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ABSTRACT
The tannery industries are the reason of major environmental concerns as
they release toxic heavy metals, like chromium, in rivers posing risks of
genotoxicity and mutagenicity in aquatic organism and indirectly in
humans through food chain. In the present analysis, the freshwater
inhabitant fishes of River Ganges, viz., Labeo calbasu, Puntius sophore, and
Mystus vittatus, were examined for assessing the genotoxic, mutagenic,
and bioaccumulative potentials of tannery effluents. For genotoxicity
assessment, the blood and gill samples of fishes prevailed from polluted
sites of River Ganges adjoining Kanpur city were utilized for comet assay
and micronucleus test. The present investigation revealed the presence of
significantly (p < 0.05) higher micronuclei induction and % tail DNA in
erythrocytes and gill cells of the fishes collected from the polluted sites.
The bioaccumulation studies revealed chromium concentration in muscle
(0.89 mg/g) and gill tissues (0.24 mg/g) of L. calbasu; muscle (0.44 mg/g)
and gills (1.23 mg/g) of P. sophore; and muscle (0.9617 mg/g) and gills
(0.3628 mg/g) of M. vittatus, quite higher than the permissible limits of the
World Health Organization. Consequently, the present study indicates
strongly that River Ganges is contaminated with harmful tannery
pollutants causing genotoxicity andmutagenicity in freshwater fishes.
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Introduction

The booming tanning industries in India are turning the River Ganges into a disposal
ground by discharging the effluents containing organic compounds, inorganic salts like sul-
fides, and toxicity-causing heavy metal chromium, which is its main component (Alam et al.
2009, 2010; Balusubramanian and Pugalenthi 2000; Matsumoto et al. 2006; Nagpure et al.
2015b; Reemste and Jekel 1997). Among all the other industrial wastes, the tannery wastes
are one of the main pollutants (Camargo et al. 2003). The problem is aggravated due to the
dumping of untreated effluents into River Ganges through some drains (Biswas 2002; Con-
sortium of 7 IITs 2010; Ganga Action Plan I; Tare and Bose 2009). Although some common
effluent treatment plants are recognized for the management of tannery wastewater through
treatment, studies undertaken from time to time pointed out the presence of higher
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chromium concentrations in treated tannery effluents (CPCB 1984, 2010; NRCD 2009).
Generally, tanning is a chemical process during which semisoluble protein called “collagen”
is converted into highly durable leather in a sequence of many complex stages after consum-
ing large quantities of water (Landgrave 1995). Later, the tannery effluents are discharged
per kilogram of skin or hide processed, apart from other solid and gaseous wastes (Nariagu
and Pacyna 1989). A cumulative amount of genotoxic pollutants are released into the aquatic
environment. Hence, in view of the potential dangers of these pollutants to aquatic fauna
and flora, attempts were made to explore the feasibility of application of micronucleus test
and comet assay in fish biomonitoring from the polluted sites of River Ganga.

Among the other aquatic resources, fish equally serves as an important portion of the
human nutrition and an important indicator of aquatic pollution; hence, it is an obvious
choice for studying metal pollution in aquatic environments (Erdogrul and Ates 2006; Kara-
dede and Unlu 2000; Prudente et al. 1997; Unlu et al. 1996; Velma et al. 2009). The contrib-
uting factors for heavy metals contamination in aquatic environs are industrial effluents,
agricultural runoffs, geological weathering, and other anthropogenic activities (Adnano
1986; Tchounwou et al. 2012). Interestingly, these heavy metals have a tendency to bioaccu-
mulate easily by uptake via the food chain (Beijer and Jernelov 1986; El-Moselhy et al.
2014). Hexavalent chromium, Cr (VI), is an important trace element in biological system
that is essential for glucose tolerance in mammals (Schwarz and Mertz 1959) and acts as a
serum cholesterol suppressor (Schroeder 1968). However, when present in levels exceeding
the permissible limits, chromium upsets the body’s physiological performance abnormally.
The hexavalent chromium enters the cells through surface transport system, reduces to triva-
lent chromium in the cell, and thus induces genotoxicity (Bianchi et al. 1983; Sugiyama
1992). It has been well established that chromium compounds incite DNA damage along
with DNA single- and double-strand breaks causing chromosomal aberrations, DNA
adducts and micronucleus formation, sister chromatid exchanges, and alterations in DNA
replication and transcription (Matsumoto and Marin-Morales 2004; Medeiros et al. 2003;
O’Brien et al. 2001; Velma and Tchounwou 2010; Wu et al. 2000; Zhitkovich et al. 1996).

