g	52g	g Ot	53g	S3g	53g	S3g	S3g	S3g	S3g
Madhenahalli	166		he	he	Oth	Oth	he	Oth		Oth	Oth		Oth	Oth	Oth			Oth	he		Oth	Oth	Oth	Oth	Oth	Oth		Oth	Oth	Oth	Othe	Oth	Othe	Oth
				rs	ers	ers	rs	ers						ers	ers		rs		rs		ers	ers	ers				rs	ers	ers	ers	rs	ers	rs	ers
Madhenahalli	167	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Madhenahalli	168	S1	S2t	S 1	S1	S1	S1	S 1	S1	S 1	S1	S1	S1	S1	S1	S1	S 1	S 1	S2t	S1			S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Gadi	•																																	
Ankanahalli	Z	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Gadi	6							L																	L									
Ankanahalli		<u>\$1</u>	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	<u>S1</u>	S1	S2t	<u>S1</u>	<u>S1</u>	S3t	S1	<u>\$1</u>	<u>S1</u>	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Gadi Ankanahalli	7	\$1	\$2+	S1	S1	S2t	S2t	S 1	S1	\$1	S1	S1	S 1	S1	\$2+	S 1	S 1	S3t	S 1	\$1	\$1	S1	S1	S1	S1	S1	S 1	S2t	S1	S1	S1	S1	S1	S1
Gadi		51	520	51	31	521	521	51	51	51	51	51	51	51	521	51	51	551	51	51	51	51	51	51	51	51	51	521	51	51	51	51	31	51
Ankanahalli	8	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Gadi	9																																	
Ankanahalli		S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Gadi	10	C1	67+	C1	C1	S2t	S2t	C1	C1	C1	C1	C1	C1	C1	62+	C1	61	62+	C1	C1	C1	C1	C1	C1	C1	C1	S1	62+	C1	C1	C1	C1	S1	C1
Ankanahalli Gadi		31	321	S1	31	321	321	31	S1	31	S1	S1	S1	S1	321	31	31	S3t	31	31	51	S1	S1	S1	S1	S1	31	S2t	S1	S1	S1	S1	31	S1
Ankanahalli	11	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Gadi	12																																	
Ankanahalli	12	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Gadi	13																		~ 4						~ 1			GO .						
Ankanahalli Cadi	-	51	<u>52</u> t	S1	51	S2t	S2t	51	S1	51	S1	S1	S1	S1	52t	51	51	S3t	51	51	51	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Gadi Ankanahalli	14	S1	S2+	S1	S 1	S2t	S2t	S 1	S1	S1	S1	S1	S1	S1	S2t	S 1	S 1	S3t	S 1	S1	S 1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Gadi	4-	51	520	51	51	521	521	51	51	31	51	51	51	31	521	51	51	350	51	51	51	51	31	51	51	31	51	521	51	51	51	51	51	51
Ankanahalli	15	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
-																				1														

														Cust									Chry				Fiel		Fing			Upla		
Village	Surv													ard-				Grou						Pom		Hors			er-		Fodde			
, muge	ey				-					Sunfl	-		1.	1										-		-							Jasmi	
Gadi	No	ngo S2	ze S2	ota S2	ham	nut	S2	arind S2w	S2	ower	ram	a 52	ruit	e	ew	un S2	bi S2	t S3w	on S2	ly S2	ato	gold S2w	um S2w	nate S2w	na S2w	m	n S2	anut	t	al	hum	y	ne S2w	pea
Ankanahalli	16	sz wt	wt	-	S2w	S2w	32 wt	32 w	32 W	S2w	S2w	32 W	S2w	S2w	Nw	sz wt	32 W	55W	32 wt	32 W	S2w	52w	52w	32w t		S2w	-	S2w	S2w	S2w	S2w	S2w	32 w	S2w
Gadi	4.5	S3	S3	S3		0	S2		S3			S2	52.0			S3	S3	-	S 3	S3					-	52.0	S3		0_11	5211	52.11	5_11	-	5211
Ankanahalli	17	g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	g	S3g	S2g	S2g	g	g	S2tg	g	g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Gadi	18	S 3	S 3	S 3			S2		S 3			S2				S 3	S 3			S 3							S 3							
Ankanahalli	10	g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	g	S3g	S2g	S2g	g		S2tg		g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Gadi Ankanahalli	19	S3	S3	S3	\$2.4	\$20	\$2 a	\$2 a	S3	\$2.0	\$20	52 a	\$2.0	\$2.4	\$2.4	S3	S3	\$2ta	S3 a	S3	\$2.0	\$20	\$20	\$2.0	\$2.0	\$20	\$3	52 a	\$2.0	\$20	\$2.9	\$29	\$2a	\$2a
Gadi		g S3	g S3	g S3	S3g	S3g	g \$2	S3g	g 53	S3g	Jog	g \$2	S3g	32g	32g	g S3	g S3	S2tg	g S3	g S3	SSE	SSE	Jog	S3g	SSE	32g	g 53	SSE	SSE	S3g	SSE	S3g	S3g	S3g
Ankanahalli	20	g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	g	S3g	S2g	S2g	g		S2tg		g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
		Ot	0t	0t	8		0t		0t			0t		- 0	- 8	0t	0t	8	0t	0t					0	- 0	0t	8			8	8		
Gadi Ankanahalli	21	he	he	he	Oth	Oth	he	Oth	he	Oth	Oth	he	Oth	Oth	Oth	he	he	Oth	he	he	Oth	Oth	Oth	Oth	Oth	Oth	he	Oth	Oth	Oth	Othe	Oth	Othe	Oth
Ankananam		rs	rs	rs	ers	ers	rs	ers	rs	ers	ers	rs	ers	ers	ers	rs	rs	ers	rs	rs	ers	ers	ers	ers	ers	ers	rs	ers	ers	ers	rs	ers	rs	ers
Gadi	22	Ot	Ot	0t	0.1	0.1	Ot	0.1	Ot	0.1	0.1	Ot	0.1	0.1	0.1	Ot	Ot	0.1	Ot	Ot	0.1	0.1	0.1	0.1	0.1	0.1	Ot	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Ankanahalli	22	he rs	he rs	he rs	Oth ers	Oth ers	he rs	Oth ers	he rs	Oth ers	Oth ers	he rs		Oth ers	Oth ers	he rs	-		he rs	he rs	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers			Oth ers	Oth ers	Oth ers	Othe rs		Othe rs	Oth ers
Gadi		13	13	13	CI S	013	13	013	13		C13	13	CI 3	013	C13	13	13	CI S	13	13	C13	CI 3	013	CI 3	CI 3	C13	13	C13	CI 3	C13	13		13	C13
Ankanahalli	28	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1
Pinnenahalli	9	S 3	S 3	S 3			S2		S 3			S2				S 3	S 3		S 3	S 3							S 3							
Fillienanani	, ,	g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	g	S3g	S2g	S2g	g	-	S2tg	g	g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Pinnenahalli	10	S 3	S 3	S 3			S2		S 3	-		S2	~	~		S 3	S 3		S 3	S 3				~		~~	S 3	~		~			~	60
		g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	g	S3g	S2g	S2g	g		S2tg		g	S3g	S3g	S3g	S3g	S3g	S2g	g	\$3g	S3g	S3g	S3g	S3g	S3g	S3g
Pinnenahalli	11	S3 σ	S3 σ	S3 σ	S3g	S3g	S2 σ	S3g	S3 σ	S3g	S3g	S2 g	S3g	S2g	\$2σ	S3 g	S3 σ	S2tg		S3 σ	\$ 3σ	\$ 3σ	\$ 3σ	S3g	\$ 3σ	\$2σ	53 σ	\$ 3σ	S3g	\$ 3σ	S3g	S3g	S3g	S3g
		<u>Б</u> 53	53	Б S3	555	555	<u>ь</u> S2	555	53	555	555	Б S2	555	525	525	<u>ь</u> S3	<u>ь</u> S3		5 53	53	555	555	555	555	555	525	<u>ь</u> S3	555	555	555	555	555	555	555
Pinnenahalli	12	g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	g	S3g	S2g	S2g	g	g	S2tg		g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Pinnenahalli	13	S 3	S 3	S 3			S2		S 3			S2				S 3	S 3			S 3							S 3							
i innenanani	15	g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	g	S3g	S2g	S2g	g		S2tg		g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Pinnenahalli	14	S 3	S 3	S 3	cn -	C 2 -	S2	cn	S 3	CD -	cn -	S2	cn	ca	C 2 -	S 3	S 3	C21-	S 3	S 3	6 2 -	ca -	ca -	cn -	C D -	co -	S 3	ca -	ca -	co -	6 2 -	c2 -	c2 -	cn
		g S3	g S3	g S3	S3g	S3g	g S2	S3g	g S2	S3g	S3g	g \$2	S3g	S2g	52g	g S3	g S3	S2tg	g S3	g S3	53g	53g	53g	S3g	53g	52g	g S2	53g	S3g	53g	S3g	S3g	S3g	S3g
Pinnenahalli	15	33 g	33 g	33 g	S3g	S3g	g	S3g	g	S3g	S3g	32 g	S3g	S2g	S2g	g		S2tg			S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Di	22	S 3	S 3	S 3			S2		S 3			S2		8	8	S 3	S 3	-	S 3	S 3						8	S 3	8			8			
Pinnenahalli	32	g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	g	S3g	S2g	S2g	g	g	S2tg	g	g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Pinnenahalli	33	S 3	S 3	S 3			S2		S 3			S2				S 3	S 3			S 3							S 3							
		g	g	g	S3g	S3g	g	S3g	g	S3g	S3g		S3g	S2g	S2g	g			g	g	S3g	S3g	S3g	S3g	S3g	S2g		S3g	S3g	S3g	S3g	S3g	S3g	S3g
Pinnenahalli	34	S3	S3 σ	S3	\$2.4	\$20	S2	\$2 a	S3	\$2.0	\$20	S2	\$2.0	\$2.4	\$2.4	1	S3			S3	\$2.0	\$20	\$20	\$2.0	\$2.0	\$20	S3	52 a	\$2.0	\$20	\$2.9	\$2.0	\$2a	\$2a
		g S3	g S3	g S3	S3g	S3g	g \$2	S3g	g S3	S3g	S3g	g \$2	S3g	32g	32g	g S3	g S3	S2tg	g S3	g S3	SSE	SSE	Jog	S3g	SSE	32g	g 53	SSE	SSE	S3g	Jog	S3g	33g	S3g
Pinnenahalli	35	g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	g	S3g	S2g	S2g	g		S2tg		g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Dinnonahalli	26	S 3	S 3	S 3			S2		S 3			S2				S 3	S 3		S 3	S 3							S 3		0		0			
Pinnenahalli	36	g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	g	S3g	S2g	S2g	g	g	S2tg	g	g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Pinnenahalli	37	S 3	S 3	S 3			S2		S 3			S2				S 3	S 3		S 3	S 3							S 3							
		g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	g	S3g	S2g	S2g	g		S2tg	-	g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Sanabanahalli	1	S3 σ	S3 σ	S3 σ	\$24	\$34	52 g	\$34	S3 σ	\$3.4	\$34	52 g	\$24	\$2.4	\$2.4	S3 σ	S3 σ	\$2ta	S3 σ	S3 σ	\$24	\$34	\$34	\$24	\$34	\$20	53 a	\$24	\$3.4	\$34	\$30	\$24	\$2.4	\$2.4
		g S3	g S3	g S3	S3g	S3g	g S2	S3g	g S3	S3g	S3g	g S2	S3g	S2g	S2g	g S3	g S3	-	g S3	g S3	35g	35g	35g	S3g	35g	34g	g S3	S3g	S3g	35g	S3g	S3g	S3g	S3g
Sanabanahalli	2	g	g	g	S3g	S3g	g	S3g	g	S3g	S3g	52 g	S3g	S2g	S2g	g			g	g	S3g	S3g	S3g	S3g	S3g	S2g	g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
1	1	0	0	.0	8	B	0	8	.0	8	B	.0		8	8	0	0		0	Ð	8	8	8	B	8	8	0		8			18	8	

