ICAR-NBSS&LUP Sujala MWS Publ.84

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

NALLUR (4B3D3N2c) MICROWATERSHED

Gubbi Taluk, Tumkur District, Karnataka

Karnataka Watershed Development Project – II

SUJALA – III

World Bank funded Project

ICAR – NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT GOVT. OF KARNATAKA, BANGALORE

About ICAR - NBSS&LUP

The ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS&LUP), Nagpur, a premier Institute of the Indian Council of Agricultural Research (ICAR), was set up during 1976 with the objective to prepare soil resource maps at national, state and district levels and to provide research inputs in soil resource mapping and its applications, land evaluation, land use planning, land resource management, and database management using GIS for optimising land use on different kinds of soils in the country.

The Bureau has been engaged in carrying out soil resource survey, agro-ecological and soil degradation mapping at the country, state and district levels for qualitative assessment and monitoring the soil health towards viable land use planning. The research activities have resulted in identifying the soil potentials and problems, and the various applications of the soil surveys with the ultimate objective of sustainable agricultural development. The Bureau has the mandate to correlate and classify soils of the country and maintain a National Register of all the established soil series. The Institute is also imparting in-service training to staff of the soil survey agencies in the area of soil survey, land evaluation and soil survey interpretations for land use planning. The Bureau in collaboration with Panjabrao Krishi Vidyapeeth, Akola is running post-graduate teaching and research programme in land resource management, leading to M.Sc. and Ph.D. degrees.

Citation: Rajendra Hegde, Ramesh Kumar, S.C., K.V. Niranjana, S. Srinivas, M.Lalitha, B.A. Dhanorkar, R.S. Reddy and S.K. Singh (2019). "Land Resource Inventory and Socio-Economic Status of Farm Households for Watershed Planning and Development of Nallur (4B3D3N2c) Microwatershed, Gubbi Taluk, Tumkur District, Karnataka", ICAR-NBSS&LUP Sujala MWS Publ.84 ICAR – NBSS & LUP, RC, Bangalore. p.105 & 30.

TO OBTAIN COPIES,

Please write to: Director, ICAR - NBSS & LUP,						
Amaravati Roa	d, NAGF	PUR - 440 033, India				
Phone	:	(0712) 2500386, 2500664, 2500545 (O)				
Telefax	:	0712-2522534				
E-Mail	:	director@nbsslup.ernet.in				
Website URL	:	nbsslup.in				
Or						
Head, Regiona	al Centro	e, ICAR - NBSS&LUP, Hebbal, Bangalore - 560 024				
Phone	:	(080) 23412242, 23510350 (O)				
Telefax	:	080-23510350				
E-Mail	:	nbssrcb@gmail.com				

ICAR-NBSS & LUP Sujala MWS Publ. 84

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

NALLUR (4B3D3N2c) MICROWATERSHED

Gubbi Taluk, Tumkur District, Karnataka

Karnataka Watershed Development Project – II

Sujala-III

World Bank funded Project

ICAR – NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT, GOVT. OF KARNATAKA, BANGALORE

PREFACE

In Karnataka, as in other Indian States, the livelihoods of rural people are intertwined with farming pursuits. Thechallenges in agriculture are seriously threatening the livelihood of a large number of farmers as they have been practicing farming in contextual factors beyond their control. Climatic factors are the most important ones and have become much more significant in recent times due to rapid climate changes induced by intensive anthropogenic activities affecting our ecosystem in multiple ways. Climate change has become the reality, it is happening and efforts to evolve and demonstrate climate resilient technologies have become essential. Due to the already over stressed scenario of agrarian sector, the climate change is resulting in manifold increase in the complexities, pushing the rural mass to face more and more unpredictable situations. The rising temperatures and unpredictable rainfall patterns are going to test seriously the informed decisions farmers have to make in order to survive in farming and sustain their livelihood.

It is generally recognized that impacts of climate change shall not be uniform across the globe. It is said that impact of climate change is more severe in South Asia. Based on the analysis of meteorological data, it is predicted that in India, there will be upward trend in mean temperature, downward trend in relative humidity, annual rainfall and number of wet days in a year. Also, in general, phenomena like erratic monsoon, spread of tropical diseases, rise in sea levels, changes in availability of fresh water, frequent floods, droughts, heat waves, storms and hurricanes are predicted. Each one of these adverse situations are already being experienced in various parts of India and also at the global level. Decline in agricultural productivity of small and marginal farmers becoming more vulnerable is already witnessed.

In Karnataka, more than 60 per cent of the population live in rural areas and depend on agriculture and allied activities for their livelihood. Though the state has achieved significant progress in increasing the yield of many crops, there is tremendous pressure on the land resources due to the growing and competing demands of various land uses. This is reflected in the alarming rate of land degradation observed. Already more than 50 per cent of the area is affected by various forms of degradation. If this trend continues, the sustainability of the fragile ecosystem will be badly affected. The adverse effects of change in the climatic factors are putting additional stress on the land resources and the farmers dependent on this.

The natural resources (land, water and vegetation) of the state need adequate and constant care and management, backed by site-specific technological interventions and investments particularly by the government. Detailed database pertaining to the nature of the land resources, their constraints, inherent potentials and suitability for various land based rural enterprises, crops and other uses is a prerequisite for preparing location-specific action plans, which are in tune with the inherent capability of the resources. Any effort to evolve

climate resilient technologies has to be based on the baseline scientific database. Then only one can expect effective implementation of climate resilient technologies, monitor the progress, make essential review of the strategy, and finally evaluate the effectiveness of the implemented programs. The information available at present on the land resources of the state are of general nature and useful only for general purpose planning. Since the need of the hour is to have site-specific information suitable for farm level planning and detailed characterization and delineation of the existing land resources of an area into similar management units is the only option.

ICAR-NBSS&LUP, Regional Centre, Bangalore has taken up a project sponsored by the Karnataka Watershed Development Project-II, (Sujala-III), Government of Karnataka funded by the World Bank under Component -1 Land Resource Inventry. This study was taken up to demonstrate the utility of such a database in reviewing, monitoring and evaluating all the land based watershed development programs on a scientific footing. To meet the requirements of various land use planners at grassroots level, the present study on "Land Resource Inventory and Socio-Economic Status of Farm Households for Watershed Planning and Development of NallurMicrowatershed, Gubbi Taluk and Tumakuru District, Karnataka" for integrated development was taken up in collaboration with the State Agricutural Universities, IISC, KSRSAC, KSNDMC as Consortia partners. The project provides detailed land resource information at cadastral level (1:7920 scale) for all the plots and socioeconomic status of farm households covering thirty per cent farmers randomely selected representing landed and landless class of farmers in the micowatershed. The project report with the accompanying maps for the Microwatershed will provide required detailed database for evolving effective land use plan, alternative land use options and conservation plans for the planners, administrators, agricutural extention personnel, KVK officials, developmental departments and other land users to manage the land resources in a sustainable manner.

It is hoped that this database will be useful to the planners, administrators and developmental agencies working in the area in not only for formulating location specific developmental schemes but also for their effective monitoring at the village/watershed level.

Nagpur Date: 16.03.2018 S.K. SINGH Director, ICAR - NBSS&LUP, Nagpur

Contributors				
Dr. Rajendra Hegde Dr. S.K.Singh				
Principal Scientist, Head &	Director, ICAR-NBSS&LUP			
Project Leader, Sujala-III Project	Coordinator, Sujala-III Project			
ICAR-NBSS&LUP, Regional Centre,	Nagpur			
Bangalore				
Soil Survey, Mapping & Report Preparat	tion			
Dr. K.V. Niranjana	Sh. R.S. Reddy			
	Sh. Venkata Giriyappa			
	Dr. Gayathri, B.			
	Smt. Chaitra, S.P.			
Dr. B.A. Dhanorkar	Sh. Nagendra, B.R.			
	Dr. Savitha, H.R.			
	Dr. Gopali Bardhan			
	Sh. Somashekar T.N			
Field Work				
Sh. C.Bache Gowda	Sh. Rudresh, M.D.			
Sh. Somashekar	Sh. Sunil Raj			
Sh. M. Jayaramaiah	Sh. Yogesh Kumar, B.			
Sh. Paramesha, K.	Sh. Veerabhadraswamy, R.			
	Sh. Vinay			
GIS Work				
Dr. S.Srinivas	Sh. A.G. Devendra Prasad			
Sh. D.H.Venkatesh	Sh. Prakashanaik, M.K.			
Smt.K.Sujatha	Sh. Abhijith Sastry, N.S.			
Smt. K.V.Archana	Sh. Mahamad Ali, M.			
Sh. N.Maddileti	Sh. Amar Suputhra, S.			
	Sh. Avinash, K.N.			
	Sh. Anudeep, Y.			
	Sh. Sudip Kumar Suklabaidya			
	Smt. K.Karunya Lakshmi			
	Ms. Seema, K.V.			
	Ms. A. Rajab Nisha			
Labora	tory Analysis			
Dr. K.M.Nair	Smt. Steffi Peter			
Smt. Arti Koyal	Smt. Thara, V.R.			

Smt. Parvathy, S.	Smt. Roopa, G.
	Ms. Shwetha, N.K.
	Smt. Ishrat Haji
	Ms. Pavana Kumari, P.
	Sh. Shanthaveeraswamy, H.M.
	Sh. Ramesh, K.
	Ms. Padmaja, S.
	Ms. Veena, M.
Soil & Wat	er Conservation
Sh. Sunil P. Maske	
Socio-Eco	nomic Analysis
Dr. S.C. Ramesh Kumar	Sh. M. K. Prakashanaik
	Ms. Sowmya K.B
	Sh.Manjunath M
Sh.Veerabhadraswamy R	
	Sh.Lankesh RS
	Sh.Kalaveerachari R Kammar
	Sh.Pradyumma U
	Sh.Yogesha HN
	Sh.Vijay kumar lamani
	Sh.Arun N Kambar
	Sh.Vinay
	Sh.Basavaraj.Biradar
	Sh.Vinod R
	Sh.Praveenkumar P Achalkar
	Sh.Rajendra D
Watershed Development	Department, GoK, Bangalore
Sh. Rajeev Ranjan IFS	Dr. A. Natarajan
Project Director & Commissioner, WDD	NRM Consultant, Sujala-III Project
Dr. S.D. Pathak IFS	·
Executive Director & Chief Conservator of	Forests, WDD

PART-A

LAND RESOURCE INVENTORY

Contents

Preface						
Contributor	rs					
Executive S	Summary					
Chapter 1						
Chapter 2	Geographical Setting	3				
2.1	Location and Extent	3				
2.2	Geology	4				
2.3	Physiography	5				
2.4	Drainage	5				
2.5	Climate	5				
2.6	Natural Vegetation	6				
2.7	Land Utilization	7				
Chapter 3	Survey Methodology	11				
3.1	Base maps	11				
3.2	Image Interpretation for Physiography	11				
3.3	Field Investigation	14				
3.4		15				
3.5		16				
Chapter 4	The Soils	21				
4.1	Soils of Granite gneiss Landscape	21				
4.2	Soils of Alluvial Landscape	25				
Chapter 5	Interpretation for Land Resource Management	27				
5.1	Land Capability Classification	27				
5.2	Soil Depth	29				
5.3	Surface Soil Texture	29				
5.4	Soil Gravelliness	30				
5.5	Available Water Capacity	31				
	Soil Slope	32				
5.7	Soil Erosion	33				
Chapter 6	Fertility Status	35				
6.1	Soil Reaction (pH)	35				
6.2	Electrical Conductivity (EC)	35				
6.3	Organic Carbon (OC)	35				
6.4	Available Phosphorus	36				
6.5	Available Potassium	38				
6.6	Available Sulphur	38				
6.7	Available Boron	38				
6.8	Available Iron	38				
6.9	Available Manganese	38				
6.10	Available Copper	38				
6.11	Available Zinc	38				
Chapter 7	Land Suitability for Major Crops	43				
7.1	Land suitability for Sorghum	43				
7.2	Land suitability for Fodder sorghum	45				

7.3	Land suitability for Maize	47
7.3	Land suitability for Upland Paddy	48
7.4	Land suitability for Finger millet	48
7.6	Land suitability for Red gram	50
7.0	Land suitability for Horse gram	51
7.7	Land suitability for Field bean	52
7.8	Land suitability for Cowpea	53
7.10	Land suitability for Groundnut	54
7.10	Land suitability for Sunflower	55
7.11	Land suitability for Onion	56
7.12	Land suitability for Chilli	57
7.13	Land suitability for Brinjal	58
7.14	Land suitability for Tomato	60
7.16	Land suitability for Mango	62
7.10	Land suitability for Sapota	64
7.17	Land suitability for Guava	65
7.19	Land suitability for Pomegranate	67
7.10	Land suitability for Banana	68
7.20	Land suitability for Jackfruit	69
7.21	Land Suitability for Jamun	71
7.22	Land Suitability for Musambi	72
7.23	Land Suitability for Lime	72
7.21	Land Suitability for Cashew	73
7.26	Land Suitability for Custard Apple	75
7.20	Land Suitability for Amla	76
7.27	Land Suitability for Tamarind	70
7.29	Land suitability for Marigold	79
	Land suitability for Chrysanthemum	80
7.31	Land suitability for Jasmine	82
	Land suitability for Coconut	83
7.33	Land suitability for Arecanut	84
7.34	Land suitability for Mulbery	85
7.35	Land Use Classes	86
7.35	Proposed Crop Plan	87
Chapter 8	Soil Health Management	91
Chapter 9	Soil and Water conservation Treatment Plan	97
9.1	Treatment Plan	97
9.2	Recommended Soil and Water Conservation measures	101
9.3	Greening of Microwatershed	102
	References	105
	Appendix I	Ι
	Appendix II	X
	Appendix III	XIX

LIST OF TABLES

2.1	Mean Monthly Rainfall, PET, 1/2 PET at Gubbi Taluk, Tumakuru District		
2.2	Land Utilization in Tumakuru District		
3.1	Differentiating Characteristics used for Identifying Soil Series	15	
3.2	Soil map unit description of Nallur Microwatershed	19	
7.1	Soil-Site Characteristics of Nallur Microwatershed	44	
7.2	Crop suitability for Sorghum	45	
7.3	Crop suitability for Fodder sorghum	46	
7.4	Crop suitability for Maize	47	
7.5	Crop suitability for Upland Paddy	48	
7.6	Crop suitability for Finger millet	49	
7.7	Crop suitability for Red gram	50	
7.8	Crop suitability for Horse gram	51	
7.9	Crop suitability for Field bean	53	
7.10	Crop suitability for Groundnut	55	
7.11	Crop suitability for Sunflower	56	
7.12	Crop suitability for Onion	57	
7.13	Crop suitability for Chilli	59	
7.14	Crop suitability for Brinjal	60	
7.15	Crop suitability for Tomato	61	
7.16	Crop suitability for Mango	63	
7.17	Crop suitability for Sapota	64	
7.18	Crop suitability for Guava	66	
7.19	Crop suitability for Pomegranate	67	
7.20	Crop suitability for Banana	69	
7.21	Crop suitability for Jackfruit	70	
7.22	Crop Suitability for Jamun	71	
7.23	Crop Suitability for Musambi	72	
7.24	Crop Suitability for Lime	73	
7.25	Crop Suitability for Cashew	75	

7.26	Crop Suitability for Custard Apple	76
7.27	Crop Suitability for Amla	77
7.28	Crop Suitability for Tamarind	78
7.29	Crop suitability for Marigold	79
7.30	Crop suitability for Chrysanthemum	81
7.31	Crop suitability for Jasmine	82
7.32	Crop suitability for Coconut	83
7.33	Crop suitability for Arecanut	84
7.34	Crop suitability for Mulbery	85
7.35	Proposed Crop Plan for Nallur Microwatershed	88

LIST OF FIGURES

2.1	Location map of Nallur Microwatershed	3
2.2	Granite and granite gneiss rocks	4
2.3	Alluvium	4
2.4	Rainfall distribution in Gundlupet Taluk, Chamarajanagar District	6
2.5	Natural vegetation of Nallur Microwatershed	7
2.6	Current Land use – Nallur Microwatershed	8
2.7	Location of Wells and Conservation Structures- Nallur Microwatershed	8
2.8a	Different crops and cropping systems in Nallur Microwatershed	9
2.8b	Different crops and cropping systems in Nallur Microwatershed	10
3.1	Scanned and Digitized Cadastral map of Nallur Microwatershed	12
3.2	Satellite image of Nallur Microwatershed	13
3.3	Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Nallur Microwatershed	13
3.4	Location of profiles in a transect	14
3.5	Soil phase or management units of Nallur Microwatershed	17
5.1	Land Capability Classification of Nallur Microwatershed	28
5.2	Soil Depth map of Nallur Microwatershed	29
5.3	Surface Soil Texture map of Nallur Microwatershed	30
5.4	Soil Gravelliness map of Nallur Microwatershed	31
5.5	Soil Available Water Capacity map of Nallur Microwatershed	32
5.6	Soil Slope map of Nallur Microwatershed	33
5.7	Soil Erosion map of Nallur Microwatershed	34
6.1	Soil Reaction (pH) map of Nallur Microwatershed	36
6.2	Electrical Conductivity (EC) map of Nallur Microwatershed	36
6.3	Soil Organic Carbon (OC) map of Nallur Microwatershed	37
6.4	Soil Available Phosphorus map of Nallur Microwatershed	37
6.5	Soil Available Potassium map of Nallur Microwatershed	39
6.6	Soil Available Sulphur map of Nallur Microwatershed	39
6.7	Soil Available Boron map of Nallur Microwatershed	40
6.8	Soil Available Iron map of Nallur Microwatershed	40
6.9	Soil Available Manganese map of Nallur Microwatershed	41
6.10	Soil Available Copper map of Nallur Microwatershed	41
l		

6.11	Soil Available Zinc map of Nallur Microwatershed	42
7.1	Land suitability for Sorghum	45
7.2	Land suitability for Fodder sorghum	46
7.3	Land suitability for Maize	47
7.4	Land suitability for Upland Paddy	48
7.5	Land suitability for Finger millet	50
7.6	Land suitability for Red gram	51
7.7	Land suitability for Horse gram	52
7.8	Land suitability for Field bean	53
7.9	Land suitability for Cowpea	54
7.10	Land suitability for Groundnut	55
7.11	Land suitability for Sunflower	56
7.12	Land suitability for Onion	58
7.13	Land suitability for Chilli	59
7.14	Land suitability for Brinjal	60
7.15	Land suitability for Tomato	62
7.16	Land suitability for Mango	63
7.17	Land suitability for Sapota	65
7.18	Land suitability for Guava	66
7.19	Land suitability for Pomegranate	68
7.20	Land suitability for Banana	69
7.21	Land suitability for Jackfruit	70
7.22	Land Suitability for Jamun	71
7.23	Land Suitability for Musambi	72
7.24	Land Suitability for Lime	74
7.25	Land Suitability for Cashew	75
7.26	Land Suitability for Custard Apple	76
7.27	Land Suitability for Amla	77
7.28	Land Suitability for Tamarind	78
7.29	Land suitability for Marigold	80
7.30	Land suitability for Chrysanthemum	81
7.31	Land suitability for Jasmine	83
7.32	Land suitability for Coconut	84
7.33	Land suitability for Arecanut	85
7.34	Land suitability for Mulbery	86
7.35	Land Use Classes map of Nallur Microwatershed	87
7.36	Soil and water conservation map of Nallur Microwatershed	102

EXECUTIVE SUMMARY

The land resource inventory of Nallur Microwatershed was conducted using village cadastral maps and IRS satellite imagery on 1:7920 scale. The false colour composites of IRS imagery were interpreted for physiography and the physiographic delineations were used as base for mapping soils. The soils were studied in several transects and a soil map was prepared with phases of soil series as mapping units. Random checks were made all over the area outside the transects to confirm and validate the soil map unit boundries. The soil map shows the geographic distribution and extent, characterstics, classification and use potentials of the soils in the microwartershed.

The present study covers an area of 604 ha in Gubbi taluk of Tumakuru district, Karnataka. The climate is semiarid and categorized as drought-prone with an average annual rainfall of 813 mm, of which about 466 mm is received during south-west monsoon, 196 mm during north-east and the remaining 151 mm during the rest of the year. An area of about 95 per cent is covered by soils and two per cent by others. The salient findings from the land resource inventory are summarized briefly below.

- The soils belong to 7 soil series and 13 soil phases (management units) and 4 land use classes.
- The length of crop growing period is about 150 days starting from 3^{rd} week of June to third week of November.
- From the master soil map, several interpretative and thematic maps like land capability, soil depth, surface soil texture, soil gravelliness, available water capacity, soil slope and soil erosion were generated.
- Soil fertility status maps for macro and micronutrients were generated based on the surface soil samples collected at every 250 m grid interval.
- Land suitability for growing 34 major agricultural and horticultural crops were assessed and maps showing the degree of suitability along with constraints were generated.
- *Entire area is suitable for agriculture.*
- About 98 per cent of the soils are deep (100-150 cm) to very deep (>150 cm).
- About 2 per cent of the area has clayey soils at the surface and 96 per cent loamy soils.
- *Entire area in the microwatershed has non-gravelly soils (<15%).*
- ★ An area of about 35 per cent are low (51-100 mm/m, 11 per cent medium (101-150 mm/m) and a maximum area of 52 per cent very high (>200 mm/m) in available water capacity.
- ✤ About 98 per cent of the area has nearly level (0-1%) to very gently sloping (1-3% slope) lands.
- An area of about 83 per cent has soils that are slightly eroded (e1) and 15 per cent moderately eroded (e2).
- Maximum area of about 68 per cent has soils that are slightly acidic to moderately and strongly acid (pH 5.0-6.5), 27 per cent area neutral (pH 6.5-7.3) and about 2 per cent has soils that are slightly alkaline (pH 7.3 to 7.8).

- The Electrical Conductivity (EC) of the soils are dominantly <2 dsm⁻¹ indicating that the soils are non-saline.
- About 87 per cent of the soils are low (<0.5%) and 11 per cent soils are medium (0.5-0.75%) in organic carbon.
- *Entire area in the microwatershed is high (>57 kg/ha) in available phosphorus.*
- About 13 per cent of the soils are low (<145 kg/ha), medium (145-337 kg/ha) in 80 per cent area and 5 per cent of the soils are high (>337 kg/ha) in available potassium.
- Available sulphur is medium (10 -20 ppm) in an area of about 97 per cent and low (10 ppm) in an area of 1 per cent.
- Available boron is low (<0.5 ppm) in maximum area about 55 per cent and medium (0.5-1.0 ppm) in 43 per cent area.
- Available iron is sufficient (>4.5 ppm) in the entire area.
- Available manganese and copper are sufficient in all the soils of the microwatershed.
- Available zinc is deficient (<0.6 ppm) in 31 per cent and sufficient (>0.6 ppm) in 67 per cent of soils of the microwatershed.
- The land suitability for 34 major crops grown in the microwatershed were assessed and the areas that are highly suitable (S1) and moderately suitable (S2) are given below. It is however to be noted that a given soil may be suitable for various crops but what specific crop to be grown may be decided by the farmer looking to his capacity to invest on various inputs, marketing infrastructure, market price and finally the demand and supply position.

	Suitability			Suit	Suitability	
	Area in ha (%)			Area in ha (%)		
Crop	Highly	Moderately	Crop	Highly	Moderately	
	suitable	suitable		suitable	suitable	
	(S1)	<i>(S2)</i>		<i>(S1)</i>	<i>(S2)</i>	
Sorghum	381 (63)	196 (32)	Guava	155(27)	173 (30)	
Fodder Sorghum	381 (63)	196 (32)	Pomegranate	381 (63)	196 (32)	
Maize	69 (11)	508(84)	Banana	381 (63)	196 (32)	
Upland paddy	381 (63)	196 (32)	Jackfruit	381 (63)	196 (32)	
Finger millet	381 (63)	196 (32)	Jamun	357 (59)	220 (36)	
Redgram	381 (63)	196 (32)	Musambi	381 (63)	196 (32)	
Horse gram	381 (63)	212 (35)	Lime	381 (63)	196 (32)	
Field bean	381 (63)	196 (32)	Cashew	381 (63)	196 (32)	
Cowpea	381 (63)	196 (32)	Custard apple	439 (73)	154(26)	
Groundnut	24 (4)	512 (85)	Amla	438 (73)	154(26)	
Sunflower	381 (63)	196 (32)	Tamarind	357 (59)	220 (36)	
Onion	69(11)	508(84)	Marigold	381 (63)	209 (34)	
Chilli	381 (63)	196 (32)	Chrysanthemum	381 (63)	209 (34)	
Brinjal	381 (63)	196 (32)	Jasmine	381 (63)	209 (34)	
Tomato	381 (63)	196 (32)	Coconut	381 (63)	196 (32)	
Mango	357 (59)	220(36)	Arecanut	381 (63)	196 (32)	
Sapota	381 (63)	196 (32)				

Land suitability for various crops in the Microwatershed

Apart from the individual crop suitability, a proposed crop plan has been prepared for the 4 identified LUCs by considering only the highly and moderately suitable lands for different crops and cropping systems with food, fodder, fibre and horticulture crops.

- Maintaining soil-health is vital to crop production and conserve soil and land resource base for maintaining ecological balance and to mitigate climate change. For this, several ameliorative measures have been suggested to these problematic soils like saline/alkali, highly eroded, sandy soils etc.,
- Soil and water conservation treatment plan has been prepared that would help in identifying the sites to be treated and also the type of structures required.
- As part of the greening programme, several tree species have been suggested to be planted in marginal and submarginal lands, field bunds and also in the hillocks, mounds and ridges that would help in supplementing the farm income, provide fodder and fuel and generate lot of biomass. This helps in maintaining an ecological balance and also helps in mitigating the climate change.

INTRODUCTION

Land is a scarce resource and basic unit for any material production. It can support the needs of the growing population, provided they use the land in a rational and judicious manner. But what is happening in many areas of the state is a cause for concern to everyone involved in the management of land resources at the grassroots level. The area available for agriculture is about 51 per cent of the total geographical area and more than 60 per cent of the people are still dependant on agriculture for their livelihood. The limited land area is under severe stress and strain due to increasing population pressure and competing demands of various land uses. Due to this, every year there is significant diversion of farm lands and water resources for non-agricultural purposes. Apart from this, due to lack of interest in farmers for farming, large tracts of cultivable lands are turning into fallows in many areas and this trend is continuing at an alarming rate.

Further, land degradation has emerged as a serious problem which has already affected about 38 lakh ha of cultivated area in the state. Soil erosion alone has degraded about 35 lakh ha. Almost all the uncultivated areas are facing various degrees of degradation, particularly soil erosion. Salinity and alkalinity has emerged as a major problem more than 3.5 lakh ha in the irrigated areas of the state. Nutrient depletion and declining factor productivity is common in both rainfed and irrigated areas. The degradation is continuing at an alarming rate and there appears to be no systematic effort among the stakeholders to contain this process. In recent times, an aberration of weather due to climate change phenomenon has added another dimension leading to unpredictable situations to be tackled by the farmers.

In this critical juncture, the challenge before us is not only to increase the productivity per unit area which is steadily declining and showing a fatigue syndrome, but also to prevent or at least reduce the severity of degradation. If the situation is not reversed at the earliest, then the sustainability of the already fragile crop production system and the overall ecosystem will be badly affected in the state. The continued neglect and unscientific use of the resources for a long time has led to the situation observed at present in the state. It is a known fact and established beyond doubt by many studies in the past that the cause for all kinds of degradation is the neglect and irrational use of the land resources. Hence, there is urgent need to generate a detailed site-specific farm level database on various land resources for all the villages/watersheds in a time bound manner that would help to protect the valuable soil and land resources and also to stabilize the farm production.

Therefore, the land resource inventory required for farm level planning is the one which investigates not only the surface but also consider the other parameters which are critical for productivity *viz.*, soils, climate, water, minerals and rocks, topography, geology, hydrology, vegetation, crops, land use pattern, animal population, socio-

economic conditions, infrastructure, marketing facilities and various schemes and developmental works of the government etc. From the data collected at farm level, the specific problems and potentials of the area can be identified and highlighted, conservation measures required for the area can be planned on a scientific footing, suitability of the area for various uses can be worked out and finally viable and sustainable land use options suitable for each and every land holding can be prescribed.

The Land Resource Inventory is basically done for identifying the potential and problem areas, developing sustainable land use plans, estimation of surface run off and water harvesting potential, preparation of soil and water conservation plans, land degradation/desertification etc. The Bureau is presently engaged in developing an LRI methodology using high resolution satellite remote sensing data and Digital Elevation Model (DEM) data to prepare Landscape Ecological Units (LEU) map representing agro-ecosystem as a whole. The LEU is preferred over landform as the base map for LRI. LEU is the assemblage of landform, slope and land use. An attempt was made to upscale the soil resource information from 1:250000 and 1:50000 scale to the LEU map in Goa and other states.

The land resource inventory aims to provide site specific database for Nallur microwatershed in Gubbi Taluk, Tumakuru District, Karnataka state for the Karnataka Watershed Development Department. The database was generated by using cadastral map of the village as a base along with high resolution IRS LISS IV and Cartosat-1 merged satellite imagery.

The study was organized and executed by the ICAR- National Bureau of Soil Survey and Land Use Planning, Regional Centre, Bangalore under Generation of Land Resource Inventory Data Base Component-1 of the Sujala-III Project funded by the World Bank.

GEOGRAPHICAL SETTING

2.1 Location and Extent

Tumakuru District popularly known as *Kalpataru Nadu* (famous for production of Coconuts) is located in the southeastern part of Karnataka State. The Nallur microwatershed (Bangihalli subwatershed) is located in the southeastern part of Karnataka in Gubbi Taluk, Tumakuru District, Karnataka State (Fig.2.1). It comprises parts of Malamachanakunte, Maranahalli, Ankasandra and Nalluru villages. It lies between $13^0 27$ ' and $13^0 28$ ' North latitudes and $76^0 53$ ' and $76^0 55$ ' East longitudes and covers an area of 604 ha. It is about 71 km south of Tumakuru and is surrounded by Malamachanakunte on the north, Maranahalli on the west, Nallur on the east and Ankasandra on southern side.

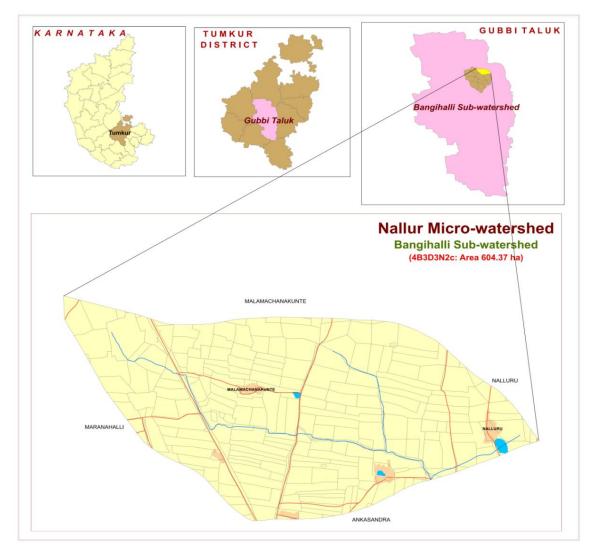


Fig.2.1 Location map of Nallur Microwatershed

2.2 Geology

Major rock formations observed in the microwatershed are granite gneiss and alluvium (Fig.2.2 and 2.3). Granite and gneiss are essentially pink to gray and are coarse to medium grained. They consist primarily of quartz, feldspar, biotite and hornblende. The gray granite gneisses are highly weathered, fractured and fissured upto a depth of about 10 m. The most widespread and characteristic development of alluvium in the watershed region lying in the Suvarnamukhi is a wide belt, the underlying formation is gneiss and alluvial soils occur over gneiss, limestone and shale are far more extensive and homogeneous than those found on the Deccan Trap country lying to the river Suvarnamukhi. The soil thickness of the alluvium generally is limited to less than a meter, except in river valleys where it is very deep extending to tens of meters. Such soils are transported and represent palaeo black soil originally formed at higher elevation, but now occupying river valleys.

Fig.2.2 Granite and granite gneiss rocks

Fig. 2.3 Alluvium

2.3 Physiography

Physiographically, the area has been identified as granite gneiss landscape based on geology. It has been further divided into three landforms *viz*; mounds/ ridges, uplands and lowlands based on slope and other relief features. They have been further subdivided into four physiographic units, *viz*; summits, side slopes, very gently sloping uplands and lowlands/valleys. The elevation ranges from 817-846 m. The mounds and ridges are mostly covered by rock outcrops.

2.4 Drainage

There are no perennial rivers flowing in Gubbi taluk. However, the area is drained by several small seasonal streams like *Hosa kaluve* which joins river Shimsha along its course. Though, they are not perennial, during rainy season, it carries large quantities of rain water. The microwatershed area has only few small tanks which are not capable of storing water that flows during the rainy season. Due to this, the ground water recharge is very much affected in the villages. This is reflected in the failure of many bore wells in the villages. If the available rain water is properly harnessed by constructing new tanks and recharge structures at appropriate places in the villages, then the drinking and irrigation needs of the area can be easily met. The drainage network is dendritic to sub parallel.

2.5 Climate

The district falls under semiarid tract and is categorized as drought - prone with average annual rainfall of 813 mm (Table 2.1). Of the total rainfall, a maximum of 466 mm is received during south–west monsoon period from June to September, north-east monsoon from October to early December contributes maximum of about 196 mm and the remaining 151 mm is received during the rest of the year. The winter season is from December to February. During April and May, the temperatures reach up to 35°C and in December and January, the temperatures will go down to 20°C. Rainfall distribution is shown in Figure 2.4. The average Potential Evapo-Transpiration (PET) is 110 mm and varies from a low of 73 mm in December to 152 mm in the month of April. The PET is always higher than precipitation in all the months except in the months of August, September, October and December. Generally, the Length of crop Growing Period (LGP) is 150 days and starts from 3rd week of June to third week of November.

	District					
Sl. no.	Months	Rainfall	PET	1/2 PET		
1	JAN	6.50	78.30	39.15		
2	FEB	7.00	102.70	51.35		
3	MAR	24.40	142.60	71.30		
4	APR	40.50	151.60	75.80		
5	MAY	72.50	149.70	74.85		
6	JUN	78.50	121.10	60.55		
7	JUL	99.20	107.60	53.80		
8	AUG	119.70	105.80	52.90		
9	SEP	168.30	101.20	50.60		
10	OCT	141.90	100.20	50.10		
11	NOV	47.00	85.00	42.50		
12	DEC	7.30	73.00	36.50		
Total		812.80	109.90			

Table 2.1 Mean Monthly Rainfall, PET, 1/2 PET in Gubbi Taluk, Tumakuru District

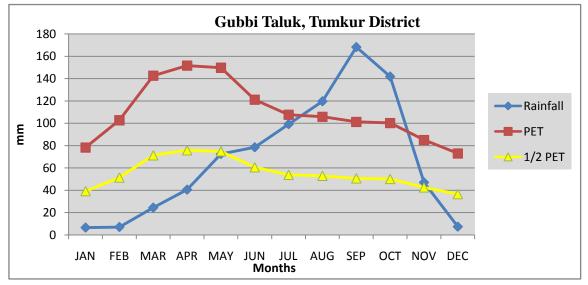


Fig 2.4 Rainfall distribution in Gubbi Taluk, Chamarajanagara District

2.6 Natural Vegetation

The natural vegetation is sparse comprising few tree species, shrubs and herbs. The mounds, ridges and boulders occupy very sizeable areas which are under thin to moderately thick forest vegetation. Still, there are some remnants of the past forest cover which can be seen in patches in some ridges and hillocks in the microwatershed.

Apart from the continuing deforestation, the presence of large population of goats, sheep and other cattle in the microwatershed is causing vegetative degradation of whatever little vegetation left in the area. The uncontrolled grazing has left no time for the regeneration of the vegetative cover. This leads to the accelerated rate of erosion on the hill slopes resulting in the formation of deep gullies in the foot slopes that eventually result in the heavy siltation of tanks and reservoirs in the microwatershed.

Fig. 2.5 Natural vegetation of Nallur Microwatershed

2.7 Land Utilization

About 64 per cent area (Table 2.2) in Gubbi taluk is cultivated at present. An area of about 4 per cent is currently barren. Forests occupy an area of about 8 per cent. Most of the mounds, ridges and bouldery areas have very poor vegetative cover. Major crops grown in the area are Ragi, Groundnut, Maize, Sorghum, Redgram, Horse gram, Sunflower, Field bean, Cowpea, Mango, Banana, Mulberry and Plantation crops like Coconut, Banana and Arecanut. The cropping intensity is 116 per cent in the taluk. While carrying out land resource inventory, the land use/land cover particulars are collected from all the survey numbers and a current land use map of the Nallur microwatershed is prepared. The current land use map generated shows the arable and non-arable lands, other land uses and different types of crops grown in the area (Fig 2.6). The different crops and cropping systems adopted in the microwatershed is presented in Figures 2.8.a &b. Simultaneously, enumeration of wells (bore wells and open wells) and existing conservation structures in the microwatershed are made and their location in different survey numbers is located on the cadastral map. Map showing the location of wells and other water bodies in Nallur microwatershed is given in Fig.2.7.

Sl. No.	Agricultural land use	Area (ha)	Per cent
1	Total geographical area	122057	-
2	Total cultivated area	78418	64.24
3	Area sown more than once	12934	-
4	Cropping intensity	-	116.49
5	Trees and grooves	2811	2.30
6	Forest	10090	8.26
7	Cultivable wasteland	2731	2.23
8	Permanent Pasture land	3850	3.15
9	Barren land	4971	4.07
10	Non- Agriculture land	17390	14.24

Table 2.2 Land Utilization in Gubbi Taluk

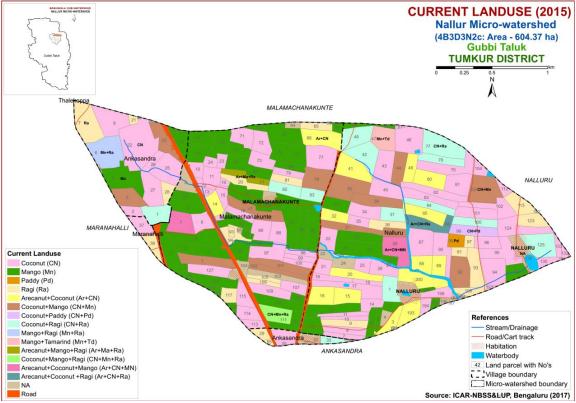


Fig.2.6 Current Land Use - Nallur Microwatershed

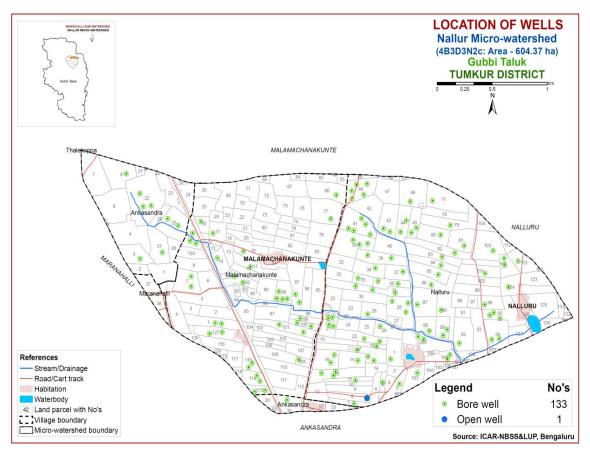


Fig.2.7 Location of Wells and Conservation Structure- Nallur Microwatershed

Fig.2.8.a Different crops and cropping systems in Nallur Microwatershed

Fig.2.8.b Different crops and cropping systems in Nallur Microwatershed

SURVEY METHODOLOGY

The purpose of land resource inventory is to delineate similar areas (soil series and phases), which respond or expected to respond similarly to a given level of management. This was achieved in Nallur microwatershed by the detailed study of all the soil characteristics (depth, texture, colour, structure, consistence, coarse fragments, porosity, soil reaction, soil horizons etc.) and site characteristics (slope of the land, erosion, drainage, occurrence of rock fragments etc.) and followed by grouping of similar areas based on soil-site characteristics into homogeneous (management units) units, and showing their extent and geographic distribution on the microwatershed cadastral map. The detailed survey at 1:7920 scale was carried out in an area of 604 ha. The methodology followed for carrying out land resource inventory was as per the guidelines given in Soil Survey Manual (IARI, 1971; Soil Survey Staff, 2006; Natarajan *et al.*, 2015) which is briefly described below.