Fishes are important bioindicators of aquatic pollution. Hence, they facilitate in assessing
the impending perils of contamination owing to the fact that they remain directly exposed
to aquatic pollution for longer durations (Kushwaha et al. 2012). In general, many fish spe-
cies have been utilized for the assessment of the mutagenic, clastogenic, and teratogenic
effects of environmental contaminants (Kushwaha et al. 2012; Matsumoto et al. 2006; Nag-
pure et al. 2015b; Talapatra and Nandy 2014). In the present investigation, freshwater fishes
such as Labeo calbasu, Puntius sophore, and Mystus vittatus have been preferred for the
assessment of genotoxicity, mutagenicity, and bioaccumulation status of tannery effluents.
The selection of the fish species during the study was based on both the prevalence and live
captivity of these fishes near the polluted sites. Additionally, some other important charac-
teristics such as freshwater habitat, consumer value, ease of blood and gill tissue collection,
and adaptation to laboratory conditions also contribute well to pursuing the present analysis.
On the other hand, the selection of sampling locations was established on the grounds of ele-
vated pollution levels of River Ganga around the Kanpur city (Alam et al. 2009, 2010; Nag-
pure et al. 2015b; Singh et al. 2003; Sinha et al. 2006; Tare et al. 2003). The analysis of
polluted waters of River Ganga near Kanpur revealed an increase in chromium levels, point-
ing out the reckless disposal of untreated tannery effluents in the holy river. Hence, the pres-
ent study aims at assessing the genotoxic, mutagenic, and bioaccumulative potentials of
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tannery effluents in certain fishes of River Ganga that may contribute to the groundwork of
establishing preventive methodologies for treating tannery effluents and assuring the safety
of river water for survival of aquatic organisms along with human health.

Methods and materials

Sampling sites and chemical analyses

The Ganga River near Kanpur in the state of Uttar Pradesh, India, receives a colossal amount
of tannery effluents. Water samples of River Ganga were collected during April, 2010, from
three different locations, first being the upstream at Nana Rao Ghat, i.e., Site A, the second
being the tannery effluent discharge site at Dapka Ghat, i.e., Site B, and downstream of the
effluent discharge site as Site C. The geographical whereabouts of the three sampling sites
are presented in Figure 1. The water samples taken from the three selected sites were kept in
clean bottles and relocated to the laboratory for metal analysis. The specimens of test species,
i.e., L. calbasu, P. sophore, and M. vittatus, were collected from the aforementioned three
sites, and the tissue samples were processed for comet assay, micronuclei test, and bioaccu-
mulation estimation.

Physicochemical properties and chemical analysis of water samples

The temperature, pH, dissolved oxygen, conductivity, total dissolved solids (TDS), total hard-
ness, and total alkalinity of the river water samples were analyzed using the standard meth-
ods of APHA (2005). For the estimation of certain heavy metals such as cadmium (Cd),
chromium (Cr), Copper (Cu), and lead (Pb) in polluted water samples, the test water sam-
ples were first acidified with 10 ml of concentrated nitric acid (HNO3; pH1) and analyzed
on atomic absorption spectrometer (Perkin Elmer, AAnalyst 300). The concentrations of
these heavy metals were compared with the approved limits set by Bureau of Indian Stand-
ards (BIS) (1991) and the World Health Organization (WHO) (2003) in drinking water.

Heavy metal bioaccumulation in fish tissues

For bioaccumulation studies of the heavy metals, the muscle and gill tissues weighing 2 g
each of the three fish species (L. calbasu, P. sophore, and M. vittatus) were processed for tis-
sue digestion and further analysis on atomic absorption spectrophotometer (AAS). The esti-
mation of heavy metal, especially chromium, cadmium, copper, and lead, concentrations for
bioaccumulations studies in fish tissue samples was performed on AAS.