														Cust									Chry				Fiel		Fing			Upla		
Village	Surv													ard-				Grou						Pom		Hors			er-		Fodde	nd-		
vinage	ey No	Ma ngo						Tam arind					Jackf ruit	appl e	Cash ew	Jam un	am bi	ndnu t	Oni on		Tom ato	Mari gold		egra nate	Bana na	egra m	bea n	Arec anut		Brinj al	rSorg hum	Padd v	Jasmi ne	i Cow pea
Sanabanahalli	3	0		S 3		S3g	S2	S3g	S 3			S2	S3g		S2g	-	S 3	S2tg	S 3	S 3				S3g			S 3			S3g		S3g	S3g	
Sanabanahalli	4	S3 g	S3 g	S 3		S3g	S2		S 3			S 2	S3g			S3 g	S 3	S2tg	S 3	S 3				S3g			S 3			S3g			S3g	
Sanabanahalli	6	S3 g	S3 g	S3 g	S3g	S3g	S 2	S3g	S 3			S2	S3g			S3 g	S 3	S2tg	S 3	S 3				S3g			S 3			S3g			S3g	
Sanabanahalli	7	S3 g	S3 g	S3 g		S3g	S2	S3g	S3 g			S2	S3g			S3 g	S 3	S2tg	S 3	S 3				S3g			S3 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Sanabanahalli	8	S3 g	S3 g	S3 g	S3g	S3g	S2 g	S3g	S3 g	S3g	S3g	S2 g	S3g	S2g	S2g	S3 g	S 3		S 3	S3 g				S3g			S3 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Sanabanahalli	67	S3 g	S3 g	S3 g	S3g	S3g	S2 g	S3g	S3 g	S3g	S3g	S2 g	S3g	S2g	S2g		S 3	S2tg	S 3	S3 g				S3g			S3 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Sanabanahalli	68	g	S3 g	S3 g	S3g	S3g	S2 g	S3g	S3 g	S3g	S3g	S2 g	S3g	S2g	S2g	S3 g	S3 g	S2tg	S3 g		S3g	S3g	S3g	S3g	S3g	S2g	S3 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Sanabanahalli	69	S3 g	S3 g	S3 g	S3g	S3g	S2 g	S3g	S3 g	S3g	S3g	S2 g	S3g	S2g	S2g	S3 g	S3 g	S2tg	S3 g	S3 g	S3g	S3g	S3g	S3g	S3g	S2g	S3 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Sanabanahalli	70	g	g	S3 g	S3g	S3g	S2 g	S3g	S3 g	S3g	S3g	S2 g	S3g	S2g	S2g	g		S2tg			S3g	S3g	S3g	S3g	S3g	S2g	S3 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Sanabanahalli	71	S3 g	S3 g	S3 g	S3g	S3g	S2 g	S3g	S3 g	S3g	S3g	S2 g	S3g	S2g	S2g		S3 g	S2tg		S3 g	S3g	S3g	S3g	S3g	S3g	S2g	S3 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Sanabanahalli	72	g	g	S3 g	S3g	S3g	S2 g	S3g	S3 g	S3g	S3g	S2 g	S3g	S2g	S2g	g		S2tg			S3g	S3g	S3g	S3g	S3g	S2g	S3 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Sanabanahalli	73	g	g		S3g	S3g	S2 g	S3g	S3 g	S3g	S3g	S2 g	S3g	S2g	S2g	g		S2tg		S3 g	S3g	S3g	S3g	S3g	S3g	S2g	S3 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Maranahalli	80	g	g	-	S3g	S3g	S2 g	S3g		S3g	S3g	-	S3g	S2g	S2g	g		S2tg			S3g	S3g	S3g	S3g	S3g	S2g	S3 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Maranahalli	83	g	g	S3 g	S3g	S3g	S2 g	S3g	S3 g	S3g	S3g	S2 g	S3g	S2g	S2g			S2tg	g	S3 g	S3g	S3g	S3g	S3g	S3g	S2g	S3 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Maranahalli	84	g	S3 g	-	S3g	S3g	S2 g	S3g	S3 g	S3g	S3g	S2 g	S3g	S2g	S2g	-	-	S2tg	-	-	S3g	S3g	S3g	S3g	S3g	S2g	S3 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Maranahalli	85	g	g		S3g	S3g	S2 g	S3g	S3 g	S3g	S3g	S2 g	S3g	S2g	S2g	g	_	S2tg	-		S3g	S3g	S3g	S3g	S3g	S2g	S3 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Maranahalli	86	g	g	<u> </u>	S3g	S3g		S3g	S3 g	S3g	S3g		S3g	S2g	S2g	g		S2tg			S3g	S3g	S3g	S3g	S3g	S2g	53 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Jogihalli	8	g	g		S3g	S3g	S2 g	S3g	53 g	S3g	S3g	S2 g	S3g	S2g	S2g		-	S2tg	g	S3 g	S3g	S3g	S3g	S3g	S3g	S2g	53 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Karegondanah alli	9	S3 g	S3 g	S3 g	S3g	S3g	S2 g	S3g	S3 g	S3g	S3g	S2 g	S3g	S2g	S2g	S3 g	S3 g	S2tg	S3 g	S3 g	S3g	S3g	S3g	S3g	S3g	S2g	S3 g	S3g	S3g	S3g	S3g	S3g	S3g	S3g

PART-B

SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS

CONTENTS

1.	Executive summary	1-4
2.	Introduction	5
3.	Methodology	7-11
4.	Results and discussions	13-32

I. Soc	ial status	
1	Human population among sample households	13
2	Basic needs of sample households	14
3	Institutional participation among the sample population	15
II. Ec	onomic status	
4	Occupational pattern in sample households	16
5	Domestic assets among samples households	16
6	Farm assets among samples households	17
7	Livestock assets among sample households	18
8	Milk produced and Fodder availability of sample households	19
9	Women empowerment of sample households	20
10	Per capita daily consumption of food among the sample households	20
11	Annual average Income from various sources	21
12	Average annual expenditure of sample households	22
13	Distribution of land holding among the sample households	23
14	Land holding among samples households	23
II. F	Resource use pattern	
15	Number of tree/plants covered in sample farm households	23
16	Present cropping pattern among samples households	24
17	Distribution of soil series in the watershed	25
V. E	conomic land evaluation	
18	Cropping pattern on major soil series	26
10	Alternative land use options for different size group of farmers	26
19	(Benefit Cost Ratio)	26
20	Economics Land evaluation and bridging yield gap for different crops	27
21	Estimation of onsite cost of soil erosion	28
22	Ecosystem services of food grain production	29
23	Ecosystem services of fodder production	30
24	Ecosystem services of water supply for crop production	31
25	Farming constraints	32

LIST OF TABLES

LIST OF FIGURES

1	Location of study area	8
2	ALPES Framework	9
3	Basic needs of sample households	15
4	Domestic assets among the sample households	17
5	Farm assets among samples households	18
6	Livestock assets among sample households	19
7	Per capita daily consumption of food among the sample households	21
8	Average annual expenditure of sample households	22
9	Present cropping pattern	24
10	Estimation of onsite cost of soil erosion	29
11	Ecosystem services of food grain production	30
12	Ecosystem services of water supply	31

EXECUTIVE SUMMARY

Baseline socioeconomic characterisation is prerequisite to prepare action plan for program implementation and to assess the project performance before making any changes in the watershed development program. The baseline provides appropriate policy direction for enhancing productivity and sustainability in agriculture.