3.1 Base Maps

The detailed survey of the land resources occurring in the microwatershed was carried out by using digitized cadastral map as a base. The cadastral map shows field boundaries with their survey numbers, location of tanks, streams and other permanent features of the area (Fig. 3.1). Apart from the cadastral map, remote sensing data products from Cartosat-1 and LISS IV merged at the scale of 1:7920 were used in conjunction with the cadastral map to identify the landscapes, landforms and other surface features. The imagery helped in the identification and delineation of boundaries between hills, uplands and lowlands, water bodies, forest and vegetated areas, roads, habitations and other cultural features of the area (Fig.3.2). The cadastral map was overlaid on the satellite imagery (Fig.3.3) that helps to identify the parcel boundaries and other permanent features. Apart from cadastral maps and images, toposheets of the area (1:50,000 scale) were also used for initial traversing, identification of geology, landscapes, landforms, drainage features, present land use and also for selection of transects in the microwatershed.

3.2 Image Interpretation for Physiography

False Colour Composites (FCCs) of Cartosat-I and LISS-IV merged satellite data covering the microwatershed area was visually interpreted using image interpretation elements along with the geology map and all the available collateral data with local knowledge. The delineated physiographic boundaries were transferred on to a cadastral map overlaid on satellite imagery. Physiographically, the area has been identified as granite gneiss and alluvial landscape and is divided into landforms such as ridges, mounds, uplands and valleys based on slope and other relief features. They were further subdivided into physiographic/ image interpretation units based on image characteristics. The image interpretation legend for physiography is given below.

Image Interpretation Legend for Physiography

G- Granite gneiss landform

G1			Hills/ Ridges/ Mounds
	G11		Summits
	G12		Side slopes
		G121	Side slopes with dark grey tones
G2			Uplands
	G21		Summits
	G22		Gently sloping uplands
		G221	Gently sloping uplands, yellowish green (eroded)
		G222	Gently sloping uplands, yellowish white (severely eroded)
	G23		Very gently sloping uplands
		G231	Very gently sloping uplands, yellowish green
		G232	Very gently sloping uplands, medium green and pink
		G233	Very gently sloping uplands, pink and green (scrub land)
		G234	Very gently sloping uplands, medium greenish grey
		G235	Very gently sloping uplands, yellowish white (eroded)
		G236	Very gently sloping uplands, dark green
		G237	Very gently sloping uplands, medium pink (coconut garden)
		G238	Very gently sloping uplands, pink and bluish white (eroded)
	G24		Valleys/ lowlands
		G241	Valleys, pink tones
		G242	Valleys gray mixed with pink tones

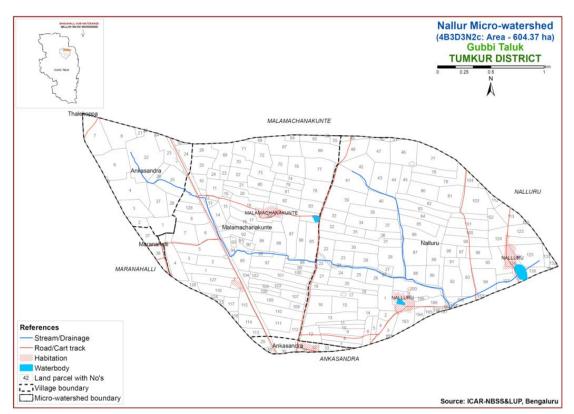


Fig 3.1 Scanned and Digitized Cadastral map of Nallur Microwatershed

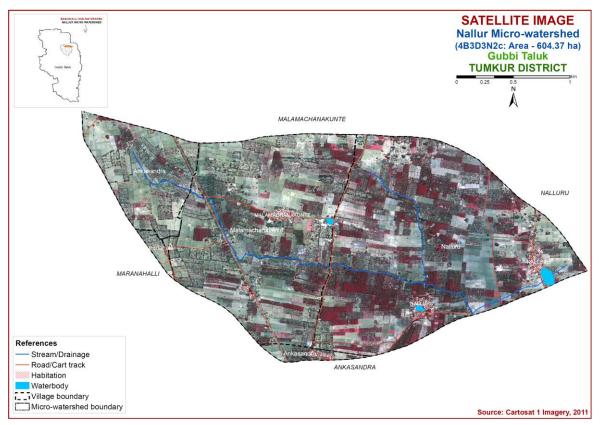


Fig.3.2 Satellite Image of Nallur Microwatershed

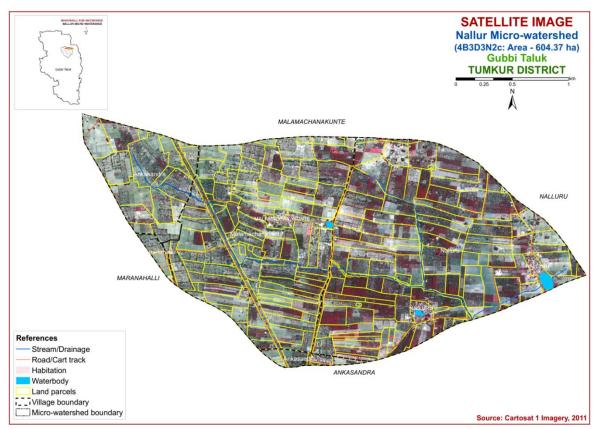


Fig.3.3 Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Nallur Microwatershed

3.3 Field Investigation

The field boundaries and survey numbers given on the cadastral sheet were located on the ground by following permanent features like roads, cart tracks, nallas, streams, tanks etc., and wherever changes were noticed, they were incorporated on the microwatershed cadastral map. Preliminary traverse of the microwatershed was carried out with the help of cadastral map, imagery and toposheets. While traversing, landforms and physiographic units identified were checked and preliminary soil legend was prepared by studying soils at few selected places. Then, intensive traversing of each physiographic unit like hills, ridges, uplands and valleys was carried out. Based on the variability observed on the surface, transects (Fig. 3.4) were selected across the slope covering all the landform units in the microwatershed (Natarajan and Dipak Sarkar, 2010).

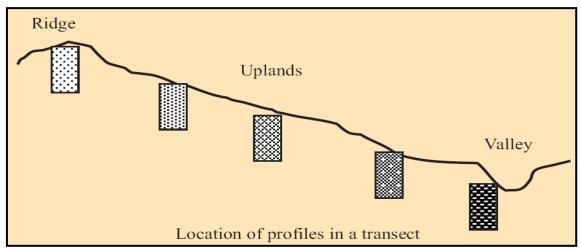


Fig: 3.4. Location of profiles in a transect

In the selected transect, soil profiles (Fig. 3.4) were located at closely spaced intervals to take care of any change in the land features like break in slope, erosion, gravel, stones etc. In the selected sites, profiles (vertical cut showing the soil layers from surface to the rock) were opened up to 200 cm or to the depth limited by rock or hard substratum and studied in detail for all their morphological and physical characteristics. The soil and site characteristics were recorded for all profile sites on a standard proforma as per the guidelines given in USDA Soil Survey Manual (Soil Survey Staff, 2012). Apart from the transect study, profiles were also studied at random, almost like in a grid pattern, outside the transect areas.

Based on soil characteristics, the soils were grouped into different soil series. Soil series is the most homogeneous unit having similar horizons and properties and behaves similarly for a given level of management. Soil depth, texture, colour, kind of horizon and horizon sequence, amount and nature of gravel present, nature of substratum etc, were used as the major differentiating characteristics for identifying soil series occurring in the area.

The differentiating characteristics used for identifying the soil series are given in Table 3.1. Based on the above characteristics, 7 soil series were identified in the Nallur microwatershed.

Soils of Granite gneiss Landscape											
Sl. N o	Soil Series	Depth (cm)	Colour (moist)	Texture (control section)	Gravel (%) (control section)	Horizon sequenc e	Calcareo -usness				
1	Mornal (MNL)	>150	5YR3/3,3/4 7.5YR3/3,3/4	с	<15	Ap-Bt	-				
2	Balapur (BPR)	100-150	2.5YR2.5/4,3/4	sc-c	>35	Ap-Bt-Cr	-				
3	Nagalapur (NGP)	100-150	5YR2.5/2,3/2 2.5YR3/6,4/6	sc-c	>35	Ap-Bt-Cr	-				
4	Hallikere (HLK)	>150	5YR3/3,3/4 7.5YR3/3,3/4	с	<15	Ap-Bt	-				
5	NDL (Niduvalalu)	>150	2.5YR2.5/3, 2.5/4, 3/3,4/6	SC	>35	Ap-Bt	-				
Soils of Alluvial Landscape											
6	Budagumpa (BGP)	>150	7.5YR3/2,5/1 10 YR 4/1, 4/4	С		Ap-Bw	-				
7	Kadagathur (KDT)	>150	10 YR 3/1, 3/2, 3/3, 7.5YR 3/3, ³ / ₄	SC-C	-	Ap-Bw	-				

 Table 3.1 Differentiating Characteristics used for identifying Soil Series

 (Characteristics are of Series Control Section)

3.4 Soil Mapping

The area under each soil series was further separated into 13 soil phases and their boundaries delineated on the cadastral map based on the variations observed in the texture of the surface soil, slope, erosion, presence of gravel, stoniness etc. A soil phase is a subdivision of soil series based mostly on surface features that affect its use and management.

The soil mapping units are shown on the map (Fig.3.5) in the form of symbols. During the survey about 8 profile pits, few minipits and a few auger bores representing different landforms occurring in the microwatershed were studied. In addition to the profile study, spot observations in the form of minipits, road cuts, terrace cuts etc., were studied to validate the soil boundaries on the soil map. The soil map shows the geographic distribution of 13 mapping units representing 7 soil series occurring in the microwatershed. The soil map unit (soil legend) description is presented in Table 3.2. The soil phase map (management units) shows the distribution of 13 soil phases mapped in the microwatershed. Each mapping unit (soil phase) delineated on the map has similar soil and site characteristics. In other words, all the farms or survey numbers included in one phase will have similar management needs and have to be treated accordingly.

The 13 soil phases identified and mapped in the microwatershed were grouped into 4 Land Use Classes (LUC's) for the purpose of preparing a Proposed Crop Plan for sustained development of the microwatershed. The database (soil phases) generated under LRI was utilized for identifying Land Use Classes (LUCs) based on the management needs. One or more than one soil site characteristic having influence on the management have been choosen for identification and delineation of LUCs. For Nallur microwatershed, five soil and site characteristics, namely soil depth, soil texture, slope, erosion and gravel content have been considered for defining LUCs. The Land Use Classes are expected to behave similarly for a given level of management.

3.5 Laboratory Characterization

Soil samples were collected from representative master profiles for laboratory characterization by following the methods outlined in the Laboratory Manual (Sarma *et al*, 1987). Surface soil samples collected from farmer's fields (88 samples) for fertility status (major and micronutrients) at 250 m grid interval were analyzed in the laboratory (Katyal and Rattan, 2003). By linking the soil fertility data to the survey numbers through GIS, soil fertility maps were generated for the microwatershed.

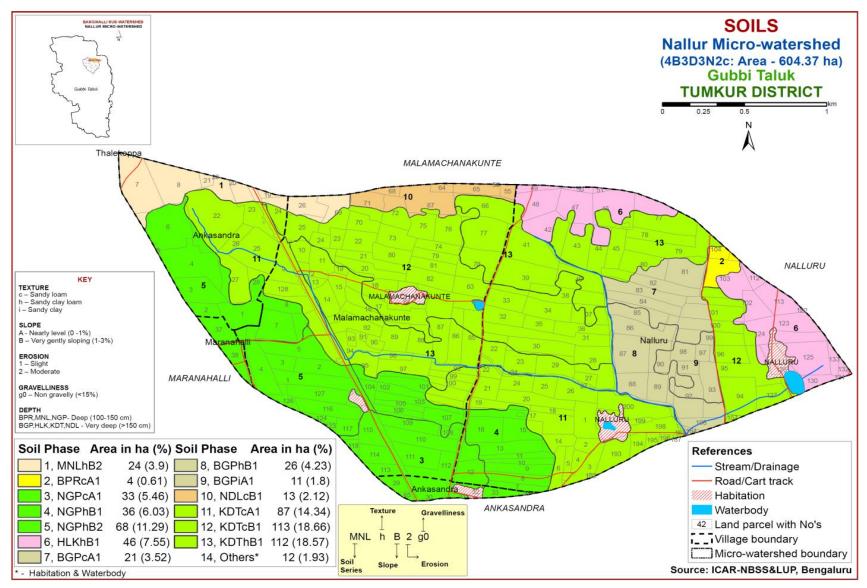


Fig 3.5 Soil Phase or Management Units Map - Nallur Microwatershed

Soil Soil Soil Area in **Mapping Unit Description** No Series Phase ha (%) SOILS OF GRANITE GNEISS LANDSCAPE Mornal soils are deep (100-150 cm), well drained, have dark MNL 24 reddish brown to red gravelly sandy clay loam to sandy clay soils (3.90) occurring on very gently sloping uplands under cultivation Sandy clay loam surface, slope 1-3%, moderate MNLhB2 24 (3.90) 1 erosion Balapur soils are deep (100-150 cm), well drained, have dark BPR reddish brown to dark red gravelly sandy clay to clay soils 4 (0.61) occurring on very gently sloping uplands under cultivation 2 BPRcA1 Sandy loam surface, slope 0-1%, slight erosion 4 (0.61)Nagalapur soils are deep (100-150 cm), well drained, have dark 137 NGP reddish brown to dark red gravelly sandy clay to clay soils (22.78)occurring on very gently sloping uplands under cultivation 3 Sandy loam surface, slope 0-1%, slight erosion 33 (5.46) NGPcA1 4 NGPhB1 Sandy clay loam surface, slope 1-3%, slight erosion 36 (6.03) Sandy clay loam surface, slope 1-3%, moderate 5 68 (11.29) NGPhB2 erosion Hallikere soils are very deep (>150 cm), well drained, have dark brown to dark reddish brown clayey soils occurring on very HLK 46 (7.55) gently sloping uplands under cultivation 46 (7.55) HLKhB1 | Sandy clay loam surface, slope 1-3%, slight erosion 6 Niduvalalu soils are very deep (>150 cm), well drained, have red to dark reddish brown gravelly sandy clay soils occurring on very NDL 13 (2.12) gently sloping uplands under cultivation 7 Sandy loam surface, slope 1-3%, slight erosion NDLcB1 13 (2.12) SOILS OF ALLUVIAL LANDSCAPE Budagumpa soils are very deep (>150 cm), moderately well BGP drained, black calcareous cracking gravelly clay soils occurring 58 (9.55) on nearly level to very gently sloping uplands under cultivation 21 (3.52) 8 Sandy loam surface, slope 0-1%, slight erosion BGPcA1 9 BGPhB1 Sandy clay loam surface, slope 1-3%, slight erosion 26 (4.23) 10 BGPiA1 Sandy clay surface, slope 0-1%, slight erosion 11 (1.80) Kadagathur soils are very deep (>150 cm), moderately well drained, 312 have dark brown to very dark grayish brown sandy clay to clay soils **KDT** (51.57)occurring on very gently sloping uplands under cultivation 87 11 KDTcA1 Sandy loam surface, slope 0-1%, slight erosion (14.34)113 12 KDTcB1 Sandy loam surface, slope 1-3%, slight erosion (18.66)112 13 KDThB1 Sandy clay loam surface, slope 1-3%, slight erosion (18.57)12 Habitation & Waterbody

Table 3.2 Soil map unit description of Nallur Microwatershed

(Soil Legend)

(1.93)

Others

THE SOILS

Detailed information pertaining to the nature, extent and their distribution of different kinds of soils occurring in Nallur microwatershed is provided in this chapter. The microwatershed area has been identifies as granite gneiss and alluvial landscape based on geology. In all, 7 soil series are identified. Soil formation is the result of the combined effect of environmental and terrain factors that are reflected in soil morphology. The soil formation is dominantly influenced by parent material, relief and climate.

A brief description of each of the 7 soil series identified followed by the soil phases (management units) mapped under each series (Fig. 3.5) are furnished below. The soils in any one map unit differ from place to place in their depth, texture, slope, gravelliness, erosion or any other site characteristic that affect management. The soil phase map can be used for identifying the suitability of areas for growing specific crops or for other alternative uses and also for deciding the type of conservation structures needed. The detailed information on soil and site-characteristics like soil depth, surface soil texture, slope, erosion, gravelliness, AWC, LCC etc, with respect to each of the soil phase identified is given village/survey number wise for the microwatershed in Appendix-I.

4.1 Soils of Granite Gneiss Landscape

In this landscape, 5 soil series are identified and mapped. Brief description of each series identified is given below. Of these, Nagalapur (NGP) soil series occupies maximum area of about 137 ha (23%) and Hallikere (HLK) 46 ha (8%) area. The brief description of each soil series and their phases identified in the microwatershed are given below. The mapping unit description (Soil Legend) of the soil phases identified and mapped under each series is given in Table 3.2.

4.1.1 Mornal (MNL) Series: Mornal soils are deep (100-150 cm), well drained have dark reddish brown to dark red sandy clay soils. They are developed from weathered granite gneiss and occur on very gently sloping uplands under cultivation.

The thickness of the solum ranges from 128 to 146 cm. The thickness of Ahorizon ranges from 15 to 25 cm. Its colour is in 5 YR, 10 YR hue with value 3 to 4 and chroma 2 to 4. The texture is sandy clay loam, sandy clay and clay with 15 to 30 per cent gravel. The thickness of B-horizon ranges from 103 to 131 cm. Its colour is in 2.5 YR and 5 YR hue with value 2.5 to 4 and chroma 3 to 6. Texture is sandy clay to clay with less than 15 per cent gravel. The available water capacity is medium (101-150 mm/m). Only one phase was identified and mapped.

Landscape and soil profile characteristics of Mornal (MNL) Series.

4.1.2 Balapur (BPR) Series: Balapur soils are deep (100-150 cm), well drained, have dark reddish brown to dark red gravelly sandy clay to clay soils. These soils are developed from weathered granite gneiss and occur on very gently to gently sloping uplands. The Balapur series has been tentatively classified as a member of the clayey-skeletal, mixed, isohyperthermic family of Rhodic Paleustalfs.

The thickness of the solum ranges from 102 to 147 cm. The thickness of A horizon ranges from 12 to 17 cm. Its colour is in 5 YR and 2.5 YR hue with value and chroma 3 to 4. The texture ranges from loamy sand to sandy clay with 15 to 50 per cent gravel. The thickness of B horizon ranges from 90 to 132 cm. Its colour is in 2.5 YR hue with value 2.5 to 3 and chroma 4 to 6. Texture is sandy clay to clay with 35 to 50 per cent gravel. The available water capacity is medium (100-150 mm/m). Only one phase was identified and mapped.

Landscape and Soil Profile Characteristics of Balapur (BPR) Series

4.1.3 Nagalapur (NGP) Series: Nagalapur soils are deep (100-150 cm), well drained, have dark reddish brown to dark red gravelly sandy clay to clay soils. They are developed from weathered granite gneiss and occur on very gently to gently sloping uplands.

The thickness of the solum ranges from 110 to 142 cm. The thickness of Ahorizon ranges from 14 to 20 cm. Its colour is in 7.5 YR hue with value and chroma 3 to 4. The texture ranges from sandy loam to sandy clay with 10 to 50 per cent gravel. The thickness of B horizon ranges from 90 to 128 cm. Its colour is in 2.5 YR, 5 YR and 7.5 YR hue with value 3 to 5 and chroma 3 to 6. Texture is sandy clay to clay with 35 to 80 per cent gravel. The available water capacity is low (51-100 mm/m). Three phases were identified and mapped.

Landscape and Soil Profile Characteristics of Nagalapur (NGP) Series

4.1.4 Hallikere (HLK) Series: Hallikere soils are very deep (>150 cm), well drained, have dark brown and dark reddish brown clayey soils. They have developed from granite gneiss and occur on nearly level to very gently sloping uplands. The Hallikere series has been tentatively classified as a member of the fine, mixed, isohyperthermic family of Typic Paleaustalfs.

The thickness of the solum is more than 150 cm. The thickness of A horizon ranges from 11 to 14 cm. Its colour is in 7.5 YR and 5 YR hue with value 3 to 4 and chroma 3 to 4. The texture varies from sandy loam to sandy clay loam. The thickness of B horizon is more than 150 cm. Its colour is in 7.5 YR and 5 YR hue with value and chroma 3 to 4. Its texture is clay. The available water capacity is high (150-200 mm/m). Only one phase was identified and mapped.

Landscape and Soil Profile Characteristics of Hallikere (HLK) Series

4.1.5 Niduvalalu (NDL): Niduvalalu soils are very deep (>150 cm), well drained, have dark red and dark reddish brown sandy clay soils. They have developed from granite gneiss and occur on nearly level to very gently sloping uplands under cultivation.

The thickness of the solum is more than 150 cm. The thickness of A-horizon ranges from 11 to 15 cm. Its colour is in 5 YR hue with value 3 to 4 and chroma 4 to 6. The texture varies from sandy loam to sandy clay loam with 10 to 30 per cent gravel. The thickness of B-horizon ranges from 150 to 160 cm. Its colour is in 2.5 YR and 5 YR hue with value 2.5 to 4 and chroma 4 to 6. Its texture is sandy clay and ranges from sandy loam to sandy clay loam with 20 to 75 per cent gravel. The available water capacity is low (50-100 mm/m). Only one phase was identified and mapped.

Landscape and Soil Profile Characteristics of Niduvalalu (NDL) Series

4.2 Soils of Alluvial Landscape

In this landscape, 2 soil series are identified and mapped. Brief description of each series identified is given below. Of these, Kadagathur (KDT) soil series occupies maximum area of about 312 ha (52%) and Budagumpa (BGP) 58 ha (10%) area. The brief description of each soil series and their phases identified in the microwatershed are given below.

4.2.1 Budagumpa (BGP) Series: Budagumpa soils are very deep (>150 cm), well drained, black calcareous sandy clay to clay soils. They have developed from granite gneiss and occur on very gently sloping uplands under cultivation.

The thickness of the solum ranges from 120 to 180 cm. The thickness of A horizon ranges from 16 to 26 cm. Its colour is in 7.5 YR and 10 YR hue with value 2 to 3 and chroma 2 to 4. The texture varies from sandy clay to clay with 5 to 10 per cent gravel. The thickness of B horizon ranges from 112 to 160 cm. Its colour is in 10 YR and 7.5 YR hue with value 3 to 5 and chroma 1 to 4. Its texture is clay with gravel content of 10 to 20 per cent. These soils are calcareous that increase with depth. The available water capacity is very high (>200 mm/m). Three phases were identified and mapped.

Landscape and Soil Profile Characteristics of Budagumpa (BGP) Series

4.2.2 Kadagathur (KDT) Series: Kadagathur soils are very deep (>150 cm), moderately well drained, have dark brown to very dark grayish brown sandy clay to clay soils. They have developed from weathered alluvium and occur on nearly level to very gently sloping uplands under cultivation.

The thickness of the solum is more than 150 cm. The thickness of A horizon ranges from 8 to 14 cm. Its colour is in 10 YR hue with value 3 and chroma 4. The texture varies is sandy loam. The thickness of B horizon is more than 150 cm. Its colour is in 10 YR and 7.5 YR hue with value 3 and chroma 1 to 4. Its texture is sandy clay to clay. The

available water capacity is very high (>200 mm/m). Three phases were identified and mapped.

Landscape and soil profile characteristics of Kadagathur (KDT) Series

Chapter 5

INTERPRETATION FOR LAND RESOURCE MANAGEMENT

The most important soil and site characteristics that affect the land use and conservation needs of an area are land capability, soil depth, soil texture, coarse fragments, available water capacity, soil slope, soil erosion, soil reaction etc. These are interpreted from the data base generated through land resource inventory and several thematic maps are generated. These would help in identifying the areas suitable for growing crops and, soil and water conservation measures and structures needed thus helping to maintain good soil health for sustained crop production. The various interpretative and thematic maps generated are described below.

5.1 Land Capability Classification

Land Capability Classification is an interpretative grouping of soil map units (soil phases) mainly based on inherent soil characteristics, external land features and environmental factors that limit the use of land for agriculture, pasture, forestry, or other uses on a sustained basis (IARI, 1971). The land and soil characteristics used to group the land resources in an area into various land capability classes, subclasses and units are *Soil characteristics* : Depth, texture, gravel content, calcareousness.

Land characteristics : Slope, erosion, drainage, rock outcrops.

Climate: Total rainfall and its distribution, and length of crop growing period.

The Land Capability Classification system is divided into land capability classes, subclasses and units based on the level of information available. Eight land capability classes are recognized. They are

- *Class I*: They are very good lands that have no limitations or very few limitations that restrict their use.
- *Class II*: They are good lands that have minor limitations and require moderate conservation practices.
- *Class III*: They are moderately good lands that have severe limitations that reduce the choice of crops or that require special conservation practices.
- *Class IV*: They are fairly good lands that have very severe limitations that reduce the choice of crops or that require very careful management.
- *Class V*: Soils in these lands are not likely to erode, but have other limitations like wetness that are impractical to remove and as such not suitable for agriculture, but suitable for pasture or forestry with minor limitations.
- *Class VI*: The lands have severe limitations that make them generally unsuitable for cultivation, but suitable for pasture or forestry with moderate limitations.
- *Class VII*: The lands have very severe limitations that make them unsuitable for cultivation, but suitable for pasture or forestry with major limitations.
- *Class VIII*: Soil and other miscellaneous areas (rock lands) that have very severe limitations that nearly preclude their use for any crop production, but suitable for wildlife, recreation and installation of wind mills.

The land capability subclasses are recognised based on the dominant limitations observed within a given land capability class. The subclasses are designated by adding a lower case letter like 'e', 'w', 's', or 'c' to the class numeral. The subclass "e" indicates that the main hazard is risk of erosion, "w" indicates drainage or wetness as a limitation for plant growth, "s" indicates shallow soil depth, coarse or heavy textures, calcareousness, salinity/alkalinity or gravelliness and "c" indicates limitation due to climate.

The land capability subclasses have been further subdivided into land capability units based on the kinds of limitations present in each subclass. Ten land capability units are used in grouping the soil map units. They are stony or rocky (0), erosion hazard (slope, erosion) (1), coarse texture (sand, loamy sand, sandy loam) (2), fine texture (cracking clay, silty clay) (3), slowly permeable subsoil (4), coarse underlying material (5), salinity/alkali (6), stagnation, overflow, high ground water table (7), soil depth (8) and fertility problems (9). The capability units thus identified have similar soil and land characteristics that respond similarly to a given level of management. The soils of the microwatershed have been classified upto land capability subclass level.

The 13 soil map units identified in the Nallur microwatershed are grouped under 2 land capability classes and 4 land capability subclasses. About 98 percent in the microwatershed is suitable for agriculture and 2 percent is not suitable for agriculture (Fig. 5.1).

Good cultivable lands (Class II) cover maximum an area of about 415 ha (69%) and are distributed in the northern, central, northeastern, eastern and southeastern part of the micowatershed with minor problems of soil. Moderately good cultivable lands (Class III) cover an area of about 178 ha (29%) and are distributed in the northern, northwestern and southwestern part of the microwatershed with moderate problems of erosion and soil.

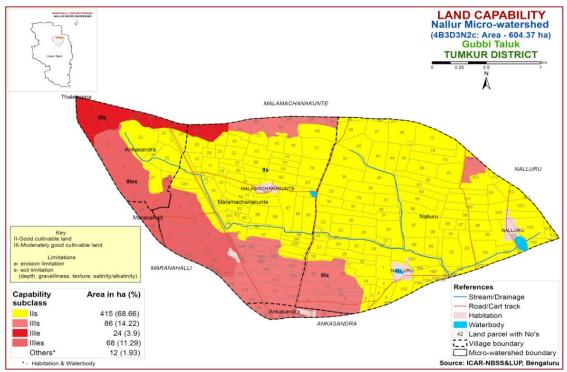


Fig. 5.1 Land Capability map of Nallur Microwatershed

5.2 Soil Depth

Soil depth refers to the depth of the soil occurring above the parent material or hard rock. The depth of the soil determines the effective rooting depth for plants and in accordance with soil texture, mineralogy and gravel content, the capacity of the soil column to hold water and nutrient availability. Soil depth is one of the most important soil characteristic that is used in differentiating soils into different soil series. The soil depth classes used in identifying soils in the field are very shallow (<25 cm), shallow (25-50 cm), moderately shallow (50-75 cm), moderately deep (75-100 cm), deep (100-150 cm) and very deep (>150 cm). They were used to classify the soils into different depth classes and a soil depth map was generated. The area extent and their geographical distribution in the microwatershed is given in Fig. 5.2.

Deep (100-150 cm) soils occupy an area of 165 ha (27%) and are distributed in the northern, northwestern and southwestern part of the microwatershed. Very deep (>150 cm) soils cover maximum area of 428 ha (71%) and distributed in the northern, northeastern, central, eastern and southeastern part of the microwatershed.

Entire area in the microwatershed is most productive with respect to soil rooting depth where all climatically adapted annual and perennial crops can be.

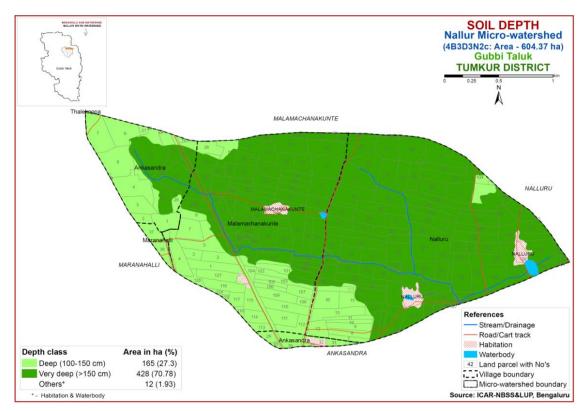


Fig. 5.2 Soil Depth map of Nallur Microwatershed

5.3 Surface Soil Texture

Texture is an expression to indicate the coarseness or fineness of the soil as determined by the relative proportion of primary particles of sand, silt and clay. It has a direct bearing on the structure, porosity, adhesion and consistence. The surface layer of a

soil to a depth of about 25 cm is the layer that is most used by crops and plants. The surface soil textural class provides a guide to understanding soil-water retention and availability, nutrient holding capacity, infiltration, workability, drainage, physical and chemical behaviour, microbial activity and crop suitability. The textural classes used for LRI were used to classify and a surface soil texture map was generated. The area extent and their geographical distribution in the microwatershed is shown in Figure 5.3.

Maximum area of about 582 ha (96%) has soils that are loamy soils at the surface. They are distributed in major parts of the microwatershed and an area of 11 ha (2%) has soils that are clayey at the surface and are distributed in the central part of the microwatershed (Fig. 5.3).

The most productive lands (2%) with respect to surface soil texture are the clayey soils that have high potential for soil-water retention and availability, and nutrient retention and availability, but have more problems of drainage, infiltration, workability and other physical problems. The other most productive lands (96%) are loamy soils which also have high potential for AWC, nutrient availability but have no drainage or other physical problems.

Fig. 5.3 Surface Soil Texture map of Nallur Microwatershed

5.4 Soil Gravelliness

Gravel is the term used for describing coarse fragments between 2 mm and 7.5 cm diameter and stones for those between 7.5 cm and 25 cm. The presence of gravel and stones in soil reduces the volume of soil responsible for moisture and nutrient storage,

drainage, infiltration and runoff, and hinders plant growth by impeding root growth and seedling emergence, intercultural operations and farm mechanization. The gravelliness classes used in LRI were used to classify the soils and using these classes a gravelliness map was generated. The area extent and their geographic distribution in the microwatershed is shown in Figure 5.4.

Entire area in the microwatershed has non gravelly (<15%) soils (Fig 5.4). All the soils have high potential with respect to gravelliness and all long duration annual and perennial crops can be grown.

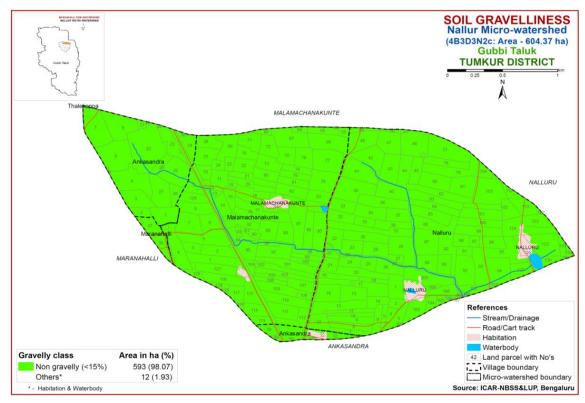


Fig. 5.4 Soil Gravelliness map of Nallur Microwatershed

5.5 Available Water Capacity

The soil available water capacity (AWC) is estimated based on the ability of the soil column to retain water between the tensions of 0.33 and 15 bar in a depth of 100 cm or the entire solum if the soil is shallower. The AWC of the soils (soil series) as estimated by considering the soil texture, mineralogy, soil depth and gravel content (Sehgal *et al.*, 1990) and accordingly the soil map units were grouped into five AWC classes *viz*, very low (<50 mm/m), low (50-100 mm/m), medium (100-150 mm/m), high (150-200 mm/m) and very high (>200 mm/m) and using these values, an AWC map was generated. The area extent and their geographic distribution of different AWC classes in the microwatershed is given in Figure 5.5.

An area of about 212 ha (35%) are low (51-100 mm/m) in available water capacity and are distributed in the northern, southern, southwestern and southeastern part of the microwatershed. An area of about 69 ha (11%) is medium (101-150 mm/m) in

available water capacity and are distributed in the northwestern and northeastern part of the microwatershed. Maximum area of 312 ha (52%) is very high (>200 mm/m) in AWC and are distributed in the central, southeastern and northeastern part of the microwatershed.

About 212 ha (35%) area in the microwatershed has soils that are problematic with regard to available water capacity. Here, only short or medium duration crops can be grown and the probability of crop failure is very high. These areas are best put to other alternative uses. An area of 312 ha (52%) has high potential with respect to AWC, where all climatically adapted annual and perennial crops can be grown.

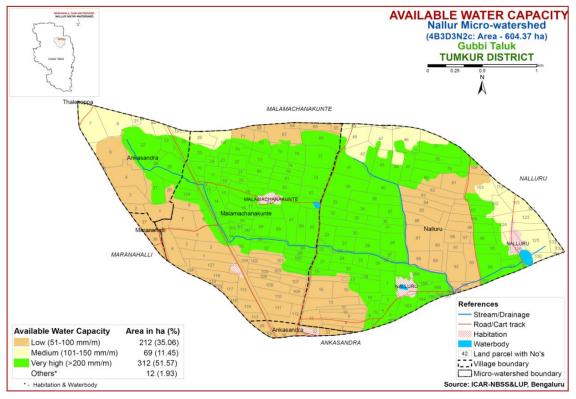


Fig. 5.5 Soil Available Water Capacity map of Nallur Microwatershed

5.6 Soil Slope

Soil slope refers to the inclination of the surface of the land. It is defined by gradient, shape and length, and is an integral feature of any soil as a natural body. Slope is considered important in soil genesis, land use and land development. The length and gradient of slope influences the rate of runoff, infiltration, erosion and deposition. The soil map units were grouped into four slope classes and a slope map was generated showing the area extent and their geographic distribution in the microwatershed (Fig. 5.6).

Major area of about 437 ha (72%) falls under very gently sloping (1-3% slope) lands and is distributed in major part of the microwatershed and an area of about 115 ha (26%) is under nearly level (0-1%) and distributed in the southern, central and northeastern part of the microwatershed.

Entire area in the microwatershed has soils that have high potential in respect of soil slopes. In these areas, all climatically adapted annual and perennial crops can be grown without much soil and water conservation and other land development measures.

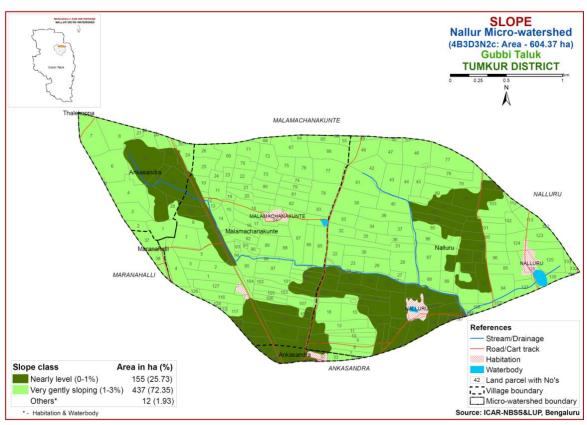


Fig. 5.6 Soil Slope map of Nallur Microwatershed

5.7 Soil Erosion

Soil erosion refers to the wearing away of the earth's surface by the forces of water, wind and ice involving detachment and transport of soil by raindrop impact. It is used for accelerated soil erosion resulting from disturbance of the natural landscape by burning, excessive grazing and indiscriminate felling of forest trees and tillage, all usually by man. The erosion classes showing an estimate of the current erosion status as judged from field observations in the form of rills, gullies or a carpet of gravel on the surface are recorded. Four erosion classes, viz, slight erosion (e1), moderate erosion (e2), severe erosion (e3) and very severe erosion (e4) are recognized. The soil map units were grouped into different erosion classes and a soil erosion map generated. The area extent and their spatial distribution in the microwatershed is given in Figure 5.7.

Soils that are moderately eroded (e2 class) cover an area of about 92 ha (15%) in the microwatershed. They are distributed in the western part of the microwatershed. Slightly eroded (e1 class) soils cover a maximum area of about 501 ha (83%) and are distributed in major part of the microwatershed.

An area of about 92 ha (15%) in the microwatershed is problematic because of moderate erosion. For these areas, taking up soil and water conservation and other land development measures is needed.