Micronucleus test

For in vivo study of mutagenicity, peripheral blood obtained from the caudal veins of fish
samples, collected from the three selected sites, was smeared on the precleaned slides. After
fixation in methanol for 10 min, the smeared slides were air-dried for 1 h at room tempera-
ture and finally stained with 6% Giemsa solution in Sorenson’s phosphate buffer (pH 6.9)
for 25 min. Subsequently after the staining process, the slides were then carefully washed in
tap water, air-dried, and finally mounted in DPX (a mixture of distyrene, a plasticizer, and
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xylene) for obtaining permanent slide preparations. Finally, these permanent slide prepara-
tions were observed under a light microscope (Leitz Wetzlar Germany; Type 307–083.103;
oil immersion lens, 100/1.25) for micronuclei analysis. During the experimental procedure,
from each specimen, two slides were prepared, and 2,000 erythrocyte cells from each slide
were examined under 100£ magnification. The small, circular or ovoid chromatin bodies,
nonrefractive, showing the same staining and focusing pattern as the main nucleus were

Figure 1. The geographical location of the three sampling regions, i.e., Site A, Site B, and Site C of River
Ganga at Kanpur city, India. The three sampling sites A, B, and C are indicated by three large dots.
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counted as micronuclei, similar to and as previously been recommended by Al-Sabti and
Metcalfe (Al-Sabti and Metcalfe 1995).

Alkaline single cell gel electrophoresis or comet assay

For the analysis of genotoxicity, the DNA damage was identified by using comet assay as a
three-layer procedure (Singh et al. 1988) with slight modifications (Mckelvey et al. 1993).
The peripheral blood obtained from the test specimen was kept in phosphate-buffered saline
(PBS, pH 7), and the gill tissue (»75 mg) was homogenized in PBS (pH 7) and centrifuged
at 4,000 rpm at 4�C for 5 min. Additionally, cell viability of both the erythrocytes and gill
cells was evaluated through the trypan blue exclusion test (Anderson et al. 1994), and the
samples exhibiting over 85% of cell viability were processed for comet assay (Kushwaha
et al. 2012). During the experimental procedure, two slides per specimen were prepared, and
25 cells per slide (250 cells per concentration) were scored arbitrarily and analyzed using an
image analysis system (Komet 5.5 Kinetic Imaging, the United Kingdom) attached to flo-
rescent microscope (Leica) equipped with suitable filters. As per the software analysis, the
factor selected for quantification of DNA damage was % Tail DNA ( D 100 ¡ % Head
DNA) for genotoxicity assessment.

Data analysis

The statistical evaluation including the one-way analysis of variance was applied to
compare the mean difference in %tail DNA between tissues and the three sites. The %MN
(micronucleus) frequencies were compared between the three sites using Mann–Whitney
test. The p-values less than 0.05 were statistically significant.

Results and discussion

Physicochemical properties and chemical analysis of water samples

The physicochemical factors analyzed during the experimental process revealed that the test
water temperature varied from 22�C to 26�C; the pH ranged from 6.5 to 8.5; and the concen-
tration of dissolved oxygen ranged from 6.5 to 8.5 mg/L. The other physicochemical parame-
ters during the experimentation, viz. the TDS, total hardness, and total alkalinity of the test
water ranged from 273 to 888 mg/L, 170 to 176 mg/L, and 271 to 282 mg/L, as CaCO3,
respectively. The observations of the chemical analysis of polluted water samples reveal the
presence of chromium concentration higher than the permissible limits set by WHO (2003)
and BIS (1991).

Estimation of bioaccumulation in fish tissues

The bioaccumulation studies (expressed as mg/g dry weight each) in the muscle of L. cal-
basu revealed a 0.8870 mg/g concentration of Cr, while in gill tissues the Cr concentration
was 0.2391 mg/g, which is much higher than the maximum permissible limits set by
WHO in fish tissues. The concentration of Cd in muscle tissues of L. calbasu was
0.1497 mg/g, while in gill tissues the concentration of the same was <0.05 mg/g. The

102 N. S. NAGPURE ET AL.



presence of Pb concentration was 0.9642 mg/g in muscles of L. calbasu, while in gills it
was 0.7126 mg/g. The concentration of Cu in muscle tissues of L. calbasu was found to be
1.0980 mg/g, while in gills it was 0.3741 mg/g.