Methodology: Maddenahalli micro-watershed (Bangihalli sub-watershed, Gubbi taluk, Tumkur district) is located in between $13^{0}27' - 13^{0}28'$ North latitudes and $76^{0}51' - 76^{0}53'$ East longitudes, covering an area of about 588.21 ha, bounded by Sanabanahalli, Maranahalli, Madhenahalli and Pinnenahalli villages with length of growing period (LGP) 120-150 days. We used soil resource map as basis for sampling farm households to test the hypothesis that soil quality influence crop selection, and conservation investment of farm households. The level of technology adoption and productivity gaps and livelihood patterns were analyses. The cost of soil degradation and eco system services were quantified.

Results: The socio-economic outputs for the Maddenahalli micro-watershed (Bangihalli sub-watershed, Gubbi taluk, Tumkur district) are presented here.

Social Indicators;

- ★ *Male and female ratio is 59.2 to 40.8 Per cent to the total sample population.*
- ✤ Younger age 18 to 50 years group of population is 57.1 around per cent to the total population.
- *Literacy population is around 87.8 per cent.*
- Social groups among all are general caste.
- ✤ Among all farm households having liquefied petroleum gas is the source of energy for a cooking.
- About 50 per cent of households have a yashaswini health card.
- ✤ Farm households are having MGNREGA card only 20 per cent for rural employment.
- Dependence on ration cards for food grains through public distribution system is around 70 percent of farm households.
- Swach bharath program providing closed toilet facilities around 80 per cent of sample households.
- Women participation in decisions making is around 77.8 per cent of households were found.

Economic Indicators;

- The average land holding is 0.72 ha indicates that majority of farm households are belong to marginal and small farmers. The rainfed land is 91 per cent and 9 per cent of irrigated land is cultivated land area among the sample farmers.
- Agriculture is the main occupation among 53.1 per cent and agriculture is the main and agriculture labour is subsidiary occupation for 14.3 per cent of the sample households.
- The average value of domestic assets is around Rs.16772 per household. Mobile and television are popular media mass communication.
- The average value of farm assets is around Rs. 104460 per household; about 70 per cent of sample farmers having plough and bullock cart.
- The average value of livestock is around Rs.17271 per household; about 81.25 per cent of household are having livestock.
- The average per capita food consumption is around 455.7 grams (1138.2 kilo calories) against national institute of nutrition (NIN) recommendation at 827 gram. Among all sample households are consuming less than the NIN recommendation.
- ✤ The annual average income is around Rs.102052 per household. About 50 per cent of farm households are below poverty line.
- *The per capita average monthly expenditure is around Rs.*818.

Environmental Indicators-Ecosystem Services;

- The value of ecosystem service helps to support investment to decision on soil and water conservation and in promoting sustainable land use.
- The onsite cost of different soil nutrients lost due to soil erosion is around Rs. 442 per ha/year. The total cost of annual soil nutrients is around Rs. 247521per year for the total area of 588.21 ha.
- The average value of ecosystem service for food grain production is around Rs. 70428/ ha/year. Per hectare food grain production services is maximum in Mango (Rs. 227566) followed by areca nut (Rs. 105087), coconut (Rs. 84360), ragi (Rs.7727), sorghum (Rs. 600) and paddy is negative return.
- The average value of ecosystem service for fodder production is around Rs. 3356/ ha/year. Per hectare fodder production services is maximum in paddy (Rs. 4693), sorghum (Rs. 3356) and ragi (Rs. 2020).
- The data on water requirement for producing one quintal of grain is considered for estimating the total value of water required for crop production. The per hectare value of water used and value of water was maximum in coconut (Rs. 277513) followed by mango (Rs. 65867), sorghum (Rs. 31043), paddy (Rs. 14463), ragi (Rs.12515) and areca nut (Rs.4284).

Economic Land Evaluation;

- The major cropping pattern is ragi (28.4 %) followed by areca nut (28.4 %), sorghum (23.5 %), coconut (12.9 %), mango (5.9 %) and paddy (1.1 %).
- In Maddenahalli micro-watershed, major soil series are Balapur series having very deep soil depth covered around 46.23 % of area; major crops are areca nut (82.5 %), and ragi (17.5 %). Kadagathur soils series are having very deep soil depth covered around 14.64 % of area on this soil farmers are presently growing areca nut (20.6 %), coconut (16.1 %), ragi (31.6%) and sorghum (31.6 %). Ranatur soils series are having very deep soil depth covers around 17.98 % of area. On this soil farmers are presently growing coconut (13.4 %), mango (18.0 %), ragi (27.5%) and sorghum (41.1 %). Thimmasandra soils series are having very deep soil depth covers around 3.11 % of area. On this soil farmers are presently growing 50 %) and sorghum (50 %).
- The total cost of cultivation and benefit cost ratio (BCR) in study area for coconut range between Rs 97036/ha in KDT soil (with of 2.01) and Rs. 69905/ha in RTR soil (with BCR of 1.11).
- In areca nut the cost of cultivation ranges between Rs.69122/ha in KDT soil (with BCR of 1.92) and Rs.8499/ha in BPR soil (with BCR of 18.24).
- In sorghum the cost of cultivation range between Rs. 25729/ha KDT soil (with BCR of 0.98) and Rs.16497/ha RTR soil (with BCR of 1.62).
- In ragi the cost of cultivation range between Rs. 37931/ha BPR soil (with BCR of 1.18) and Rs.15857/ha KDT soil (with BCR of 1.51).
- ♦ In mango the cost of cultivation in RTR soil Rs.28582/ha (with BCR of 8.96) and
- ♦ In paddy the cost of cultivation in RTR soil Rs.32164/ha (with BCR of 1.62).
- The land management practices reported by the farmers are crop rotation, tillage practices, fertilizer application and use of farm yard manure (FYM). Due to higher wages farmer are following labour saving strategies is not prating soil and water conservation measures. Less ownership of livestock limiting application of FYM.
- It was observed soil quality influences on the type and intensity of land use.
 More fertilizer applications in deeper soil to maximize returns.

Suggestions;

- ✤ Involving farmers is watershed planning helps in strengthing institutional participation.
- The per capita food consumption and monthly income is very low. Diversifying income generation activities from crop and livestock production in order to reduce risk related to drought and market prices.

- Majority of farmers reported that they are not getting timely support/extension services from the concerned development departments.
- ✤ By strengthing agricultural extension for providing timely advice improved technology there is scope to increase in net income of farm households.
- By adopting recommended package of practices by following the soil test fertiliser recommendation, there is scope to increase yield in areca nut (91.4 to 91.6 %), coconut (8.1 to 79.9 %), sorghum (57.7to 73.9 %) and ragi (68.9 to 76.0 %), mango (63.0 %) and paddy (85.4 %).

INTRODUCTION

Watershed Development program aim to restore degraded watersheds in rainfed regions to increase their capacity to capture and store rain water, reduce soil erosion, and improved soil nutrients and carbon contents so they can produce greater agricultural yields and other benefits. As majority of rural poor live in these regions and dependent on natural resources for their livelihood and sustenance, improvements in agricultural yields improve human welfare and simultaneously improve national food security.

Sujala–III watershed development project conceptualised and implemented by the Watershed Development Department of Government of Karnataka with tripartite costsharing arrangements. The World Bank through International Development Association provided major portion of plan outlay as a loan to Government of India and in turn loan to Government of Karnataka.

The objectives of Sujala-III is to demonstrate more effective watershed management through greater integration of programs related to rain fed agriculture, innovative and science based approaches and strengthened institutions and capacities. The project is implemented in 11 districts of Bidar, Vijayapura, Gulbarga, Yadgir, Koppal, Gadag, Raichur, Davanagere, Tumkur, Chikkamangalur and Chamarajanagar which have been identified by the Watershed Development Department based on rainfall and socio-economic conditions. The project will be implemented over six years and linked with the centrally financed integrated watershed management programme.

Economic evaluations can better guide in watershed planning and implementation, as well as raise awareness of benefits of ecosystem restoration for food security and poverty alleviation program. The present study aims to characterize socio-economic status of farm households, assess the land and water use status, evaluate the economic viability of land use, prioritize farming constraints and suggest the measures for soil and water conservation for sustainable agriculture.