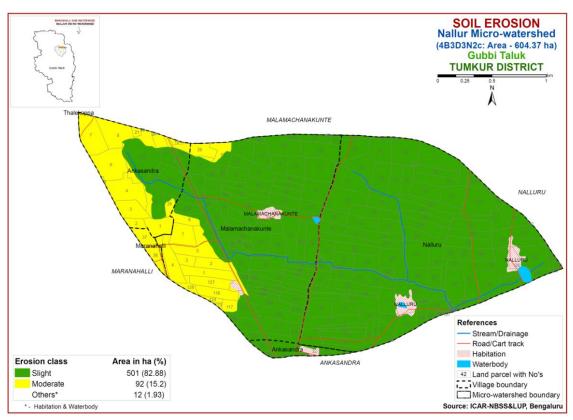


Fig. 5.7 Soil Erosion map of Nallur Microwatershed

FERTILITY STATUS

Soil fertility plays an important role in increasing crop yield. The adoption of high yielding varieties that require high amounts of nutrients has resulted in deficiency symptoms in crops and plants due to imbalanced fertilization and poor inherent fertility status as the area is characterised by low rainfall and high temperatures. Hence, it is necessary to know the fertility (macro and micro nutrients) status of the soils of the watersheds for assessing the kind and amount of fertilizers required for each of the crop intended to be grown. For this purpose, the surface soil samples collected from the grid points (one soil sample at every 250 m interval) all over the microwatershed through land resource inventory in the year 2015 were analysed for pH, EC, organic carbon, available phosphorus and potassium, and for micronutrients like zinc, boron, copper, iron and manganese, and secondary nutrient sulphur.

Soil fertility data generated has been assessed and individual maps for all the nutrients for the microwatershed have been generated using kriging method under GIS.

6.1 Soil Reaction (pH)

The soil analysis of the Nallur microwatershed for soil reaction (pH) showed that an area of about 165 ha (27%) is neutral (pH 6.5-7.3) and are distributed in the southeastern, central and northeastern part of the microwatershed. An area of 66 ha (11%) is strongly acid (pH 5.0-5.5) and are distributed in the western, central and northern part of microwatershed. An area of 154 ha (25%) is moderately acid (pH 5.5-6.0) and are distributed in the northwestern, eastern and southern part of the microwatershed and slightly acid (pH 6.0-6.5) occupy maximum area of about 193 ha (32%) and are distributed in the northwestern, southeastern, central and northern part of the microwatershed. A very small area of about 15 ha (2%) is slightly alkaline (pH 7.3-7.8) and occur in the northwestern part of the microwatershed (Fig.6.1).

6.2 Electrical Conductivity (EC)

The Electrical Conductivity of the soils of the entire microwatershed area is <2 dSm⁻¹ (Fig 6.2) and as such the soils and are nonsaline.

6.3 Organic Carbon

The soil organic carbon (An index of available Nitrogen) content of the soils in the microwatershed is medium (0.5-0.75%) covering an area of about 65 ha (11%) and is distributed in the northwestern, central, southern and northeastern part of the microwatershed. It is low (<0.5%) in a maximum area of about 528 ha (87%) and distributed in all parts of the microwatershed (Fig.6.3).

6.4 Available Phosphorus

Available phosphorus content is high (>57 kg/ha) in the entire microwatershed (Fig 6.4).

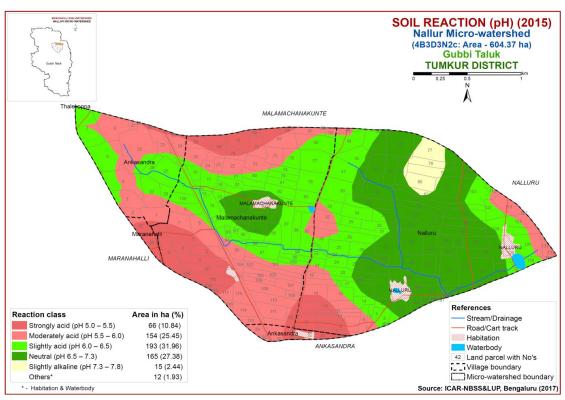


Fig.6.1 Soil Reaction (pH) map of Nallur Microwatershed

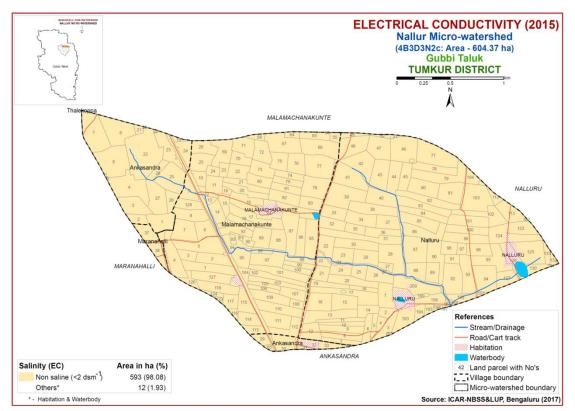


Fig.6.2 Electrical Conductivity (EC) map of Nallur Microwatershed

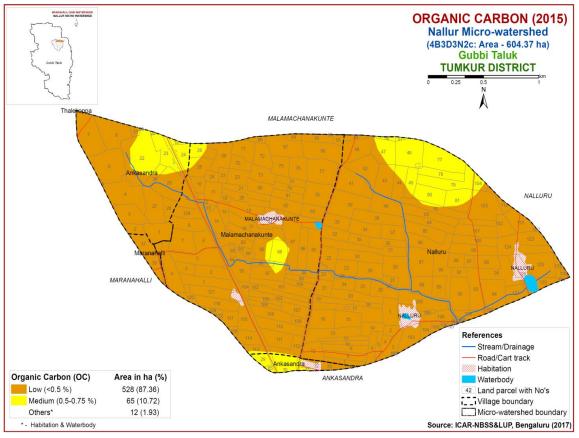


Fig.6.3 Soil Organic Carbon map of Nallur Microwatershed

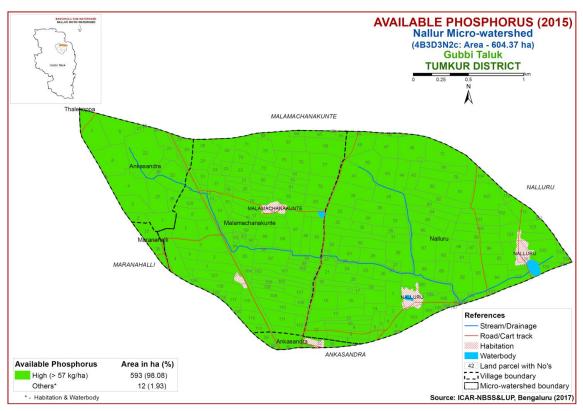


Fig.6.4 Soil Available Phosphorus map of Nallur Microwatershed

6.5 Available Potassium

Available potassium content is medium (145-337 kg/ha) in maximum area of about 482 ha (80%) and is distributed in all parts of the microwatershed and low (<145kg/ha) in an area of 80 ha (13%) and is distributed in northern, southeastern and southwestern part of the microwatershed (Fig.6.5). High available potassium (>337 kg/ha) is in an area of 30 ha (5%) and is distributed in the central and northeastern part of the microwatershed.

6.6 Available Sulphur

Available sulphur content is medium (10-20 ppm) in an area of about 586 ha (97%) and occur in all parts of the microwatershed. A very small area of about 7 ha (1%) is low in available sulphur (<10 ppm) and occur in the western part of the microwatershed (Fig.6.6).

6.7 Available Boron

Available boron content is medium (0.5-1.0 ppm) in an area of 262 ha (43%) and are distributed in the northwestern, central, southeastern and northeastern part of the microwatershed. Maximum area of about 330 ha (55%) is low (<0.5 ppm) in available boron and is distributed in all parts of the microwatershed (Fig.6.7).

6.8 Available Iron

Available iron content is sufficient (>4.5 ppm) in the entire area in the microwatershed (Fig 6.8).

6.9 Available Manganese

Available manganese content is sufficient (>1.0 ppm) in the entire microwatershed area (Fig 6.9).

6.10 Available Copper

Available copper content is sufficient (>0.2 ppm) in the entire microwatershed area (Fig 6.10).

6.11 Available Zinc

Available zinc content is deficient (<0.6 ppm) in an area of 187 ha (31%) and are distributed in the eastern, southern and northwestern part of the microwatershed and major area of 406 ha (67%) is sufficient (>0.6 ppm) and are distributed in major part of the microwatershed (Fig 6.11).

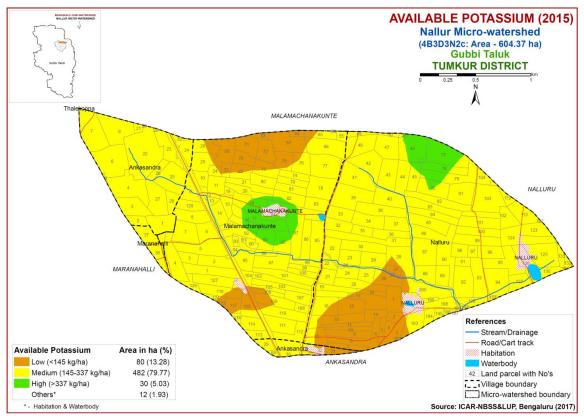


Fig.6.5 Soil Available Potassium map of Nallur Microwatershed

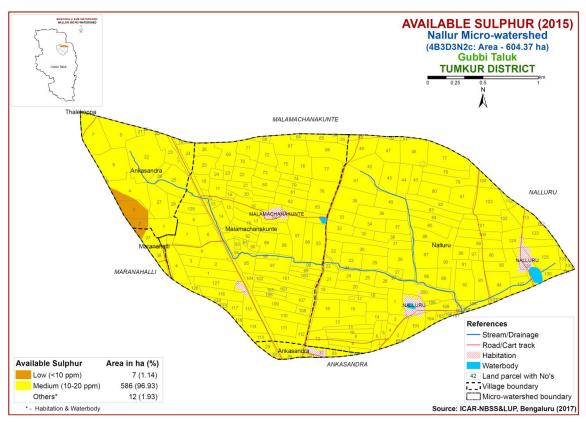


Fig.6.6 Soil Available Sulphur map of Nallur Microwatershed

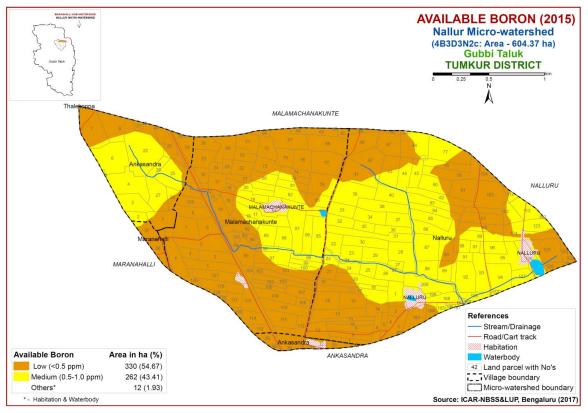


Fig.6.7 Soil Available Boron map of Nallur Microwatershed

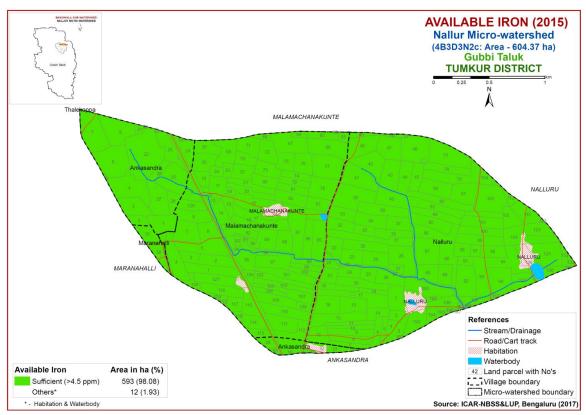


Fig.6.8 Soil Available Iron map of Nallur Microwatershed

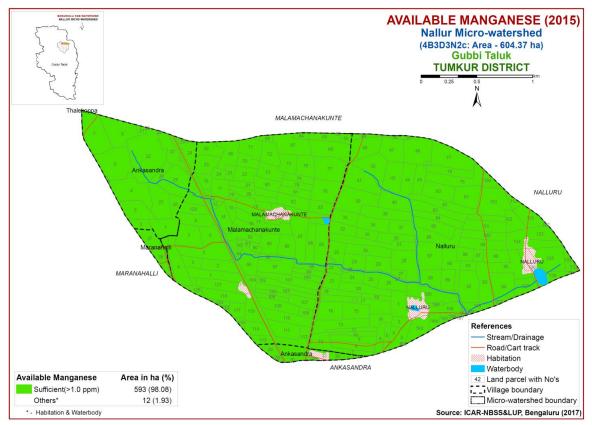


Fig.6.9 Soil Available Manganese map of Nallur Microwatershed

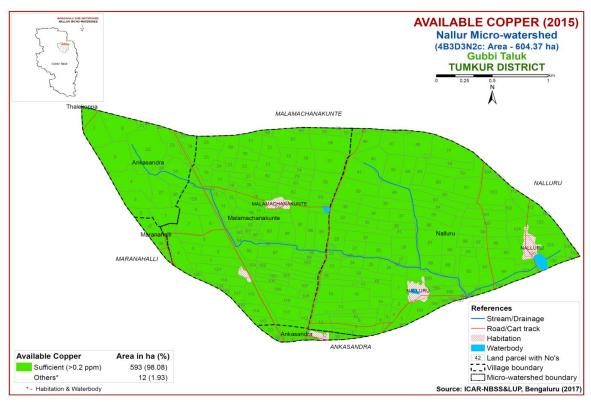


Fig.6.10 Soil Available Copper map of Nallur Microwatershed

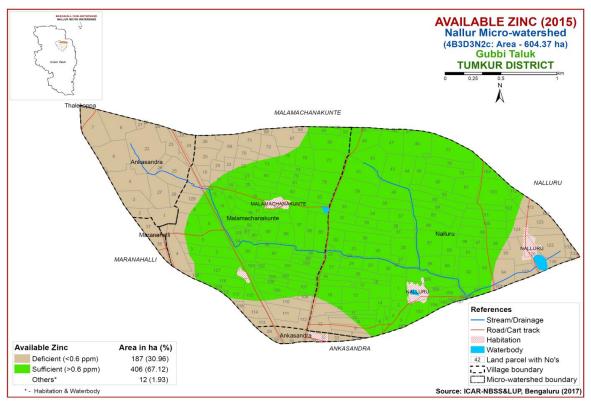


Fig.6.11 Soil Available Zinc map of Nallur Microwatershed

LAND SUITABILITY FOR MAJOR CROPS

The soil and land resource units (soil phases) of Nallur microwatershed were assessed for their suitability for growing food, fodder, fibre and other horticulture crops by following the procedure as outlined in FAO, 1976 and 1983. Crop requirements were developed for each of the crop from the available research data and also by referring to Naidu et. al. (2006) and Natarajan et. al (2015). The crop requirements were matched with the soil and land characteristics (Table 7.1) to arrive at the crop suitability. In FAO land suitability classification, two orders are recognized. Order S- Suitable and Order N-Not suitable. The orders have classes, subclasses and units. Order-S has three classes, class S1- Highly Suitable, class S2- Moderately Suitable and class S3- Marginally Suitable. Order N has two classes, N1- Currently not Suitable and N2- Permanently not Suitable. There are no subclasses within the class S1 as they will have very minor or no limitations for crop growth. Classes S2 and S3 are divided into subclasses based on the kinds of limitations encountered. The limitations that affect crop production are 'c' for erratic rainfall and its distribution and length of growing period (LGP), 'e' for erosion hazard, 'r' for rooting condition, 't' for lighter or heavy texture, 'g' for gravelliness or stoniness, 'n' for nutrient availability, 'l' for topography, 'm' for moisture availability, 'z' for calcareousness and 'w' for drainage. These limitations are indicated as lower case letters to the class symbol. For example, moderately suitable lands with the limitations of soil depth and erosion are designated as S2re. For the microwatershed, the soil mapping units were evaluated and classified up to subclass level.

Using the above criteria, the soil map units of the microwatershed were evaluated and land suitability maps for 34 major agricultural and horticultural crops were generated. The detailed information on the kind of suitability of each of the soil phase for the crops assessed are given village/ survey number wise for the microwatershed in Appendix-III.

7.1 Land Suitability for Sorghum (Sorghum bicolor)

Sorghum is one of the major crops grown in Karnataka in an area of 10.47 lakh ha in Bijapur, Gulbarga, Raichur, Bidar, Belgaum, Dharwad, Bellary, Chitradurga, Mysore and Tumakuru districts. The crop requirements for growing sorghum (Table 7.2) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing sorghum was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure. 7.1.

An area of about 381 ha (63%) is highly suitable (Class S1) for growing sorghum and are distributed in the major part the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 196 ha (32%) for growing sorghum and are distributed in the southern, western and southeastern part of the microwatershed.

	Climate	Growing	Drai-	Soil	Soil t	texture	Grave	elliness							CEC	
Soil Map Units	(P) (mm)	period (Days)	nage Class	depth (cm)	Sur- face	Sub- surface	Surface (%)	Sub Surface (%)	AWC (mm/m)	Slope (%)	Erosion	рН	EC	ESP	[Cmol (p ⁺)kg ⁻ 1]	BS (%)
MNLhB2	813	150	WD	75-100	sl	sc-scl	-	15-35	100-150	1-3	moderate					
BPRcA1	813	150	WD	75-100	scl	sc-c	-	>35	100-150	0-1	slight					
NGPcA1	813	150	WD	75-100	scl	sc-c	-	>35	51-100	0-1	slight					
NGPhB1	813	150	WD	75-100	sc	sc-c	-	>35	51-100	1-3	slight					
NGPhB2	813	150	WD	100-150	scl	sc-c	-	>35	51-100	1-3	moderate					
HLKhB1	813	150	WD	100-150	scl	с	-	<15	150-200	1-3	slight					
BGPcA1	813	150	WD	100-150	sl	c	-	10-20	>200	0-1	slight					
BGPhB1	813	150	WD	100-150	sc	с	-	10-20	>200	1-3	slight					
BGPiA1	813	150	WD	>150	sl	c	-	10-20	>200	0-1	slight					
NDLcB1	813	150	WD	>150	sl	sc	-	>35	50-100	1-3	slight					
KDTcA1	813	150	WD	>150	scl	sc-c	-	-	>200	0-1	slight					
KDTcB1	813	150	WD	>150	scl	sc-c	-	-	>200	1-3	slight					
KDThB1	813	150	WD	50-75	scl	sc-c	-	-	>200	1-3	slight					

 Table 7.1 Soil-Site Characteristics of Nallur Microwatershed

*Symbols and abbreviations are according to Field Guide for LRI under Sujala-III Project, Karnataka

They have minor limitations of gravelliness and calcareousness. Marginally suitable lands (Class S3) for growing sorghum occupy a very small area of about 16 ha (3%) and occur in small patches in the northeastern, central and northern part of the microwatershed. They have moderate limitation of gravelliness.

Crop require	nent	Rating						
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)			
Slope	%	2-3	3-8	8-15	>15			
LGP	Days	120-150	120-90	<90				
Soil drainage	Class	Well to mod. Well drained	imperfect	Poorly/ excessively	V.poorly			
Soil reaction	pН	6.0-8.0	5.5-5.9, 8.1-8.5	<5.5, 8.6-9.0	>9.0			
Surface soil texture	Class	C, cl, sicl, sc	l, sil, sic	Sl, ls	S, fragmental skeletal			
Soil depth	Cm	100-75	50-75	30-50	<30			
Gravel content	% vol.	5-15	15-30	30-60	>60			
Salinity (EC)	dSm ⁻¹	2-4	4-8	8-10	>10			
Sodicity(ESP)	%	5-8	8-10	10-15	>15			

Table 7.2 Crop suitability criteria for Sorghum

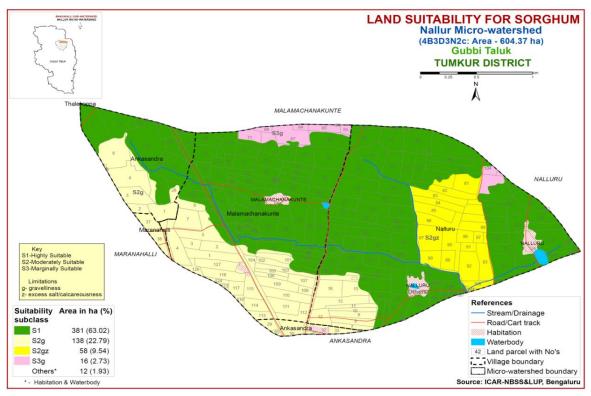


Fig. 7.1 Land Suitability map of Sorghum

7.2 Land Suitability for Fodder Sorghum (Sorghum bicolor)

Fodder Sorghum is one of the major fodder crops grown in South Karnataka in Tumakuru, Chikkaballapur, Mysore, Mandya, Bengaluru Rural and Kolar districts. The crop requirements for growing Fodder sorghum (Table 7.3) were matched with the soilsite characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing sorghum was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.2.

Major area of about 381 ha (63%) is highly suitable (Class S1) for growing Fodder sorghum and are distributed in the major part the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 196 ha (32%) for growing Fodder sorghum and are distributed in the southern, western and southeastern part the microwatershed. They have minor limitations of gravelliness and calcareousness. Marginally suitable lands (Class S3) occupy a small area of about 16 ha (3%) and occur in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Crop requiren	nent	Rating						
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)			
Slope	%	2-3	3-8	8-15	>15			
LGP	Days	120-150	120-90	<90				
Soil drainage	Class	Well to mod. Well drained	imperfect	Poorly/ excessively	V.poorly			
Soil reaction	pН	6.0-8.0	5.5-5.9, 8.1-8.5	<5.5, 8.6-9.0	>9.0			
Surface soil texture	Class	C, cl, sicl, sc	l, sil, sic	S1, 1s	S,fragmental skeletal			
Soil depth	Cm	100-75	50-75	30-50	<30			
Gravel content	% vol.	5-15	15-30	30-60	>60			
Salinity (EC)	dSm ⁻¹	2-4	4-8	8-10	>10			
Sodicity (ESP)	%	5-8	8-10	10-15	>15			

Table 7.3 Crop suitability criteria for Fodder Sorghum



Fig. 7.2 Land Suitability map of Fodder Sorghum

7.2 Land Suitability for Maize (Zea mays)

Maize is the most important food crop grown in an area of 13.37 lakh ha in almost all the districts of the State. The crop requirements for growing maize (Table 7.4) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing maize was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.3.

Highly suitable lands occupy an area of about 69 ha (11%) and are distributed in the northwestern, northern and eastern part of the microwatershed. Major area of about 508 ha (84%) is moderately suitable (Class S2) and are distributed in the major part the microwatershed. They have minor limitations gravelliness, texture and calcareousness. Marginally suitable lands (Class S3) for growing maize occupy an area of about 16 ha (3%) and occur in the northern, central and northeastern part of the microwatershed with moderate limitation of gravelliness.

Crop requirem	ent	Rating					
Soil–site characteristics	Unit	Highly suitable(S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)		
Slope	%	<3	3.5	5-8			
LGP	Days	>100	100-80	60-80			
Soil drainage	Class	Well drained	Mod. to imperfectly	Poorly/excessively	V.poorly		
Soil reaction	pН	5.5-7.5	7.6-8.5	8.6-9.0			
Surface soil texture	Class	l, cl, scl, sil	Sl, sicl, sic	C(s-s), ls	S,fragmental		
Soil depth	Cm	>75	50-75	25-50	<25		
Gravel content	% vol.	<15	15-35	35-50	>50		
Salinity (EC)	dSm ⁻¹	<1.0	1.0-2.0	2.0-4.0			
Sodicity (ESP)	%	<10	10-15	>15			

 Table 7.4 Crop suitability criteria for Maize

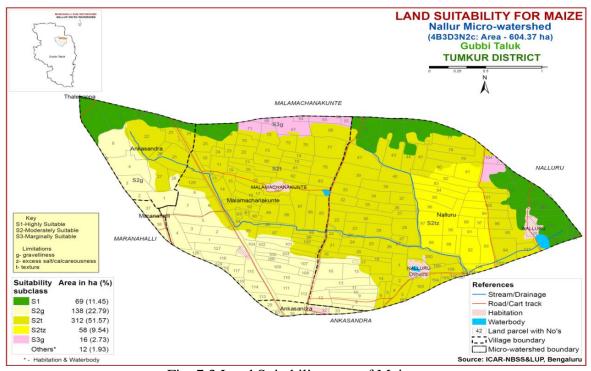


Fig. 7.3 Land Suitability map of Maize

7.4 Land Suitability for Upland Paddy (Oryaza sativa)

Upland paddy is the most important food crop grown in all of the district of the State under rainfed condition. The crop requirements for growing Upland paddy (Table 7.5) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Upland paddy was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.4.

Maximum area of about 381 ha (63%) is highly suitable (Class S1) for growing Upland paddy and are distributed in the major part the microwatershed. An area of about 196 ha (32%) is moderately suitable (Class S2) for growing Upland paddy and are distributed in the southern, western and southeastern part the microwatershed. They have minor limitations gravelliness and calcareousness. Marginally suitable lands (Class S3) occupy a small area of about 16 ha (3%) and occur in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Crop requirem	ent	Rating					
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)		
Slope	%	1-3	1-3	3-5	>5		
Soil drainage	class	Well to mod.	poorly	Very poorly			
Soil reaction	pН	5.5-6.5	6.5-7.3,4.5-5.4	7.3-8.4	>8.4		
Surface soil texture	Class	C,sic,cl,sicl,sc	Scl, sil, l	S1 , 1s	S		
Soil depth	Cm	>75	50-75	25-50	<25		
Gravel content	% vol.	<15	15-35	35-60	60-80		

Fig. 7.4 Land Suitability map of Upland paddy

7.5 Land Suitability for Finger millet (*Eleusine coracana*)

Finger millet is the most important food crop grown in an area of 7.08 lakh ha in almost all the districts of south Karnataka. The crop requirements for growing Finger millet (Table 7.6) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Finger millet was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.5.

An area of about 381ha (63%) is highly suitable (Class S1) for growing finger millet and are distributed in the major part the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 196 ha (32%) and are distributed in the western, southwestern and northeastern part of the microwatershed. They have minor limitations of gravelliness and calcareousness. Marginally suitable (Class S3) lands occupy a small area of about 16 ha (3%) and occur in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Crop requirem	ent	Rating						
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)			
Slope	%	<3	3-5	5-10	>10			
LGP	Days	>110	90-110	60-90	<60			
Soil drainage	class	Well to mod. drained	Imperfectly drained	Poorly/excessively	V.poorly			
Soil reaction	pН	5.5-7.3	7.3-8.4	8.4-9.0	>9.0			
Surface soil texture	Class	l, sil, sl, cl, sicl, scl	sic, c, sc	ls, s,c >60%				
Soil depth	Cm	>75	50-75	25-50	<25			
Gravel content	%vol.	<15	15-35	35-60	>60			
Salinity (ECe)	dsm ⁻¹	<1.0	1.0-2.0	2.0-4.0				
Sodicity (ESP)	%	<10	10-15	15-25	>25			

Table 7.6 Land suitability criteria for Finger millet

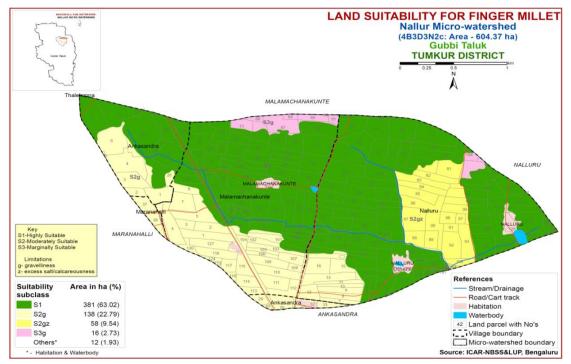


Fig. 7.5 Land Suitability map of Finger millet

7.6 Land suitability criteria for Red gram (Cajanus cajan)

Red gram is the most important food crop grown in an area of 7.28 lakh ha in almost all the districts of the State. The crop requirements for growing red gram (Table 7.7) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing red gram was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.6.

Highly suitable (Class S1) lands occupy an area of about 381 ha (63%) for growing red gram and are distributed in major part the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 196 ha (32%) and are distributed in the southern, western and southeastern part of the microwatershed. They have minor limitations of gravelliness and calcareousness. Marginally suitable lands (Class S3) occupy a very small area of about 16 ha (3%) and occur in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Crop requirem	ent	Rating					
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)		
Slope	%	<3	3-5	5-10	>10		
LGP	Days	>210	180-210	150-180	<150		
Soil drainage	Class	Well drained	Mod.well drained	Imperfectly drained	Poorly drained		
Soil reaction	pН	6.5-7.5	5.0-6.5,7.6-8.0	8.0-9.0	>9.0		
Sub Surface soil texture	Class	l, scl, sil, cl,sl	sicl, sic, $c(m)$	ls			
Soil depth	Cm	>100	75-100	50-75	<50		
Gravel content	% vol.	<15	15-35	3-60	>60		
Salinity (EC)	dsm ⁻¹	<1.0	1.0-2.0	>2.0			
Sodicity (ESP)	%	<10	10-15	>15			

 Table 7.7 Land suitability criteria for Red gram

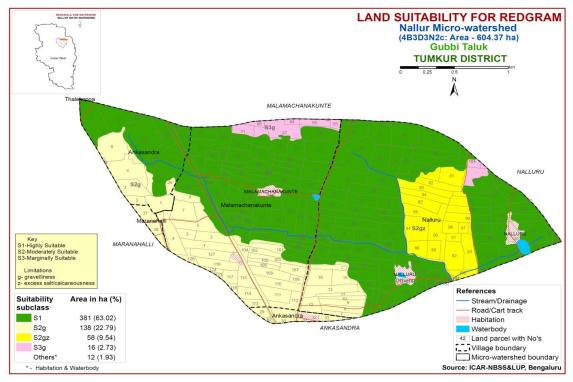


Fig. 7.6 Land Suitability map of Redgram

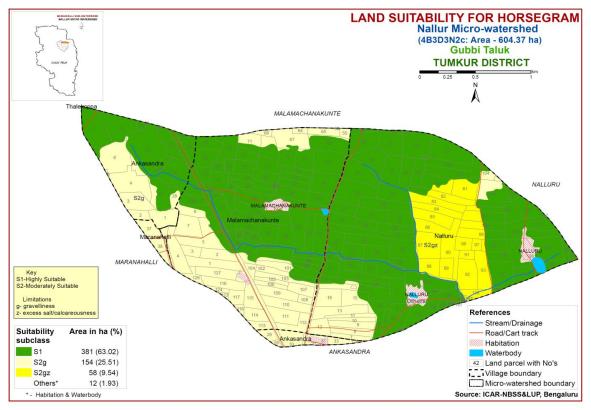
7.7 Land suitability for Horse gram (Macrotyloma uniflorum)

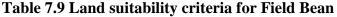
Horse gram is the most important pulse crop grown in an area of 1.8 lakh ha in almost all the districts of the State. The crop requirements for growing horse gram were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing horse gram (Table 7.8) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Fig. 7.7.

Major area of about 381 ha (63%) is highly suitable (Class S1) for growing horse gram and are distributed in major part the microwatershed. An area of about 212 ha (35%) is moderately suitable (Class S2) and are distributed in the southern, western and southeastern part the microwatershed with minor limitations of gravelliness and calcareousness.

Crop requirem	ent	Rating						
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable (N)			
Slope	%	<3	3-5	5-10	>10			
LGP	Days							
Soil drainage	Class	Welldrained/mod. well drained	imperfectly drained	Poorly drained	VeryPoorly drained			
Soil reaction	pН	6.0-8.5	8.5-9.0,5.5-5.9	9.1-9.5,5.0-5.4	>9.5			
Surface soil texture	Class	l, sl, scl, cl, sc	Ls, sic, sicl, c, ls	Heavy clays (>60%)	-			
Soil depth	Cm	50-75	25-50	<25	-			
CaCO ₃ in root zone	%vol.	<15	15-25	25-30	>30			
Salinity (ECe)	dsm ⁻¹	<1.0	1.0-2.0	>2.0				
Sodicity (ESP)	%	<10	10-15	>15	-			

 Table 7.8 Land suitability criteria for Horse gram




Fig. 7.7 Land Suitability map of Horse gram

7.8 Land suitability for Field Bean (Dolichos lablab)

Field Bean is the most important pulse crop grown in an area of 0.59 lakh ha in almost all the districts of the State. The crop requirements (Table 7.9) for growing field bean were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing field bean was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Fig. 7.8.

An area of about 381 ha (63%) is highly suitable (Class S1) for growing field bean and are distributed in the major part the microwatershed. An area of about 196 ha (32%) is moderately suitable (Class S2) and are distributed in the southern, western and southeastern part of the microwatershed with minor limitations of gravelliness and calcareousness. Marginally suitable lands (Class S3) for growing field bean occupy a small area of about 16 ha (3%) and occur in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Crop requirem	ent	Rating					
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)		
Slope	%	<3	3-5	5-10	>10		
LGP	Days	>120	90-120	70-90	<70		
Soil drainage	il drainage Class Welldrained/r welldraine		imperfectly drained	Poorly drained	Very Poorly drained		
Soil reaction	pН	6.0-8.5	8.5-9.0,5.5-5.9	9.1-9.5,5.0-5.4	>9.5		
Sub Surface soil texture	Class	l, sl, scl, cl, sc	sic, sicl, c	Heavy clays (>60%), ls	S		
Soil depth	Cm	>75	50-75	25-50	<25		
$\begin{array}{c c} CaCO_3 & in root & \% \\ zone & & vol. \end{array}$		<15	15-35	35-50	>50		
Salinity (EC)	dsm ⁻¹	<1.0	1.0-2.0	>2.0			
Sodicity (ESP)	%	<10	10-15	15-20	>20		

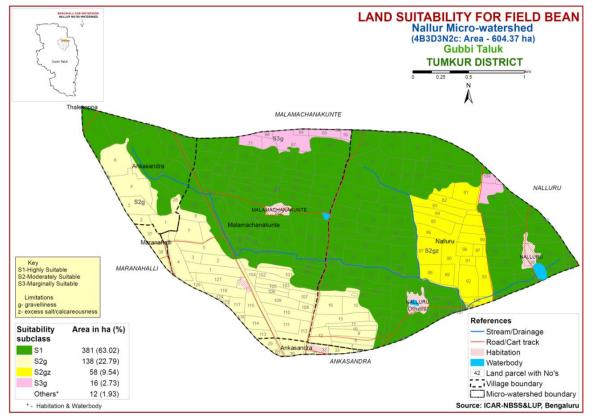


Fig. 7.8 Land Suitability map of Field bean

7. 9 Land Suitability for Cowpea (Vigna radiata)

Cowpea is the most important pulse crop grown in an area of 0.80 lakh ha in almost all the districts of the State. The crop requirements for growing cowpea were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing cowpea was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.9.

Highly suitable (Class S1) lands occupy major area of about 381 ha (63%) is for growing Cowpea and are distributed in the major part of the microwatershed. An area of

about 196 ha (32%) is moderately suitable (Class S2) and are distributed in the southern, central and eastern part of the microwatershed. They have minor limitations of gravelliness and calcareousness. Marginally suitable lands (Class S3) occupy an area of about 16 ha (3%) and occur in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

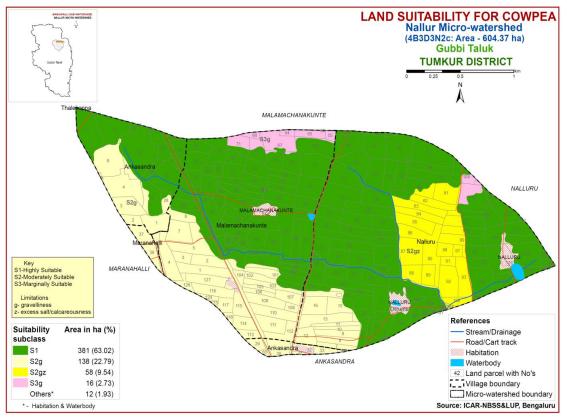


Fig. 7.9 Land Suitability map of Cowpea

7.10 Land Suitability for Groundnut (Arachis hypogaea)

Groundnut is one of the major oilseed crop grown in an area of 6.54 lakh ha in Karnataka in most of the districts either as rainfed or irrigated crop. The crop requirements for growing groundnut (Table 7.10) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing groundnut was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.10.

An area of about 24 ha (4%) is highly suitable (Class S1) for growing groundnut and are distributed in the northwestern part the microwatershed. Maximum area of about 512 ha (85%) is moderately suitable (Class S2) for growing groundnut and are distributed in all parts of the microwatershed. They have minor limitations of gravelliness and texture. Marginally suitable (Class S3) lands occupy an area of about 58 ha (9%) and are distributed in the southeastern part of the microwatershed with moderate limitations of texture and calcareousness.

Crop requiren	nent		Rating	5	>10 Poorly				
Soil–site characteristics	Unit	Unit Highly Moderately suitable (S1) suitable (S2)		Marginally suitable (S3)					
Slope	%	<3	3-5	5-10	>10				
LGP	Days	100-125	90-105	75-90					
Soil drainage	Class	Well drained	Mod. Well drained	Imperfectly drained	Poorly drained				
Soil reaction	pН	6.0-8.0	8.1-8.5, 5.5-5.9	>8.5, <5.5					
Surface soil texture	Class	l, cl, sil, sc, sicl	Sc, sic, c,	S, ls, sl c (>60%)	S, fragmental				
Soil depth	Cm	>75	50-75	25-50	<25				
Gravel content	%vol.	<35	35-50	>50					
CaCO ₃ in root zone	%	high	Medium	low					
Salinity (EC)	dSm ⁻¹	<2.0	2.0-4.0	4.0-8.0					
Sodicity (ESP)	%	<5	5-10	>10					

Table 7.10 Crop suitability criteria for Groundnut

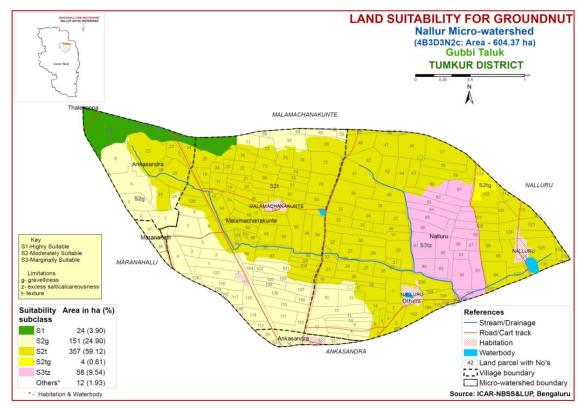


Fig. 7.10 Land Suitability map of Groundnut

7.11 Land Suitability for Sunflower (Helianthus annus)

Sunflower is the most important oilseed crop grown in an area of 3.56 lakh ha in the State in all the districts. The crop requirements for growing sunflower (Table 7.11) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sunflower was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.11.