The estimation of bioaccumulation in muscle tissues of P. sophore relates a higher con-
centration of Cr, i.e., 0.4411 mg/g, while in gill tissues it was found to be 1.2268 mg/g. The
concentration of Cd in muscle tissues of P. sophore was <0.05 mg/g, while in gill tissues it
was 0.2169 mg/g. The Pb concentration in P. sophore muscles was 0.7671 mg/g; however, in
gills it was 1.4483 mg/g. The concentration of Cu in muscle tissues of P. sophore was
observed to be 0.7040 mg/g, while in gills it was 0.9896 mg/g.

In the muscles of M. vittatus, the bioaccumulation estimations reveal a higher concentra-
tion of Cr, i.e., 0.9617 mg/g, while in gill tissues, it was detected as 0.3628 mg/g. The Cd con-
centration present in muscle tissues of M. vittatus was 0.1046 mg/g, while in gill tissues it
was 0.0599 mg/g. The Pb concentration in muscle tissues of M. vittatus was observed to be
0.0378 mg/g, while in gills, it was present at 0.7823 mg/g. The concentration of Cu in muscle
tissue ofM. vittatus was detected as 0.3603 mg/g, whereas in gills it was 0.2330 mg/g.

Thus, the present study revealed the amount of the aforesaid heavy metal concentrations,
especially chromium, to be above the maximum permissible limits set by the Food and Agri-
cultural Organization (FAO)/WHO (1984), WHO/FAO (1989), and FAO (1983) for dietary
allowances, fish, and fishery products as represented in Table 1.

Micronuclei induction

The micronucleus test performed in the peripheral blood cells of L. calbasu, P. sophore, and
M. vittatus, collected from the polluted sites of the River Ganga at Kanpur, shows the pres-
ence of micronuclei (Figure 2). This indicates that the waters from polluted sites induced
genotoxicity in the inhabitant fishes. There was significantly higher induction of micronuclei
in the fish specimens attained from the highly polluted tannery effluent discharge site, i.e.,
Site B as compared to the comparatively less polluted Sites B and C as shown in Figure 3.
Higher induction of micronuclei frequencies was observed in the specimens of P. sophore
from Site B (0.17 § 0.052) than those from Site A (0.04 § 0.021) and site C (0.15 § 0.02).
Similarly, M. vittatus collected from site B also showed higher micronuclei induction
(0.1263 § 0.026) than that from Site A (0.032 § 0.011) and Site C (0.09 § 0.012).

Table 1. Heavy metal concentrations (mg/g dry weight) in tissues of fishes collected from polluted sites.

Fish (tissue) Chromiuma Cadmiumb Leadc Copperd

L. calbasu (muscle) 0.89 0.15 0.96 1.1
L calbasu (gill) 0.24 <0.05 0.71 0.37
P. sophore (muscle) 0.44 <0.05 0.77 0.70
P. sophore (gill) 1.23� 0.22� 1.45 0.99
M. vittatus (muscle) 0.96 0.10 0.04 0.36
M. vittatus (gill) 0.36 0.06 0.78 0.23

�Values represent a higher concentration of the heavy metals in animal tissues as set by FAO/WHO (1984, 1989). WHO, World
Health Organization; FAO, Food and Agricultural Organization.
aFAO/WHO chromium permissible limit in tissues is 1 mg/g.
bFAO/WHO cadmium permissible limit in tissues is 0.2 mg/g.
cFAO/WHO lead permissible limit in tissues is 1.5 mg/g.
dFAO/WHO copper permissible limit in tissues is10 mg/g.
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In L. calbasu, higher micronuclei induction was observed in specimens collected from Site B
(0.17 § 0.031) than those from Site A (0.039 § 0.011) and Site C (0.11 § 0.02). A signifi-
cantly (p < 0.05) higher micronuclei frequency was revealed in fishes acquired from tannery
effluent discharge Site B (Figure 3).

Figure 2. The cytological visualization of micronuclei in the red blood cells of Puntius sophore, Labeo cal-
basu, and Mystus vittatus specimens collected from tannery effluent discharge site, i.e., Site B. Red blood
cell isolated from fishes of Site B (A) showing no micronuclei, (B) showing micronuclei in P. sophore, (C)
micronuclei in L. calbasu, and (D) micronuclei in M. vittatus. Micronuclei are marked by an arrow, and the
bar represents 10m.