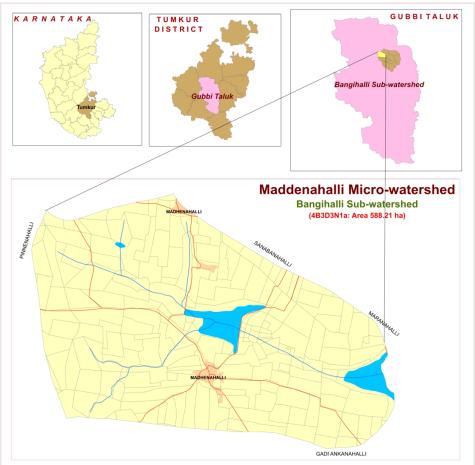
Objectives of the study

- 1. To characterize socio-economic status of farm households
- 2. To evaluate the economic viability of land use and land related constraints
- 3. To estimate the ecosystem service provided by the watershed and
- 4. To suggest alternatives for sustainable agriculture production.

METHODOLOGY

Study area

Maddenahalli micro-watershed is located in Eastern Dry Zone of Karnataka (figure 1). The zone covers entire Bangalore and Kolar districts and 2 taluks of Tumkur. It has an area of 1.80 M ha with 0.85 M ha under cultivation. About 0.23 M ha are irrigated mainly from tanks and wells. Elevation ranges from 800 to 1500m MSL with major area falling between 800 and 900m. The major soil type is non-gravelly red loam with a narrow belt of lateritic soil. Average annual rainfall ranges between 680 and 890mm. The principal crops of the zone are ragi, rice, pulses, maize, oil seeds and mulberry. A sizeable area is also under vegetables and flowering plants. It represents Agro Ecological Sub Region (AESR) 8.2 having LGP 120-150 days.


Maddenahalli micro-watershed (Bangihalli sub-watershed, Gubbi taluk, Tumkur district) is located in between $13^{0}27' - 13^{0}28'$ North latitudes and $76^{0}51' - 76^{0}53'$ East longitudes, covering an area of about 588.21 ha, bounded by Sanabanahalli, Maranahalli, Madhenahalli and Pinnenahalli villages.

Sampling Procedure:

In this study we have followed soil variability as criterion for sampling the farm households. In each micro-watershed the survey numbers and associated soil series are listed. Minimum three farm households for each soil series were taken and summed up to arrive at total sample for analysis.

Sources of data and analysis:

For evaluating the specific objectives of the study, primary data was collected from the sample respondents by personal interview method with the help of pre-tested questionnaire. The data on socio-economic characteristics of respondents such as family size and composition, land holdings, asset position, occupational pattern and education level was collected. The present cropping pattern and the level of input use and yields collected during survry. The data collected from the representative farm households were analysed using Automated Land Potential Evalution System (Figure 2).

LOCATION MAP OF MADDENAHALLI MICRO-WATERSHED

Figure 1: Location of study area

Steps followed in socio-economic assessment

After the completion of soil profile study link the cadastral number to the soil profile in the micro watershed.
Download the names of the farmers who are owning the land for each cadastral number in the Karnataka BHOOMI Website.
Compiling the names of the farmers representing for all the soil profiles studied in the micro watershed for socio-economic Survey.
Conducting the socioeconomic survey of selected farm households in the micro watershed .
Farm households database created using the Automated Land Potential Evaluation System (ALPES) for analysis of socio economic status for each micro watershed .
Synthesis of tables and preparation of report for each micro watershed .

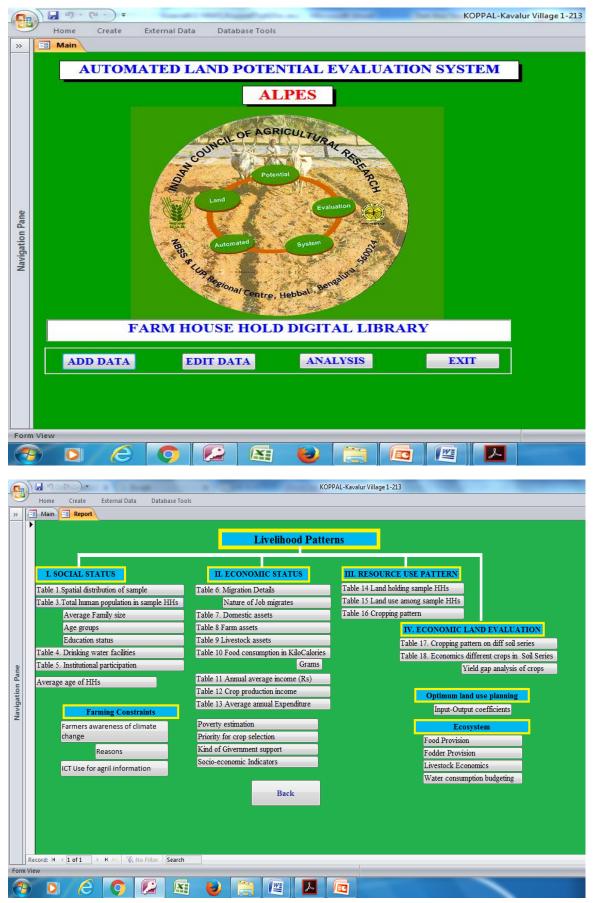
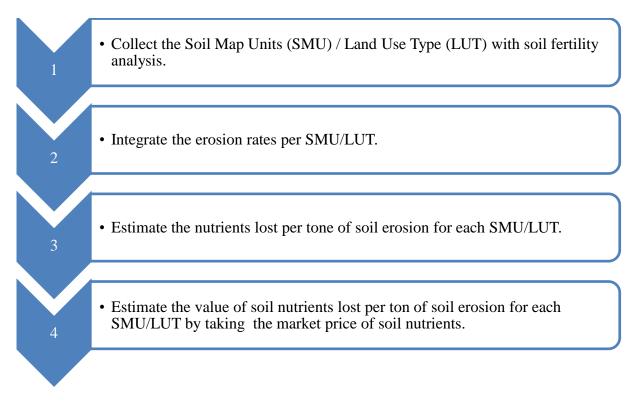


Figure 2: ALPES FRAMEWORK

The sample farmers were post classified in to marginal and small (0.0 to ≤ 2 ha), medium and semi medium (>2 to ≤ 10 ha) and large (>10 ha). The steps involved in estimation of soil potential involve estimation of total cost of cultivation, the yield/gross returns and net income per hectare. The cost of inputs such seed, manure and fertilizer, plant protection chemicals, payment towards human and bullock labour and interest on working capita are included under operational costs. In the case of perennial crops, the cost of establishment was estimated by using actual physical requirements and prevailing market prices. Estimation cost included maintenance cost up to bearing period. The value of main product and by product from the crop enterprise at the market rates were the gross returns of the crop. Net returns were worked out by deducting establishment and maintained cost from gross returns.


Operational Cost = cost of seeds, fertilizers, pesticides. Cost of human and bullock labour, cost of machinery, cost of irrigation water + interest on working capital. Gross returns = Yield (Quintals/hectare)*Price (Rs/Quintal) Net returns = Gross returns-Operational cost. Benefit Cost Ratio = Net returns/Total cost.

Economic suitability classes: once each land use –land area combination has been assigned an economic value by the land evaluation, the question arises as to its 'suitability', that is, the degree to which it satisfies the land user. The FAO framework defines two suitability orders: 'S'(suitable if benefit cost ratio (BCR)>1) and 'N'(not suitable if (BCR<1), which are dived into five economic suitability classes:'S1'(highly suitable if BCR>3), 'S2'(suitable if BCR>2 and <3),'S3'(Marginally suitable if BCR >1 and <2), 'N1'(Not suitable for economic reasons but physically suitable) and 'N2'(not suitable for physical reasons). The limit between 'S3' and 'N1'must be at least at the point of financial feasibility (i.e. net returns, NPV, or IRR>0 and BCR>1). The other limits depend on social factors such as farm size, family size, alternative employment or investment possibilities and wealth expectations; these need to be specified for the Soil series.

Economic Valuation of Soil ecosystem services:

The replacement cost approach was followed for estimating the onsite cost of soil erosion, Market price method was followed for estimating the value of food and fodder production. Value transfer menthods was followed for estimating the value of water demand by different crops in the micro watershed.

Steps followed in Replacement cost methods for estimation of onsite cost of soil erosion

RESULTS AND DISCUSSIONS

The demographic information shows that the household population dynamics encompasses the socioeconomic status of the farmer. For a rural family, the household size should be optimal to earn a comfortable livelihood through farm and non-farm wage earning. The total number of population in watershed area was 49, out of which 59.2 per cent were males and 40.8 per cent females. Average family size of the households is 4.9. Age is an important factor, which affects the potential employment and mobility status of respondents. The data on age wise distribution of farmers in the sample households indicated that majority of the farmers are coming under the age group of 30 to 50 years (36.7 %) followed by more than 50 years (30.6 %), 18 to 30 years (20.4%) and 0 to18 years (12.2 %). Hence, in the study area in general, the respondents were of young and middle age, indicating thereby that the households had almost settled with whatever livelihood options they were practicing and sample respondents were young by age who could venture into various options of livelihood sources. Data on literacy indicated that 12.2 per cent of respondents were illiterate and 87.8 per cent literate (Table 1).