Major area of about 381 ha (63%) is highly suitable (Class S1) for growing sunflower and are distributed in the major part of the microwatershed. An area of about 196 ha (32%) is moderately suitable (Class S2) lands and are distributed in the southern, western and southeastern part of the microwatershed with minor limitations of gravelliness and calcareousness. Marginally suitable lands (Class S3) for growing sunflower occupy a small area of about 16 ha (3%) and occur in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Crop requirem	ent	Rating					
Soil–site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable (S3)	Not suitable (N)		
Slope	%	<3	3-5	5-10	>10		
LGP	Days	>90	80-90	70-80	<70		
Soil drainage	Class	Well drained	Mod. well rained	Imperfectly drained	Poorly drained		
Soil reaction	pН	6.5-8.0	8.1-8.5, 5.5-6.4	8.6-9.0, 4.5-5.4	>9.0, <4.5		
Surface soil texture	Class	l, cl, sil, sc	Scl, sic, c,	c (>60%), sl	ls, s		
Soil depth	Cm	>100	75-100	50-75	<50		
Gravel content	% vol.	<15	15-35	35-60	>60		
Salinity (EC)	dSm ⁻¹	<1.0	1.0-2.0	>2.0			
Sodicity (ESP)	%	<10	10-15	>15			

Table 7.11 Crop suitability criteria for Sunflower

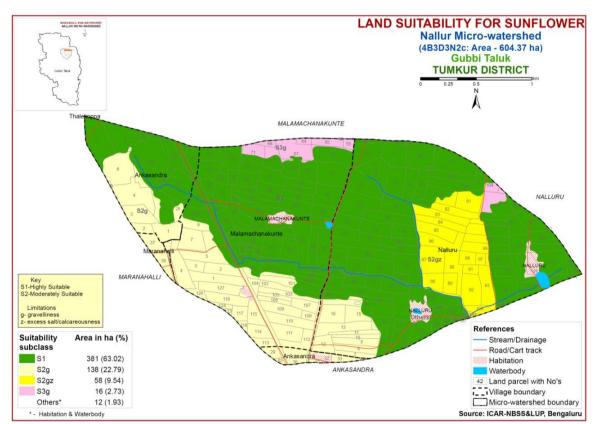


Fig. 7.11 Land Suitability map of Sunflower

7.12 Land Suitability for Onion (Allium cepa)

Onion is the most important vegetable crop grown in Raichur, Dharwad, Belgaum, Gulbarga, Bijapur, Bidar, Bellary, Chitradurga and Tumakuru districts. The crop requirements for growing onion (Table 7.12) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Onion was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.12.

Highly suitable (Class S1) lands occupy an area of about 69 ha (11%) and are distributed in the northwestern, northern and eastern part of the microwatershed. Maximum area of about 508 ha (84%) has soils that are moderately suitable (Class S2) with minor limitations of gravelliness, texture and calcareousness. They are distributed in all parts of the microwatershed. The marginally suitable (Class S3) lands cover a small area of about 16 ha (3%) and occur in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Crop requirem	ent		Ratin	g	
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable(S3)	Not suitable (N)
Mean temperature in growing season	⁰ c	20-30	30-35	35-40	>40
Slope	%	<3	3-5	5-10	>10
Soil drainage	Class	Well drained	Moderately /imperfectly	Poor drained	Very poorly drained
Soil reaction	pН	6.5-7.3	7.3-7.8,5.0-5.4	7.8-8.4,<5.0	>8.4
Surface soil texture	Class	Scl, sil, sl	sc, sicl, c (red soil)	sc, c (black soil)	ls
Soil depth	Cm	>75	50-75	25-50	<25
Gravel content	% vol.	<15	15-35	35-60	60-80
Salinity (ECe)	dsm ⁻¹	<1.0	1.0-2.0	2.0-4.0	<4
Sodicity (ESP)	%	<5	5-10	10-15	>15

 Table 7.12 Land suitability criteria for Onion



Fig. 7.12 Land Suitability map of Onion

7.13 Land Suitability for Chilli (*Capscicum annuum L*.)

Chilli is the most important commercial crop grown in an area of 0.42 lakh ha in the State in all the districts. The crop requirements for growing Chilli (Table 7.13) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Chilli was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.13.

Major area of about 381 ha (63%) has soils that are highly suitable (Class S1) and are distributed in major part of the microwatershed. An area of about 196 ha (32%) has soils that are moderately suitable (Class S2) with minor limitations of gravelliness and calcareousness. They are distributed in the southern, western and southeastern part of the microwatershed. The marginally suitable (Class S3) lands cover a small area of about 16 ha (3%) and occur in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Crop requirem	nent]	Rating	
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable (N)
Slope	%	<3	3-5	5-10	
LGP	Days	>150	120-150	90-120	<90
Soil drainage	class	Well drained	Mod.to mperfectly drained	Poor drained/excessively	Very poorly drained
Soil reaction	pН	6.0-7.0	7.1-8.0	8.1-9.0,5.0-5.9	>9.0
Surface soil texture	Class	L, scl, cl, sil	sl, sc,sic,c (m/k)	C(ss), ls, s	
Soil depth	Cm	>75	50-75	25-50	<25
Gravel content	%vol.	<15	15-35	>35	
Salinity (ECe)	dsm ⁻¹	<1.0	1.0-2.0	2.0-4.0	<4
Sodicity (ESP)	%	<5	5-10	10-15	

 Table 7.13 Land suitability criteria for chillies

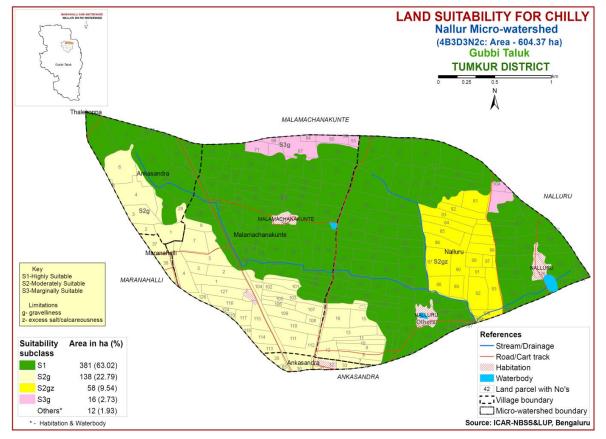


Fig. 7.13 Land Suitability map of Chilli

7.14 Land suitability for Brinjal (Solanum melongena)

Brinjal is the most important vegetable crop grown in all the districts. The crop requirements for growing Brinjal (Table 7.14) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Brinjal was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.14.

Highly suitable (Class S1) lands occupy major area of about 381 ha (63%) and are distributed in the western, southern and northeastern part of the microwatershed. An area of about 196 ha (32%) has soils that are moderately suitable (Class S2) with minor limitations of texture, wetness and rooting depth. They are distributed in the eastern and central part of the microwatershed. The marginally suitable (Class S3) lands cover an area of about 16 ha (3%) and occur in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Croj	o requirement		Rating				
Soil –site cł	naracteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable(S3)	Not suitable(N)	
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	V. Poorly drained	
Nutrient	Texture	Class	Sl, scl, cl, sc	C (red)	Ls, c (black)	-	
availability	pН	1:2.5	6.0-7.3	7.3-8.4, 5.5-6.0	8.4-9.0	>9.0	
Decting	Soil depth	Cm	>75	50-75	25-50	<25	
Rooting conditions	Gravel content	% vol.	<15	15-35	35-60	>60	
Erosion	Slope	%	0-3	3-5	5-10	>10	

Table 7.14 Land suitability criteria for Brinjal

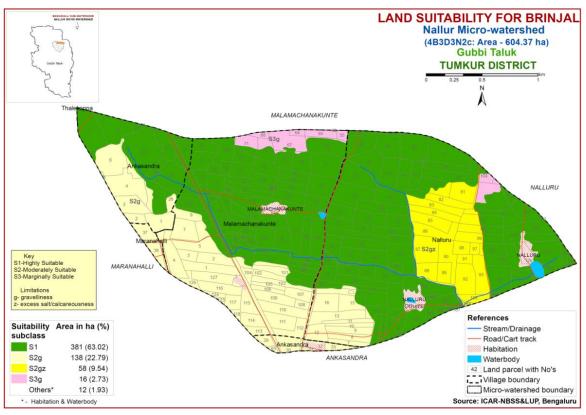


Fig. 7.15 Land Suitability map of Brinjal

7.15 Land suitability for Tomato (Lycopersicon esculentum)

Tomato is the most important fruit crop grown in an area of 0.65 lakh ha in almost all the districts of the State. The crop requirements for growing Tomato (Table 7.15) were

matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Tomato was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.15.

Maximum area of about 381 ha (63%) has soils that are highly suitable (Class S1) and are distributed in major part of the microwatershed. An area of about 196 ha (32%) has soils that are moderately suitable (Class S2) with minor limitations of gravelliness and calcareousness. They are distributed in the southern, western and southeastern part of the microwatershed. The marginally suitable (Class S3) lands cover an area of about 16 ha (3%) and occur in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Cro	o requirement		Rating					
Soil –site cł	naracteristics	Unit	Highly suitable(S1)	Moderately suitable (S2)	Marginally suitable(S3)	Not suitable(N)		
climate	Temperature in growing season	⁰ c	25-28	29-32 20-24	15-19 33-36	<15 >36		
Soil moisture	Growing period	Days	>150	120-150	90-120			
Soil aeration	Soil drainage	class	Well drained	Moderately well drained	Poorly drained	V. poorly drained		
	Texture	Class	l, sl, cl, scl	Sic,sicl,sc,c(m/k)	C (ss), ls	S		
Nutrient	pН	1:2.5	6.0-7.3	5.5-6.0,7.3-8.4	8.4-9.0	>9.0		
availability	CaCO ₃ in root zone	%	Non calcareous	Slightly calcareous	Strongly calcareous			
Pooting	Soil depth	Cm	>75	50-75	25-50	<25		
Rooting conditions	Gravel content	%vol.	<15	15-35	>35			
Soil	Salinity	ds/m	Non saline	slight	strongly			
toxicity	Sodicity (ESP)	%	<10	10-15	>15	-		
Erosion	Slope	%	1-3	3-5	5-10	>10		

Table 7.15 Land suitability criteria for Tomato

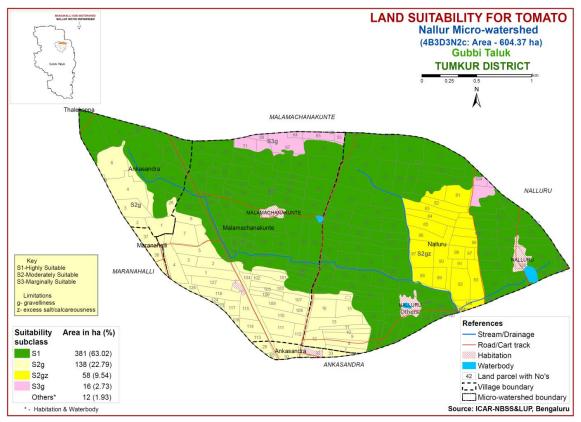


Fig. 7.15 Land Suitability map of Tomato

7.16 Land suitability for Mango (Mangifera indica)

Mango is the most important fruit crop grown in about 1.73 lakh ha area in almost all the districts of the State. The crop requirements (Table 7.16) for growing mango were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing mango was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed is given in Figure 7.16.

Major area of about 357 ha (59%) in the microwatershed is highly suitable (Class S1) for growing mango and are distributed in major part of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 220 ha (36%) and are distributed in the northwestern, western and southern part the microwatershed. They have minor limitations of gravelliness, rooting depth and calcareousness. The marginally suitable (Class S3) lands occur in an area of about 16 ha (3%) and are distributed in the southern, northeastern and northern part of the microwatershed and have moderate limitation of gravelliness.

Cro	p requirement		Rating				
Soil-site cl	haracteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
Climate	Temp. in growin gseason	⁰ C	28-32	24-27 33-35	36-40	20-24	
Soil moisture	Growing period	Days	>180	150-180	120-150	<120	
Soil	Soil drainage	Class	Well drained	Mod. To imperfectly drained	Poor drained	Very poorly drained	
aeration	Water table	Μ	>3	2.50-3.0	2.5-1.5	<1.5	
	Texture	Class	Sc, l, sil, cl	Sl, sc, sic, l, c	C (<60%)	C (>60%),	
Nutrient	pH	1:2.5	5.5-7.5	7.6-8.55.0-5.4	8.6-9.0,4.0-4.9	<4.0, >9.0	
availability	OC	%	High	medium	low		
availability	CaCO ₃ in root zone	%	Non calcareous	<5	5-10	>10	
Desting	Soil depth	cm	>200	125-200	75-125	<75	
Rooting conditions	Gravel content	%vol	Non- gravelly	<15	15-35	>35	
Soil	Salinity	dS/m	Non saline	<2.0	2.0-3.0	>3.0	
toxicity	Sodicity	%	Non sodic	<10	10-15	>15	
Erosion	Slope	%	<3	3-5	5-10		

Table 7.16 Crop suitability criteria for Mango

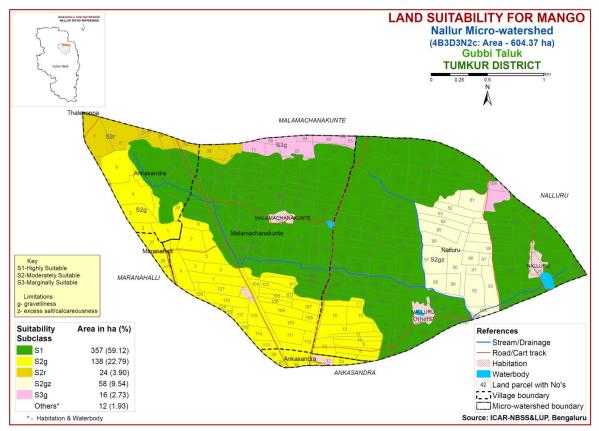


Fig. 7.16 Land Suitability map of Mango

7.17 Land suitability for Sapota (Manilkara zapota)

Sapota is the most important fruit crop grown in an area of 29373 ha in almost all the districts of the State. The crop requirements (Table 7.17) for growing sapota were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sapota was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.17.

Highly suitable (Class S1) lands occupy an area of about 381 ha (63%) in for growing Sapota and are distributed in the major part of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 196 ha (32%) and are distributed in the southern, western and southeastern part the microwatershed. They have minor limitations of gravelliness and calcareousness. The marginally suitable (Class S3) lands cover small area of about 16 ha (3%) and are distributed in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Cro	p requirement		Rating				
Soil –site c	haracteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
Climate	Temperature in growing season	⁰ C	28-32	33-36 24-27	37-42 20-23	>42 <18	
Soil moisture	Growing period	Days	>150	120-150	90-120	<120	
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Imperfectly drained	Poorly drained	
Natura	Texture	Class	Scl, l, cl,sil	Sl, sicl, sc	C (<60%)	ls, s, C (>60%)	
Nutrient	pН	1:2.5	6.0-7.5	7.6-8.0,5.0-5.9	8.1-9.0,4.5-4.9	<4.5, >9.0	
availability	CaCO ₃ in root zone	%	Non calcareous	<10	10-15	>15	
Docting	Soil depth	Cm	>150	75-150	50-75	<50	
Rooting conditions	Gravel content	% vol.	Non gravelly	<15	15-35	<35	
Soil	Salinity	dS/m	Non saline	Up to 1.0	1.0-2.0	2.0-4.0	
toxicity	Sodicity	%	Non sodic	10-15	15-25	>25	
Erosion	Slope	%	<3	3-5	5-10	>10	

Table 7.17 Crop suitability criteria for Sapota

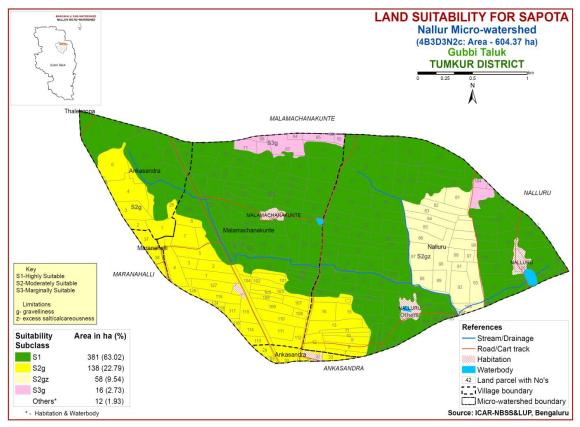


Fig. 7.18 Land Suitability map of Sapota

7.18 Land suitability for Guava (Psidium guajava)

Guava is the most important fruit crop grown in an area of 6558 ha in almost all the districts of the State. The crop requirements (Table 7.18) for growing guava were matched with the soil-site characteristics (7.1) and a land suitability map for growing guava was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.18.

An area of about 155 ha (27%) in the microwatershed is highly suitable (Class S1) for growing guava and are distributed in major part of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 173 ha (30%) for growing guava and are distributed in the southern, western and southeastern part and have minor limitations of gravelliness, texture and calcareousness. The marginally suitable (Class S3) lands cover an area of about 223 ha (39%) and are distributed in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Crop	requirement		Rating				
Soil –site ch	aracteristics	Unit	Highly suitable(S1)	Moderately suitable (S2)	Marginally suitable(S3)	Not suitable(N)	
Climate	Temperature in growing season	⁰ C	28-32	33-36 24-27	37-42 20-23		
Soil moisture	Growing period	Days	>150	120-150	90-120	<90	
Soil aeration	Soil drainage	Class	Well drained	Mod. to imperfectly	poor	Very poor	
Nutrient	Texture	Class	Scl, l, cl, sil	Sl,sicl,sic.,sc,c	C (<60%)	C (>60%)	
availability	pН	1:2.5	6.0-7.5	7.6-8.0:5.0-5.9	8.1-8.5:4.5-4.9	>8.5:<4.5	
availability	CaCO ₃ in root zone	%	Non calcareous	<10	10-15	>15	
Desting	Soil depth	Cm	>100	75-100	50-75	<50	
Rooting conditions	Gravel content	% vol.	<15	15-35	>35		
Soil	Salinity	dS/m	<2.0	2.0-4.0	4.0-6.0		
toxicity	Sodicity	%	Non sodic	10-15	15-25	>25	
Erosion	Slope	%	<3	3-5	5-10	>10	

Table 7.18 Crop suitability criteria for Guava

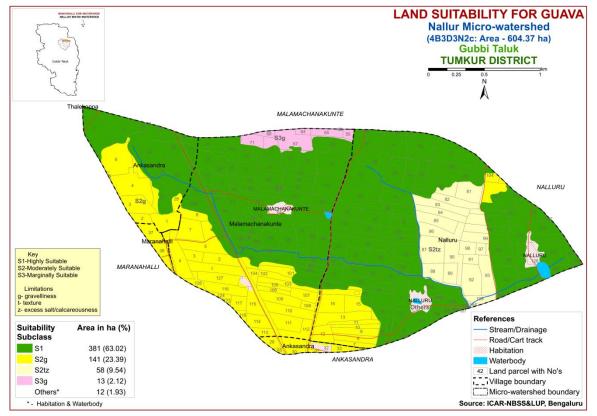


Fig. 7.18 Land Suitability map of Guava

7.19 Land Suitability for Pomegranate (*Punica granatum*)

Pomegranate is one of the commercially grown fruit crop in Karnataka in an area of 0.18 lakh ha mainly in Bijapur, Bagalkot, Koppal, Gadag and Chitradurga districts. The crop requirements for growing pomegranate (Table 7.19) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing pomegranate was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.19.

Highly suitable (Class S1) lands occupy an area of about 381 ha (63%) for growing pomegranate and are distributed in major part of the microwatershed. An area of about 196 ha (32%) is moderately suitable (Class S2) and are distributed in the southern, western and southeastern part of the microwatershed. They have minor limitations of gravelliness and calcareousness. Marginally suitable (Class S3) lands for growing pomegranate occupy a small area of about 16 ha (3%) and are distributed in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Cre	p requirement	•	Rating				
	haracteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
Climate	Temperature in growing season	⁰ C	30-34	35-38 25-29	39-40 15-24		
Soil moisture	Growing period	Days	>150	120-150	90-120	<90	
Soil aeration	Soil drainage	class	Well drained	imperfectly drained			
Nutrient availability	Texture	Class	Sl, scl, l, cl	C, sic, sicl	Cl, s, ls	S, fragmental	
	рН	1:2.5	5.5-7.5	7.6-8.5	8.6-9.0		
Rooting	Soil depth	Cm	>100	75-100	50-75	<50	
conditions	Gravel content	% vol.	nil	15-35	35-60	>60	
Soil	Salinity	dS/m	Nil	<9	>9	<50	
toxicity	Sodicity	%	nil				
Erosion	Slope	%	<3	3-5	5-10		

 Table 7.19 Crop suitability criteria for Pomegranate

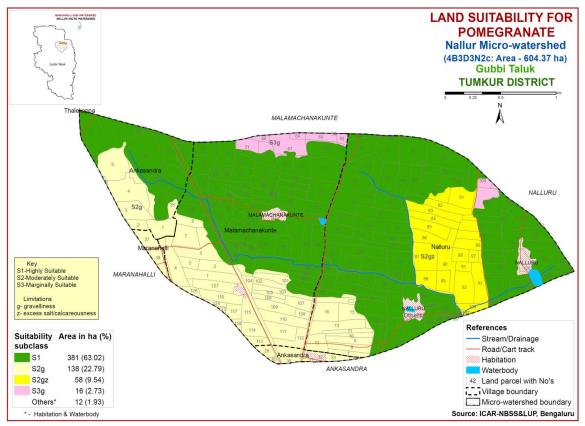


Fig. 7.19 Land Suitability map of Pomegranate

7.20 Land Suitability for Banana (Musa paradisiaca)

Banana is one of the major fruit crop grown in an area of 1.02 lakh ha in Karnataka State. The crop requirements for growing banana (Table 7.20) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing banana was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.20.

Maximum area of about 381 ha (63%) has soils that are highly suitable (Class S1) for growing banana and are distributed in major part of the microwatershed. An area of about 196 ha (32%) has soils that are moderately suitable (Class S2) with minor limitations of gravelliness and calcareousness. They are distributed in the southern, western and southeastern part of the microwatershed. The marginally suitable (Class S3) lands cover an area of about 16 ha (3%) and occur in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Cro	p requirement		Rating			
Soil -site c	haracteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)
Climate	Temperature in growing season	⁰ C	26-33	34-36 24-25	37-38	>38
Soil aeration	Soil drainage	Class	Well drained	Moderately to imperfectly drained	Poorly drained	Very poorly drained
Nutrient	Texture	Class	l,cl, scl,sil	Sicl, sc, c(<45%)	C (>45%), sic, sl	ls, s
availability	pН	1:2.5	6.5-7.0	7.1-8.5,5.5-6.4	>8.5, <5.5	
Rooting	Soil depth	Cm	>125	76-125	50-75	<50
conditions	Stoniness	%	<10	10-15	15-35	>35
Soil	Salinity	dS/m	<1.0	1-2	>2	
toxicity	Sodicity	%	<5	5-10	10-15	>15
Erosion	Slope	%	<3	3-5	5-15	>15

Table 7.20 Crop suitability criteria for Banana

Fig. 7.20 Land Suitability map of Banana

7.21 Land Suitability for Jackfruit (Artocarpus heterophyllus)

Jackfruit is the most important fruit crop grown in 5368 ha in all the districts of the state. The crop requirements for growing jackfruit were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing jackfruit (Table 7.21)

was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.21.

Highly suitable (Class S1) lands occupy an area of about 381 ha (63%) is for growing Jackfruit and are distributed in the major part of the microwatershed. An area of about 196 ha (32%) is moderately suitable (Class S2) for growing Jackfruit and are distributed in the southern, western and southeastern part of the microwatershed. They have minor limitations of gravelliness and calcareousness. Marginally suitable (Class S3) lands for growing Jackfruit occupy a small area of about 16 ha (3%) and are distributed in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Cro	p requirement		Rating			
Soil –site c	haracteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)
Soil aeration	Soil drainage	class	well	Mod. well	Poorly	V. Poorly
Nutrient	Texture	Class	Scl, cl, sc, c (red)	-	Sl, ls, c (black)	-
availability	pН	1:2.5	5.5-7.3	5.0-5.5, 7.3-7.8	7.8-8.4	>8.4
Decting	Soil depth	Cm	>100	75-100	50-75	<50
Rooting conditions	Gravel content	% vol.	<15	15-35	35-60	>60
Erosion	Slope	%	0-3	3-5	>5	-

Table 7.21 Land suitability criteria for Jackfruit

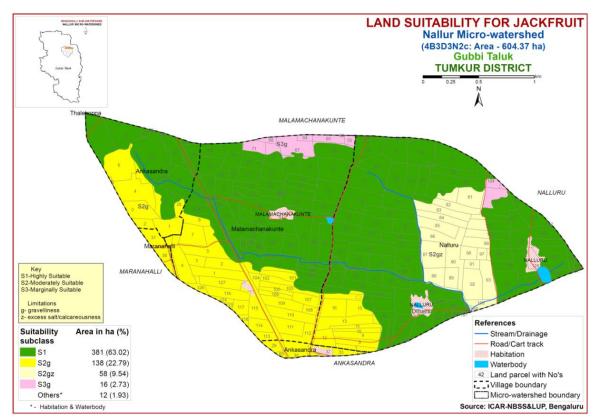


Fig. 7.21 Land Suitability map of Jackfruit

7.22 Land Suitability for Jamun (Syzygium cumini)

Jamun is an important fruit crop grown in almost all the districts of the State. The crop requirements for growing jamun were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing jamun (Table .22) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.22.

Major area of about 357 ha (59%) is highly suitable (Class S1) for growing Jamun and are distributed in the major part of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 220 ha (36%) and are distributed in the southern, western and southeastern part of the microwatershed and have minor limitations of gravelliness and calcareousness. Marginally suitable (Class S3) lands for growing Jamun occupy a small area of about 16 ha (3%) and are distributed in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Cro	op requirement		Rating			
Soil –site c	Soil –site characteristics Unit		Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)
Soil aeration	Soil drainage	Class	Well	Mod. well	Poorly	V.Poorly
Nutrient	Texture	Class	Scl, cl, sc, C (red)	Sl, C (black)	ls	-
availability	pН	1:2.5	6.0-7.8	5.0-6.0	7.8-8.4	>8.4
Decting	Soil depth	Cm	>150	100-150	50-100	<50
Rooting conditions	Gravel content	% vol.	<15	15-35	35-60	>60
Erosion	Slope	%	0-3	3-5	5-10	>10

 Table .22
 Land suitability criteria for jamun

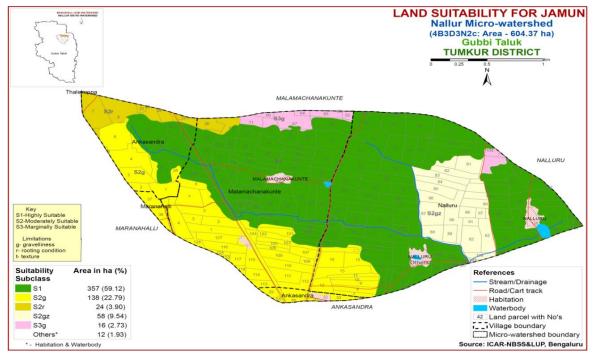


Fig. 7.22 Land Suitability map of Jamun

7.23 Land Suitability for Musambi (Citrus limetta)

Musambi is the most important fruit crop grown in an area of 5446 ha in almost all the districts of the state. The crop requirements for growing musambi were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing musambi (Table 7.23) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.23.

Maximum area of about 381 ha (63%) has soils that are highly suitable (Class S1) for growing musambi and are distributed in major part of the microwatershed. An area of about 196 ha (32%) has soils that are moderately suitable (Class S2) with minor limitations of gravelliness and calcareousness. They are distributed in the southern, western and southeastern part of the microwatershed. The marginally suitable (Class S3) lands cover a small area of about 16 ha (3%) and occur in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Crop	requirement	t	Rating					
	Soil –site characteristics		Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)		
Soil aeration	Soil drainage	Class	Well drained	Mod. To imperfectly drained	poorly	Very poorly		
Nutrient	Texture	Class	Scl, l, sicl, cl, s	Sc, sc, c	C(>70%)	S, ls		
availability	pН	1:2.5	6.0-7.5	5.5-6.47.6-8.0	4.0-5.4 8.1-8.5	<4.0 >8.5		
Rooting	Soil depth	Cm	>150	100-150	50-100	<50		
conditions	Gravel content	% vol.	Non gravelly	15-35	35-55	>55		
Erosion	Slope	%	<3	3-5	5-10			

Table 7.23 Crop suitability criteria for Musambi

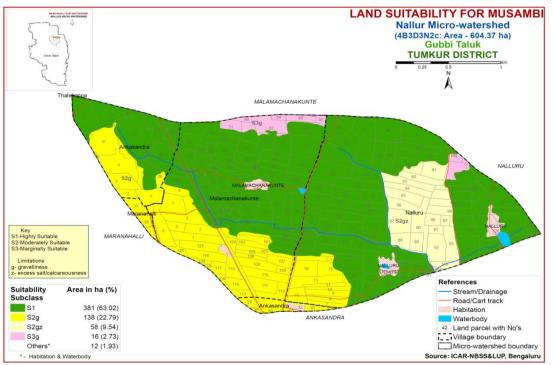


Fig. 7.23 Land Suitability map of Musambi

7.24 Land Suitability for Lime (*Citrus sp*)

Lime is one of the most important fruit crop grown in an area of 11752 ha in almost all the districts of the State. The crop requirements for growing lime (Table 7.24) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing lime was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7. 24.

Highly suitable (Class S1) lands occupy an area of about 381 ha (63%) for growing lime and are distributed in the major part of the microwatershed. An area of about 196 ha (32%) is moderately suitable (Class S2) and are distributed in the southern, western and southeastern part of the microwatershed. They have minor limitations of gravelliness and calcareousness. Marginally suitable (Class S3) lands occupy a small area of about 16 ha (3%) and are distributed in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Cro	p requirement		Rating				
	haracteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable(N)	
Climate	Temperature in growing season	⁰ C	28-30	31-35 24-27	36-40 20-23	>40 <20	
Soil moisture	Growing period	Days	240-265	180-240	150-180	<150	
Soil aeration	Soil drainage	Class	Well drained	Mod. to imperfectly drained	poorly	Very poorly	
	Texture	Class	Scl, l, sicl, cl, s	Sc, sc, c	C(>70%)	S , 1s	
Nutrient availability	pН	1:2.5	6.0-7.5	5.5-6.47.6- 8.0	4.0-5.4 8.1-8.5	<4.0 >8.5	
	CaCO ₃ in root zone	%	Non 34calcareous	Upto 5	5-10	>10	
Rooting	Soil depth	Cm	>150	100-150	50-100	<50	
conditions	Gravel content	% vol.	Non gravelly	15-35	35-55	>55	
Soil	Salinity	dS/m	Non saline	Upto 1.0	1.0-2.5	>2.5	
toxicity	Sodicity	%	Non sodic	5-10	10-15	>15	
Erosion	Slope	%	<3	3-5	5-10		

 Table 7.24 Crop suitability criteria for Lime

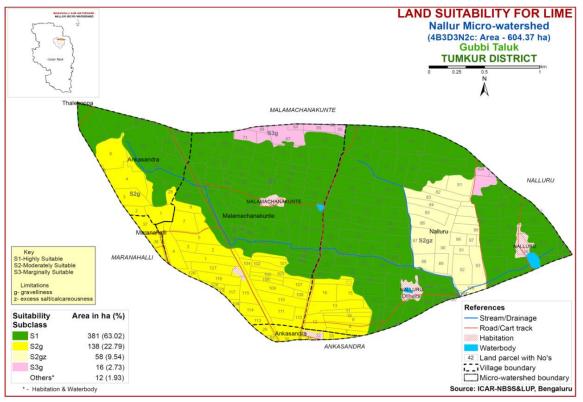


Fig. 7.24 Land Suitability map of Lime

7.25 Land Suitability for Cashew (Anacardium occidentale)

Cashew is one of the most important fruit crop grown in an area of 7052 ha in almost all the districts of the State. The crop requirements for growing cashew were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing cashew (Table 7.25) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.25.

Maximum area of about 381 ha (63%) has soils that are highly suitable (Class S1) for growing cashew and are distributed in major part of the microwatershed. An area of about 196 ha (32%) has soils that are moderately suitable (Class S2) with minor limitations of gravelliness and calcareousness. They are distributed in the southern, western and southeastern part of the microwatershed. The marginally suitable (Class S3) lands cover a small area of about 16 ha (3%) and occur in small patches in the northeastern, central and northern part of the microwatershed with moderate limitation of gravelliness.

Cro	op requirement		Rating			
Soil –site characteristics		Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable(N)
Soil	Soil drainage	Class	Well	Mod. well	Poorly	V.Poorly
aeration			drained	drained	drained	drainage
Nutrient	Texture	Class				
	pН	1:2.5	5.5-6.5	5.0-5.5	7.3-7.8	>7.8
availability				6.5-7.3		
Desting	Soil depth	Cm	>100	75-100	50-75	<50
Rooting	Gravel content	%	<15	15-35	35-60	>60
conditions		vol.				
Erosion	Slope	%	0-3	3-10	>10	

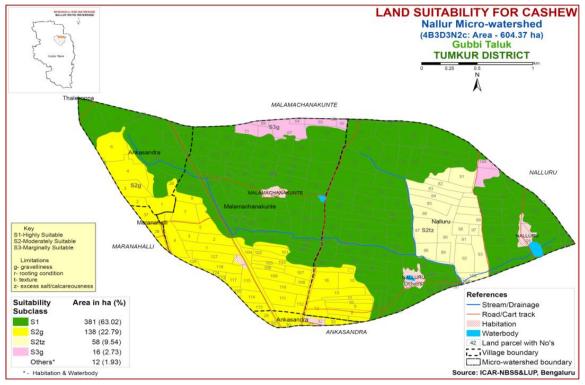


Fig. 7.25 Land Suitability map of Cashew

7.26 Land Suitability for Custard Apple (Annona reticulata)

Custard apple is one of the most important fruit crop grown in almost all the districts of the State. The crop requirements for growing custard apple were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing custard apple (Table 26) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.26.

Maximum area of 439 ha (73%) is highly suitable (Class S1) for growing custard apple and are distributed in major part of the microwatershed. An area of about 154 ha (26%) has soils that are moderately suitable (Class S2) for growing custard apple with minor limitation of gravelliness and are distributed in the northern, northeastern, western and southern part of the microwatershed.

Crop	o requirement		Rating				
Soil –site ch	Soil –site characteristics		Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable(N)	
Soil	Soil	Class	Well	Mod. well	Poorly	V. Poorly	
aeration	drainage		drained	drained	drained	drained	
Nutrient	Texture	Class	Scl, cl, sc, c (red), c (black)	-	Sl, ls	-	
availability	рН	1:2.5	6.0-7.3	7.3-8.4	5.0-5.5 8.4-9.0	>9.0	
Desting	Soil depth	Cm	>75	50-75	25-50	<25	
Rooting conditions	Gravel content	% vol.	<15-35	35-60	60-80	-	
Erosion	Slope	%	0-3	3-5	>5		

 Table 7.26 Land suitability criteria for Custard apple

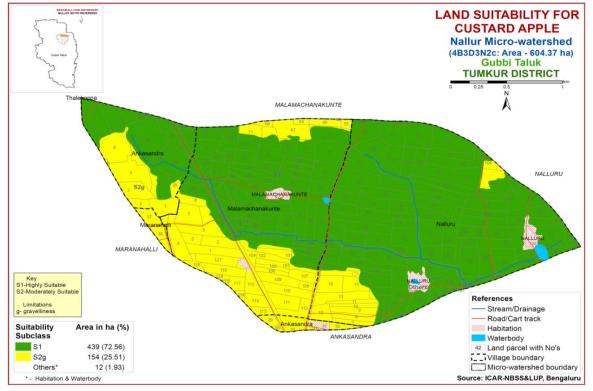


Fig. 7.26 Land Suitability map of Custard Apple

7.27 Land Suitability for Amla (*Phyllanthus emblica*)

Amla is one of the medicinal and fruit crop grown in almost all the districts of the State. The crop requirements for growing amla were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing amla (Table 7.27) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.27.

Major area of 438 ha (73%) is highly suitable (Class S1) for growing amla and are distributed in the major part of the microwatershed. An area of about 154 ha (26%) has

soils that are moderately suitable (Class S2) with minor limitation of gravelliness and are distributed in the northern, northeastern, western and southern part of the microwatershed.

Crop require	ement		Rating			
Soil –site characteristics		Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable(N)
Soil	Soil drainage	Class	Well	Mod.well	Poorly	V. Poorly
aeration			drained	drained	drained	drained
Nutrient	Texture	Class	Scl, cl, sc, c (red)	C (black)	ls, sl	-
availability	pH	1:2.5	5.5-7.3	5.0-5.5	7.8-8.4	>8.4
Desting	Soil depth	Cm	>75	50-75	25-50	<25
Rooting conditions	Gravel content	%	<15-35	35-60	60-80	
conditions		vol.				
Erosion	Slope	%	0-3	3-5	5-10	>10

Table 7. 27 Land suitability criteria for Amla

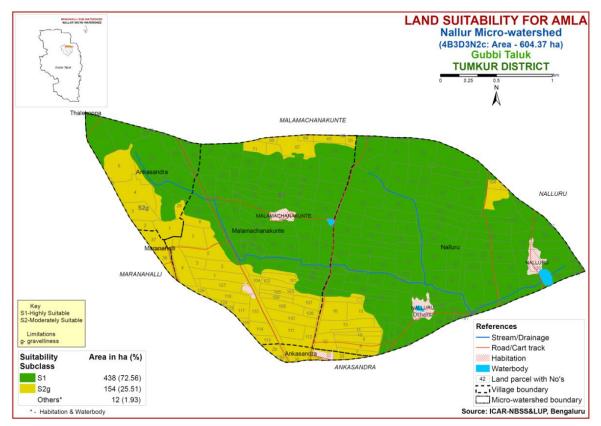


Fig. 7.27 Land Suitability map of Amla

7.28 Land Suitability for Tamarind (Tamarindus indica)

Tamarind is the most important spice crop grown in 14897 ha in all the districts of the state. The crop requirements for growing tamarind were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing tamarind (Table 7.28) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Fig. 7.28.

Major area of about 357 ha (59%) is highly suitable (Class S1) for growing tamarind and are distributed in the major part of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 220 ha (36%) and are distributed in the southern, western and southeastern part of the microwatershed and have minor limitations of gravelliness, rooting depth and calcareousness. Marginally suitable (Class S3) lands occupy a small area of about 16 ha (3%) and are distributed in small patches in the northeastern and northern part of the microwatershed with moderate limitation of gravelliness.

Crop	requirement			Rating				
	Soil –site characteristics		Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable(N)		
Soil	Soil	Class	Well	Mod.well	Poorly	V.Poorly		
aeration	drainage		drained	drained	drained	drained		
	Texture	Class	Scl, cl,sc, c	Sl, c (black)	ls	-		
Nutrient			(red)					
availability	pH	1:2.5	6.0-7.3	5.0-6.0	7.8-8.4	>8.4		
				7.3-7.8				
Decting	Soil depth	Cm	>150	100-150	75-100	<50		
Rooting conditions	Gravel	%	<15	15-35	35-60	60-80		
conditions	content	vol.						
Erosion	Slope	%	0-3	3-5	5-10	>10		

Table 7.28 Land suitability criteria for Tamarind

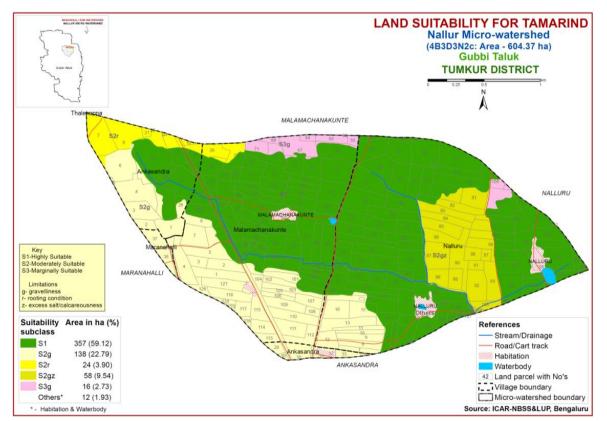


Fig. 7.28 Land Suitability map of Tamarind

7.29 Land suitability for Marigold (Tagetes sps.)

Marigold is the most important flower crop grown in an area of 9108 ha in almost all the districts of the state. The crop requirements (Table 7.29) for growing marigold were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing marigold was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.29.