Figure 3. The %MN frequencies in erythrocytes of P. sophore, L. calbasu, and M. vittatus collected from the
three different sites A, B, and C of River Ganga.
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The micronuclei data suggest that concentrations of chromium lower than 0.05 mg/L
found in polluted waters of tannery effluent discharge site induce genotoxic effects in the
effluent-exposed fish, which is correspondingly supported by the chemical analysis of efflu-
ent discharge site water samples. However, the micronuclei frequency data also revealed that
river water from the upstream and downstream sites was less genotoxic than the effluent dis-
charge site water.

DNA damage

The DNA damage was expressed as % tail DNA in the erythrocytes, and gill cells of the
specimens collected from polluted sites and the comet tail signify the DNA damage induced
in the three fishes procured from the polluted sites (Figure 4). In P. sophore, the amount of
DNA damage in specimens of Site B (13.62 § 1.52) was also higher as compared to Site A
(7.62 § 0.81) and Site C (12.33 § 1.06) specimens. InM. vittatus, the amount of DNA dam-
age was higher in erythrocytes of specimens collected from Site B (10.21 § 0.98), as com-
pared to Site A (5.58 § 0.64) and Site C (8.82 § 0.77) specimens, while in gill cells, the
amount of DNA damage was comparatively higher in specimens collected from Site B
(12.21 § 0.98), as compared to Site A (7.58 § 0.64) and Site C (10.82 § 0.82). Similarly, in
L. calbasu, higher DNA damage was reported in erythrocytes of specimens collected from
Site B (12.62 § 1.12) as compared to Site A (7.12 § 0.61) and Site C (10.63 § 1.12) speci-
mens, and in gill cells, it was also higher in specimens collected from Site B (Figures 5 and 6,
respectively). The DNA damage noticed was comparatively more in the gills than in the
erythrocytes, proposing the organ-specific toxic potential of Cr (VI) due to the differential
sensitivity of erythrocytes and gills cells owing to the differential expression of receptors and
cellular components that interact with the metal and metal-produced reactive oxygen species
(Kumar et al. 2013; Nagpure et al. 2015a).

Genetic toxicology plays a twofold role in safety evaluation programs: one of its role is in
enactment of risk assessment methods to define the impact of genotoxic agents on the envi-
ronment that causes alterations in gene integrity; while the second role is in the application
of genetic methodologies for the detection and mechanistic understanding of carcinogenic
chemicals (Bhattacharya et al. 2011; Brusick 1987; Cimino 2006; Lorge et al. 2007). Several
studies that unravel the genotoxic potential of Cr (VI) in humans and rodents have been

Figure 4. The visualization of DNA damage in red blood cells of specimens of Puntius sophore, Labeo cal-
basu, and Mystus vittatus collected from site B through fluorescence microscopy. The red blood cells show-
ing (A) normal erythrocyte, (B) DNA damage in erythrocytes of P. sophore, (C) DNA damage in erythrocytes
of L. calbasu, and (D) DNA damage in erythrocytes of M. vittatus. The DNA damage in the three fish speci-
mens collected from the polluted site was confirmed by the presence of “comet tail” observed in ethidium
bromide–stained nuclei following electrophoresis steps of comet assay. Bar represents 10m.
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widely reported (Bagchi et al. 2001; Kanojia et al. 1998; Maeng et al. 2004; Park et al. 2004;
Patlolla et al. 2008; Thompson et al. 2013; Wise et al. 2006). While several assays including
the micronucleus test, chromosomal aberrations, and DNA damage assays have been used
for evaluating genotoxicity of toxic chemicals in different animals (Ahmad et al. 2006; Cavas
and Ergene-Gozukara 2005; Cavas and Konen 2007; De Lemos et al. 2001; Farag et al. 2006;
Patlolla and Tchounwou 2005), the comet assay has been extensively accepted as one of the
sensitive, reliable, and cost-effective methods that is frequently utilized to examine the envi-
ronmental genotoxicants and known to detect low levels of DNA damage even in short
exposure durations (Andrade et al. 2004; Ateeq et al. 2005; Dhawan et al. 2009).