Particulars	Units	Value
Total human population in sample HHs	Number	49
Male	% to total Population	59.2
Female	% to total Population	40.8
Average family size	Number	4.9
Age group		
0 to 18 years	% to total Population	12.2
18 to 30 years	% to total Population	20.4
30 to 50 years	% to total Population	36.7
>50 years	% to total Population	30.6
Average age	Age in years	41.5
Education Status		
Illiterates	% to total Population	12.2
Literates	% to total Population	87.8
Primary School (<5 class)	% to total Population	16.3
Middle School (6- 8 class)	% to total Population	10.2
High School (9- 10 class)	% to total Population	26.5
Others	% to total Population	34.7

Table 1: Human population among sample households in Maddenahalli Microwatershed

The ethnic groups among the sample farm households found to be among all sample households are general caste (Table 2 and Figure 3). Among all sample households are using liquefied petroleum gas (LPG) as source of fuel for cooking. All the

sample farmers are having electricity connection. About 40.0 per cent are sample households having health cards. About 20 percent of households are having MNREGA job cards for employment generation. About 70 per cent of farm households are having ration cards for taking food grains from public distribution system. About 80 per cent of farm households are having toilet facilities.

Particulars	Units	Value
Social groups		
General	% of Households	100.0
Types of fuel use f	or cooking	I
Gas	% of Households	100.0
Energy supply for	home	I
Electricity	% of Households	100.0
Number of househ	olds having Health card	
Yes	% of Households	50.0
No	% of Households	50.0
MGNREGA Card		I
Yes	% of Households	20.0
No	% of Households	80.0
Ration Card		
Yes	% of Households	70.0
No	% of Households	30.0
Households with t	oilet	I
Yes	% of Households	80.0
No	% of Households	20.0
Drinking water fa	cilities	
Tube Well	% of Households	100.0

Table 2: Basic needs of sample households in Maddenahalli Microwatershed

The data collected on the source of drinking water in the study area is presented in Table 2. All the sample respondents are having tube well source for water supply for domestic purpose.

About 24.5per cent of the farmers are participating in community based organizations (Table 3). Among them majority were participating in diary co-operatives societies (16.3%) followed by village panchayat (4.1%) and self help group organization (4.1%) like Sri Dharmasthala Swasahaya Sangha, Stri Shakhti Sangha.

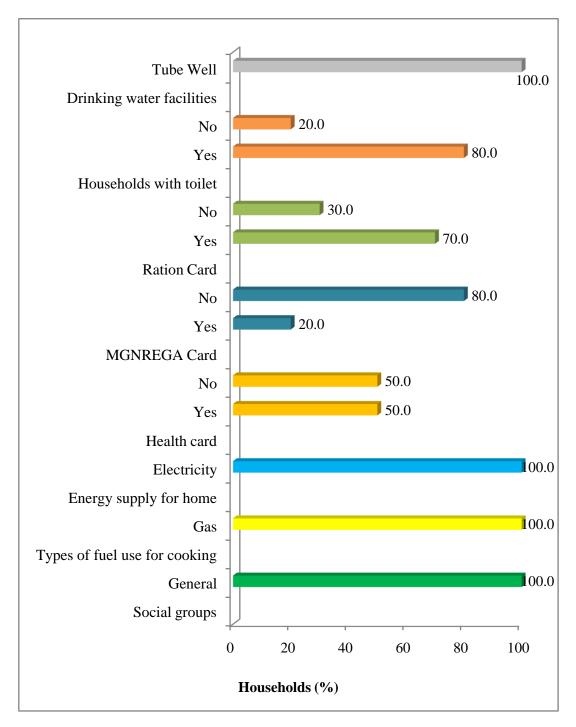


Figure 3: Basic needs of sample households in Maddenahalli Microwatershed

Table 3: Institutional participation among the sample population in Maddenahalli	
Microwatershed	

Particulars	Units	Value
No. of people participating	% to total	24.5
Co-operative Societies-Dairy	% of total	16.3
Village Panchayath	% of total	4.1
Self help groups(SHG's)	% of total	4.1
No. Of people not participating	% to total	75.5

The occupational pattern (Table 4) among sample households shows that agriculture is the main occupation around 53.1 per cent of farmers followed by agriculture is the main occupation and subsidiary occupations like agricultural labour (14.3 %) and govt service (2.0 %) and student (16.3 %) as a main occupation of sample household.

Occupation		% to total
Main	Subsidiary	/0 to total
	Agriculture	53.1
Agriculture	Agriculture labour	14.3
Agriculture	Private service	4.1
	Non Agriculture Labour	10.2
Govt. service		2.0
Student		16.3
Grand Total		100.0
Family labour availability		Man days/month
Male		42.50
Female		30.00
Total		72.50

Table 4: Occur	pational patterr	in sample	population in	n Maddenahalli I	Microwatershed
	puttonal putton	i ili Suilipie	population in	i i i i i u u u u u u u u u u u u u u u	inclo waterblied

The important assets especially with reference to domestic assets were analyzed and are given in Table 5 and Figure 4. The important domestic assets possessed by all categories of farmers are television (100 %) followed by mobile phone (90 %), mixer/grinder (90 %), motor cycle (60 %), bicycle (30 %), refrigerator (20 %) and dvd/cvd (10 %). The average value of domestic assets is around Rs 16772 per households.

Table 5: Domestic assets among the sample households in Maddenahalli Microwatershed

Particulars	% of households	Average value in Rs
Bicycle	30.0	1600
Dvd/Cvd	10.0	60000
Mixer/grinder	90.0	2689
Mobile Phone	90.0	3278
Motorcycle	60.0	34000
Refrigerator	20.0	13000
Television	100.0	2840
Average Value	16772	

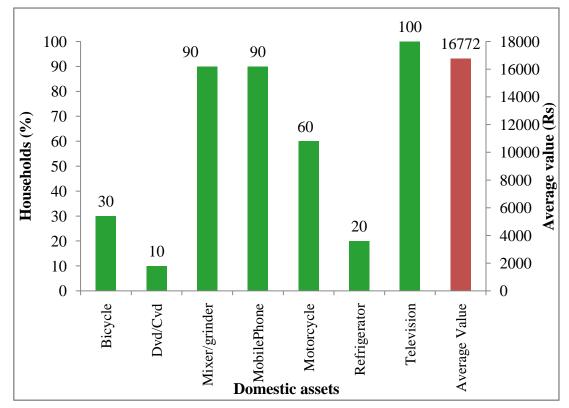


Figure 4: Domestic assets among the sample households in Maddenahalli Microwatershed

The most popularly owned farm equipments were sickles, plough, cattle shed; pump sets, chaff cutter, bullock cart, sprayer and thresher. Plough and sickle were commonly present in all the sampled farmers; these were primary implements in agriculture. The per cent of households owned plough (70 %), weeder (60 %), sprayer (40 %), tractor (20 %), chaff cutter (20 %), bullock cart (20 %) and tractor (10 %). The average value of farm assets is around Rs.104460 per households (Table 6 and Figure 5).

Table 6: Farm assets among	samples households in Maddenahalli Microwater	shed

Particulars	% of households	Average value in Rs
Bullock cart	20.0	14000
Chaff Cutter	20.0	2100
Plough	70.0	2529
Sprayer	40.0	8075
Tractor	20.0	600000
Weeder	60.0	58
Average Value	104460	

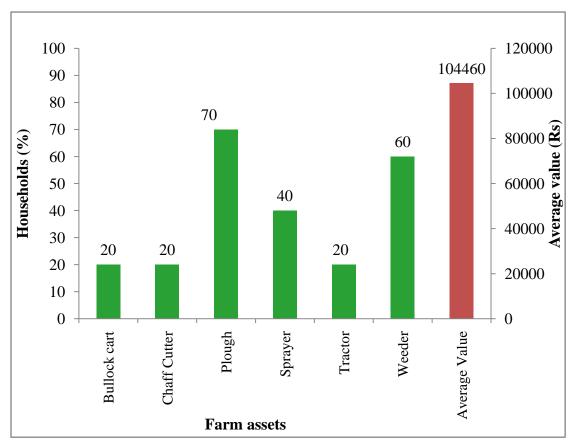


Figure 5: Farm assets among the sample households in Maddenahalli Microwatershed

Livestock is an integral component of the conventional farming systems (Table 7 and Figure 6). The highest livestock population is crossbred milching cow were around 46.2 per cent followed milching buffalos (30.8 %), crossbred dry cow (15.4 %) and goats (7.7 %). The average livestock value was Rs. 17271 per household.

Table 7: Livestock assets among	sample households in	n Maddenahalli Microwatershed

Particulars	% of livestock population	Average value in Rs
Crossbred Dry Cow	15.4	8000
Crossbred Milching Cow	46.2	32833
Milching Buffalos	30.8	25750
Goats	7.7	2500
Average value	17271	

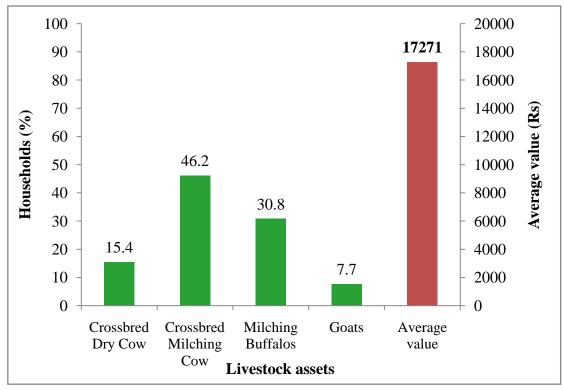


Figure 6: Livestock assets among sample households in Maddenahalli Microwatershed

Average milk produced in sample households is 2573 litter/annum. Among the farm households, sorghum paddy and ragi are the main crops for domestic food and fodder for animals. About 3065 kg /ha of average fodder is available per season for the livestock feeding (Table 8).