An area of about 381 ha (63%) is highly suitable (Class S1) for growing Marigold and are distributed in major part of the microwatershed. An area of about 209 ha (34%) is moderately suitable (Class S2) and are distributed in the northern, western, southern and southeastern part of the microwatershed. They have minor limitations of gravelliness and calcareousness. Marginally suitable (Class S3) lands occupy a very small area of about 4 ha (1%) and are distributed in northeastern part of the microwatershed. They have moderate limitation of gravelliness.

Croj	o requirement		Rating				
Soil –site cl	naracteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable(N)	
	Temperature		18-23	17-15	35-40	>40	
Climate	in growing season			24-35	10-14	<10	
Soil	Soil	Class	Well drained	Moderately	Imperfectly	Poorly	
aeration	drainage			well drained	drained	drained	
	Texture	Class	l ,sl, scl, cl,	sicl, sc, sic,	С	ls, s	
			sil	c			
Nutrient	pH	1:2.5	7.0-7.5	5.5-5.9	<5	-	
availability				7.6-8.5	>8.5		
	CaCO ₃ in	%	Non	Slightly	Strongly	-	
	root zone		calcareous	calcareous	calcareous		
Rooting	Soil depth	Cm	>75	50-75	25-50	<25	
conditions	Gravel	%	<15	15-35	>35	-	
conditions	content	vol.					
Soil	Salinity	ds/m	Non saline	Slightly	Strongly	-	
toxicity	Sodicity (ESP)	%	<10	10-15	>15	-	
Erosion	Slope	%	1-3	3-5	5-10	-	

Table 7.29 Land suitability criteria for Marigold

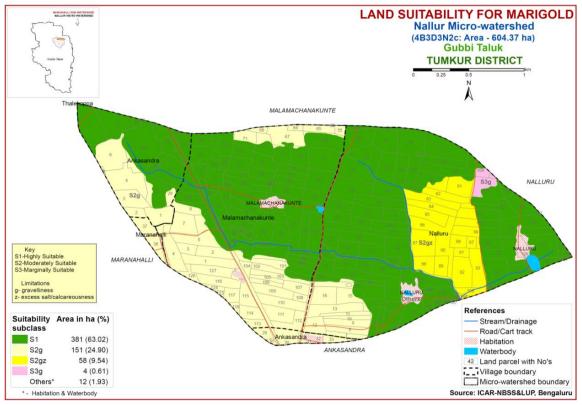


Fig. 7.29 Land Suitability map of Marigold

7.30 Land Suitability for Chrysanthemum (Dendranthema grandiflora)

Chrysanthemum is the most important flower crop grown in an area of 803 ha in almost all the districts of the State. The crop requirements (7.30) for growing chrysanthemum were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing chrysanthemum was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.30.

Major area of about 381 ha (63%) is highly suitable (Class S1) for growing Chrysanthemum and are distributed in major part of the microwatershed. An area of about 209 ha (34%) is moderately suitable (Class S2) and are distributed in the northern, western, southern and southeastern part of the microwatershed. They have minor limitations of gravelliness and calcareousness. Marginally suitable (Class S3) lands occupy a very small area of about 4 ha (1%) and are distributed in the northeastern part of the microwatershed. They have moderate limitation of gravelliness.

Croj	o requirement		Rating				
Soil –site cl	naracteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable(N)	
	Temperature		18-23	17-15	35-40	>40	
Climate	in growing			24-35	10-14	<10	
	season						
Soil	Soil	Class	Well drained	Moderately	Imperfectly	Poorly	
aeration	drainage			well drained	drained	drained	
	Texture	Class	l ,sl, scl, cl,	sicl, sc, sic,	С	ls, s	
			sil	с			
Nutrient	pН	1:2.5	7.0-7.5	5.5-5.9	<5		
availability				7.6-8.5	>8.5		
	CaCO ₃ in	%	Non	Slightly	Strongly		
	root zone		calcareous	calcareous	calcareous		
Rooting	Soil depth	Cm	>75	50-75	25-50	<25	
conditions	Gravel	%	<15	15-35	>35		
conditions	content	vol.					
Soil	Salinity	ds/m	Non saline	slightly	strongly		
	Sodicity	%	<10	10-15	>15	-	
toxicity	(ESP)						
Erosion	Slope	%	1-3	3-5	5-10		

Table 7.30 Land suitability criteria for Chrysanthemum

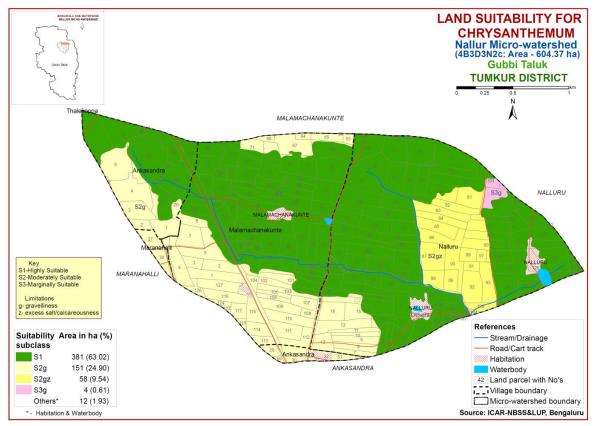


Fig. 7.30 Land Suitability map of Chrysanthemum

7. 31 Land Suitability for Jasmine (Jasminum sp.)

Jasmine is the most important flower crop grown in an area of 803 ha in almost all the districts of the State. The crop requirements (Table 7.31) for growing Jasmine were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Jasmine was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.31.

Highly suitable (Class S1) lands occupy major area of about 381 ha (63%) for growing Jasmine and are distributed in major part of the microwatershed. An area of about 209 ha (34%) is moderately suitable (Class S2) for growing Jasmine and are distributed in the northwestern, northern and southeastern part of the microwatershed. They have minor limitations of gravelliness and calcareousness. Marginally suitable (Class S3) lands occupy a very small area of about 4 ha (1%) and are distributed in the northeastern part of the microwatershed with moderate limitation of gravelliness.

Crop requir	rement		Rating				
Soil –site cl	naracteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable(N)	
	Temperature		18-23	17-15	35-40		
Climate	in growing season			24-35	10-14		
Soil	Soil	Class	Well drained	Moderately	Imperfectly	Poorly	
aeration	drainage			drained	drained	drained	
	Texture	Class	Scl, l, scl, cl,	sicl, sc, sic,	C(ss),	ls, s	
			sil	c (m/k)			
Nutrient	pН	1:2.5	6.0-7.5	5.5-5.9	<5		
availability				7.6-8.5	>8.5		
	CaCO ₃ in	%	Non	Slightly	Strong		
	root zone		calcareous	calcareous	calcareous		
Rooting	Soil depth	Cm	>75	50-75	25-50	<25	
conditions	Gravel	%	<15	15-35	>35		
conditions	content	vol.					
Soil	Salinity	ds/m	Non saline	Slight	Strongly		
toxicity	Sodicity	%	Non sodic	Slight	Strongly		
Erosion	Slope	%	1-3	3-5	5-10		

 Table 7.31 Land suitability criteria for jasmine (irrigated)

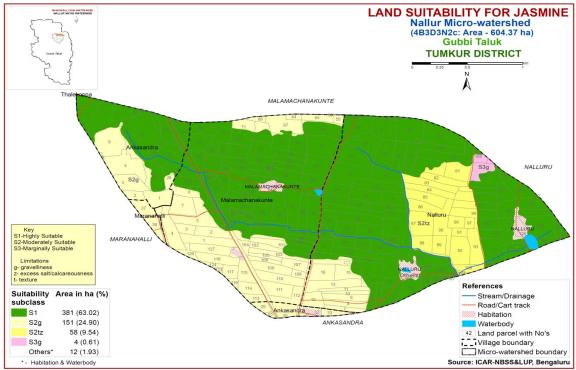


Fig. 7.31 Land Suitability map of Jasmine

7.32 Land Suitability for Coconut (Cocos nucifera)

Coconut is the most important nut crop grown in almost all the districts of the State. The crop requirements (7.32) for growing Coconut were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Coconut was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.32.

Maximum area of about 381 ha (63%) is highly suitable (Class S1) for growing coconut and are distributed in the major part the microwatershed. An area of about 196 ha (32%) is moderately suitable (Class S2) for growing Coconut and are distributed in the southern, western and southeastern part the microwatershed. They have minor limitations of gravelliness and calcareousness. Marginally suitable lands (Class S3) occupy a small area of about 16 ha (3%) and occur in small patches in the northeastern and northern part of the microwatershed with moderate limitation of gravelliness.

Crop requiren	nent	Rating							
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable(N)				
Slope	%	0-3	3-5	5-10	>10				
Soil drainage	class	Well drained	Mod. drained	Poorly	Very poorly				
Soil reaction	pН	5.1-6.5	6.6-7.5	7.6-8.5	-				
Surface soil texture	Class	Sc, cl, scl	C (red), sl	C (black), ls	-				
Soil depth	Cm	>100	75-100	50-75	<50				
Gravel content	% vol.	<15	15-35	35-60	>60				

 Table 7. 32 Land suitability criteria for Coconut

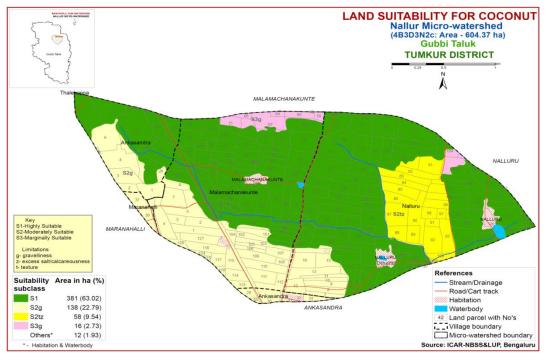


Fig. 7.32 Land Suitability map of Coconut

7.33 Land Suitability for Arecanut (Areca catechu)

Arecanut is the most important nut crop grown in almost all the districts of the State. The crop requirements (7.33) for growing Areca nut were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Arecanut was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.33.

Highly suitable (Class S1) lands occupy maximum area of about 381 ha (63%) for growing arecanut and are distributed in the major part the microwatershed. An area of about 196 ha (32%) is moderately suitable (Class S2) for growing arecanut and are distributed in the southern, western and southeastern part of the microwatershed. They have minor limitations gravelliness and calcareousness. Marginally suitable lands (Class S3) occupy a small area of about 16 ha (3%) and occur in small patches in the northeastern and northern part of the microwatershed with moderate limitation of gravelliness.

Crop requirem	ent	Rating					
Soil –site characteristics Unit		Highly suitable S1	Moderately suitable S2	Marginally suitable S3	Not suitable N		
Slope	%	0-3	3-5	5-10	>10		
Soil drainage	class	Well drained	Mod. to poorly drained	-	Very poorly		
Soil reaction	pН	5.0-6.5	6.6-7.5	7.6-8.5			
Surface soil texture	Class	Sc, cl, scl	C (red), sl	C (black), ls	-		
Soil depth	Cm	>100	75-100	50-75	<50		
Gravel content	% vol.	<15	15-35	35-60	>60		

Table 7.33 Land suitability criteria for Arecanut

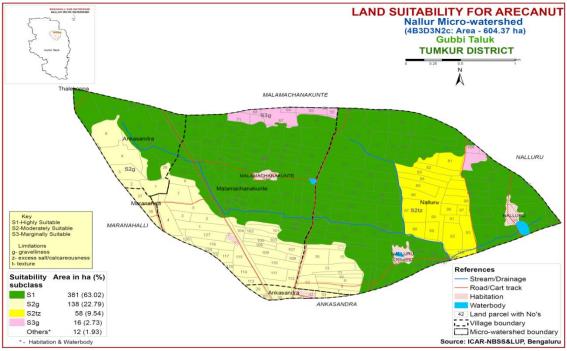


Fig. 7.33 Land Suitability map of Areca nut

7.34 Land Suitability for Mulbery (Morus nigra)

Mulbery is the most important crop grown in about 1.66 lakh ha in all the districts of the state. The crop requirements for growing mulbery (Table 7.34) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing mulbery was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.11.

There are no highly suitable (Class S1) lands for growing mulbery. Moderately suitable (Class S2) lands occupy maximum area of about 223 ha (37%) and occur in the northern, western and southern part of the microwatershed. They have minor limitations of gravelliness and texture. Marginally suitable lands cover an area of about 370 ha (61%) and occur in the northern and central part of the microwatershed. They have moderate limitation of texture.

Table 34 Land suitability criteria for Mulberry								
Crop	requirement	ţ	Rating					
		Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)		
Soil	Soil	Class	Well drained	Moderately	Poorly	V. Poorly		
aeration	drainage			well drained	drained	drained		
Nutrient	Texture	Class	Sc, cl, scl	C (red)	C (black), sl, ls	-		
availability	pН	1:2.5						
Desting	Soil depth	Cm	>100	75-100	50-75	<50		
Rooting conditions	Gravel content	% vol.	0-35	35-60	60-80	>80		
Erosion	Slope	%	0-3	3-5	5-10	>10		

Table 34 Land suitability criteria for Mulberry

Note: Suitability evaluation only for Mulberry leaf not for Silk worm rearing

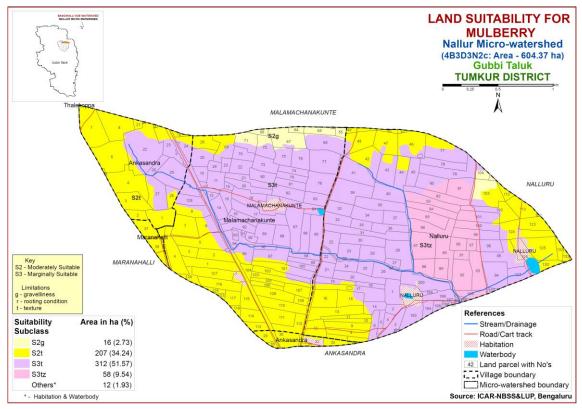


Fig. 7.33 Land Suitability map of Mulbery

7.35 Land Use Classes (LUCs)

The 13 soil map units identified in Nallur microwatershed have been regrouped into 4 Land Use Classes (LUC's) for the purpose of preparing a Proposed Crop Plan. Land Use Classes are grouped based on the similarities in respect of the type of soil, the depth of the soil, the surface soil texture, gravel content, AWC, slope, erosion etc. and a Land Use Classes map (Fig.7.35) has been generated. These Land Use Classes are expected to behave similarly for a given level of management.

The map units that have been grouped into 4 land use classes along with brief description of soil and site characteristics are given below.

LUC NO.	Managing Units	Soil map units	Soil and site characteristics
1	6, 1	HLKhB1 MNLhB2	Deep to very deep (100->150 cm), red sandy clay loam soils with slopes of 1-3 % and slight to moderate erosion
2	7, 8, 9	BGPcA1 BGPhB1 BGPiA1	Very deep (>150 cm), black calcareous clayey soils with slopes of 1-3%, gravelly (15-35%) and slight erosion
3	11, 12, 13	KDTcA1 KDTcB1 KDThB1	Very deep (>150 cm), sandy loam to sandy clay loam with slopes of 0-3% and slight erosion
4	2, 3, 4, 5, 10	BPRcA1 NGPcA1 NGPhB1 NGPhB2 NDLcB1	Deep to very deep (100->150 cm), gravelly sandy loam to sandy clay loam soils with slopes of 1-3% and slight to moderate erosion

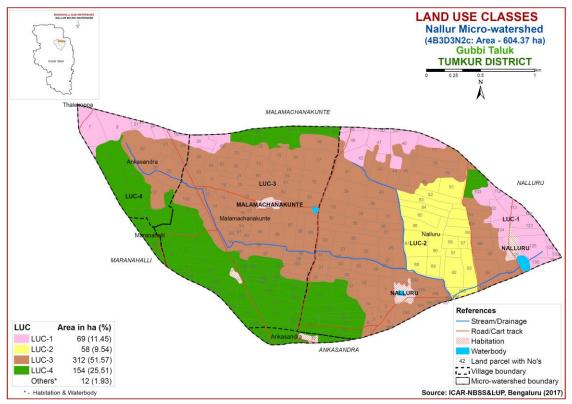


Fig. 7.35 Land Use Classes Map- Nallur Microwatershed

7.34 Proposed Crop Plan for Nallur Microwatershed

After assessing the land suitability for the 34 crops, the proposed crop plan has been prepared for the 4 identified LUCs by considering only the highly (Class S1) and moderately (Class S2) suitable lands for each of the 34 crops. The resultant proposed crop plan is presented below in Table 7.35.

LUC No	Mapping Units	Survey Number	Soil and site characteristics	Field Crops	Forestry/ Grasses	Horticulture Crops with suitable interventions	Suitable Intervention s
LUC-1 (69 ha.)	6, 1	Ankasandra: 7,8,19,20,21 Malamachanakunte: 26,69 Nalluru: 42,46,47,48,49,50,51,102, 103,112,113,122,123,124, 125,130,131, 132,133	Deep to very deep (100- >150 cm), red sandy clay loam soils with slopes of 1-3 % and slight to moderate erosion	paddy, Maize, Sorghum,	Neem, Silver Oak Grasses Styloxanthes hamata, Styloxanthes Scabra, Hybrid Napier, Sesbania,	Vegetables: Onion, Tomato, Brinjal Chillies, Coriander, Drumstick Flower crops: Chrysanthemum, Jasmine, China aster, Marigold, Crossandra Fruit crops/ Plantation crops: Mango, Sapota, Guava, Cashew, Pomegranate Jackfruit, Musambi, Arecanut, Coconut	Summer ploughing, cultivation on raised beds with mulches,
LUC-2 (58 ha.)	7, 8, 9	Nalluru: 81,82,83,84,85,86,87,88, 89,90,91,92,93,97,98,100, 184	with slopes of 1-3%,	Sole crops: Sorghum, Sunflower, Fodder sorghum, Redgram, Field bean, Horse gram Intercropping: Redgram+Fodder sorghum	Hebbevu, Silveroak Grasses: Styloxanthes hamata, Styloxanthes scabra, Hybrid napier	Vegetables: Brinjal, Chillies, Cucurbits Flower crops: Marigold, Chrysanthemum Fruit crops: Pomegranate, Tamarind, Custard Apple, Amla, Lime, Musambi	Application of gypsum, FYM and micronutrien ts, drip irrigation, Mulching, suitable conservation practises
LUC-3 (312 ha.)	11, 12, 13	Ankasandra: 22,23,24,25,26,27 Malamachanakunte: 10,11,12,13,14,15,16,17,1	Very deep (>150 cm), sandy loam to sandy clay loam soils with slopes of 0- 3% and slight erosion	-	Hebbevu, Silveroak Grasses: Styloxanthes	Vegetables: Brinjal, Tomato, Chillies, Cucurbits Flower crops:	Application of FYM and micronutrien ts, drip

Table 7.35 Proposed Crop Plan for Nallur Microwatershed

		8,19,20,21,22,23,24,25,66		Intercropping:	hamata,	Marigold,	irrigation,
		, 70, 72, 73, 74, 75, 76, 77, 78,		Redgram+Fodder sorghum	Styloxanthes	Chrysanthemum	mulching,
		79,80,81,82,83,84,85,86,			scabra,	Fruit crops/	use of
		87,88,89,90,91,92,93,94,			Hybrid napier	Plantation crops:	medium
		95, 96, 97, 98, 99, 100, 128				Pomegranate,	duration
		Nalluru:				Tamarind, Custard	varieties,
		1,2,3,4,5,6,14,17,18,19,20				Apple, Amla, Lime,	suitable
		,21,22,23,24,25,26,27,28,				Musambi, Arecanut,	conservation
		29,30,31,32,33,34,35,36,				Coconut	practises
		37,38,39,40,41,43,44,45,					
		77,78,79,80,94,95,96,99,					
		101,127,157,185,187,192,					
		193,194,195,196,197,198,					
		199,200,STREAM					
LUC-4	2, 3, 4, 5,	Ankasandra:	Deep to very deep (100-	Sole Crop: Maize, Ragi,	Neem, Silver	Vegetables: Onion,	Drip
(154	10	1,2,3,4,5,6,28,29,30,31,33			Oak	Tomato, Brinjal	irrigation,
ha.)		,34,65	loam to sandy clay loam		Grasses	Chillies, Coriander,	Mulching,
		Malamachanakunte:	soils with slopes of 1-3%		Styloxanthes	Drumstick	suitable
		1,2,3,4,5,6,7,8,55,56,64,6	and slight to moderate		hamata,	Flower crops:	conservation
		5,67,68,71,101,102,103,1	erosion	Intercropping:	Styloxanthes	Chrysanthemum,	practices
		04,105,106,107,108,109,1		Redgram+Fodder sorghum	Scabra,	Jasmine, China aster,	(Crescent
		10,111,		Ragi+Cowpea	Hybrid	Marigold	Bunding
		112,113,114,115,116,		Ragi+Redgram	Napier,	Fruit crops/	with Catch
		117,118,123,124,126,127		Ragi+Fieldbean	Sesbania,	Plantation crops:	Pit etc)
		Nalluru:				Mango, Sapota,	
		7,8,9,10,11,12,13,15,16,1				Guava, Cashew,	
		04,TANK				Custard apple, Amla,	
						Pomegranate,	
						Jackfruit, Musambi,	
						Arecanut, Coconut	

SOIL HEALTH MANAGEMENT

8.1 Soil Health

Soil is fundamental to crop production. Without soil, no food could be produced nor would livestock be fed on a large scale. Because it is finite and fragile, soil is a precious resource that requires special care from its users.

Soil health or the capacity of the soil to function is critical to human survival. Soil health has been defined as: "the capacity of the soil to function as a living system without adverse effect on the ecosystem". Healthy soils maintain a diverse community of soil organisms that help to form beneficial symbiotic associations with plant roots, recycle essential plant nutrients, improve soil structure with positive repercussions for soil, water and nutrient holding capacity and ultimately improve crop production and also contribute to mitigating climate change by maintaining or increasing its carbon content.

Functional interactions of soil biota with organic and inorganic components, air and water determine a soil's potential to store and release nutrients and water to plants and to promote and sustain plant growth. Thus, maintaining soil health is vital to crop production and conserve soil resource base for sustaining agriculture.

The most important characterististics of a healthy soil are

- ➢ Good soil tilth
- Sufficient soil depth
- Good water storage and good drainage
- Adequate supply, but not excess of nutrients
- Large population of beneficial organisms
- Small proportion of plant pathogens and insect pests
- Low weed pressure
- Free of chemicals and toxins that may harm the crop
- Resistance to degradation
- Resilience when unfavourable conditions occur

Characteristics of Nallur Microwatershed

- The soil phases identified in the microwatershed belonged to the soil series of KDT 312 ha (52%), NGP 137 ha (23%), BGP 58 ha (10%), HLK 46 ha (8%), MNL 24 ha (4%), NDL 13 ha (2%) and BPR 4 ha (1%).
- As per land capability classification, entire area in the microwatershed falls under arable land category (Class II & III). The major limitations identified in the arable lands were soil and erosion.

On the basis of soil reaction, maximum area of about 413 ha (68%) is slightly acid to moderately and strongly acid (pH 5.0 -6.5). A very small area of about 15 ha (2%) is slightly alkaline (pH 7.3-7.8) and 165 ha (27%) is neutral (pH 6.5-7.3).

* Soil Health Management

The following actions are required to improve the current land husbandry practices that provide a sound basis for the successful adoption of sustainable crop production system.

Alkaline soils

(Slightly alkaline to moderately alkaline soils)

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers (Azospirullum, Azatobacter, Rhizobium).
- 3. Application of 25% extra N and P (125 % RDN&P).
- 4. Application of $ZnSO_4 12.5$ kg/ha (once in three years).
- 5. Application of Boron 5kg/ha (once in three years).

Neutral soils

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers, (Azospirullum, Azotobacter, Rhizobium).
- 3. Application of 100 per cent RDF.
- 4. Need based micronutrient applications.

Besides the above recommendations, the best transfer of technology options are also to be adopted.

Acid soils

(Slightly acid to strongly acid soils)

- 1. Application of lime in the form of calcium carbonate or limestone (CaCO₃)
- 2. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 3. Use of rock phosphate (30-50 % of CaO, which helps in improving soil pH).
- 4. Application of basic fertilizers (Sodium nitrate, basic slag etc, reduces acidity in acid soils)

Besides the above recommendations, the best transfer of technology options are also to be adopted.

Soil Degradation

Soil erosion is one of the major factor affecting the soil health in the microwatershed. Out of total 604 ha area in the microwatershed, an area of about 92 ha is suffering from moderate erosion. These areas need immediate soil and water conservation and, other land development and land husbandry practices for restoring soil health.

Dissemination of information and Communication of benefits

Any large scale implementation of soil health management requires that supporting information is made available widely, particularly through channels familiar to farmers and extension workers. Given the very high priority attached to soil health especially by the Central Government on issuing Soil-Health Cards to all the farmers, media outlets like Regional, State and National Newspapers, Radio and Dooradarshan programs in local languages but also modern information and communication technologies such as Cellular phones and the Internet, which can be much more effective in reaching the younger farmers.

Inputs for Net Planning (Saturation Plan) and Interventions needed

Net planning in IWMP is focusing on preparation of

- 1. Soil and Water Conservation Plans for each plot or farm.
- 2. Productivity enhancement measures/ interventions for existing crops/livestock/other farm enterprises.
- 3. Diversification of farming mainly with perennial horticultural crops and livestock.
- 4. Improving livelihood opportunities and income generating activities.

In this connection, how various outputs of Sujala-III are of use in addressing these objectives of Net Planning (Saturation plan) are briefly presented below.

- Soil Depth: The depth of a soil decides the amount of moisture and nutrients it can hold, what crops can be taken up or not, depending on the rooting depth and the length of growing period available for raising any crop. Deeper the soil, better for a wide variety of crops. If sufficient depth is not available for growing deep rooted crops, either choose medium or short duration crops or deeper planting pits need to be opened and additional good quality soil brought from outside has to be filled into the planting pits.
- Surface soil texture: Lighter soil texture in the top soil means, better rain water infiltration, less run-off and soil moisture conservation, less capillary rise and less evaporation losses. Lighter surface textured soils are amenable to good soil tilth and are highly suitable for crops like groundnut, root vegetables (carrot, raddish, potato etc) but not ideal for crops that need stagnant water like lowland paddy. Heavy textured soils are poor in water infiltration and percolation. They are prone for sheet erosion; such soils can be improved by sand mulching. The technology that is developed by the AICRP-Dryland Agriculture, Vijayapura, Karnataka can be adopted.

- Gravelliness: More gravel content is favorable for run-off harvesting but poor in soil moisture storage and nutrient availability. It is a significant parameter that decides the kind of crop to be raised.
- Land Capability Classification: The land capability map shows the areas suitable and not suitable for agriculture and the major constraints in each of the plot/survey number. Hence, one can decide what kind of enterprise is possible in each of these units. In general, erosion and soil are the major constraints in Nallur microwatershed.
- Organic Carbon: The OC content is medium (0.5-0.75%) in about 65 ha (10%) area and low (<0.5%) in about 528 ha (87%). The areas that are low and medium in OC needs to be further improved by applying farmyard manure and rotating crops with cereals and legumes or mixed cropping.
- Promoting green manuring: Growing of green manuring crops costs Rs. 1250/ha (green manuring seeds) and about Rs. 2000/ha towards cultivation that totals to Rs. 3250/- per ha. On the other hand, application of organic manure @ 10 tons/ha costs Rs. 5000/ha. The practice needs to be continued for 2-3 years or more. Nitrogen fertilizer needs to be supplemented by 25% in addition to the recommended level in 65 ha area where OC is medium (0.5-0.75%) and 528 ha is low (<0.5%). For example, for rainfed maize, recommended level is 50 kg N per ha and an additional 12 kg /ha needs to be applied for all the crops grown in these plots.</p>
- ✤ Available Phosphorus: An entire area in the microwatershed is high (>57 kg/ha) in available phosphorus.
- Available Potassium: Available potassium is medium in maximum area of 482 ha (80%) in the microwatershed, 30 ha (5%) is high (>337 kg/ha) and 80 ha (13 %) is low (<145 kg/ha) in available potassium. Hence, areas where available potassium is low and medium, for all the crops, additional 25 % potassium may be applied.</p>
- Available Sulphur: Available sulphur is a very critical nutrient for oilseed crops. Medium in 586 ha (97%) and low in an area of about 7 ha (1%). These areas need to be applied with magnesium sulphate or gypsum or Factamphos (p) fertitilizer (13% sulphur) for 2-3 years for the deficiency to be corrected.
- Available Boron: Available boron is medium in an area of 262 ha (43%) and low in 330 ha (55%) in the microwatershed. These areas need to be applied with sodium borate @ 10 kg/ha as soil application or 0.2% borax as foliar application to correct the boron deficiency.
- **Available Iron:** Entire area is sufficient in available iron in the microwatershed.
- Available Manganese and Available Copper: Entire area in the microwatershed is sufficient for both available manganese and copper.
- Available Zinc: It is deficient (<0.6 ppm) in 187 ha (31%) area of the microwatershed. Application of zinc sulphate @ 25 kg/ha is to be recommended and about 406 ha (67%) area is sufficient (>0.6 ppm) in available Zinc.

- ✤ Soil acidity: The microwatershed has 413 ha (68%) area with soils that are slightly to moderately and strongly acid. These areas need application of lime (Calcium Carbonate).
- Land Suitability for various crops: Areas that are highly, moderately and marginally suitable for growing various crops are indicated. Along with the suitability, various constraints that are limiting the productivity are also indicated. For example, in case of cotton, gravel content, rooting depth and salinity/alkalinity are the major constraints in various plots. With suitable management interventions, the productivity can be enhanced. In order to increase water holding capacity of light textured soils, growing of green manure crops and application of organic manure is recommended.

Chapter 9

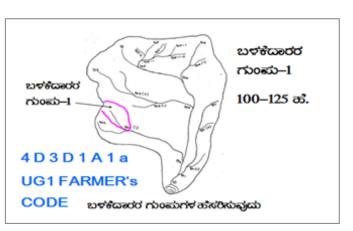
SOIL AND WATER CONSERVATION TREATMENT PLAN

For preparing soil and water conservation treatment plan for Nallur microwatershed, the land resource inventory database prepared under Sujala-III project has been transformed as information through series of interpretative (thematic) maps using soil phase map as a base. The various thematic maps (1:7920 scale) prepared were

- ➢ Soil depth
- Surface soil texture
- Soil gravelliness
- Available water capacity
- Soil slope
- Soil erosion
- Land capability
- Present land use and land cover
- ➢ Crop suitability
- ➢ Rainfall
- ➢ Hydrology
- ➢ Water Resources
- Socio-economic data
- Contour plan with existing features- network of waterways, pothissa boundaries, cut up/ minor terraces etc.
- Cadastral map (1:7920 scale)
- Satellite imagery (1:7920 scale)

Apart from these, Hand Level/ Hydro Marker/ Dumpy Level/ Total Station and Kathedars' List has to be collected.

Steps for Survey and Preparation of Treatment Plan


The boundaries of Land User Groups' and Survey No. boundaries are traced in the

field.

- Naming of user groups and farmers
- Identification of arable and non arable lands
- Identification of drainage lines and gullies
- Identification of non treatable areas
- Identification of priority areas in the arable lands
- Treatment plan for arable lands
- Location of water harvesting and recharge structures

9.1 Treatment Plan

The treatment plan recommended for arable lands is briefly described below.

9.1.1 Arable Land Treatment A. BUNDING

Steps fo	or Survey and Preparation of		USER GROUP-1					
	Treatment Plan							
Cadastra	l map (1:7920 scale) is enlarged		CLASSIFICATION OF GULLIES					
to a scale	e of 1:2500 scale	X	ಕೊರಕಲಿನ ವರ್ಗೀಕರಣ					
boundari lines/ wa marked o	network of waterways, pothissa es, grass belts, natural drainage tercourse, cut ups/ terraces are on the cadastral map to the scale e lines are demarcated into	UPPER REACH MIDDLE REACH						
Small gullies	(up to 5 ha catchment)	LOWER REACH	POINT OF CONCENTRATION					
Medium gullies	(5-15 ha catchment)							
Ravines	(15-25 ha catchment) and	1						
Halla/Nala	(more than 25ha catchment)	1						

Measurement of Land Slope

Land slope is estimated or determined by the study and interpretation of contours or by measurement in the field using simple instruments like Hand level or Hydromarker.

Vertical and Horizontal intervals between bunds as recommended by the Watershed Development Department.

Slope percentage	Vertical interval (m)	Corresponding Horizontal Distance (m)
2 - 3%	0.6	24
3 - 4%	0.9	21
4 - 5%	0.9	21
5 - 6%	1.2	21
6 - 7%	1.2	21

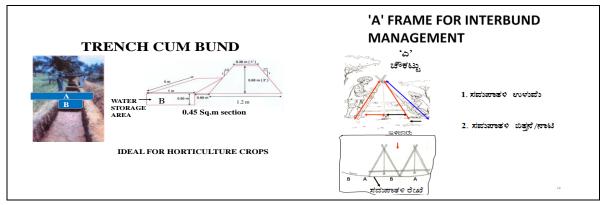
Note: i) The above intervals are maximum.

(ii) Considering the slope class and erosion status (A1... A=0-1% slope, 1= slight erosion) the intervals have to be decided.

Bund length recording: Considering the contour plan and the existing grass belts/partitions, the bunds are aligned and lengths are measured.

Section of the Bund

Bund section is decided considering the soil texture class and gravelliness class $(bg_0...b=loamy \text{ sand}, g_0=<15\%$ gravel). The recommended sections for different soils are given below.


Top width (m)	Base width (m)	Height (m)	Side slope (Z:1;H:V)	Cross section (sq m)	Soil Texture	Remarks
0.3	0.9	0.3	01:01	0.18	Sandy loam	Vegetative
0.3	1.2	0.3	1.5:1	0.225	Sandy clay	bund
0.3	1.2	0.5	0.9:1	0.375	Red gravelly soils	
0.3	1.2	0.6	0.75:1	0.45		
0.3	1.5	0.6	01:01	0.54	Red sandy loam	
0.3	2.1	0.6	1.5:1	0.72	Very shallow black soils	
0.45	2	0.75	01:01	0.92		
0.45	2.4	0.75	1.3:1	1.07	Shallow black soils	
0.6	3.1	0.7	1.78:1	1.29	Medium black soils	
0.5	3	0.85	1.47:1	1.49		

Recommended Bund Section

Formation of Trench cum Bund

Dimensions of the Borrow Pits/ Trenches to be excavated (machinery are decided considering the Bund Section).

Details of Borrow Pit dimensions are given below

Bund section	Bund length	Earth quantity			Pit		Berm (pit to pit)	Soil depth class
m ²	m	m ³	L(m)	W(m)	D(m)	QUANTITY (m ³)	m	
0.375	6	2.25	5.85	0.85	0.45	2.24	0.15	Shallow
0.45	6	2.7	5.4	1.2	0.43	2.79	0.6	Shallow
0.45	6	2.7	5	0.85	0.65	2.76	1	Moderately Shallow
0.54	5.6	3.02	5.5	0.85	0.7	3.27	0.1	Moderately shallow
0.54	5.5	2.97	5	1.2	0.5	3	0.5	Shallow
0.72	6.2	4.46	6	1.2	0.7	5.04	0.2	Moderately shallow
0.72	5.2	3.74	5.1	0.85	0.9	3.9	0.1	Moderately deep

Size of Borrow Pits/ Trench recommended for Trench cum Bund (by machinery)

B. Waterways

- a) Existing waterways are marked on the cadastral map (1:7920 scale) and their dimensions are recorded.
- b) Considering the contour plan of the MWS, additional waterways/ modernization
- of the existing ones can be thought of.
 - c) The design details are given in the Manual.

C. Farm Ponds

Waterways and the catchment area will give an indication on the size of the Farm Pond. Location of the pond can be decided based on the contour plan/ field condition and farmers' need/desire.

D. Diversion channel

Existing EPT/ CPT are marked on the cadastral map. Looking to the need, these can be modernized or fresh diversion channel can be proposed and runoff from this can be stored in Gokatte/ Recharge ponds.

9.1.2 Non-Arable Land Treatment

Depending on the gravelliness and crops preferred by the farmers, the concerned authorities can decide appropriate treatment plan. The recommended treatments may be Contour Trench, Staggered Trench, Crescent Bund, Boulder Bund or Pebble Bund are formed in the field.

9.1.3 Treatment of Natural Water Course/ Drainage Lines

- a) The cadastral map has to be updated as regards the network of drainge lines (gullies/ nalas/ hallas) and existing structures are marked to the scale and storage capacity of the existing water bodies are documented.
- b) The drainage line will be demarcated into Upper Reach, Middle Reach and Lower Reach.
- c) Considering the Catchment, Nala bed and bank conditions, suitable structures are decided.
- d) Number of storage structures (Check dam/ Nala bund/ Percolation tank) will be decided considering the commitments and available runoff from water budgeting and quality of water in the wells and site suitability.
- e) Detailed Levelling Survey using Dumpy Level / Total Station has to be carried out to arrive at the site-specific designs as shown in the Manual.
- f) The location of ground water recharge structures are decided by examining the lineaments and fracture zones from geological maps.
- g) Rainfall intensity data of the nearest Rain Gauge station is considered for Hydrologic Designs.
- h) Silt load to the Storage/Recharge structures is reduced by providing vegetative, boulder and earthern checks in the natural water course. Location and design details are given in the Manual.

9.2 Recommended Soil and Water Conservation Measures

The appropriate conservation structures best suited for each of the land parcel/ survey number (Appendix-I) are selected based on the slope per cent, severity of erosion, amount of rainfall, land use and soil type. The different kinds of conservation structures recommended are

- 1. Graded / Strengthening of Bunds
- 2. Trench cum Bunds (TCB)
- 3. Trench cum Bunds / Strengthening
- 4. Crescent Bunds

A map (Fig. 9.1) showing soil and water conservation plan with different kinds of structures recommended has been generated which shows the spatial distribution and extent of area. A maximum area of about 187 ha (31%) requires trench cum bunding, about 155 ha (26%) area is Bunding / Strengthening of existing bunds and an area of about 251 ha (41%) requires Graded Bunding. The conservation plan generated may be presented to all the stakeholders including farmers and after noting their suggestions, the conservation plan for the microwatershed may be finalised in a participatory approach.