The studies on micronuclei test were initiated by Manna and colleagues in India, who
reported the incidence of micronuclei in erythrocytes and chromosomal aberrations in Oreo-
chromis mossambicus when treated with aldrin, cadmium chloride, and X-rays (Manna et al.
1985). Later, Manna and Sadhukhan also witnessed micronuclei in gills when fishes were
exposed to five chemicals (anisole, cobalt chloride, lithium chloride, Rogar 30E, and Zn SO4)
by developing a detection method of micronucleated cells from the gills of Tilapia (Manna

Figure 5. % DNA damage (§SE) in erythrocytes of P. sophore, L. calbasu, and M. vittatus collected from the
three different sites A, B, and C of Ganga River.

Figure 6. % DNA damage (§SE) in gill tissues of P. sophore, L. calbasu, and M. vittatus collected from the
three different sites A, B, and C of Ganga River.
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and Sadhukhan 1986). Another study related with the environmental pollution assessment
revealed an upsurge in micronuclei frequency in the erythrocytes of Heteropneustes fossilis
when exposed to mitomycin C and paper mill effluent (Das and Nanda 1986). Micronucleus
assay is used for finding out the clastogenic and aneugenic effects of chemicals because it is
formed by chromosome fragment or whole chromosome lagging at cell division due to the
lack of centromere or damage (OECD 1997). It is also used broadly for in situ detection of
aquatic pollutants (Kushwaha et al. 2012).

The erythrocyte micronuclei frequencies experiential in peripheral blood of fishes col-
lected from the tannery effluents discharge site were in accordance with the reports of
Ayylon and Garcia-Vazquez (2000), Carrasco et al. (1990), and Cavas and Ergene-Gozubara
(2003). The water from effluent discharge and downstream site instigated significantly
higher micronuclei frequency in the fishes as compared to the water from the upstream site,
specifying that these abnormalities are the outcome of the genotoxic effects of chromium-
containing tannery wastes discharged into the river stream. Similarly, higher DNA damage
has also been detected in these specimens using comet assay, indicating that the tannery
effluents induce genotoxicity in fishes, and the observations are in agreement with Von Burg
and Liu (1993), Blasiak and Kowalik (2000) and Matsumoto et al. (2006), who proposed the
potential genotoxic effects of chromium via inducing DNA damage in animals. These chro-
mium-containing tannery residues are genotoxic pollutants posing a substantial risk to the
environment (Matsumoto et al. 2006).

Paradoxically, pollution of water resources is a severe problem. Despite the existence of
relevant legislation in the pollution of aquatic environment, it continues to occur through
toxic chemicals being dumped into the water resources in the form of industrial wastes. The
fish tissues collected from polluted sites revealed comparatively higher DNA damage and
micronuclei frequencies as compared to nonpolluted sites. The results of the present study
would help in guarding against the genetic hazard to human population, guide future envi-
ronmental pollution studies, and to make policies toward reduction in genotoxic damage
through judicious and careful use of these chemicals in agricultural and nonagricultural are-
nas. Moreover, it becomes also indispensable for the new chemicals to be released to test
their genotoxic prospective using suitable biomarker(s).

Conclusion

Fishes accumulate toxic chemicals from ingesting contaminated water or aquatic organisms, pos-
ing a hazard to the entire ecosystem through the food chain. The present study has shown that
the River Ganga is seriously polluted by the discharges from tannery industries clustered on the
bank of river in Kanpur. Significant comet tail length and micronuclei detected in fishes continu-
ously exposed with tannery effluents in freshwater system indicate that the tannery effluents are
liable for inducing genotoxicity in freshwater fishes. Once again, the comet assay andmicronuclei
assay have served as sensitive monitoring tools to determine the genotoxic characteristics of tan-
nery effluents and to investigate the health impacts of DNA damage, repair, and recovery in spe-
cies of environmental concern. The use of these techniques in aquatic toxicology helped
immensely in in vivo studies of toxicity studies in fish tissues as they are constantly being exposed
to environmental pollutants. Further studies will provide detailed information on cell-specific
genotoxic and mutagenic effects, interindividual variability, and adaptability, contributing to for-
mulation of strategies and measures for the conservation of fish biodiversity.
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