 Table 8: Milk produced and fodder availability of sample households in Maddenahalli

 Microwatershed

Particulars		
Name of the Livestock	Ltr./Lactation/animal	
Crossbred Milching Cow	3500	
Milching Buffalos	1645	
Average Milk Produced	2573	
Fodder produces	Fodder yield (kg/ha.)	
Sorghum	4708	
Paddy	2500	
Ragi	1988	
Average fodder availability	3065	
Livestock having households (%)	81.25	
Livestock population (Numbers)	24	

A woman participation in decision making is in this micro-watershed is presented in Table 9. About 50 per cent of Women participation in local organization activities, about 20 per cent of Women earning for her family requirement and among 77.8 per cent of women taking decision in her family and agriculture related activities in these study area.

 Table 9: Women empowerment of sample households in Maddenahalli Microwatershed

% t	o Grand	Total
Particulars	Yes	No
Women participation in local organization activities	50.0	50.0
Women elected as panchayat member	10.0	90.0
Women earning for her family requirement	20.0	80.0
Women taking decision in her family and agriculture related activities	77.8	22.2

The food intake in terms of kilo calorie (kcal) per person per day was calculated and presented in the Table 10 and Figure 7. More quantity of cereals is consumed by sample farmers which accounted for 767.5 kcal per person. The other important food items consumed was pulses 93.8 kcal followed by milk 76.8 kcal, vegetables 12.4 kcal and cooking oil 187.7 kcal. In the sampled households, farmers were consuming less (1138.2kcal) than NIN- recommended food requirement (2250 kcal).

Table 10: Per capita daily consumption of food among the sample households in Maddenahalli Microwatershed

		Kilo
NIN recommendation	Present level of consumption	Calories
(gram/ per day/ person)	(gram/ per day/ person)	/day/person
396	225.7	767.5
43	27.4	93.8
200	118.2	76.8
143	51.5	12.4
31	32.9	187.7
0.5	0.0	0.0
14.2	0.0	0.0
827.7	455.7	1138.2
VIN recommendation	827 gram*	2250 Kcal*
	100.0	100.0
	0.0	0.0
	(gram/ per day/ person) 396 43 200 143 31 0.5 14.2 827.7	(gram/ per day/ person)(gram/ per day/ person)396225.74327.4200118.214351.53132.90.50.014.20.0827.7455.7IIN recommendation827 gram*100.0

Note: * day/person

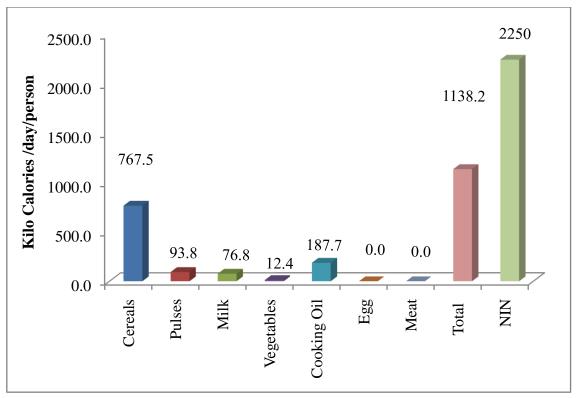


Figure 7: Per capita daily consumption of food among the sample households in Maddenahalli Microwatershed

Annual income of the sample HHs: The average annual household income is around Rs 102052. Major source of income to the farmers in the study area is from crop production (Rs 53879) followed by livestock (Rs. 48173). The monthly per capita income is Rs.1736, which is above than the threshold monthly income of Rs 975 for considering above poverty line. Due to the fact that erratic rainfall and shortage of water, farmers are diverting from crop production activities to enable the household for a comfortable livelihood. The incomes from the other aforesaid sources are very meagre (Table 11).

Table 11: Annual average income of HHs from various sources in Maddenahalli Microwatershed

Particulars	Income *
Nonfarm income (Rs)	0 (0)
Livestock income (Rs)	48173 (60)
Crop Production (Rs)	53879 (100)
Total Annual Income (Rs)	102052
Average monthly per capita income (Rs)	1736
Threshold for Poverty level (Rs 975 per month/person)	·
% of households below poverty line	50.0
% of households above poverty line	50.0

* Figure in the parenthesis indicates % of Households

The average annual expenditure of farm households indicated that farmers in the study area spend highest on food (Rs.25620) followed by education, clothing, social function and health. Now a day's education is most important among all of us. In today's competitive world, education is a necessity for man after food, clothing, and shelter. It is the only fundamental way by which a desired change in the society can happen. The average per capita monthly expenditure is around Rs 818 and about 50 per cent of farm households are below poverty line (Table 12 and Figure 8).

Particulars	Value in Rupees	Per cent
Food	25620	53.2
Education	5300	11.0
Clothing	4100	8.5
Social functions	7300	15.2
Health	5800	12.1
Total Expenditure (Rs/year)	48120	100.0
Monthly per capita expenditure (Rs)	818	1

Table 12: Average annual expenditure of sample HHs in Maddenahalli Microwatershed

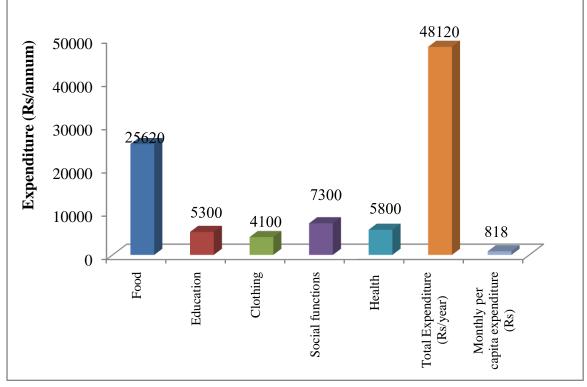


Figure 8: Average annual expenditure of sample HHs in Maddenahalli Microwatershed

Land holding: Total sample households are total area cultivated by them is 7.2 ha. The average land holding of sample HHs is 0.7 ha. Large number of sample HHs (90 %) belong to small size group with an average holding size of 0.6 ha and medium farmers (10 %) with an average holding size of 2.1 ha (Table 13).

Particulars	Units	Values
Small farmers		
Total land	ha	5.1
Sample size	Per cent	90.0
Average land holding	ha	0.6
Medium farmers		
Total land	ha	2.1
Sample size	Per cent	10.0
Average land holding	ha	2.1
Total sample households		
Total land	ha	7.2
Sample size	Per cent	100.0
Average land holding	ha	0.7

Table 13: Distribution of land holding among the sample households in Maddenahalli micro-watershed

Land use: The total land holding in the Maddenahalli micro-watershed is 7.2 ha (Table 14). Of which 6.6 ha is rainfed land and 0.6 ha is irrigated land. The average land holding per household is worked out to be 0.72 ha.

Table 14: Land use among samples households in Maddenahalli Microwatershed

Particulars	Per cent	Area in ha	
Irrigated land	9.0	0.6	
Rainfed Land	91.0	6.6	
Fallow Land	0.0	0.0	
Total land holding	100.0	7.2	
Average land holding	0.72		

In the micro-watershed, the prevalent present land uses under perennial plants are mango (58.3%) followed by neem trees (24.2 %), tamarind (6.8%), teak (3%) other (3%), lime (3%) and custard apple (1.5%) (Table 15).

Table 15: Number of trees/plants covered in sample farm households in Maddenahalli Microwatershed

Particulars	Number of Plants/trees	Per cent
Lime	4	3.0
Mango	77	58.3
Neem trees	32	24.2
Tamarind	9	6.8
Custard Apple	2	1.5
other	4	3.0
Teak	4	3.0
Grand Total	132	100.0

The land use decisions are usually based on experience of farmers, tradition, expected profit, personal preferences, resources and social requirements.

The present dominant crops grown in dry lands in the study area were by areca nut (28.2 %), sorghum (22.4 %), ragi (19.6 %), coconut (12.9 %) and paddy (1.1 %), which is taken during kharif and mango (5.9 %) during rabi season respectively. The cropping intensity was 119 per cent (Table 16 and Figure 9).

Microwatershed		% to Grand Total				
Crops	Kharif	Rabi	Summer	Grand Total		
Ragi	19.6	8.81	0.0	28.4		
Arecanut	28.2	0.0	0.0	28.2		
Sorghum	22.4	1.1	0.0	23.5		
Coconut	12.9	0.0	0.0	12.9		
Mango	0.0	0.0	5.9	5.9		
Paddy	1.1	0.0	0.0	1.1		
Grand Total	84.1	9.9	5.9	100.0		
Cropping intensity (%)	119					

Table 16: Present cropping pattern and cropping intensity in Maddenahalli

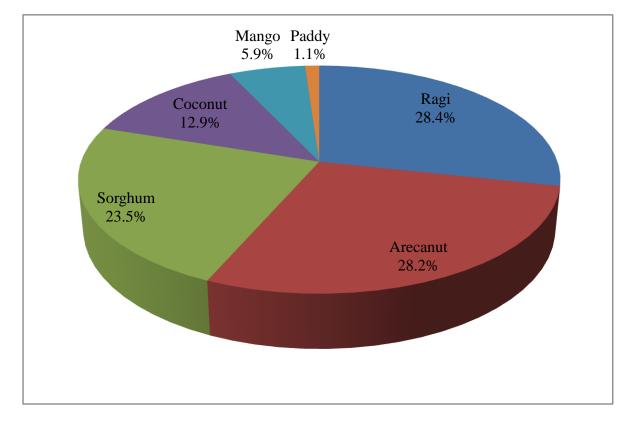


Figure 9: Present cropping pattern in Maddenahalli Microwatershed

Economic land evaluation

The main purpose to characterise the socio-economic systems in the watershed is to identify the existing production constraints and propose the potential/alternate options for agro-technology transfer and for bridging the adoption and yield gap.