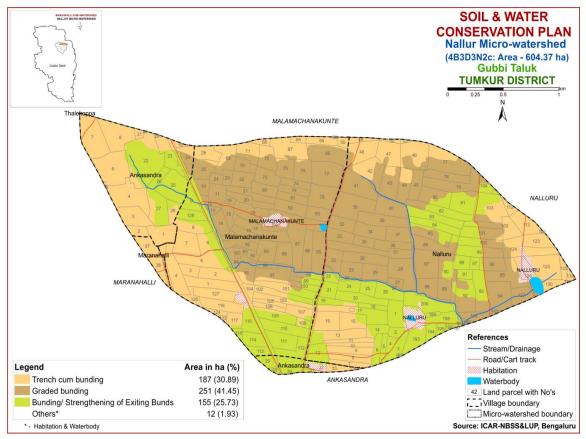


Fig. 9.1 Soil and Water Conservation Plan - Nallur Microwatershed

9.3 Greening of Microwatershed

As part of the greening programme in the watersheds, it is envisaged to plant a variety of horticultural and other tree plants that are edible, economical and produce lot of biomass which helps to restore the ecological balance in the watersheds. The lands that are suitable for greening programme are non-arable lands (land capability classes V, VI, VII and VIII) and also the lands that are not suitable or marginally suitable for growing annual and perennial crops. The method of planting these trees is given below.

It is recommended to open pits during the 1^{st} week of March along the contour and heap the dug out soil on the lower side of the slope in order to harness the flowing water and facilitate weathering of soil in the pit. Exposure of soil in the pit also prevents spread of pests and diseases due to scorching sun rays. The pits should be filled with mixture of soil and organic manure during the second week of April and keep ready with sufficiently tall seedlings produced either in poly bags or in root trainer nurseries so that planting can be done during the 2^{nd} or 3^{rd} week of April depending on the rainfall.

The tree species suitable for the area considering rainfall, temperature and adaptability is listed below; waterlogged areas are recommended to be planted with species like Neral (*Sizyzium cumini*) and Bamboo. Dry areas are to be planted with species like Honge, Bevu, Seetaphal *etc*.

	Dry D	Oeciduous Species	Temp (°C)	Rainfall(mm)
1.	Bevu	Azadiracta indica	21–32	400-1,200
2.	Tapasi	Holoptelia integrifolia	20-30	500 - 1000
3.	Seetaphal	Anona Squamosa	20-40	400 - 1000
4.	Honge	Pongamia pinnata	20 -50	500-2,500
5.	Kamara	Hardwikia binata	25 -35	400 - 1000
6.	Bage	Albezzia lebbek	20 - 45	500 - 1000
7.	Ficus	Ficus bengalensis	20 - 50	500-2,500
8.	Sisso	Dalbargia Sissoo	20 - 50	500 - 2000
9.	Ailanthus	Ailanthus excelsa	20 - 50	500 - 1000
10.	Hale	Wrightia tinctoria	25 - 45	500 - 1000
11.	Uded	Steriospermum chelanoides	25 - 45	500 - 2000
12.	Dhupa	Boswella Serrata	20 - 40	500 - 2000
13.	Nelli	Emblica Officinalis	20 - 50	500 -1500
14.	Honne	Pterocarpus marsupium	20 - 40	500 - 2000
	Moist]	Deciduous Species	Temp (°C)	Rainfall(mm)
15.	Teak	Tectona grandis	20 - 50	500-5000
16.	Nandi	Legarstroemia lanceolata	20 - 40	500 - 4000
17.	Honne	Pterocarpus marsupium	20 - 40	500 - 3000
18.	Mathi	Terminalia alata	20 - 50	500 - 2000
19.	Shivane	Gmelina arboria	20 - 50	500 - 2000
20.	Kindal	T.Paniculata	20 - 40	500 - 1500
21.	Beete	Dalbargia latifolia	20 - 40	500 - 1500
22.	Tare	T. belerica	20 - 40	500 - 2000
23.	Bamboo	Bambusa arundinasia	20 - 40	500 - 2500
24.	Bamboo	Dendrocalamus strictus	20 - 40	500 - 2500
25.	Muthuga	Butea monosperma	20 - 40	400 - 1500
26.	Hippe	Madhuca latifolia	20 - 40	500 - 2000
27.	Sandal	Santalum album	20 - 50	400 - 1000
28.	Nelli	Emblica officinalis	20 - 40	500 - 2000
29.	Nerale	Sizyzium cumini	20 - 40	500 - 2000
30.	Dhaman	Grevia tilifolia	20 - 40	500 - 2000
31.	Kaval	Careya arborea	20 - 40	500 - 2000
32.	Harada	Terminalia chebula	20 - 40	500 - 2000

References

- 1. FAO (1976) Framework for Land Evaluation, Food and Agriculture Organization, Rome.72 pp.
- FAO (1983) Guidelines for Land Evaluation for Rainfed Agriculture, FAO, Rome, 237 pp.
- IARI (1971) Soil Survey Manual, All India Soil and Land Use Survey Organization, IARI, New Delhi, 121 pp.
- 4. Katyal, J.C. and Rattan, R.K. (2003) Secondary and Micronutrients; Reaserch Gap and future needs. Fert. News 48 (4); 9-20.
- Naidu, L.G.K., Ramamurthy, V., Challa, O., Hegde, R. and Krishnan, P. (2006) Manual Soil Site Suitability Criteria for Major Crops, NBSS Publ. No. 129, NBSS &LUP, Nagpur, 118 pp.
- 6. Natarajan, A. and Dipak Sarkar (2010) Field Guide for Soil Survey, National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur, India.
- Natarajan, A., Rajendra Hegde, Raj, J.N. and Shivananda Murthy, H.G. (2015)Implementation Manual for Sujala-III Project, Watershed Development Department, Bengaluru, Karnataka.
- Sarma, V.A.K., Krishnan, P. and Budihal, S.L. (1987) Laboratory Manual, Tech. Bull. 23, NBSS & LUP, Nagpur.
- 9. Sehgal, J.L. (1990) Soil Resource Mapping of Different States of India; Why and How?, National Bureau of Soil Survey and Land Use Planning, Nagpur, 49 pp.
- Shivaprasad, C.R., R.S. Reddy, J. Sehgal and M. Velayuthum (1998) Soils of Karntaka for Optimising Land Use, NBSS Publ. No. 47b, NBSS & LUP, Nagpur, India.
- 11. Soil Survey Staff (2006) Keys to Soil Taxonomy, Tenth edition, U.S. Department of Agriculture/ NRCS, Washington DC, U.S.A.
- 12. Soil Survey Staff (2012) Soil Survey Manual, Handbook No. 18, USDA, Washington DC, USA.

Appendix I Nallur Microwatershed Soil Phase Information

Village	Survey No	/ Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capability	Conservation Plan
Nalluru	1		KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Coconut+Ragi (CN+Ra)	1 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	2	1.26	KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Mango (Mn)	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	3	2.22	KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Arecanut+Coconut (Ar+CN)	1 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	4	0.97	KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	NA	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	5	1.06	KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Mango (Mn)	1 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	6	1.82	KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Mango (Mn)	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	7	1.58	NGPhB1	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIIs	Trench cum bundig
Nalluru	8	2.49	NGPhB1	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Open well	IIIs	Trench cum bundig
Nalluru	9	2.57	NGPhB1	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig
Nalluru	10	1.43	NGPhB1	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	Trench cum bundig
Nalluru	11	1.5	NGPhB1	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIIs	Trench cum bundig
Nalluru	12	2.68	NGPcA1	LUC-4	Deep (100- 150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Nearly level (0-1%)	Slight	Mango (Mn)	Not Available	IIIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	13	4.3	NGPhB1	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	3 Bore well	IIIs	Trench cum bundig
Nalluru	14	1.88	KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Coconut (CN)	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	15	3.27	NGPhB1	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m) Low (51-100	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	1 Bore well 2 Bore	IIIs	Trench cum bundig
Nalluru	16	3.59	NGPhB1	LUC-4	Deep (100- 150 cm) Very deep	Sandy clay loam	Non gravelly (<15%)	mm/m) Very high	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	2 Bore well 3 Bore	IIIs	Trench cum bundig
Nalluru	17	4.74	KDTcA1	LUC-3	(>150 cm) Very deep	Sandy loam Sandy	Non gravelly (<15%)	(>200 mm/m) Very high	Nearly level (0-1%) Nearly level	Slight	Coconut (CN)	well 1 Bore	IIs	Bunding/ Strengthening of Exiting Bunds Bunding/ Strengthening
Nalluru	18	1.02	KDTcA1	LUC-3	(>150 cm) Very deep	loam	Non gravelly (<15%) Non gravelly	(>200 mm/m)	(0-1%) Nearly level	Slight	Coconut (CN)	Not	IIs	of Exiting Bunds Bunding/ Strengthening
Nalluru	19	1.78	KDTcA1	LUC-3	(>150 cm)	Sandy loam Sandy	(<15%)	(>200 mm/m)	(0-1%)	Slight	Coconut (CN)	Available 2 Bore	IIs	of Exiting Bunds
Nalluru	20	3.4	KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam Sandy	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Arecanut+Coconut (Ar+CN)	2 Bore well 2 Bore	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	21	1.87	KDTcA1	LUC-3	Very deep (>150 cm) Very deep	Sandy loam Sandy	Non gravelly (<15%) Non gravelly	Very high (>200 mm/m) Very high	Nearly level (0-1%)	Slight	Coconut (CN)	2 Bore well 2 Bore	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	22	3.77	KDThB1	LUC-3	(>150 cm)	clay loam	(<15%)	(>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	well	IIs	Graded bunding
Nalluru	23	2.57	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding

Village	Survey No	Area (ha)	Soil Phase	e LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capability	Conservation Plan
Nalluru	24	2.1	KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	NA	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	25	1.71	KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Coconut (CN)	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	26	2.87	KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Coconut (CN)	1 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	27	0.99	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Nalluru	28	4.95	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut+M ango (Ar+CN+MN)	3 Bore well	IIs	Graded bunding
Nalluru	29	3.01	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	1 Bore well	IIs	Graded bunding
Nalluru	30		KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Nalluru	31		KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Mango (CN+Mn)	3 Bore well	IIs	Graded bunding
Nalluru	32		KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	Not Available	IIs	Graded bunding
Nalluru	33		KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Nalluru	34	3.29	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	Graded bunding
Nalluru	35		KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	Graded bunding
Nalluru	36		KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	2 Bore well	IIs	Graded bunding
Nalluru	37		KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi (CN+Ra)	1 Bore well	IIs	Graded bunding
Nalluru	38		KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Mango (CN+Mn)	2 Bore well	IIs	Graded bunding
Nalluru	39		KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Mango (CN+Mn)	3 Bore well	IIs	Graded bunding
Nalluru	40		KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Graded bunding
Nalluru	41		KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	5 Bore well	IIs	Graded bunding
Nalluru	42		HLKhB1	LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi (CN+Ra)	Not Available	IIs	Trench cum bundig
Nalluru	43		KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Bore well	IIs	Graded bunding
Nalluru	44		KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Mango (CN+Mn)	2 Bore well	IIs	Graded bunding
Nalluru	45		KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	2 Bore well	IIs	Graded bunding
Nalluru	46		HLKhB1	LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	Trench cum bundig
Nalluru	47		HLKhB1	LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango+Tamarind (Mn+Td)	Not Available	IIs	Trench cum bundig
Nalluru	48		HLKhB1	LUC-1	Very deep	Sandy clay loam	Non gravelly	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi	5 Bore well	IIs	Trench cum bundig

Village	Survey No	Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capability	Conservation Plan
Nalluru	49	0.93 H	HLKhB1	LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Trench cum bundig
Nalluru	50	0.48 H	HLKhB1	LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Trench cum bundig
Nalluru	51	0.27 H	HLKhB1	LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Trench cum bundig
Nalluru	77	6.53 H	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi (CN+Ra)	1 Bore well	IIs	Graded bunding
Nalluru	78	2.84 H	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi (CN+Ra)	Not Available	IIs	Graded bunding
Nalluru	79	5.02 F	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	Graded bunding
Nalluru	80	3.85 H	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	1 Bore well	IIs	Graded bunding
Nalluru	81		BGPcA1	LUC-2	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Nearly level (0-1%)	Slight	Coconut (CN)	1 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	82		BGPcA1	LUC-2	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Nearly level (0-1%)	Slight	Coconut (CN)	1 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	83		BGPcA1	LUC-2	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Nearly level (0-1%)	Slight	Coconut (CN)	1 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	84		BGPcA1	LUC-2	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Nearly level (0-1%)	Slight	Coconut+Ragi (CN+Ra)	1 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	85		3GPhB1	LUC-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	1 Bore well	IIs	Graded bunding
Nalluru	86		3GPhB1	LUC-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut +Ragi (Ar+CN+Ra)	1 Bore well	IIs	Graded bunding
Nalluru	87		3GPhB1	LUC-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	Graded bunding
Nalluru	88		3GPhB1	LUC-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	1 Bore well	IIs	Graded bunding
Nalluru	89		3GPhB1	LUC-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	2 Bore well	IIs	Graded bunding
Nalluru	90		3GPhB1	LUC-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	Graded bunding
Nalluru	91		BGPiA1	LUC-2	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Low (51-100 mm/m)	Nearly level (0-1%)	Slight	Ragi (Ra)	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	92		BGPhB1	LUC-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Mango (CN+Mn)	1 Bore well	IIs	Graded bunding
Nalluru	93		BGPiA1	LUC-2	(>130 cm) Very deep (>150 cm)	Sandy clay	(<13%) Non gravelly (<15%)	Low (51-100 mm/m)	Nearly level (0- 1%)	Slight	Ragi (Ra)	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	94		XDTcB1	LUC-2	Very deep (>150 cm)	Sandy loam	(<13%) Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Bore well	IIs	Graded bunding
Nalluru	95		XDTcB1	LUC-3	(>150 cm) Very deep (>150 cm)	Sandy loam	(<15%) Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)			3 Bore well	IIS	Graded bunding
Nalluru	96				Very deep	Sandy	Non gravelly	Very high	Very gently	Slight	Coconut (CN)	1 Bore		
Nalluru	97		KDTcB1 BGPiA1	LUC-3	(>150 cm) Very deep (>150 cm)	loam Sandy clay	(<15%) Non gravelly	(>200 mm/m) Low (51-100	sloping (1-3%) Nearly level	Slight	Coconut (CN)	well Not Available	IIs	Graded bunding Bunding/ Strengthening of Exiting Bunds
Nalluru	98		BGPIA1	LUC-2	(>150 cm) Very deep (>150 cm)	clay Sandy clay	(<15%) Non gravelly (<15%)	mm/m) Low (51-100 mm/m)	(0-1%) Nearly level (0-1%)	Slight	Ragi (Ra) Paddy (Pd)	Available Not Available	IIs IIs	Bunding/ Strengthening of Exiting Bunds

Village	Survey No	Area (ha) Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capability	Conservation Plan
Nalluru	99		LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Paddy (CN+Pd)	Not Available		Graded bunding
Nalluru	100	2.89 BGPcA1	LUC-2	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Nearly level (0-1%)	Slight	Coconut+Ragi (CN+Ra)	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	101	3.62 KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	Graded bunding
Nalluru	102	4 HLKhB1	LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Bore well	IIs	Trench cum bundig
Nalluru	103	6.31 HLKhB1	LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Mango (CN+Mn)	1 Bore well	IIs	Trench cum bundig
Nalluru	104		LUC-4	Deep (100- 150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Nearly level (0-1%)	Slight	Coconut (CN)	Not Available	IIIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	112		LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Trench cum bundig
Nalluru	113		LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	1 Bore well	IIs	Trench cum bundig
Nalluru	122		LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIs	Trench cum bundig
Nalluru	123		LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	Trench cum bundig
Nalluru	124		LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	Trench cum bundig
Nalluru	125		LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi (CN+Ra)	Not Available	IIs	Trench cum bundig
Nalluru	126	3.97 Habitation		· · · · ·	Others	Others	Others	Others	Others	NA	Not Available	Others	Others
Nalluru	127		LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Nalluru	130		LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Trench cum bundig
Nalluru	131		LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIs	Trench cum bundig
Nalluru	132		LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available		Trench cum bundig
Nalluru	133	1 HLKhB1	LUC-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Trench cum bundig
Nalluru	157		LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Graded bunding
Nalluru	184	0.45 BGPhB1	LUC-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIs	Graded bunding
Nalluru	185	0.01 KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	NA	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	187		LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	NA	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	192	0.12 KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	NA	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	193	3.16 KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Arecanut+Coconut (Ar+CN)	1 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	194		LUC-3	Very deep	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight		Not Available	IIs	Bunding/Strengthening of Exiting Bunds

Villago	Survey	Area	Soil Phase	LUC	Coil Donth	Surface Soil	Soil	Available Water	Slone	Soil	Current Land Use	WELLS	Land	Conservation Plan
Village	No	(ha)	Soli Pliase	LUC	Soil Depth	Texture	Gravelliness	Capacity	Slope	Erosion	Current Lanu Ose		Capability	
Nalluru	195	0.71	KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Mango (Mn)	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	196	0.36	KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	NA	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	197	0.16	KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	NA	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	198	4.04	KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Coconut (CN)	2 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	199		KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Mango (Mn)	Not Available	IIs	Bunding/ Strengthening of Exiting Bunds
Nalluru	200		KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Arecanut+Coconut (Ar+CN)	2 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Malamachan akunte	1		NGPhB2	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Mode rate	Coconut+Mango (CN+Mn)	2 Bore well	Illes	Trench cum bundig
Malamachan	2	1.05		LOC I	Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode	(entring)	Not	mes	Trenen cum bunung
akunte	2	2.99	NGPhB2	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	rate	Mango (Mn)	Available	Illes	Trench cum bundig
Malamachan akunte	3	1.56	NGPhB2	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Mode rate	Mango (Mn)	Not Available	Illes	Trench cum bundig
Malamachan akunte	4	4.58	NGPhB2	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Mode rate	Mango (Mn)	Not Available	Illes	Trench cum bundig
Malamachan akunte	5	5.33	NGPhB2	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Mode rate	Mango (Mn)	Not Available	Illes	Trench cum bundig
Malamachan akunte	6	2.68	NGPhB2	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Mode rate	Coconut (CN)	Not Available	Illes	Trench cum bundig
Malamachan	7				Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode	Arecanut+Coconut+M	2 Bore		
akunte	/	4.03	NGPhB2	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	rate	ango (Ar+CN+MN)	well	IIIes	Trench cum bundig
Malamachan akunte	8	3.23	NGPhB2	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Mode rate	Mango (Mn)	Not Available	Illes	Trench cum bundig
Malamachan akunte	9	2.4	KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	NA	3 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Malamachan akunte	10	1.5	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	Graded bunding
Malamachan akunte	11		KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	Graded bunding
Malamachan akunte	12		KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Graded bunding
Malamachan akunte	13		KDThB1	LUC-3	Very deep (>150 cm)	Sandy	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Graded bunding
Malamachan akunte	14		KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	1 Bore well	IIs	Graded bunding
Malamachan akunte	15		KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available		Graded bunding
Malamachan akunte	16		KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available		Graded bunding
Malamachan	17				Very deep	Sandy	Non gravelly	Very high	Very gently		Coconut+Mango	1 Bore	IIS	
akunte Malamachan		4.53	KDTcB1	LUC-3	(>150 cm) Very deep	loam Sandy	(<15%) Non gravelly	(>200 mm/m) Very high	sloping (1-3%) Very gently	Slight	(CN+Mn)	well 1 Bore	115	Graded bunding
akunte	18	3.56	KDTcB1	LUC-3	(>150 cm)	loam	(<15%)	(>200 mm/m)	sloping (1-3%)	Slight	Mango (Mn)	well	IIs	Graded bunding
Malamachan akunte	19	0.52	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Graded bunding

Village	Survey No	Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capability	Conservation Plan
Malamachan akunte	20		KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	Graded bunding
Malamachan akunte	21	2.47	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Mango+Rag i (Ar+Ma+Ra)	Not Available	IIs	Graded bunding
Malamachan akunte	22	2.44	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Malamachan akunte	23	1.07	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Graded bunding
Malamachan akunte	24	1.08	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Graded bunding
Malamachan akunte	25	3.1	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Malamachan akunte	26	2.63	MNLhB2	LUC-1	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Mode rate	Mango (Mn)	Not Available	IIIe	Trench cum bundig
Malamachan akunte	55	0.84	NDLcB1	LUC-4	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Malamachan akunte	56	0.05	NDLcB1	LUC-4	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	Trench cum bundig
Malamachan akunte	64	0.77	NDLcB1	LUC-4	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	Trench cum bundig
Malamachan akunte	65	1.86	NDLcB1	LUC-4	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig
Malamachan akunte	66	5.24	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Coconut (Ar+CN)	1 Bore well	IIs	Graded bunding
Malamachan akunte	67	5.06	NDLcB1	LUC-4	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Malamachan akunte	68	0.8	NDLcB1	LUC-4	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	Trench cum bundig
Malamachan akunte	69	3.73	MNLhB2	LUC-1	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Mode rate	Mango (Mn)	Not Available	IIIe	Trench cum bundig
Malamachan akunte	70	1.95	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Malamachan akunte	71	3.06	NDLcB1	LUC-4	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	Trench cum bundig
Malamachan akunte	72	2.97	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Graded bunding
Malamachan akunte	73	2.79	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Graded bunding
Malamachan akunte	74	1.65	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Malamachan akunte	75	2.53	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Malamachan akunte	76	3.01	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Malamachan akunte	77	5.4	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	Graded bunding
Malamachan akunte	78	4.48	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Mango (CN+Mn)	Not Available	IIs	Graded bunding
Malamachan akunte	79	1.69	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Graded bunding

Village	Survey No	Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capability	Conservation Plan
Malamachan akunte	80		KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available		Graded bunding
Malamachan akunte	81	1.96	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	Graded bunding
Malamachan akunte	82	3	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi (CN+Ra)	Not Available	IIs	Graded bunding
Malamachan akunte	83	2.25	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi (CN+Ra)	Not Available	IIs	Graded bunding
Malamachan akunte	84	5.52	KDTcB1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Malamachan akunte	85	3.99	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Malamachan akunte	86	2.83	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Malamachan akunte	87	4.84	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	2 Bore well	IIs	Graded bunding
Malamachan akunte	88		KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	4 Bore well	IIs	Graded bunding
Malamachan akunte	89	2.95	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Graded bunding
Malamachan akunte	90	0.77	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Malamachan akunte	91	0.23	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIs	Graded bunding
Malamachan akunte	92	2.63	KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	2 Bore well	IIs	Graded bunding
Malamachan akunte	93	0.48		LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	Graded bunding
Malamachan akunte	94	1.91		LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	Graded bunding
Malamachan akunte	95		KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Malamachan akunte	96			LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	Graded bunding
Malamachan akunte	97			LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Graded bunding
Malamachan akunte	98		KDThB1	LUC-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	Graded bunding
Malamachan akunte	99		KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Coconut (CN)	1 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Malamachan akunte	100		KDTcA1	LUC-3	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Coconut (CN)	2 Bore well	IIs	Bunding/ Strengthening of Exiting Bunds
Malamachan akunte	101		NGPhB1	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Mango (CN+Mn)	2 Bore well	IIIs	Trench cum bundig
Malamachan akunte	102		NGPhB1	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Mango (CN+Mn)	Not Available	IIIs	Trench cum bundig
Malamachan akunte	103		NGPhB1	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	Trench cum bundig
Malamachan akunte	104				Deep (100-	Sandy	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	Trench cum bundig

	No	Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capability	Conservation Plan
Malamachan	105		NODI DA		Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently			Not		
akunte		1.09	NGPhB1	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	Slight	Ragi (Ra)	Available	IIIs	Trench cum bundig
Malamachan akunte	106	1.19	NGPhB1	LUC-4	Deep (100- 150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIIs	Trench cum bundig
Malamachan	107				Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently			Not		
akunte	107	2.19	NGPhB1	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	Slight	Coconut (CN)	Available	IIIs	Trench cum bundig
Malamachan akunte	108	0.91	NGPcA1	LUC-4	Deep (100- 150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Nearly level (0-1%)	Slight	Mango (Mn)	1 Bore well	IIIs	Bunding/ Strengthening of Exiting Bunds
Malamachan		0.71	Nul CIT	LUC I	Deep (100-	Sandy	Non gravelly	Low (51-100	Nearly level	Jingine	Mango (Min)	Not	1115	Bunding/ Strengthening
akunte	109	3.23	NGPcA1	LUC-4	150 cm)	loam	(<15%)	mm/m)	(0-1%)	Slight	Coconut (CN)	Available	IIIs	of Exiting Bunds
Malamachan	110				Deep (100-	Sandy	Non gravelly	Low (51-100	Nearly level			Not		Bunding/Strengthening
akunte	110	3.82	NGPcA1	LUC-4	150 cm)	loam	(<15%)	mm/m)	(0-1%)	Slight	Mango (Mn)	Available	IIIs	of Exiting Bunds
Malamachan	111				Deep (100-	Sandy	Non gravelly	Low (51-100	Nearly level		Coconut+Mango+Ragi	Not		Bunding/Strengthening
akunte	111	3.49	NGPcA1	LUC-4	150 cm)	loam	(<15%)	mm/m)	(0-1%)	Slight	(CN+Mn+Ra)	Available	IIIs	of Exiting Bunds
Malamachan	112				Deep (100-	Sandy	Non gravelly	Low (51-100	Nearly level			Not		Bunding/Strengthening
akunte	112	2.73	NGPcA1	LUC-4	150 cm)	loam	(<15%)	mm/m)	(0-1%)	Slight	Mango (Mn)	Available	IIIs	of Exiting Bunds
Malamachan	110				Deep (100-	Sandy	Non gravelly	Low (51-100	Nearly level			2 Bore		Bunding/Strengthening
akunte	113	1.42	NGPcA1	LUC-4	150 cm)	loam	(<15%)	mm/m)	(0-1%)	Slight	Coconut (CN)	well	IIIs	of Exiting Bunds
Malamachan					Deep (100-	Sandy	Non gravelly	Low (51-100	Nearly level	Ŭ		2 Bore		Bunding/Strengthening
akunte	114	2.32	NGPcA1	LUC-4	150 cm)	loam	(<15%)	mm/m)	(0-1%)	Slight	Coconut (CN)	well	IIIs	of Exiting Bunds
Malamachan					Deep (100-	Sandy	Non gravelly	Low (51-100	Nearly level			2 Bore		Bunding/ Strengthening
akunte	115	2 5 1	NGPcA1	LUC-4	150 cm)	loam	(<15%)	mm/m)	(0-1%)	Slight	Coconut (CN)	well	IIIs	of Exiting Bunds
Malamachan		2.31	NULLI	LUC-T	Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode	coconat (en)	Not	1113	of Exiting Dunus
akunte	116	226	NGPhB2	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	rate	Mango (Mn)	Available	Illes	Trench cum bundig
		3.30	NGPIID2	LUC-4			· · · ·		,		Mango (Min)		mes	Trench cum bundig
Malamachan	117	4			Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode		Not		m 1 1 1
akunte		1.77	NGPhB2	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	rate	Ragi (Ra)	Available	Illes	Trench cum bundig
Malamachan	118				Deep (100-	Sandy	Non gravelly	Low (51-100	Nearly level			Not		Bunding/ Strengthening
akunte		0.62	NGPcA1	LUC-4	150 cm)	loam	(<15%)	mm/m)	(0-1%)	Slight	Mango (Mn)	Available	IIIs	of Exiting Bunds
Malamachan	123				Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode		Not		
akunte	125	0.33	NGPhB2	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	rate	Mango (Mn)	Available	IIIes	Trench cum bundig
Malamachan	124				Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode		Not		
akunte	144	0.71	NGPhB2	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	rate	Mango (Mn)	Available	IIIes	Trench cum bundig
Malamachan	120				Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode		Not		
akunte	126	1.3	NGPhB2	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	rate	Mango (Mn)	Available	IIIes	Trench cum bundig
Malamachan					Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode		2 Bore		C
akunte	127	3.27	NGPhB2	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	rate	Coconut (CN)	well	IIIes	Trench cum bundig
Malamachan					Very deep	Sandy	Non gravelly	Very high	Nearly level (0-			Not		Bunding/Strengthening
akunte	128	215	KDTcA1	LUC-3	(>150 cm)	loam	(<15%)	(>200 mm/m)	1%)	Slight	Mango (Mn)	Available	IIs	of Exiting Bunds
akunte		2.15	RDICAL	100-3	Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode	Coconut+Ragi	Not	113	of Exiting Dunus
Ankasandra	1	2 70	NGPhB2	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	rate	(CN+Ra)	Available	Illes	Trench cum bundig
		3.79	NGF IID2	LUC-4			· ·	, ,	,		(CNTRA)		mes	
Ankasandra	2	4 64	NCDLD2		Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode		Not		Turnel and have been die
		1.51	NGPhB2	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	rate	Coconut (CN)	Available	Illes	Trench cum bundig
Ankasandra	3				Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode	Coconut+Mango	1 Bore		
	-	3.9	NGPhB2	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	rate	(CN+Mn)	well	Illes	Trench cum bundig
Ankasandra	4				Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode		Not		
i masanui a	T	6.69	NGPhB2	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	rate	Mango (Mn)	Available	Illes	Trench cum bundig
	5				Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode	NA	Not		
Ankacandra) D	0.12	NGPhB2	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	rate	INA	Available	Illes	Trench cum bundig
Ankasandra	-	0.12	nui nea											
Ankasandra Ankasandra	6	0.12			Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode		Not		

Village	Survey No	Area (ha) Soil	Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capability	Conservation Plan
Ankasandra	7				Deep (100-	Sandy	Non gravelly	Medium (101-	Very gently	Mode		Not		
usunuru		6.93 MNI	LhB2	LUC-1	150 cm)		(<15%)	150 mm/m)	sloping (1-3%)	rate	Ragi (Ra)	Available	IIIe	Trench cum bundig
Ankasandra	8	F OA MOU	1600	1110 1	Deep (100-	Sandy	Non gravelly	Medium (101-	Very gently	Mode	$C_{2} = C_{2} = C_{2}$	1 Bore		Transie in ander been die
		5.84 MNI	LNBZ	LUC-1	150 cm)		(<15%)	150 mm/m)	sloping (1-3%)	rate	Coconut (CN)	well	IIIe	Trench cum bundig
Ankasandra	19		1 6 0 2	1110 1	Deep (100-	Sandy	Non gravelly	Medium (101-	Very gently	Mode	Manga (Mu)	Not	IIIa	Trongh gung hun dig
		0.45 MNI	LNBZ	LUC-1	150 cm)	clay loam	(<15%)	150 mm/m)	sloping (1-3%)	rate	Mango (Mn)	Available	IIIe	Trench cum bundig
Ankasandra	20	0.14 MNI	1 6 0 2		Deep (100-	Sandy	Non gravelly	Medium (101-	Very gently	Mode	NA	Not Available	IIIe	Tronch our hundig
		0.14 MINI	LNBZ	LUC-1	150 cm)		(<15%)	150 mm/m)	sloping (1-3%)	rate	NA		me	Trench cum bundig
Ankasandra	21	0. (2 MNI	1 6 0 2	LUC-1	Deep (100- 150 cm)	Sandy	Non gravelly	Medium (101- 150 mm/m)	Very gently	Mode		Not Available	IIIe	Tuon ah anna hun dia
		0.63 MNI	LNBZ	LUC-1		clay loam	(<15%)	, ,	sloping (1-3%)	rate	Ragi (Ra)		me	Trench cum bundig
Ankasandra	22	11 (7 107	F-11	1110.2	Very deep	Sandy	Non gravelly	Very high	Nearly level	Cliabe	Coconnet (CN)	3 Bore well	Ца	Bunding/ Strengthening
		11.65 KD7	ICAI	LUC-3	(>150 cm)	loam Condu	(<15%)	(>200 mm/m)	(0-1%)	Slight	Coconut (CN)	Not	IIs	of Exiting Bunds
Ankasandra	23	2 74 1/17	F-41	1110.2	Very deep	Sandy	Non gravelly	Very high	Nearly level	Cliabe	Coconut+Mango	Available	IIs	Bunding/ Strengthening
		3.54 KD1	ICAI	LUC-3	(>150 cm)	loam	(<15%)	(>200 mm/m)	(0-1%)	Slight	(CN+Mn)		115	of Exiting Bunds
Ankasandra	24	0.00 000	D D 4		Very deep	Sandy	Non gravelly	Very high	Very gently	CI ¹ 1 .	N (N)	Not		
		2.32 KD1	LCRI	LUC-3	(>150 cm)	loam	(<15%)	(>200 mm/m)	sloping (1-3%)	Slight	Mango (Mn)	Available	IIs	Graded bunding
Ankasandra	25				Very deep	Sandy	Non gravelly	Very high	Nearly level	au 1.		2 Bore		Bunding/ Strengthening
		5.58 KD1	l'cA1	LUC-3	(>150 cm)	loam	(<15%)	(>200 mm/m)	(0-1%)	Slight	Coconut (CN)	well	IIs	of Exiting Bunds
Ankasandra	26				Very deep	Sandy	Non gravelly	Very high	Nearly level			Not		Bunding/ Strengthening
	0	1.43 KD1	ГсА1	LUC-3	(>150 cm)	loam	(<15%)	(>200 mm/m)	(0-1%)	Slight	Coconut (CN)	Available	IIs	of Exiting Bunds
Ankasandra	27				Very deep	Sandy	Non gravelly	Very high	Nearly level			1 Bore		Bunding/ Strengthening
7 minubunut u		4.7 KD1	ГсА1	LUC-3	(>150 cm)	loam	(<15%)	(>200 mm/m)	(0-1%)	Slight	Coconut (CN)	well	IIs	of Exiting Bunds
Ankasandra	28				Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode		Not		
Ankasanura	20	1.73 NGF	PhB2	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	rate	Ragi (Ra)	Available	IIIes	Trench cum bundig
Ankasandra	29				Deep (100-	Sandy	Non gravelly	Low (51-100	Nearly level (0-			Not		Bunding/ Strengthening
AllKasallul a	29	1.33 NGF	PcA1	LUC-4	150 cm)	loam	(<15%)	mm/m)	1%)	Slight	Ragi (Ra)	Available	IIIs	of Exiting Bunds
Ankasandra	30				Deep (100-	Sandy	Non gravelly	Low (51-100	Nearly level			1 Bore		Bunding/ Strengthening
AllKasallul a	30	2.78 NGF	PcA1	LUC-4	150 cm)	loam	(<15%)	mm/m)	(0-1%)	Slight	Coconut (CN)	well	IIIs	of Exiting Bunds
Antrocondro	21				Deep (100-	Sandy	Non gravelly	Low (51-100	Nearly level			Not		Bunding/ Strengthening
Ankasandra	31	0.38 NGF	PcA1	LUC-4	150 cm)	loam	(<15%)	mm/m)	(0-1%)	Slight	NA	Available	IIIs	of Exiting Bunds
Ankasandra	32	1.42 Hab	oitation	Others	Others	Others	Others	Others	Others	Others	NA	Not Available	Others	Others
					Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently		Coconut+Ragi	Not		
Ankasandra	33	1.27 NGF	PhB1	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	Slight	(CN+Ra)	Available	IIIs	Trench cum bundig
					Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	- 8 -		Not		
Ankasandra	34	0.19 NGF	PhB1	LUC-4	150 cm)	clay loam	(<15%)	mm/m)	sloping (1-3%)	Slight	NA	Available	IIIs	Trench cum bundig
					Deep (100-	Sandy	Non gravelly	Low (51-100	Nearly level (0-			Not		Bunding/Strengthening
Ankasandra	65	0.36 NGF	PcA1	LUC-4	150 cm)	loam	(<15%)	mm/m)	1%)	Slight	Ragi (Ra)	Available	IIIs	of Exiting Bunds
					Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode		Not		or annung bunub
Maranahalli	37	2.53 NGF	PhR?	LUC-4	150 cm)		(<15%)	mm/m)	sloping (1-3%)	rate	Coconut (CN)	Available	Illes	Trench cum bundig
	-	2.55 1101	1104	TOC-T	Deep (100-	Sandy	Non gravelly	Low (51-100	Very gently	Mode		Not	mes	Trenen cum Dunuig
Maranahalli	38	2.08 NGF	DhR7		150 cm)		0				Ragi (Ra)	Available	Illes	Tronch cum hundig
		2.00 NGP	1102	LUC-4	120 cmj	clay loam	(<15%)	mm/m)	sloping (1-3%)	rate	nagi (Kaj	Available	mes	Trench cum bundig

Appendix II

Nallur Microwaterhed

					I	il Fertility Info	1					
Village	Survey	Soil Reaction	Salinity	Organic	Available	Available	Available	Available	Available	Available	Available	Available
Thinge	No			Carbon	Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
Nalluru	1	Neutral (pH 6.5 -	Non saline		High (> 57	Low (<145	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nulluiu	-	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Nalluru	2	Neutral (pH 6.5 -	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nulluiu	-	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Nalluru	3	Slightly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nulluiu	3	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Nalluru	4	Slightly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nulluiu	•	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Nalluru	5	Slightly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nanuru	J	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Nalluru	6	Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Natiulu	U	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Nalluru	7	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
wanunu	/	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Nalluru	8	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Nallulu	0	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
N - 11	9	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Nalluru	9	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
NY 11	40	Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	10	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	11	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Nalluru	12	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	13	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Slightly acid (pH	Non saline	2011 (1010 70)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	14	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately acid	Non saline	2011 (1010 70)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	15	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	16	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Slightly acid (pH	Non saline	1011 (<0.5 70)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	17	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Neutral (pH 6.5 -	Non saline	LOW (<0.5 70)	High (> 57	Low (<145	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	18	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)		(>0.2 ppm)	
		Moderately acid	Non saline	LUW (<0.5 %)	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	.0 ppm) Sufficient(>1	Sufficient	(>0.6 ppm) Sufficient
Nalluru	19											
		(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Nalluru	20	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
		6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Nalluru	21	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
		6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Nalluru	22	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
	_	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Nalluru	23	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
		6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)

Village	Survey No	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Nalluru	24	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Nalluru	25	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Nalluru	26	Neutral (pH 6.5 -	Non saline		High (> 57	Low (<145	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	27	7.3) Neutral (pH 6.5 -	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	kg/ha) Low (<145	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm Sufficient
Nalluru		7.3) Neutral (pH 6.5 -	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm Sufficient
Nalluru	28	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm
Nalluru	29	Slightly acid (pH 6.0 – 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm
Nalluru	30	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
	24	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm Sufficient
Nalluru	31	6.0 - 6.5) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm Sufficient
Nalluru	32	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm
Nalluru	33	Slightly acid (pH 6.0 – 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm
Nalluru	34	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	35	6.0 – 6.5) Slightly acid (pH	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppn Sufficient
		6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppn Sufficient
Nalluru	36	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppn
Nalluru	37	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppn
Nalluru	38	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppn
Nalluru	39	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
		6.0 - 6.5) Neutral (pH 6.5 -	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppn Sufficient
Nalluru	40	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppn
Nalluru	41	Slightly acid (pH 6.0 – 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppn
Nalluru	42	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm
Nalluru	43	Neutral (pH 6.5 -	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	44	7.3) Neutral (pH 6.5 -	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm Sufficient
		7.3) Neutral (pH 6.5 -	(<2 dsm) Non saline	Low (<0.5 %) Medium (0.5-	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm Sufficient
Nalluru	45	7.3)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppn
Nalluru	46	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm
Nalluru	47	Neutral (pH 6.5 -	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	48	7.3) Slightly acid (pH	(<2 dsm) Non saline	0.75 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm Sufficient
unun u	FU IU	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppn

Village	Survey No	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Nalluru	49	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Nalluru	50	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Nalluru	51	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Nalluru	77	Slightly alkaline (pH 7.3 – 7.8)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Nalluru	78	Slightly alkaline (pH 7.3 - 7.8)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Nalluru	79	Slightly alkaline	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	80	(pH 7.3 – 7.8) Slightly alkaline	(<2 dsm) Non saline	0.75 %) Medium (0.5-	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Nalluru	81	(pH 7.3 - 7.8) Neutral (pH 6.5 -	(<2 dsm) Non saline	0.75 %) Medium (0.5-	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Low (<0.5	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Nalluru	82	7.3) Neutral (pH 6.5 -	(<2 dsm) Non saline	0.75 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
		7.3) Neutral (pH 6.5 –	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm Sufficient
Nalluru	83	7.3) Neutral (pH 6.5 -	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Nalluru	84	7.3) Neutral (pH 6.5 -	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm Sufficient
Nalluru	85	7.3) Neutral (pH 6.5 -	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Nalluru	86	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm
Nalluru	87	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm
Nalluru	88	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm
Nalluru	89	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm
Nalluru	90	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm
Nalluru	91	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm
Nalluru	92	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm
Nalluru	93	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm
Nalluru	94	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm
Nalluru	95	Neutral (pH 6.5 -	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Deficient
Nalluru	96	7.3) Neutral (pH 6.5 - 7.2)	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145- 227 kg/ha)	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(<0.6 ppm Sufficient
Nalluru	97	7.3) Neutral (pH 6.5 -	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm Sufficient
Nalluru	98	7.3) Neutral (pH 6.5 -	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm Sufficient
Mallulu	90	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppn

Nalluru Nalluru	99	Neutral (pH 6.5 -			Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
		7.3)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
	100	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Nalluru	101	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Nalluru	102	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Nalluru	103	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Nalluru	104	Neutral (pH 6.5 -	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10- 20 ppm)	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	112	7.3) Slightly acid (pH	(<2 dsm) Non saline	0.75%)	kg/ha) High (> 57	337 kg/ha) Medium (145-	Medium (10-	ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Nalluru	113	6.0 - 6.5) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm) Deficient
Nalluru	122	(pH 5.5 – 6.0) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Nalluru	122	(pH 5.5 - 6.0) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
		(pH 5.5 - 6.0) Slightly acid (pH	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Low (<0.5	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Nalluru	124	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Nalluru Nalluru	125 126	6.0 - 6.5) Others	(<2 dsm) Others	Low (<0.5 %) Others	kg/ha) Others	337 kg/ha) Others	20 ppm) Others	ppm) Others	(>4.5 ppm) Others	.0 ppm) Others	(>0.2 ppm) Others	(<0.6 ppm) Others
Nalluru	127	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Nalluru	130	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Nalluru	131	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5	Sufficient (>4.5 ppm)	Sufficient(>1 .0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Nalluru	132	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	ppm) Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Nalluru	133	(pH 5.5 – 6.0) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Nalluru	157	(pH 5.5 - 6.0) Neutral (pH 6.5 -	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Nalluru	184	7.3) Neutral (pH 6.5 -	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(<0.6 ppm) Sufficient
Nalluru	185	7.3) Neutral (pH 6.5 -	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Nalluru	187	7.3) Neutral (pH 6.5 –	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Nalluru	192	7.3) Slightly acid (pH	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Low (<145	20 ppm) Medium (10-	1.0 ppm) Low (<0.5	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
		6.0 - 6.5) Neutral (pH 6.5 -	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Nalluru	193	7.3) Neutral (pH 6.5 –	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm)	(>4.5 ppm) Sufficient	.0 ppm) Sufficient(>1	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Nalluru	194	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)

	No			Carbon	Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
Nalluru	195	Neutral (pH 6.5 -	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	195	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Nalluru	196	Neutral (pH 6.5 -	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nanuru	190	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Nalluru	197	Neutral (pH 6.5 -	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nanuru	197	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Mallana	198	Neutral (pH 6.5 -	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	198	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Nollum	199	Neutral (pH 6.5 -	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nalluru	199	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Nalluru	200	Neutral (pH 6.5 -	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
Nanuru	200	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	4	Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	1	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	2	Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	Z	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	3	Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	3	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	4	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	_	Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	5	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	6	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	_	Moderately acid	Non saline	(• • • • • • • • •	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	7	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline	(• • • • • • • • • • • • • • • • • • •	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	8	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	9	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha		Slightly acid (pH	Non saline	(• • • • • • • • • • • • • • • • • • •	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	10	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	11	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	12	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	13	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline	2011 (1010 70)	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	14	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline	2011 (1010 70)	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	15	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Neutral (pH 6.5 -	Non saline	2011 (1010 70)	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	16	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Neutral (pH 6.5 -	Non saline	2011 (1010 70)	High (> 57	High (>337	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	17	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Neutral (pH 6.5 -	Non saline	10W (<0.5 70)	High (> 57	High (>337	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	18	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	Medium (0.5- 1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
				LUW (<0.5 %)	kg/naj High (> 57	Medium (145-	Medium (10-					
Malamacha nakunte	19	Slightly acid (pH	Non saline					Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
	C	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Village	Survey	Soil Reaction	Salinity	Organic	Available	Available	Available	Available	Available	Available	Available	Availa

	No			Carbon	Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
Malamacha	20	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	20	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	21	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	41	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	22	Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte		(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	23	Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	23	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	24	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	47	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	25	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	23	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	26	Strongly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	20	5.0 - 5.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	55	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	33	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	56	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	30	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	64	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	04	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	65	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	05	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	66	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	00	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	67	Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	07	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	68	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	00	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	69	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	09	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	70	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	70	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	71	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	/1	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	72	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	12	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	= -	Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	73	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	= 4	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	74	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	75	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	76	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	77	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	78	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	79	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Village	Survey		Salinity	Organic	Available	Available	Available	Available	Available	Available	Available	Available

	No			Carbon	Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
Malamacha	80	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	00	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	81	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	01	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	82	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	02	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	83	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	83	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	84	Slightly acid (pH	Non saline		High (> 57	High (>337	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	84	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	85	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	85	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	04	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	86	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	87	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	8/	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	00	Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	High (>337	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	88	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Neutral (pH 6.5 -	Non saline		High (> 57	High (>337	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	89	7.3)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	0.0	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	90	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	91	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	92	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	93	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	94	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	95	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	96	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	97	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	98	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	99	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	100	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	101	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	102	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Moderately acid	Non saline	2011 (1010 /0)	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	103	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Moderately acid	Non saline	250 (\$0.5 70)	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	104	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Village	Survey	1	Salinity	Organic	Available	Available	Available	Available	Available	Available	Available	Available

	No			Carbon	Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
Malamacha	105	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	105	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	106	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	100	(pH 5.5 – 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	107	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	107	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	108	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	108	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	109	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	109	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	110	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	110	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	444	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	111	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	110	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	112	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	110	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	113	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha		Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	114	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	445	Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	115	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	116	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha		Moderately acid	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	117	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	440	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	118	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	400	Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	123	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	40.4	Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	124	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	40.0	Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	126	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Malamacha	40.	Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Sufficient
nakunte	127	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Malamacha	400	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
nakunte	128	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	1	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Moderately acid	Non saline		High (> 57	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	2	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
	-	Moderately acid	Non saline		High (> 57	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	3	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	4	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Slightly acid (pH	Non saline	2011 (1010 70)	High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	5	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Slightly acid (pH	Non saline	10W (\$0.5 70)	High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	6	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Village	Survey		Salinity	Organic	Available	Available	Available	Available	Available	Available	Available	Available

	No			Carbon	Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
	-	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	7	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
A]	0	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	8	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Anlessandus	19	Strongly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	19	5.0 - 5.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Ambragandua	20	Strongly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	20	5.0 - 5.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Ankacandra	21	Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	21	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Ankasandra	22	Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasanura	22	(pH 5.5 - 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
•1	22	Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	23	(pH 5.5 - 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
A]	24	Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	24	(pH 5.5 - 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
A]	25	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	25	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
	0.6	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	26	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
	0.5	Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	27	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	28	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
	20	Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	29	(pH 5.5 - 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	30	(pH 5.5 - 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Strongly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	31	5.0 - 5.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Ankasandra	32	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
		Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	33	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Strongly acid (pH	Non saline		High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	34	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Moderately acid	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Ankasandra	65	(pH 5.5 – 6.0)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Maranahalli	37	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Strongly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1	Sufficient	Deficient
Maranahalli	38	5.0 - 5.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	.0 ppm)	(>0.2 ppm)	(<0.6 ppm)

Appendix III Nallur Microwaterhed Soil Suitability Information

					1	-		-			-	-				luon	incy i		110001	-			1					1						
Village	Surv ey No	Man go	Maize	Sapo ta	Sorgh am	Coco nut	Guava	Tama rind	IIme	Sun flower	Red gram	Amla	Jack fruit		Cash			Grou ndnut		Chilly	Toma to	Marig		a Pome n grana te		Horse gram			Finger -Millet		Fodde r- Sorgh um	Uplan d- Paddy	ne	i Cow pea
Nalluru	1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	2	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S 1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	3	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S 1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	4	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	5	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S 1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	6	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S 1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	7	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Nalluru	8	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Nalluru	9	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g			S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Nalluru	10	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g			S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Nalluru	11	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Nalluru	12	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Nalluru	13	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Nalluru	14	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	15	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Nalluru	16	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g			S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Nalluru	17	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	18	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	19	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	20	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	21	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	22	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	23	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	24	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	25		S2t	S1	S1	S1	S1	S1	S1	S1	S1				S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	26		S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	27		S2t			S1		S 1	S 1		S1						S1		S2t				S1			S1		S1		S1	S1		S1	S1

Village	Surv ey No	Man go	Maizo	e Sapo ta	Sorgh am	Coco nut	Guava	Tama rind	Lime	Sun flower	Red gram	Amla	Jack fruit	Cust ard- app e		Jam un		Grou i ndnut		Chilly	Toma to	a Marig old		a Pome n grana te	вапа		Field- bean			r Brin t jal	Fodde r- Sorgh um	Uplan d-	Jasmi	i Cow pea
Nalluru	28	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	29	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	51	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	30	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	31	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	32	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	51	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	33	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	34	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	35	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	36	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	37	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	51	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	38	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	51	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	39	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	51	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	40	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	41	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	42	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	43	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	44	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	45	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	46	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	51	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	47	S1	S1	S1	S1	S1	S1	S1	S1	S1	S 1	S1	S1	51	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	48		S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	49	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	51	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	50	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	51	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	77		S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	78		S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	79	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	80	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	81	S2gz	S2tz	S2gz	S2gz	S2tz	S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	S1	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru	82	S2gz	S2tz	S2gz	S2gz	S2tz	S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	S1	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz

Village	Surv ey	Man	Maize	Sapo	Sorgh	Сосо	Guava	Tama			Red	Aml	Jack	Cust ard-	Cash	Jam	Mus	Grou	Oni	Chilly	Toma	Marig		a Pome n grana	вапа	Horse	Field-	Arec	Finge	r Brin	Fodd r-	e Uplan d-	Jasm	i Cow
Village	No	go	IVIAIZO	ta	am	nut	Guave	rind	Line	flower	gram		a fruit	app e	ew	un	amb	i ndnut	on	Chiny	to	old	um	te	na	gram	bean	anut	-Mille	t jal	Sorgh um	¹ Paddy	ne	pea
Nalluru	83	S2gz	S2tz	S2gz	S2gz	S2tz	S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	S1	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru	84	S2gz	S2tz	S2gz	S2gz	S2tz	S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	51	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru	85	S2gz	S2tz	S2gz	S2gz	S2tz	S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	S1	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru	86	S2gz	S2tz	S2gz	S2gz	S2tz	S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	S1	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru	87	S2gz	S2tz	S2gz	S2gz	S2tz	S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	S1	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru	88	S2gz	S2tz	S2gz	S2gz	S2tz	S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	51	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru	89	S2gz	S2tz	S2gz	S2gz	S2tz	S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	S1	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru			S2tz				S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	51	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru			S2tz				S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	51	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru			S2tz				S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	51	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru			S2tz				S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	51	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru	94				S1	S1	S1			-		S1	S1		S1				S2t		S1		S1			S1			S1	S1	S1		S1	S1
Nalluru	95		S2t	S1	51	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S 1									
Nalluru	96	S1	S2t	S1	51	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S 1									
Nalluru			S2tz	S2gz	S2gz	S2tz	S2tz	S2gz	S2gz	S2gz	S2gz	S1											S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru			S2tz	S2gz	S2gz	S2tz	S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	51	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru	00	S1			S1	S1	S1	S1	S 1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	100	S2gz	S2tz	S2gz	S2gz	S2tz	S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	S1	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru	101		S2t		S1	S1	S1	S1	S1			S1	S1		S1	-			S2t		S1		S1		-	S1		S1	S1	S1	S1	S1	S1	S1
Nalluru	102		S1						S1		S1		S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1										
Nalluru	103		S1		S1	S1	S1		S1				S1		S1					S1	S1		S1			S1			S1	S1	S1		S1	S1
Nalluru	104		S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g
Nalluru	112		S1		S1	S1	S1		S1	-		S1	S1		S1					S1	S1		S1		-	S1		S1	S1	S1	S1	-	S1	S1
Nalluru	113		S1		S1	S1	S1		S1			S1	S1						S1		S1		S1			S1			S1	S1	S1		S1	S1
Nalluru	122	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1			S1					S1	S1		S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	123		S1	S1	S1	S1	S1		S1		S1	S1					S1			S1	S1		S1			S1		S1	S1	S1	S1		S1	S1
Nalluru	124		S1		S1	S1	S1		S1			S1	S1		S1		S1			S1	S1		S1			S1		S1	S1	S1	S1		S1	S1
Nalluru	125	51	S 1	51	51	S 1	S 1	\$ 2t	S 1	51	S1		S1			S1		S1	S1	S1	S1		S1	S1										
Nalluru	176	Other	Other	Other	Other	Other	Other	Other	Other	Other	Other	Othe	e Othe	Othe	Othe	Othe	Othe	Other	Oth	Oth		-	-	• Other	-	-	-	-	-	-	-			-
ivalluru	120	s	S	s	s	S	s	s	s	s	s	rs	rs	rs	rs	rs	rs	S	ers	ers	S	S	s	S	s	s	S	s	S	S	s	S	s	Others
Nalluru	127	S1	S2t	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1										

	Surv													Cust	:								Chrys	a Pome							Fodde	e Uplan		
Village	ey No	Man go	Maiz	e Sapo ta	Sorgh am	Coco nut	Guava	Tama rind	Lime	Sun flower	Red gram	Amla	3		Cash ew			Grou i ndnut		Chilly	Toma to	Marig old		n grana te	Bana na		Field- bean			r Brin t jal	r- Sorgh um	d-	Jasmi	i Cow pea
Nalluru	130	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	131	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	132	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	133	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	157	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	184	S2gz	S2tz	S2gz	S2gz	S2tz	S2tz	S2gz	S2gz	S2gz	S2gz	S1	S2gz	S1	S2tz	S2gz	S2gz	S3tz	S2tz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz	S2gz	S2gz	S2gz	S2tz	S2gz
Nalluru	185	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S 1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	187	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S 1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	192	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	193	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	194	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	195	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	196		S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	197	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	198		S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	199		S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Nalluru	200	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	1	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha nakunte	2	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g			S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g			S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha nakunte	3	S2g	S2g	S2g	S2g	S2g	S2g	S2g			S2g	\$2a	\$2a	52a	\$2a	\$2a	\$2a	52g	\$2a	\$2a	\$2a	52a	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha	4	525	525	525	525	525	525	525	525	525	525	525	528	528	528	528	528	S2g	526	525	S2g			525	525	525	525	525	525	525	525	525	525	525
nakunte Malamacha		S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
nakunte	5	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha nakunte	6	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha	7																																	
nakunte Malamacha	8		S2g			S2g						S2g							S2g		S2g		S2g						S2g	S2g	S2g			S2g
nakunte Malamacha	-	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
nakunte	9	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	10	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1

Village	Surv ey No	Man go	Maize	Sapo ta	Sorgh am	Coco nut	Guava	Tama rind	Lime	Sun flower	Red gram	Amla	Jack fruit	арр		Jam un		Grou i ndnut		Chilly	Toma to	a Marig old	7 *	a Pome n grana te	Bana		Field- bean		Finge -Mille	r Brin t jal	Fodde r- Sorgh	Uplan d-	Jasm	i Cow pea
Malamacha nakunte	11	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1			e S1			S1	S2t	S2t	S1	S1	S1			S1	S1	S1	S1	S1	S1	um S1		S1	S1
Malamacha	12												-	-		-	-																-	
nakunte Malamasha		S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	13	S1	S2t	S1	S1	S1	S1	S1	S 1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	14	S1	S2t	S1	S1	S 1	S1	S1	S1	S1	S 1	S1	S1	51	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S 1	S1	S1	S1	S1	S1	S1	S 1	S 1	S1
Malamacha nakunte	15	S1	S2t	S1		S1	S1		S1		S1					S1					S1	S1				S1	S1	S1			S1		S1	S1
Malamacha		-	521	51	31	51	51	31	31	31	51	51	21	21	51	21	21	S2t	S2t	51	51	51	51	51	51	31	51	51	S1	S1	51	51	31	31
nakunte	16	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	17	S1	S2t	S1	S 1	S1	S1	S 1	S 1	S 1	S1	S1	S1	S1	S1	S1	51	S2t	S2t	51	S1	S1	S1	S1	S1	S1	S1	S 1	S1	S1	S1	S1	S1	S1
Malamacha	18	_										-	-	-			-								-									
nakunte	10	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	19	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha	20											-														-		-						
nakunte	20	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	21	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	22	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	51	S1	c 1	S1	\$2+	S2t	S 1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha		51	521	51	51	51	51	51	51	51	51	51	51	51	51	51	51	521	521	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
nakunte	23	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	24	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S 1	S1	S1
Malamacha nakunte	25	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha	26																																	
nakunte Malamacha		S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
nakunte	55	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Malamacha	56																																	
nakunte Malamacha		S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
nakunte	64	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Malamacha	65																																	
nakunte Malamacha		S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
nakunte	66	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha	67	63 -	6 2-		63 -		62-	6 2-	63 -	62-	<u> </u>		· · ·		C 2-	63 -		63 -	63 -	<u> </u>	6 2-	63 -	6 2-	63 -	6 2-	63 -		63 -	6 2-	C 2-	62-	63 -		63 -
nakunte Malamacha		S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	52g	S3g	52g	S3g	აკვ	S3g	52g	აკვ	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
nakunte	68	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g

Village	Surv ey No	Man go	Maize	Sapo ta	Sorgh am	Coco nut	Guava	Tama rind	Lime	Sun flower	Red gram	Amla	Jack fruit	Cust ard- appl e	Cook	Jam un		Grou i ndnut		Chilly	Toma to	Marig old	7	a Pome ngrana te	вапа		Field- bean		Finger -Millet		Fodde r- Sorgh um	Uplan d-	Jasm	i Cow pea
Malamacha nakunte	69	S2r	51	S1	S 1	S1	S1	S2r	S 1	S 1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S 1	S1	S1	S1	S1	S1	S1	S1
Malamacha	70		-			-													-															
nakunte	/0	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	71	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	52 σ	530	52σ	520	S3g	530	52a	S3g	530	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g
Malamacha		555	555	556	555	556	555	555	555	555	555	528	555	528	555	556	555	525	555	555	555	525	528	555	555	525	555	555	556	556	555	555	528	555
nakunte	72	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha	73			~	~	~	~	~	~	~	~	~ 4	~ 4			~	~ 4					~		~		~	~ 4		~	~	~	~	~	~
nakunte Malamacha		S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	51	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
nakunte	74	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha	75																																	
nakunte	13	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	76	S1	52t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	51	51	S1	S 1	S2t	S2t	51	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha				-	-	-	-	-	-	-	-		-	-			_							-	-	-	-		-	-				
nakunte	77	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha	78	S1	C 34	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C 34	c 74	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	c 1
nakunte Malamacha		21	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	521	S2t	21	S1	S1	S1	51	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
nakunte	79	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha	80																																	
nakunte		S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	81	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha						-											-										-							
nakunte	82	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	83	S 1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	51	C1	S1	C1	\$2+	S2t	C1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha		31	521	31	51	51	51	51	51	51	31	51	51	51	51	51	51	521	521	31	51	51	51	51	31	51	31	51	31	31	31	31	51	51
nakunte	84	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha	85				~	~	~	C 4	C 4	~	~									_		~	~				~	_		~			~	
nakunte Malamacha		S1	52t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	51	S1	51	S2t	S2t	51	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
nakunte	86	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S 1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha	87																																	
nakunte	57	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	88	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	51	51	S1	51	S2+	S2t	51	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha		51	521	51	51	51	31	21	21	51	51	51	51	51	51	51	51	521	521	51	31	51	31	51	51	51	51	51	51	51	51	51	51	51
nakunte	89	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha	90				~	~		~	~	~	~																~	_					_	
nakunte Malamacha		S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	51	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
nakunte	91	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S 1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1

Village	Surv ey No	Man go	Maize	Sapo ta	Sorgh am	Coco nut	Guava	Tama rind	Lime	Sun flower	Red gram	Amla	Jack fruit	Cust ard app		Jam un		Grou i ndnut		Chilly	Toma to	a Marig old	7 1	a Pome n grana te	Bana		Field- bean		Finge -Mille	r Brin t jal	Fodde r- Sorgh	Uplan d-	Jasmi	i Cow pea
Malamacha nakunte	97	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S 1			e S1			S 1	S2t	S2t	S1	S1	S1	S1		S1	S1	S1	S1	S1	S1	um S1			S1
Malamacha	93																																	
nakunte Malamacha		S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	51	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
nakunte	94	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	95	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha	96																																	
nakunte Malamacha		S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	51	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
nakunte	97	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	98	S 1	S2t	S1	S1	S 1	S1	S1	S1	S1	S 1	S1	S1	S1	S1	S 1	S 1	\$2+	S2t	C1	S1	S1	S1	S1	S1	S 1	S1	S 1	S1	S1	S1	S1	S1	S1
Malamacha	99	51	520	51	51	51	51	51	51	51	51	51		51	51	51	51	520	520		51	51	51	51	51	51	51	51	51	51	51	51	51	51
nakunte		S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha nakunte	100	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malamacha	101						C 2				~~											~~								~~~	~~			~
			S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	SZg	52g	52g	S2g	52g	52g	52g	52g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
nakunte	102	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha nakunte	103	52g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	52g	52g	52g	S2g	52g	52g	S2g	52g	52g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha					8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
nakunte Malamacha	104		S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
nakunte	105	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha nakunte	106		629	624	\$29	6 2 <i>a</i>	629	\$29	529	\$29	6 7 <i>a</i>	674	629	629	620	529	624	624	624	529	624	529	629	529	629	\$29	529	529	629	\$29	574	629	624	574
Malamacha		32g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	JZg	52g	52g	S2g	528	528	32g	52g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
nakunte			S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha nakunte	108	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha	109																																	
nakunte Malamacha		S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
nakunte	110	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha nakunte	111	52g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	52 σ	52 σ	52σ	S2g	52 σ	52a	52 σ	52a	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha			5	5	5-8	ð-6	5-5			5-8	ð-6	5-6	8	5-6	5-5	5-5	5-5	-5	8		5-8	5	5	5-8	8-8	5-6		5-6	6	5	5	5-5	0 0	8
nakunte Malamacha	112	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
nakunte	113	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha	114																																	
nakunte		S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g

Village	Surv ey No	Man go	Maizo	Sapo ta	Sorgh am	Coco nut	Guava	Tama rind	Lime	Sun flower	Red gram	Amla		Cust ard- appl e				Grou ndnut		Chilly	Toma to	Marig old		Pome grana te	Bana na	Horse gram	Field- bean		Finger -Millet		Fodde r- Sorgh um	Uplan d-	Jasm ne	
Malamacha nakunte	115	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha nakunte	116	S2g	S2g			62a	\$29	52a	\$29	\$29																				67a	62a	S2g	67a	S2g
Malamacha	117					S2g							S2g						S2g						S2g					S2g			S2g	
nakunte Malamacha			S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
	110	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha nakunte	123	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha nakunte	124			629	574	679	629	629	624	629	67 <i>a</i>	624	674	6 7 9	6 7a	674	674	629	6 2 <i>a</i>	629	629	624	624	629	6 2 <i>a</i>	\$29	6 2 <i>a</i>	529	629	6 2 <i>a</i>	624	674	579	624
Malamacha			S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	52g	S2g	52g	JZg	32g	52g	32g	S2g	52g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
nakunte Malamacha	120	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
nakunte	127	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Malamacha nakunte	128	51	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasandra	1	S2g	S2g	S2g		S2g					S2g		S2g						S2g		S2g	S2g	S2g		S2g					S2g		S2g	S2g	S2g
Ankasandra	2		S2g			S2g		-	-	-			S2g			-	-		_			S2g	S2g		S2g					S2g			S2g	S2g
Ankasandra	3	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Ankasandra	4	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Ankasandra	5	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Ankasandra	6	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Ankasandra	7	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasandra	8	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasandra	19	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S 1	S1	S1	S1	S1
Ankasandra	20	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasandra	21	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasandra	22	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasandra	23	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasandra	24	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasandra	25	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasandra	26	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasandra		S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasandra	28	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g

Village	Surv ey No	Man go	Maize	Sapo ta	Sorgh am	Coco nut	Guava	Tama rind	Lime	Sun flower	Red gram	Amla	Jack fruit	Cust ard- appl e	Cash ew	Jam un	Mus ambi	Grou ndnut	Oni on	Chilly	Toma to	Marig old	Chrysa nthem um	Pome grana te	Bana na			Arec anut			Fodde r- Sorgh um	Uplan	Jasmi	Cow pea
Ankasandra	29	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Ankasandra	30	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Ankasandra	31	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Ankasandra	32	Other s	Other s	Other s	Other s	Other s	Other s	Other s	Other s	Other s	Other s	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Othe rs	Other s	Othe rs	Other s	Other s	Other s	Other s	Other s	Other s	Other s	Other s	Other s	Other s	Other s	Other s	Other s		Others
Ankasandra	33	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g		S2g
				S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g			S2g	S2g	S2g	S2g	S2g
Ankasandra	65	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Marana halli	37	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Marana halli	38	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g

PART-B

SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS

CONTENTS

1.	Executive summary	1-3
2.	Introduction	5
3.	Methodology	7-11
4.	Results and discussions	13-30

I. Soc	ial status	
1	Human population among sample households	13
2	Basic needs of sample households	14
3	Institutional participation among the sample population	15
II. Ec	onomic status	
4	Occupational pattern in sample households	16
5	Domestic assets among samples households	16
6	Farm assets among samples households	17
7	Livestock assets among sample households	19
8	Milk produced and Fodder availability of sample households	19
9	Women empowerment of sample households	19
10	Per capita daily consumption of food among the sample households	20
11	Annual average Income from various sources	21
12	Average annual expenditure of sample households	21
13	Land holding among samples households	22
II.F	lesource use pattern	
14	Number of tree/plants covered in sample farm households	23
15	Present cropping pattern among samples households	23
16	Distribution of soil series in the watershed	24
IV. E	conomic land evaluation	
17	Cropping pattern on major soil series	25
18	Alternative land use options for different size group of farmers	25
	(Benefit Cost Ratio)	
19	Economics Land evaluation and bridging yield gap for different crops	26
20	Estimation of onsite cost of soil erosion	27
21	Ecosystem services of food grain production	28
22	Ecosystem services of fodder production	29
23	Ecosystem services of water supply for crop production	29
24	Farming constraints	30

LIST OF TABLES

LIST OF FIGURES

1	Location of study area	8
2	ALPES Framework	9
3	Basic needs of sample households	15
4	Domestic assets among the sample households	17
5	Farm assets among samples households	18
6	Livestock assets among sample households	18
7	Per capita daily consumption of food among the sample households	20
8	Average annual expenditure of sample households	22
9	Present cropping pattern	23
10	Estimation of onsite cost of soil erosion	27
11	Ecosystem services of food grain production	28
12	Ecosystem services of water supply	29

Chapter 1

EXECUTIVE SUMMARY

Baseline socioeconomic characterisation is prerequisite to prepare action plan for program implementation and to assess the project performance before making any changes in the watershed development program. The baseline provides appropriate policy direction for enhancing productivity and sustainability in agriculture.

Methodology: Nallur micro-watershed (Bangihalli sub-watershed, Gubbi taluk, Tumkur district) is located in between $13^{0}27' - 13^{0}28'$ North latitudes and $76^{0}53' - 76^{0}55'$ East longitudes, covering an area of about 604.37 ha, bounded by Malamachanakunte, Maranahalli, Ankasandra and Nallur villages with length of growing period (LGP) 120-150 days. We used soil resource map as basis for sampling farm households to test the hypothesis that soil quality influence crop selection, and conservation investment of farm households. The level of technology adoption and productivity gaps and livelihood patterns were analyses. The cost of soil degradation and eco system services were quantified.

Results: The socio-economic outputs for the Nallur micro-watershed (Bangihalli subwatershed, Gubbi taluk, Tumkur district) are presented here.

Social Indicators;

- Male and female ratio is 50 to 50 per cent to the total sample population.
- ✤ Younger age 18 to 50 years group of population is around 69.6 per cent to the total population.
- *Literacy population is around 82.6 per cent.*
- Social groups belong to general caste among the all sample housholds.
- ✤ Liquefied petroleum gas (LPG) is the source of energy for a cooking all among sample households.
- About 72.7 per cent of households have a yashaswini health card.
- About 18.2 percent households are having MGNREGA card for rural employment.
- Dependence on ration cards for food grains through public distribution system is around 63.6 per cent.
- Swach bharath program providing closed toilet facilities around 90.9 per cent of sample households.
- Institutional participation is only 15.2 per cent of sample households.
- Women participation in decisions making are around 90.9 per cent of households were found.

Economic Indicators;

The average land holding is 1.14 ha indicates that majority of farm households are belong to marginal and small farmers. The rainfed land is 53.6 per cent and 46.4 per cent of irrigated land is cultivated land area among the sample farmers.

- Agriculture is the main occupation among 36.4 per cent and Agriculture is the main and agriculture labour is predominant subsidiary occupation for 23.6 per cent of sample households.
- The average value of domestic assets is around Rs.10282 per household. Mobile and television are popular media mass communication.
- The average value of farm assets is around Rs. 52312 per household, about 9.1 per cent of sample farmers having plough and sprayer.
- The average value of livestock is around Rs.48750 per household; about 54 per cent of household are having livestock.
- The average per capita food consumption is around 542.7 grams (1411.8 kilo calories) against national institute of nutrition (NIN) recommendation at 827 gram. Among the all sample households are consuming less than the NIN recommendation.
- The annual average income is around Rs.145239 per household. Around 36.4 per cent of households were below poverty line.
- The per capita average monthly expenditure is around Rs.1103.

Environmental Indicators-Ecosystem Services;

- The value of ecosystem service helps to support investment to decision on soil and water conservation and in promoting sustainable land use.
- The onsite cost of different soil nutrients lost due to soil erosion is around Rs. 379 per ha/year. The total cost of annual soil nutrients is around Rs. 334887 per year for the total area of 604.37 ha.
- The average value of ecosystem service for food grain production is around Rs 68305/ ha/year. Per hectare food grain production services is maximum in areca nut (Rs. 191183) followed by coconut (Rs. 85204), mango (Rs. 42561), sorghum (Rs. 14276) and ragi (Rs. 8300).
- The average value of ecosystem service for fodder production is around Rs. 2936/ ha/year. Per hectare fodder production services is maximum in ragi (Rs. 3588) followed by sorghum (Rs. 2284).
- The data on water requirement for producing one quintal of grain is considered for estimating the total value of water required for crop production. The per hectare value of water used and value of water was maximum in coconut (Rs. 3349955) followed by sorghum (Rs. 84626), mango (Rs. 52678), ragi (Rs. 18956) and areca nut (Rs. 7763).

Economic Land Evaluation;

- The major cropping pattern is by areca nut 24.9 %) coconut (20.4 %), ragi (20.4 %) mango (12.6 %), maize (11.4 %) and sorghum (10.3 %).
- In Nallur micro-watershed, major soil is Budagumpa (BGP) series is having very deep soil depth cover around 9.55 per cent of area. On this soil farmers are presently

growing areca nut (82.1 %) coconut (13.0 %) and ragi (4.8%) and Kadagathur (KDT) are also having very deep soil depth cover 51.57 per cent of area, the crops are areca nut (11.1%), coconut (36.6 %), mango (15.6 %), ragi (23.9 %) and sorghum (12.8 %).

- The total cost of cultivation and benefit cost ratio (BCR) in study area for areca nut range between Rs 14431/ha in BGP soil (with BCR of 16.25) and Rs.11849/ha in KDT soil (with BCR of 10.46).
- In coconut the cost of cultivation range between is Rs.60522/ha in BGP soil (with BCR of 4.50) and Rs. 38855/ha in KDT soil (with BCR of 3.72).
- In ragi the cost of cultivation range between is Rs 76501/ha in BGP soil (with BCR of 1.09) and Rs.22269/ha in KDT soil (with BCR of 1.72).
- In mango the cost of cultivation in KDT soil is Rs 17223/ha (with BCR of 5.04) and sorghum cost of cultivation in KDT soil is Rs. 19179/ha (with BCR of 4.21).
- The land management practices reported by the farmers are crop rotation, tillage practices, fertilizer application and use of farm yard manure (FYM). Due to higher wages farmer are following labour saving strategies is not prating soil and water conservation measures. Less ownership of livestock limiting application of FYM.
- It was observed soil quality influences on the type and intensity of land use. More fertilizer applications in deeper soil to maximize returns.

Suggestions;

- Involving farmers is watershed planning helps in strengthing institutional participation.
- The per capita food consumption and monthly income is very low. Diversifying income generation activities from crop and livestock production in order to reduce risk related to drought and market prices.
- Majority of farmers reported that they are not getting timely support/extension services from the concerned development departments.
- ✤ By strengthing agricultural extension for providing timely advice improved technology there is scope to increase in net income of farm households.
- By adopting recommended package of practices by following the soil test fertiliser recommendation, there is scope to increase yield in areca nut (52 to 55 %) coconut (0 to 18.4 %), ragi (0 to 19%) and sorghum (38.8 %).

INTRODUCTION

Watershed Development program aim to restore degraded watersheds in rainfed regions to increase their capacity to capture and store rain water, reduce soil erosion, and improved soil nutrients and carbon contents so they can produce greater agricultural yields and other benefits. As majority of rural poor live in these regions and dependent on natural resources for their livelihood and sustenance, improvements in agricultural yields improve human welfare and simultaneously improve national food security.

Sujala–III watershed development project conceptualised and implemented by the Watershed Development Department of Government of Karnataka with tripartite cost-sharing arrangements. The World Bank through International Development Association provided major portion of plan outlay as a loan to Government of India and in turn loan to Government of Karnataka.

The objectives of Sujala-III is to demonstrate more effective watershed management through greater integration of programs related to rain fed agriculture, innovative and science based approaches and strengthened institutions and capacities. The project is implemented in 11 districts of Bidar, Vijayapura, Gulbarga, Yadgir, Koppal, Gadag, Raichur, Davanagere, Tumkur, Chikkamangalur and Chamarajanagar which have been identified by the Watershed Development Department based on rainfall and socio-economic conditions. The project will be implemented over six years and linked with the centrally financed integrated watershed management programme.

Economic evaluations can better guide in watershed planning and implementation, as well as raise awareness of benefits of ecosystem restoration for food security and poverty alleviation program. The present study aims to characterize socio-economic status of farm households, assess the land and water use status, evaluate the economic viability of land use, prioritize farming constraints and suggest the measures for soil and water conservation for sustainable agriculture.

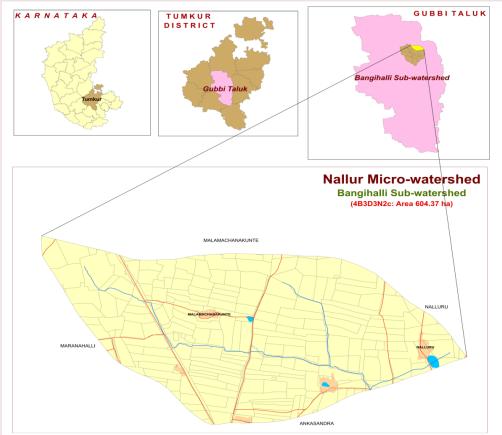
Objectives of the study

- 1. To characterize socio-economic status of farm households
- 2. To evaluate the economic viability of land use and land related constraints
- 3. To estimate the ecosystem service provided by the watershed and
- 4. To suggest alternatives for sustainable agriculture production.

METHODOLOGY

Study area

Nallur micro-watershed is located in Eastern Dry Zone of Karnataka (Figure 1). The zone covers entire Bangalore and Kolar districts and 2 taluks of Tumkur. It has an area of 1.80 M ha with 0.85 M ha under cultivation. About 0.23 M ha are irrigated mainly from tanks and wells. Elevation ranges from 800 to 1500m MSL with major area falling between 800 and 900 m. The major soil type is non-gravelly red loam with a narrow belt of lateritic soil. Average annual rainfall ranges between 680 and 890mm. The principal crops of the zone are ragi, rice, pulses, maize, oil seeds and mulberry. A sizeable area is also under vegetables and flowering plants. It's represented Agro Ecological Sub Region (AESR) 8.2 having LGP 120-150 days.


Nallur micro-watershed (Bangihalli sub-watershed, Gubbi taluk, Tumkur district) is located in between $13^{0}27' - 13^{0}28'$ North latitudes and $76^{0}53' - 76^{0}55'$ East longitudes, covering an area of about 604.37 ha, bounded by Malamachanakunte, Maranahalli, Ankasandra and Nallur villages.

Sampling Procedure:

In this study we have followed soil variability as criterion for sampling the farm households. In each micro-watershed the survey numbers and associated soil series are listed. Minimum three farm households for each soil series were taken and summed up to arrive at total sample for analysis.

Sources of data and analysis:

For evaluating the specific objectives of the study, primary data was collected from the sample respondents by personal interview method with the help of pre-tested questionnaire. The data on socio-economic characteristics of respondents such as family size and composition, land holdings, asset position, occupational pattern and education level was collected. The present cropping pattern and the level of input use and yields collected during survey. The data collected from the representative farm households were analysed using Automated Land Potential Evalution System (Figure 2).

LOCATION MAP OF NALLUR MICRO-WATERSHED

Figure 1: Location of study area

Steps followed in socio-economic assessment

•After the completion of soil profile study link the cadastral number to the soil profile in the micro watershed.

- Download the names of the farmers who are owning the land for each cadastral number in the Karnataka BHOOMI Website.
- Compiling the names of the farmers representing for all the soil profiles studied in the micro watershed for socio-economic Survey.
- Conducting the socioeconomic survey of selected farm households in the micro watershed .
- Farm households database created using the Automated Land Potential Evaluation System (ALPES) for analysis of socio economic status for each micro watershed .
- Synthesis of tables and preparation of report for each micro watershed .