In Maddenahalli micro-watershed, 3 soil series are identified and mapped (Table 17). The distribution of major soil series are Balapur covering an area around 273 ha (46.23 %) followed by Ranatur106 ha (17.98 %), Kadagathur 87 ha (14.64%), Bidanagere 50ha (8.54%), Muradi 27ha (4.63%) and Thimmasandra 18 ha (3.11%).

Soil	Soil Soil Mapping Unit Description						
No	Series	Wiapping Onit Description	ha (%)				
SOIL	S OF G	RANITE GNEISS LANDSCAPE					
1	BDG	Bidanagere soils are moderately deep (75-100 cm), well drained,	50 (8.54)				
		have dark reddish brown gravelly sandy clay loam to sandy clay					
		soils occurring on very gently sloping uplands under cultivation					
2	BPR	Balapur soils are deep (100-150 cm), well drained, have dark	273				
		reddish brown to dark red gravelly sandy clay to clay soils	(46.23)				
		occurring on very gently sloping uplands under cultivation					
3	MRD	Muradi soils are very deep (>150 cm), well drained, have red to	27 (4.63)				
		dark red sandy clay loam to sandy clay soils occurring on very					
		gently sloping uplands under cultivation					
4	RTR	Ranatur soils are very deep (>150 cm), well drained, have dark	106				
		reddish brown to dark red clay soils occurring on very gently	(17.98)				
		sloping uplands under cultivation					
5	KDT	Kadagathur soils are very deep (>150 cm), moderately well	87				
		drained, have dark brown to very dark grayish brown sandy clay	(14.64)				
		to clay soils occurring on nearly level to very gently sloping					
		uplands under cultivation					
6	TSD	Thimmasandra soils are very deep (>150 cm), moderately well	18 (3.11)				
		drained, have very dark brown to very dark grayish brown sandy					
		clay to clay soils occurring on nearly level to very gently sloping					
		lowlands under cultivation					
7		Others	29 (4.87)				

Table 17: Distribution of soil series in Maddenahalli Microwatershed

Present cropping pattern on different soil series are given in Table 18. Crops grown on Balapur soils are areca nut and ragi. Areca nut, Cotton, ragi and sorghum on Kadagathur soils is grown. Coconut, mango ragi and sorghum on Ranatur soil are grown and Thimmasandra is paddy and sorghum.

Soil	Soil	Crops Dry			Irriga	nted	Grand	
Series	Depth	Crops	Kharif	Rabi	Summer	Kharif	Rabi	Total
BPR	Deep	Arecanut	82.5	0.0	0.0	0.0	0.0	82.5
	(100-150 cm)	Ragi	17.5	0.0	0.0	0.0	0.0	17.5
KDT	Very deep	Arecanut	20.6	0.0	0.0	0.0	0.0	20.6
	(>150 cm)	Coconut	0.0	0.0	0.0	16.1	0.0	16.1
		Ragi	0.0	31.6	0.0	0.0	0.0	31.6
		Sorghum	31.6	0.0	0.0	0.0	0.0	31.6
RTR	Very deep	Coconut	13.4	0.0	0.0	0.0	0.0	13.4
	(>150 cm)	Mango	0.0	0.0	18.0	0.0	0.0	18.0
		Ragi	27.5	0.0	0.0	0.0	0.0	27.5
		Sorghum	41.1	0.0	0.0	0.0	0.0	41.1
TSD	Very deep	paddy	0.0	0.0	0.0	50.0	0.0	50.0
	(>150 cm)	Sorghum	0.0	0.0	0.0	0.0	50.0	50.0

(Area in per cent)

Table 18: Cropping pattern on major soil series in Maddenahalli Microwatershed

Land is used for agricultural use for growing cereals, pulse, oilseeds and commercial crops. The soil/ land potential are measures in terms of physical yield and net income. The alternative land use options for each micro-watershed are given below (Table 19).

Table 19: Alternative land use options for different size group of farmers (Benefit Cost Ratio) in Maddenahalli Microwatershed.

Soil Series	Small Farmers	Medium Farmers
BPR	Ragi (1.18)	Arecanut (18.24)
RTR	Coconut (1.11), Mango (8.96), Ragi (1.89) &	
	Sorghum (1.62)	
KDT	Arecanut (1.92), Coconut (2.01), Ragi (1.51)&	
	Sorghum (0.98)	
TSD	Paddy (1.06) & Sorghum (1.02)	

The productivity of different crops grown in Maddenahalli Microwatershed under potential yield of the crops is given in Table 20.

The data on cost of cultivation and benefit cost ratio (BCR) of different crops is given in Table 20. The total cost of cultivation in study area for areca nut ranges between Rs.69122/ha in KDT soil (with BCR of 1.92) and Rs.8499/ha in BPR soil (with BCR of 18.24), coconut range between Rs 97036/ha in KDT soil (with of 2.01) and Rs.69905/ha in RTR soil (with BCR of 1.11), sorghum range between Rs. 25729/ha KDT soil (with BCR of 0.98) and Rs.16497/ha RTR soil (with BCR of 1.62), ragi range between Rs. 37931/ha BPR soil (with BCR of 1.18) and Rs.15857/ha KDT soil (with BCR of 1.51), mango cost of cultivation in RTR soil Rs.28582/ha (with BCR of 8.96) and paddy cost of cultivation in RTR soil Rs.32164/ha (with BCR of 1.62).

	BPR(100-1		• •	KDT (>15				RTR(>1			TSD(>150 cm)	
Particulars	Areca nut	Ragi	Areca nut	Coco nut	Ragi	Sor ghum	Coco nut	Mango	Ragi	Sor ghum	Paddy	Sor ghum
Total cost (Rs/ha)	8499	37931	69122	97036	15857	25729	69905	28582	16229	16497	32164	20139
Gross Return (Rs/ha)	154980	44597	133000	194936	23897	25194	77805	256148	30695	26705	34086	20501
Net returns (Rs/ha)	146482	6667	63878	97900	8040	-535	7900	227566	14466	10208	1922	362
BCR	18.24	1.18	1.92	2.01	1.51	0.98	1.11	8.96	1.89	1.62	1.06	1.02
Farmers Practices (FP)		-						-				
FYM (t/ha)	2.0	4.6	1.9	7.4	0.0	2.5	2.5	7.4	2.4	3.2	2.5	2.5
Nitrogen (kg/ha)	0.0	20.8	17.3	154.4	11.3	11.3	0.0	0.0	0.0	21.9	0.0	0.0
Phosphorus (kg/ha)	0.0	53.2	44.2	394.6	28.8	28.8	0.0	0.0	0.0	56.0	0.0	0.0
Potash (kg/ha)	0.0	0.0	0.0	294.1	18.8	18.8	0.0	0.0	0.0	0.0	0.0	0.0
Grain (Qtl/ha)	3.9	13.7	3.8	169.5	7.4	11.1	37.1	36.6	9.6	12.0	8.6	7.4
Price of Yield (Rs/Qtl)	40000	3000	35000	1150	3100	2100	2100	7000	3000	2100	3400	2100
Soil test based fertilizer Re	commendation	on (STB	R)									
FYM (t/ha)	6.8	8.6	6.8	10.0	8.6	7.4	10.0	61.8	8.6	7.4	9.9	7.4
Nitrogen (kg/ha)	100.0	92.6	100.0	102.5	92.6	101.9	128.1	231.6	74.1	101.9	98.8	81.5
Phosphorus (kg/ha)	56.3	32.4	56.3	48.8	32.4	42.6	48.8	37.1	32.4	42.6	37.1	42.6
Potash (kg/ha)	40.0	44.5	30.0	245.0	44.5	39.5	245.0	172.9	44.5	39.5	49.4	39.5
Grain (Qtl/ha)	45.0	30.9	45.0	184.5	30.9	28.4	184.5	98.8	30.9	28.4	59.3	28.4
% of Adoption/yield gap (S	TBR-FP) / (S											
FYM (%)	71.0	46.4	71.5	26.5	100.0	66.3	75.0	88.0	71.9	56.2	74.7	66.3
Nitrogen (%)	100.0	77.5	82.7	-50.6	87.9	89.0	100.0	100.0	100.0	78.5	100.0	100.0
Phosphorus (%)	100.0	-64.2	21.4	-709.5	11.3	32.5	100.0	100.0	100.0	-31.4	100.0	100.0
Potash (%)	100.0	100.0	100.0	-20.0	57.8	52.6	100.0	100.0	0.0	100.0	100.0	100.0
Grain (%)	91.4	55.6	91.6	8.1	76.0	60.9	79.9	63.0	68.9	57.7	85.4	73.9
Value of yield and Fertilize												
Additional Cost (Rs/ha)	9264	4850	6948	-14176	10297	7023	16083	62210	9423	5324	11184	8553
Additional Benefits (Rs/ha)	1645020	51458	1442000	17239	72742	36309	309645	435452	63848	34389	172159	44090
Net change Income (Rs/ha)	1635755	46608	1435052	31415	62444	29286	293563	373242	54426	29065	160975	35536

Table 20: Economic land evaluation and bridging yield gap for different crops in Maddenahalli Microwatershed

The data on FYM, Nitrogen, Phosphorus and Potash application by the farmers to different crops and recommended FYM for different crops is given in Table 20. There is a huge gap between FYM application by farmers and recommended FYM in all the crops across the soils. There is a larger yield gap in crops grown across different soil series. Adequate knowledge about recommended package of practices is the pre-requisite for their use in cultivation of crops. It is a fact that, recommended practices are major contributing factors to yield. Inadequate knowledge about recommended package objuct recommended practices leads to their improper adoption. Strengthening of extension services by concerned agency is required to increase adoption of recommended cultivation practices and ultimately reducing the gap. By adopting soil-test fertiliser recommendation, there is scope to increase yield and income to a maximum of Rs 1635755 in areca nut and a minimum of Rs 29065 in sorghum cultivation.