5

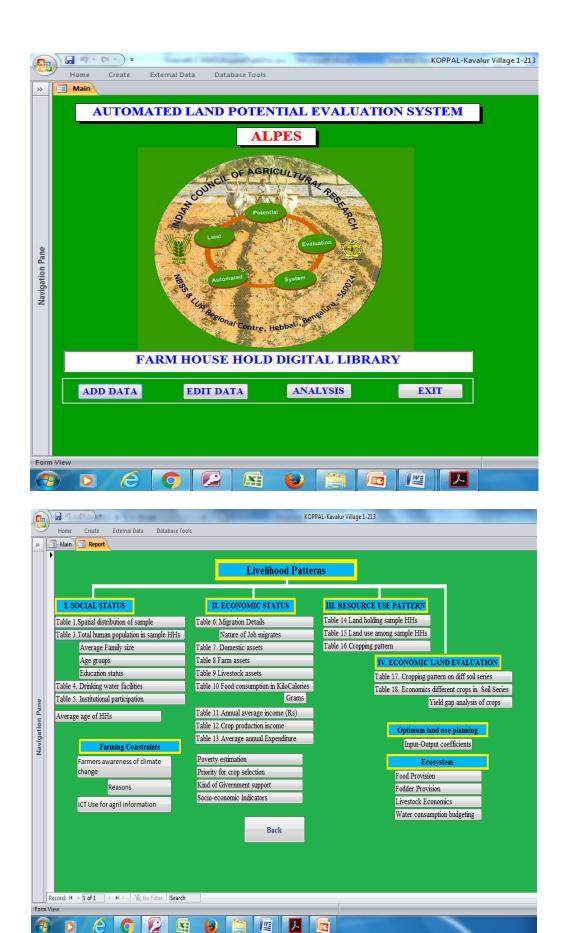
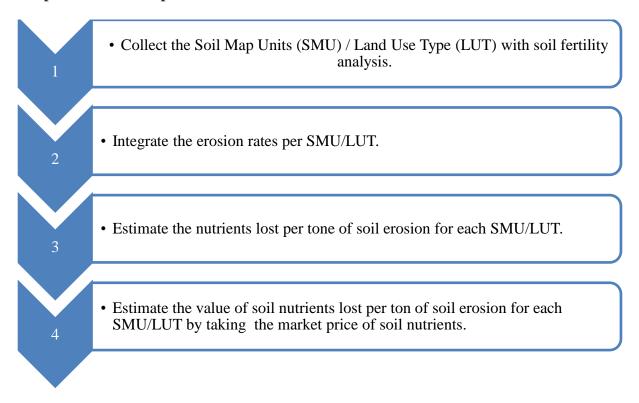


Figure 2: ALPES FRAMEWORK

The sample farmers were post classified in to marginal and small (0.0 to $\langle =2 \text{ ha} \rangle$, medium and semi medium (>2 to $\langle =10 \text{ ha} \rangle$) and large (>10 ha). The steps involved in estimation of soil potential involve estimation of total cost of cultivation, the yield/gross returns and net income per hectare. The cost of inputs such seed, manure and fertilizer, plant protection chemicals, payment towards human and bullock labour and interest on working capita are included under operational costs. In the case of perennial crops, the cost of establishment was estimated by using actual physical requirements and prevailing market prices. Estimation cost included maintenance cost up to bearing period. The value of main product and by product from the crop enterprise at the market rates were the gross returns of the crop. Net returns were worked out by deducting establishment and maintained cost from gross returns.

Operational Cost = cost of seeds, fertilizers, pesticides. Cost of human and bullock labour, cost of machinery, cost of irrigation water + interest on working capital.

Gross returns = Yield (Quintals/hectare)*Price (Rs/Quintal)


Net returns = Gross returns-Operational cost.

Benefit Cost Ratio = Net returns/Total cost.

Economic suitability classes: once each land use –land area combination has been assigned an economic value by the land evaluation, the question arises as to its 'suitability', that is, the degree to which it satisfies the land user. The FAO framework defines two suitability orders: 'S'(suitable if benefit cost ratio (BCR)>1) and 'N'(not suitable if (BCR<1), which are dived into five economic suitability classes:'S1'(highly suitable if BCR>3), 'S2'(suitable if BCR>2 and <3),'S3'(Marginally suitable if BCR >1 and <2), 'N1'(Not suitable for economic reasons but physically suitable) and 'N2'(not suitable for physical reasons). The limit between 'S3' and 'N1'must be at least at the point of financial feasibility (i.e. net returns, NPV, or IRR>0 and BCR>1). The other limits depend on social factors such as farm size, family size, alternative employment or investment possibilities and wealth expectations; these need to be specified for the Soil series.

Economic Valuation of Soil ecosystem services:

The replacement cost approach was followed for estimating the onsite cost of soil erosion, Market price method was followed for estimating the value of food and fodder production. Value transfer methods was followed for estimating the value of water demand by different crops in the micro watershed.

Steps followed in Replacement cost methods for estimation of onsite cost of soil erosion

RESULTS AND DISCUSSIONS

The demographic information shows that the household population dynamics encompasses the socioeconomic status of the farmer. For a rural family, the household size should be optimal to earn a comfortable livelihood through farm and non-farm wage earning. The total number of population in watershed area was 46, out of which 50 per cent were males and 50 per cent females. Average family size of the households is 4.2 Age is an important factor, which affects the potential employment and mobility status of respondents. The data on age wise distribution of farmers in the sample households indicated that majority of the farmers are coming under the age group of 18 to 30 years (37 %) followed by 30 to 50 years (32.6 %) more than 50 years (28.3 %) and 0 to18 years (2.2 %). Hence, in the study area in general, the respondents were of young and middle age, indicating thereby that the households had almost settled with whatever livelihood options they were practicing and sample respondents were young by age who could venture into various options of livelihood sources. Data on literacy indicated that 82.6 per cent of respondents were literate and 17.4 per cent illiterate (Table 1).

Particulars	Units	Value
Total human population in sample HHs	Number	46
Male	% to total Population	50.0
Female	% to total Population	50.0
Average family size	Number	4.2
Age group		
0 to 18 years	% to total Population	2.2
18 to 30 years	% to total Population	37.0
30 to 50 years	% to total Population	32.6
>50 years	% to total Population	28.3
Average age	Age in years	37.5
Education Status		
Illiterates	% to total Population	17.4
Literates	% to total Population	82.6
Primary School (<5 class)	% to total Population	15.2
Middle School (6- 8 class)	% to total Population	8.7
High School (9- 10 class)	% to total Population	13.0
Others	% to total Population	45.7

Table 1: Human population among sample households in Nallur Microwatershed

The ethnic groups among the sample farm households found to be among all the households belonging to general caste (Table 2 and Figure 3). Among the sample households

are using liquefied petroleum gas as source of fuel for cooking. All the sample farmers are having electricity connection. About 72.7 per cent are sample households having health cards. About 18.2 per cent households are having MNREGA job cards for employment generation. About 63.6 per cent of farm households are having ration cards for taking food grains from public distribution system. About 90.9 per cent of farm households are having toilet facilities.

Particulars	Units	Value		
Social groups	I			
General	% of Households	100.0		
Types of fuel use for cooki	ng			
Gas	% of Households	100.0		
Energy supply for home				
Electricity	% of Households	100.0		
Number of households have	ving Health card	· ·		
Yes	% of Households	72.7		
No	% of Households	27.3		
MGNREGA Card	· · · · · ·	·		
Yes	% of Households	18.2		
No	% of Households	81.8		
Ration Card	· · · · · ·	·		
Yes	% of Households	63.6		
No	% of Households	36.4		
Households with toilet	· · · · · ·	·		
Yes	% of Households	90.9		
No	% of Households	9.1		
Drinking water facilities		· ·		
Tube Well	% of Households	100.0		

Table 2: Basic needs of sample households in Nallur Microwatershed

The data collected on the source of drinking water in the study area is presented in Table 2. All the sample respondents are having Tube well source for water supply for domestic purpose.

Only 15.2 per cent of the farmers are participating in community based organizations (Table 3). Among them majority were participating in diary co-operatives Societies (15.2 %).

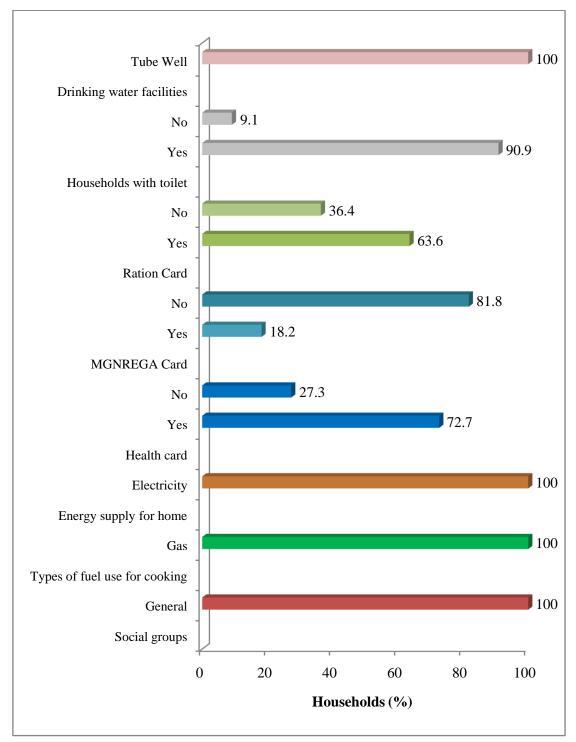


Figure 3: Basic needs of sample households in Nallur Microwatershed

Table 3: Institutional	participation	among the sa	ample pop	oulation in	Nallur Microwatershed
------------------------	---------------	--------------	-----------	-------------	-----------------------

Particulars	Units	Value		
No. Of people participating	% to total	15.2		
Co-operative Societies-Dairy	% to total	15.2		
No. Of people not participating	% to total	84.8		

The occupational pattern (Table 4) among sample households shows that agriculture is the main occupation around 36.8 per cent of farmers followed by subsidiary occupations like agriculture labour (23.7 %), non agricultural labour (17.4 %), private service (13.4 %), trade and business (2.2 %) and government service and self-employment around 2.2 per cent and 4.3 per cent respectively as a main occupation.

	Occupation	
Main	Subsidiary	% to total
	Agriculture	36.8
	Agriculture labour	23.7
Agriculture	Non Agriculture Labour	17.4
	Private service	13.4
	Trade and business	2.2
Govt .service	•	2.2
Self employed		4.3
Grand Total		100
Family labour availa	bility	Man days/month
Male		42.5
Female		30
Total		36.3

Table 4: Occupational pattern in sample population in Nallur Microwatershed

The important assets especially with reference to domestic assets were analyzed and are given in Table 5 and Figure 4. The important domestic assets possessed by all categories of farmers are television (100 %) followed by mobile phones (90 %), mixer/grinder (50 %), motorcycle (50 %), and refrigerator (20 %), bicycle (10 %) and computer/laptop (10 %). The average value of domestic assets is around Rs. 10282 per households.

Table 5: Domestic assets among the sample households in Nallur Microwatershed

Particulars	% of households	Average value in Rs
Bicycle	10.0	600
Computer/laptop	10.0	12100
Mixer/grinder	50.0	1220
Mobile Phone	90.0	1767
Motorcycle	50.0	42000
Refrigerator	20.0	12000
Television	100	2290
Average value		10282

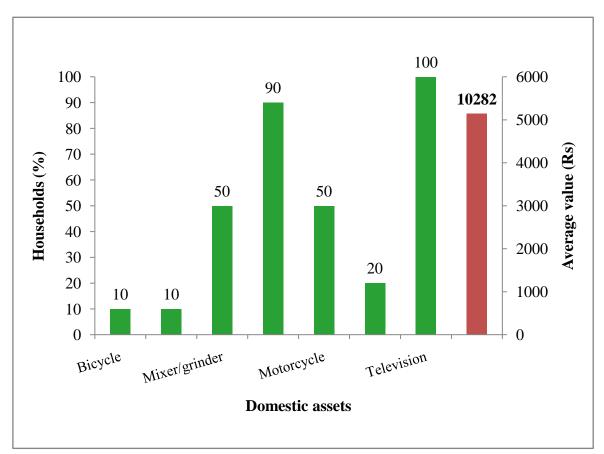


Figure 4: Domestic assets among the sample households in Nallur Microwatershed

The most popularly owned farm equipments were sickles, plough, cattle shed; pump sets, chaff cutter, bullock cart, sprayer and thresher. Plough and sickle were commonly present in all the sampled farmers; these were primary implements in agriculture. the per cent of households owned weeder (9.1 %), plough (9.1 %), sprayer (9.1 %), drip sprinkler (9.1%), and tractor (9.1 %) was found highest among the sample farmers. the average value of farm assets is around Rs 52312 per households (Table 6 and Figure 5).

Table 6: Farm assets among samples households in Nallur Microwatershed
--

Particulars	% of households	Average value in Rs
Drip/sprinkler	9.1	7000
Plough	9.1	2100
Sprayer	9.1	2400
Tractor	9.1	250000
Weeder	9.1	60
Average Value		52312

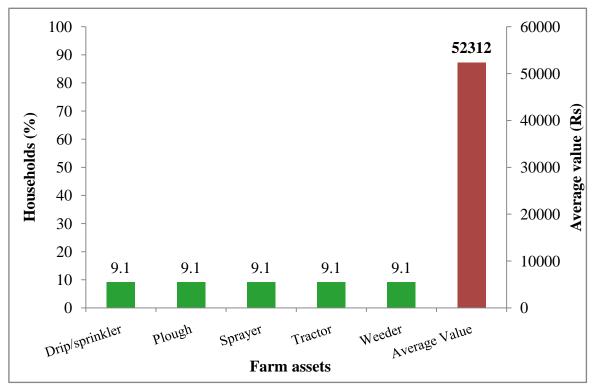


Figure5: Farm assets among samples households in Nallur Microwatershed

Livestock is an integral component of the conventional farming systems (Table 7 and Figure 6). The livestock population is, among local milching cow (28.6 %), cross breed milching cow (28.6%), milching buffalos (28.6 %) and local dry cow (14.3%). The average livestock value was Rs. 48750 per household.

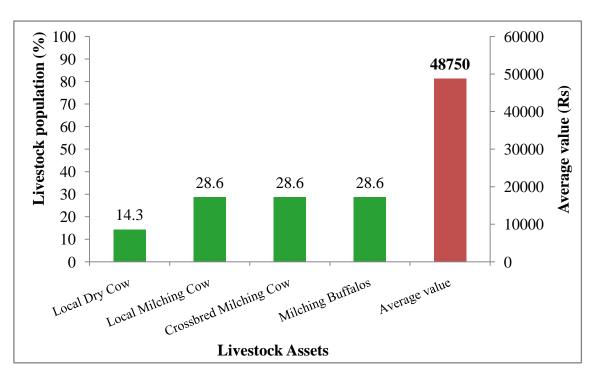


Figure 6: Livestock assets among sample households in Nallur Microwatershed

Particulars	% of livestock population	Average value in Rs
Local Dry Cow	14.3	3000
Local Milching Cow	28.6	13000
Crossbred Milching Cow	28.6	145000
Milching Buffalos	28.6	34000
Average value	4875	0

Table 7: Livestock assets among sample households in Nallur Microwatershed

Average milk produced in sample households is 1590 litters/ annum. Among the farm households, sorghum, bajra and maize are the main crops for domestic food and fodder for animals. About 1980.7 kg /ha of average fodder is available per season for the livestock feeding (Table 8).

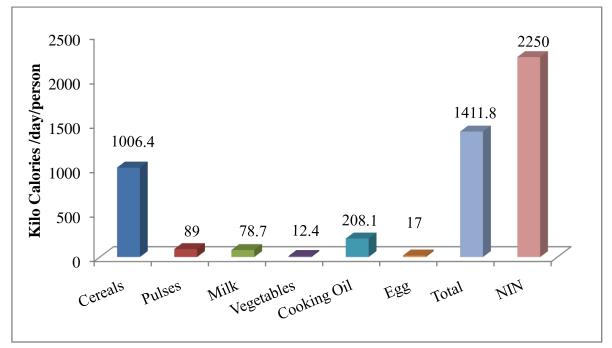
Table 8: Milk produced and fodder availability of sample households in Nallur Microwatershed

Particulars	
Name of the Livestock	Ltr./Lactation/animal
Crossbred Milching Cow	2100
Local Milching Cow	360
Milching Buffalos	2310
Average Milk Produced	1590
Fodder produces	Fodder yield (kg/ha.)
Maize	1316
Sorghum	1541
Ragi	3085
Average of fodder availability	1981
Livestock having households (%)	54
Livestock population (Numbers)	9

A woman participation in decision making is in this micro-watershed is presented in Table 9. About 9.1 per cent of women participation in local organisation activates, 18.2 per cent women earning for her family requirement and 90.9 per cent of women taking decision in her family and agriculture related activities.

Table 9: Women empowerment of sample households in Nallur Microwatershed

% to Grand Total


Particulars	Yes	No
Women participation in local organization activities	9.1	90.9
Women elected as panchayat member	0.0	100.0
Women earning for her family requirement	18.2	81.8
Women taking decision in her family and agriculture related activities	90.9	9.1

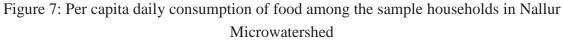

The food intake in terms of kilo calorie (kcal) per person per day was calculated and presented in the Table 10 and Figure 7. More quantity of cereals are consumed by sample farmers which accounted for 1006 kcal per person. The other important food items consumed was followed by cooking oil 208.1 kcal, pulses 89 kcal, milk 78.7 kcal, vegetables 12.4 kcal and egg 17 kcal. In the sampled households, farmers were consuming less (1411.8 kcal) than NIN- recommended food requirement (2250 kcal).

Table 10: Per ca	apita daily	consumption	of food	among t	the sample	households	in	Nallur
Microwatershed								

NIN recommendation	Present level of consumption	Kilocalories
(gram/per day/person)	(gram/ per day/ person)	/day/person
396	296.0	1006.43
43	26.0	89
200	121.1	78.7
143	51.8	12.4
31	36.5	208.1
0.5	11.4	17.0
14.2	0.0	0.00
827.7	542.7	1411.8
VIN recommendation	827 gram*	2250 Kcal*
	100	100.0
	0.00	0.00
	(gram/per day/person) 396 43 200 143 31 0.5 14.2 827.7 NIN recommendation	(gram/per day/person) (gram/ per day/ person) 396 296.0 43 26.0 200 121.1 143 51.8 31 36.5 0.5 11.4 14.2 0.0 827.7 542.7 NIN recommendation 827 gram* 100 100

Note: * day/person

Annual income of the sample HHs: The average annual household income is around Rs. 145239. Major source of income to the farmers in the study area is from crop production (Rs. 106307) followed by livestock (Rs. 38932). The monthly per capita income is Rs.2894, which is more than the threshold monthly income of Rs 975 for considering above poverty line. Due to the fact that erratic rainfall and shortage of water, farmers are diverting from crop production activities to enable the household for a comfortable livelihood. The incomes from the other aforesaid sources are very meagre (Table 11).

Table 11: Annual	l average income c	of HHs from var	rious sources in	Nallur Microwatershed

Particulars	Income *
Nonfarm income (Rs)	0 (0)
Livestock income (Rs)	38932 (45.5)
Crop Production (Rs)	106307 (100)
Total Annual Income (Rs)	145239
Average monthly per capita income (Rs)	2894
Threshold for Poverty level (Rs 975 per month/person)	
% of households below poverty line	36.4
% of households above poverty line	63.6

* Figure in the parenthesis indicates % of Households

The average annual expenditure of farm households indicated that farmers in the study area spend highest on food (Rs. 25775) followed by education, clothing, social function and health. Now a day's education is most important among all of us. In today's competitive world, education is a necessity for man after food, clothing, and shelter. It is the only fundamental way by which a desired change in the society can happen. The average per capita monthly expenditure is around Rs 1103 and 63.6 per of farm households are above poverty line and below poverty line is 36.4% (Table 12 and Figure 8).

Table 12: Average annual expenditure of sample HHs in Nallur Microwatershed

Particulars	Value in Rupees	Per cent
Food	25775	46.6
Education	191	0.3
Clothing	4727	8.5
Social functions	15545	28.1
Health	9091	16.4
Total Expenditure (Rs/year)	55329	100.0
Monthly per capita expenditure (Rs)	11	03

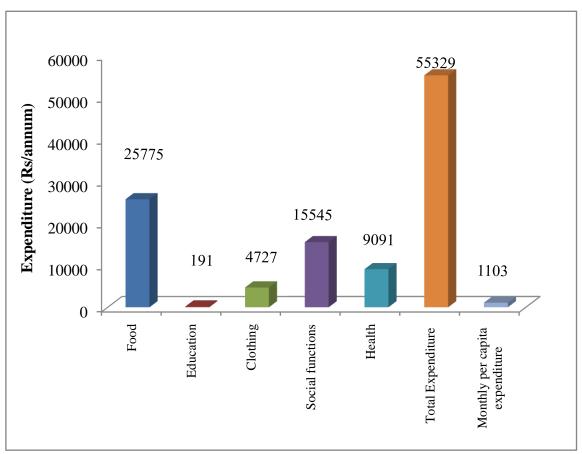


Figure 8: Average annual expenditure of sample HHs in Nallur Microwatershed

Land use: The total land holding in the Nallur Microwatershed is 14.8 ha (Table 13). Of which 7.9 ha is rain fed land and 6.9 ha is irrigated land. The average land holding per household is worked out to be 1.14 ha.

Table 13: Land use among samples households in Nallur Microwatershed

Particulars	Per cent Area in ha			
Irrigated land	46.5	6.9		
Rainfed Land	53.5	7.9		
Fallow Land	0.0	0.0		
Total land holding	100.0	14.8		
Average land holding	1.14			

In the Microwatershed, the prevalent present land uses under perennial plants are coconut (84.9 %) followed by mango (10.9 %), teak (2.6 %), acacia (0.7 %), neem tree (0.5 %), banyan trees (0.2 %) and guava (0.2%) (Table 14).

Particulars	Number of Plants/trees	Per cent
Banyan tree(Alada)	1	0.2
Coconut	490	84.9
Mango	63	10.9
Neem trees	3	0.5
Acacia	4	0.7
Guava	1	0.2
Teak	15	2.6
Grand Total	577	100.0

Table 14: Number of trees/plants covered in sample farm households in Nallur Microwatershed

The land use decisions are usually based on experience of farmers, tradition, expected profit, personal preferences, resources and social requirements. The present dominant crops grown in dry lands in the study area were by areca nut (24.9 %) followed by coconut (20.4 %), ragi (10.3 %), maize (11.4 %) which are taking during kharif; ragi (10.1 %) and sorghum (10.3 %) during rabi and mango (12.6 %) during summer season respectively. The cropping intensity was 149 per cent (Table 15 and Figure 9).

Table 15: Present cropping pattern and cropping intensity in Nallur Microwatershed

		% to Grand Total					
Crops	Kharif	Rabi	Summer	Grand Total			
Areca nut	24.9	0.00	0.0	24.9			
Coconut	20.4	0.0	0.0	20.4			
Maize	11.4	0.0	0.0	11.4			
Mango	0.0	0.0	12.6	12.6			
Ragi	10.3	10.1	0.0	20.4			
Sorghum	0.0	10.3	0.0	10.3			
Grand Total	66.9	20.4	12.6	100.0			
Cropping intensity (%)		149					

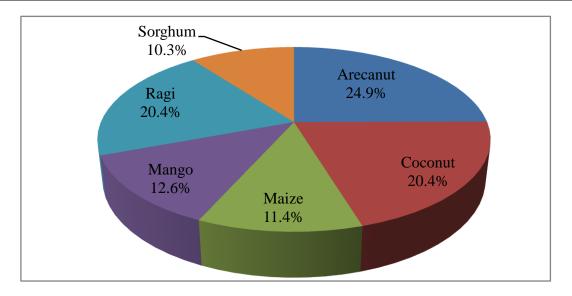


Figure 9: Present cropping pattern in Nallur Microwatershed

Economic land evaluation

The main purpose of economic land evaluation in the watershed is to identify the existing production constraints and propose the potential/alternate options for agro-technology transfer and for bridging the adoption and yield gap.

In Nallur Microwatershed, 7 soil series are identified and mapped (Table 16). The distribution of major soil series are Mornal soil covering an area around 24 ha (3.9%) followed by Balapur 4 ha (0.61 %), Nagalapur 137 ha (22.78 %), Hallikere 46 ha (7.5 %), Budagumpa 58 ha (9.55 %), Niduvalalu 13 ha (2.12 %) and Kadagathur 312ha (51.57%).

Soil No.	Soil Series	Mapping Unit Description	Area In ha (%)
		SOILS OF GRANITE GNEISS LANDSCAPE	
1	MNL	Mornal soils are deep (100-150 cm), well drained, have dark reddish brown to red gravelly sandy clay loam to sandy clay soils occurring on very gently sloping uplands under cultivation	24
2	BPR	Balapur soils are deep (100-150 cm), well drained, have dark reddish brown to dark red gravelly sandy clay to clay soils occurring on very gently sloping uplands under cultivation	4
3	NGP	Nagalapur soils are deep (100-150 cm), well drained, have dark reddish brown to dark red gravelly sandy clay to clay soils occurring on very gently sloping uplands under cultivation	13/
4	HLK	Hallikere soils are very deep (>150 cm), well drained, have dark brown to dark reddish brown clayey soils occurring on very gently sloping uplands under cultivation	46
5	BGP	Budagumpa soils are very deep (>150 cm), moderately well drained, black calcareous cracking gravelly clay soils occurring on nearly level to very gently sloping uplands under cultivation	28
6	NDL	Niduvalalu soils are very deep (>150 cm), well drained, have red to dark reddish brown gravelly sandy clay soils occurring on very gently sloping uplands under cultivation	13 (2.12)
7	KDT	Kadagathur soils are very deep (>150 cm), moderately well drained, have dark brown to very dark grayish brown sandy clay to clay soils occurring on very gently sloping uplands under cultivation	312 (51.57)
		Others	12 (1.93)

Table 16: Distribution of soil series in Nallur Microwatershed

Present cropping pattern on different soil series are given in Table 17. Crops grown on Budagumpa soils are areca nut, coconut and ragi. Mango, sorghum, coconut ragi and areca nut on Kadagathur soils can grow.

Soil	Soil Depth	Crops	Dry		Irrigated		Grand
Series			Kharif	Rabi	Kharif	Rabi	Total
	Very deep	Areca nut	82.1	0.0	0.0	0.0	82.1
BGP	(>150 cm)	Coconut	0.0	0.0	13.0	0.0	13.0
	(>150 cm)	Ragi	0.0	4.8	0.0	0.0	4.8
		Areca nut	0.0	0.0	11.1	0.0	11.1
	Very deen	Coconut	0.0	0.0	36.6	0.0	36.6
KDT	KDT Very deep (>150 cm)	Mango	15.6	0.0	0.0	0.0	15.6
	(>150 cm)	Ragi	4.9	11.1	7.9	0.0	23.9
		Sorghum	0.0	4.9	0.0	7.9	12.8

(Area in per cent)

Table 17: Cropping pattern on major soil series in Nallur Microwatershed

Land is used for agricultural use for growing cereals, pulse, oilseeds and commercial crops. The soil/ land potential are measures in terms of physical yield and net income. The alternative land use options for each Microwatershed are given below (Table 18).

Table 18: Alternative land use options for different size group of farmers (Benefit Cost Ratio) in Nallur Microwatershed.

Soil Series	Small Farmers	Medium Farmers
BGP	Areca nut (16.3),Coconut (4.5) & Ragi 1.1	
KDT	Coconut (2.7) & Mango (5.0)	Areca nut (10.5) & Coconut(5.8)
	Ragi (1.7) & Sorghum (4.2)	

The productivity of different crops grown in Nallur Microwatershed under potential yield of the crops is given in Table 19.

The data on cost of cultivation and benefit cost ratio (BCR) of different crops is given in Table 19. The total cost of cultivation in study area for areca nut range between Rs 14431/ha in BGP soil (with BCR of 16.25) and Rs.11849/ha in KDT soil (with BCR of 10.46), coconut range between is Rs.60522/ha in BGP soil (with BCR of 4.50) and Rs. 38855/ha in KDT soil (with BCR of 3.72), ragi range between is Rs 76501/ha in BGP soil (with of 1.09) and Rs.22269/ha in KDT soil (with BCR of 1.72), mango cost of cultivation in KDT soil is Rs 17223/ha (with BCR of 5.04) and sorghum cost of cultivation in KDT soil is Rs. 19179/ha (with BCR of 4.21).

The data on FYM, Nitrogen, Phosphorus and Potash application by the farmers to different crops and recommended FYM for different crops is given in Table 19 There is a huge gap between FYM application by farmers and recommended FYM in all the crops across the soils. There is a larger yield gap in crops grown across different soil series. Adequate knowledge about recommended package of practices is the pre-requisite for their

use in cultivation of crops. It is a fact that, recommended practices are major contributing factors to yield. Inadequate knowledge about recommended practices leads to their improper adoption. Strengthening of extension services by concerned agency is required to increase adoption of recommended cultivation practices and ultimately reducing the gap. By adopting soil-test fertiliser recommendation, there is scope to increase yield and income to a maximum of Rs 227650 in areca nut and a minimum of Rs 167 in areca nut cultivation.

Microwatershed			KDT				BGP		
						(
Particulars	(>150 cm)					(>150 cm)			
	Areca	Coco	Mango	Ragi	Sorg	Areca	Coco	Ragi	
	nut	nut		-	hum	nut	nut		
Total cost (Rs/ha)	11849	38855	17223	22269	19179	14431	60522	76501	
Gross Return (Rs/ha)	123912	128698	86743	37030	58639	234454	272194	83012	
Net returns (Rs/ha)	112063	89843	69520	14761	39460	220023	211672	6511	
B:C	10.46	3.72	5.04	1.72	4.21	16.25	4.50	1.09	
Farmers Practices (FP)									
FYM (t/ha)	4.0	10.0	6.8	0.0	3.5	2.4	3.0	0.0	
Nitrogen (kg/ha)	0.0	80.0	60.8	17.1	52.8	47.4	30.6	32.6	
Phosphorus (kg/ha)	0.0	57.5	155.4	37.4	131.8	42.7	50.7	48.9	
Potash (kg/ha)	0.0	75.0	0.0	25.0	30.8	35.5	22.9	28.6	
Grain (Qtl/ha)	5.6	200.0	27.0	10.0	102.7	29.6	12.6	28.1	
Price of Yield (Rs/Qtl)	38000	1200	3000	12000	1100	2000	2930	2050	
Soil test based fertilizer Re	ecommer	dation ((STBR)						
FYM (t/ha)	27.0	8.8	6.3	27.0	8.8	61.8	6.3	7.5	
Nitrogen (kg/ha)	168.8	111.0	50.0	168.8	111.0	231.6	50.0	81.3	
Phosphorus (kg/ha)	40.5	42.5	30.0	40.5	42.5	37.1	30.0	30.0	
Potash (kg/ha)	185.0	212.3	0.0	231.3	238.9	172.9	0.0	40.0	
Grain (Qtl/ha)	12.4	167.7	15.5	12.4	167.7	61.8	15.5	18.8	
% of Adoption/yield gap (S	STBR-FI	P) / (STI	BR)						
FYM (%)	85.3	-13.2	-8.1	100.0	60.5	96.2	52.5	100.0	
Nitrogen (%)	100.0	28.0	-21.6	89.9	52.5	79.5	38.8	59.8	
Phosphorus (%)	100.0	-35.3	-418.0	7.7	-210.2	-15.1	-68.8	-63.1	
Potash (%)	100.0	64.7	0	89.2	87.1	79.4	0	28.4	
Grain (%)	55.0	-19.2	-74.4	19.0	38.8	52.0	18.4	-49.9	
Value of yield and Fertilize	er (Rs)								
Additional Cost (Rs/ha)	30539	1293	-6154	33083	6272	64091	2150	7477	
Additional Benefits(Rs/ha)	258189	-38720	-34581	28200	71586	64258	8368	-19171	
Net change Income (Rs/ha)	227650	-40013	-28427	-4883	65314	167	6218	-26648	

Table 19: Economic land evaluation and bridging yield gap for different crops in Nallur Microwatershed

Economic valuation of Ecosystem Services (ES) was aimed at combining use and non-use values to determine Total Economic Value (TEV) of ES. Ecosystem Services (ES) were valued based on their annual flow or utilization in common monetary units, Rs/year. The valuation of ES was based on market price in 2017 or market cost approaches whichever is applicable, and in other cases on value or benefit transfer from previous valuation studies.

The onsite cost of different soil nutrients lost due to soil erosion is given in Table 20 and Figure 10. The average value of soil nutrient loss is around Rs 379 per ha/year. The total cost of annual soil nutrients is around Rs 224887 per year for the total area of 604.37 ha.

Particulars	Quan	tity (kg)	Valu	ie (Rs)
rarticulars	Per ha	Total	Per ha	Total
Organic matter	49.06	29092	309.1	183280
Phosphorous	0.3	162	12	7140
Potash	0.6	345	11.6	6897
Iron	0.1	73	5.9	3484
Manganese	0.1	73	33.9	20116
Cupper	0.01	3	3.3	1938
Zinc	0.00	3	0.2	107
Sulpher	0.1	46	3.1	1848
Boron	0.00	2	0.1	77
Total	50.25	29799	379.2	224887

Table 20: Estimation of onsite cost of soil erosion in Nallur Microwatershed

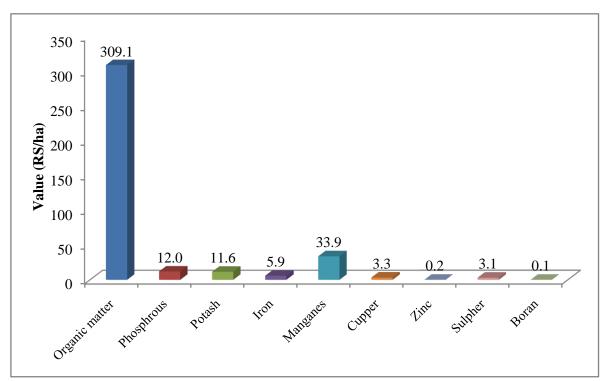


Figure 10: Estimation of onsite cost of soil erosion in Nallur Microwatershed

The average value of ecosystem service for food grain production is around Rs 68305/ ha/year (Table 21 and Figure 11). Per hectare food grain production services is maximum in areca nut (191183) followed by coconut (Rs. 85204), mango (Rs. 42561), sorghum (Rs. 14276) and ragi (Rs. 8300).

Production items	Crops	Area in ha	Yield (Qtl/ha)	Price (Rs/Qtl)	Gross Returns (Rs/ha)	Cost of Cultivation (Rs/ha)	Net Returns (Rs/ha)
Cereals	Ragi	2.8	13	2938	38214	29915	8300
	Sorghum	1.4	17	2050	35223	20947	14276
Oil seeds	Coconut	4.4	118	1100	129679	44475	85204
Commercial Crops	Areca nut	3.8	7	29333	203943	12759	191183
Fruits	Mango	1.7	29	2000	58531	15970	42561
Average value		14.1	36.8	7484.2	93118	24813	68305

Table 21: Ecosystem services of food grain production in Nallur Microwatershed

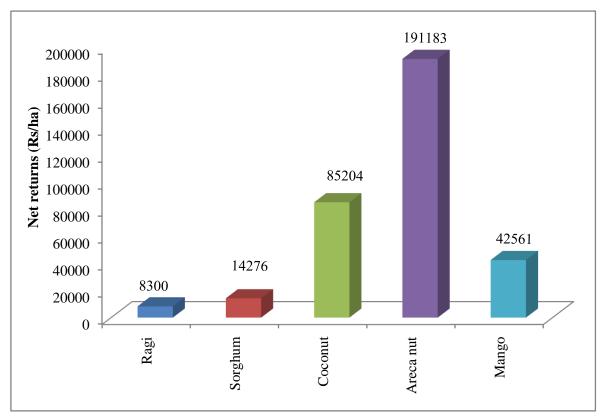


Figure 11: Ecosystem services of food grain production in Nallur Microwatershed

The average value of ecosystem service for fodder production is around Rs. 2936/ ha/year (Table 22). Per hectare fodder production services is maximum in ragi (Rs. 3588) and sorghum (Rs. 2284).

Production	Crops	Area	Yield	Price	Net Returns
items		in ha	(Qtl/ha)	(Rs/Qtl)	(Rs/ha)
Cereals	Ragi	2.8	2.8	1263	3588
	Sorghum	1.4	1.5	1500	2284
Average value	·	4.2	2.15	1381.5	2936

Table 22: Ecosystem services of fodder production in Nallur Microwatershed

The water demand for production of different crops was worked out in arriving at the ecosystem services of water support to crop growth. The data on water requirement for producing one quintal of grain is considered for estimating the total value of water required for crop production. Per hectare value of water used and value of water was maximum (Table 23 and Figure 12) in coconut (Rs. 3349955) followed by sorghum (Rs. 84626), mango (Rs. 52678), ragi (Rs. 18956) and areca nut (Rs. 7763).

Table 23: Ecosystem services of water supply in Nallur Microwatershed

Crops	Yield (Qtl/ha)	Virtual water (cubic meter) per ha	Value of Water (Rs/ha)	Water consumption (Cubic meters/Qtl)
Areca nut	7.0	776	7763	112
Coconut	130.2	34996	349955	269
Mango	29.3	5268	52678	180
Ragi	15.5	1896	18956	122
Sorghum	27.8	8463	84626	305
Average value	42.0	10280	102796	198

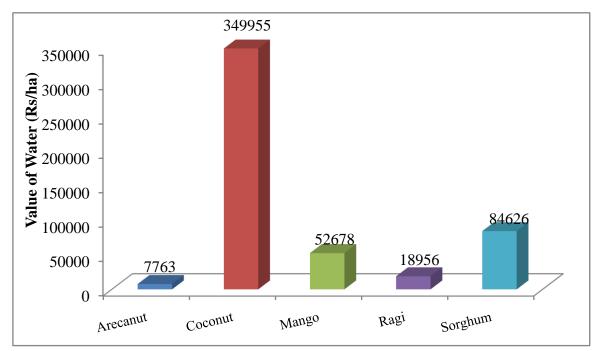


Figure 12: Ecosystem services of water supply in Nallur Microwatershed

The main farming constraints in Nallur Microwatershed to be found are less rainfall, lack of good quality seeds, non availability fertilizers, high crop pests & diseases, animal pests & diseases, lack of transportation, lack of storage, damage of crops by wild animals and non availability of plant protection chemicals. Majority of farmers depend up on bank and money lender of the sources of loan for purpose of crop production. Farmers to sell the agriculture produce through village market, regulated and the farmers getting the agriculture related information on newspaper and television. Farmers reported that they are not getting timely support/extension services from the concerned development department (Table 24).

Table 24: Farming constraints related land resources of sample households in Nallur Microwatershed

Sl.No	Particulars	Per cent
1	Less Rainfall	
2	Lack of good quality seeds	9.1
3	Lack of transportation	27.3
4	Lack of storage	9.1
5	Damage of crops by Wild Animals	100.0
6	Non availability of Plant Protection Chemicals	90.9
7	Source of loan	
	Money Leander	100.0
8	Market for selling	
	Village market	100.0
9	Sources of Agri-Technology information	
	Newspaper	45.5
	Television	54.5

The findings of the study would be very much useful to the planners and policy makers of the study area to identify the irrationality in the existing production pattern and to suggest appropriate production plans for efficient utilization of their scarce resources resulting in increased net farm incomes and employment. The study also throws light on future potentialities of increasing net farm income and employment under different situations viz., with existing and recommended technology.