Economic valuation of Ecosystem Services (ES) was aimed at combining use and non-use values to determine Total Economic Value (TEV) of ES. Ecosystem Services (ES) were valued based on their annual flow or utilization in common monetary units, Rs/year. The valuation of ES was based on market price in 2017 or market cost approaches whichever is applicable, and in other cases on value or benefit transfer from previous valuation studies.

The onsite cost of different soil nutrients lost due to soil erosion is given in Table 21 and Figure 10. The average value of soil nutrient loss is around Rs 442 per ha/year. The total cost of annual soil nutrients is around Rs 247521 per year for the total area of 588.21 ha.

Particulars	Quanti	ty(kg)	Value (Rs)		
r ar uculars	Per ha	Total	Per ha	Total	
Organic matter	58.72	32881	369.91	207149	
Phosphorus	0.19	107	8.37	4687	
Potash	0.67	376	13.43	7521	
Iron	0.11	64	5.48	3068	
Manganese	0.13	73	36.05	20186	
Cupper	0.01	3	3.02	1691	
Zinc	0.00	2	0.17	96	
Sulphur	0.14	76	5.46	3059	
Boron	0.00	2	0.11	64	
Total	59.97	33584	442.00	247521	

Table 21: Estimation of onsite cost of soil erosion in Maddenahalli Microwatershed

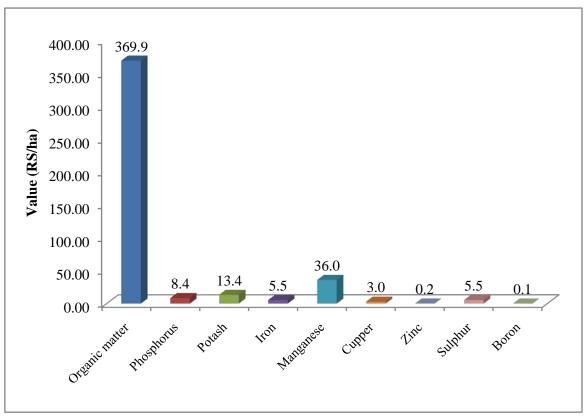


Figure 10: Estimation of onsite cost of soil erosion in Maddenahalli Microwatershed

The average value of ecosystem service for food grain production is around Rs 70428/ ha/year (Table 22 and Figure 11). Per hectare food grain production service is maximum in mango (Rs 227566) followed by areca nut (Rs 105087), coconut (Rs 84360) ragi (7727) sorghum (Rs 600) and paddy is negative return.

Production items	Crops	Area in ha	Yield (Qtl/ha)	Price (Rs/Qtl)	Gross Returns (Rs/ha)	Cost of Cultivation (Rs/ha)	Net Returns (Rs/ha)
	Paddy	0.4	8.6	3400	29393	32164	-2771
Cereals	Ragi	2.1	10.2	3033	31066	23339	7727
	Sorghum	2.5	10.2	2100	21388	20788	600
Oil seeds	Coconut	0.8	103.3	1625	167830	83470	84360
Commercial Crops	Arecanut	2.6	3.8	37500	143897	38810	105087
Fruits	Mango	0.5	36.6	7000	256148	28582	227566
Average	value	8.9	28.8	9110	108287	37859	70428

Table 22: Ecosystem services of food grain production in Maddenahalli Microwatershed

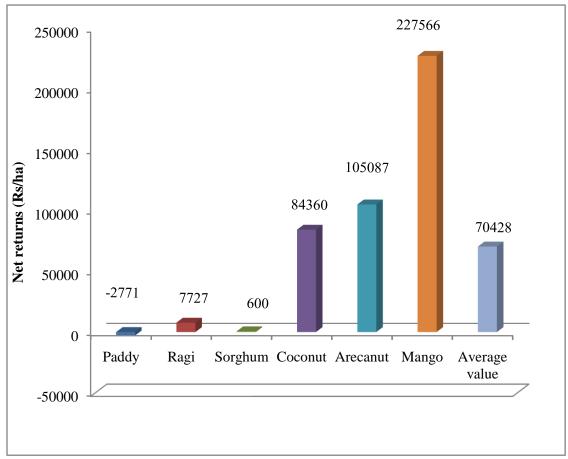


Figure 11: Ecosystem services of food grain production in Maddenahalli Microwatershed

The average value of ecosystem service for fodder production is around Rs. 3356/ ha/year (Table 23). Per hectare fodder production service is maximum in paddy (Rs. 4693), sorghum (Rs. 3356) and ragi (Rs. 2020).

Production	Crops	Area	Yield	Price	Net Returns
items		in ha	(Qtl/ha)	(Rs/Qtl)	(Rs/ha)
Cereals	Paddy	0.4	2.5	1900	4693
	Ragi	2.1	1.6	1283	2020
	Sorghum	2.5	2.0	1592	3356
Average value		5.0	2.0	1592	3356

Table 23: Ecosystem services of fodder production in Maddenahalli Microwatershed

The water demand for production of different crops was worked out in arriving at the ecosystem services of water support to crop growth. The data on water requirement for producing one quintal of grain is considered for estimating the total value of water required for crop production. The per hectare value of water used and value of water was maximum (Table 24 and Figure 12) in coconut (Rs. 277513) followed by mango (Rs 65867) sorghum (Rs. 31043), paddy (Rs14463), ragi (Rs 12515) and areca nut (Rs.4284).

Crops	Yield (Qtl/ha)	Virtual water (cubic meter) per ha	Value of Water (Rs/ha)	Water consumption (Cubic meters/Qtl)
Arecanut	3.8	428	4284	112
Coconut	103.3	27751	277513	269
Mango	36.6	6587	65867	180
Paddy	8.6	1446	14463	167
Ragi	10.2	1252	12515	122
Sorghum	10.2	3104	31043	305
Average value	28.8	6761	67614	192

Table 24: Ecosystem services of water supply in Maddenahalli Microwatershed

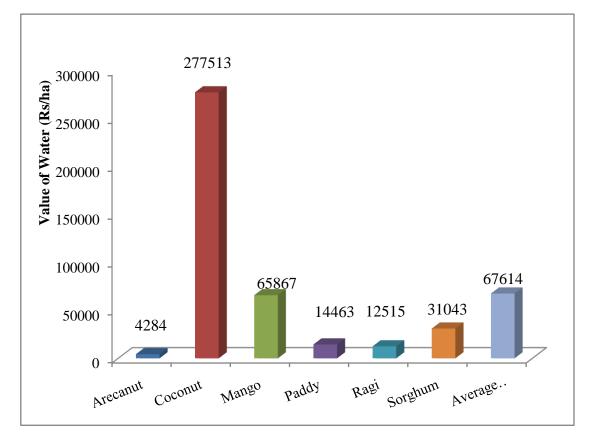


Figure 12: Ecosystem services of water supply in Maddenahalli Microwatershed

The main farming constraints in Maddenahalli micro-watershed to be found are less rainfall, and damage of crops by wild animals, Majority of farmers depend up on money lender of the sources of loan for purpose of crop production. Farmers to sell the agriculture produce through village market and the farmers getting the agriculture related information on newspaper and television. Farmers reported that they are not getting timely support/extension services from the concerned development department (Table 25).

Sl.No	Particulars	Per cent
1	Less Rainfall	100.0
2	Lack of good quality seeds	50.0
3	Lack of transportation	20.0
4	Lack of storage	50.0
5	Damage of crops by Wild Animals	80.0
6	Non availability of Plant Protection Chemicals	80.0
7 –	Source of loan	
	Money Leander	100.0
8 –	Market for selling	
	Village market	100.0
9	Sources of Agri-Technology information	
	Newspaper	20.0
	Television	80.0

Table 25: Farming constraints related land resources of sample households in Maddenahalli Microwatershed

The findings of the study would be very much useful to the planners and policy makers of the study area to identify the irrationality in the existing production pattern and to suggest appropriate production plans for efficient utilization of their scarce resources resulting in increased net farm incomes and employment. The study also throws light on future potentialities of increasing net farm income and employment under different situations viz., with existing and recommended technology.