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1. INTRODUCTION

In many practical situations for conducting
experiments on biological assays, the interest of the
experimenter lies in comparing several test preparations
with a single standard preparation. Consider, for example
that an assay was conducted to test the three preparations
of streptomycin against a standard. Two levels of doses
were used for each preparation. A plate containing 64
cavities in eight rows was used for this purpose. The
cavities were filled with agar and inoculated with
Bacillus subtilis. Each cavity received a dose of
streptomycin and the response was measured as the
diameter of the zone of inhibition of bacterial growth.
For more details on this and other examples involving
more than one test preparations, one may refer to Finney
(1978). In these situations, conducting separate
experiment for each comparison is expensive and not
practical.  Multiple parallel line assays can be of help in
such situations.

Several authors have studied incomplete block
designs for parallel line assays involving one standard
and one test preparation. A comprehensive account for

the developments in this area can be found in Gupta and
Mukerjee (1996). Mukerjee and Gupta (1995) initiated
the work on optimality aspects of incomplete block
designs for parallel line assays followed by Mukerjee
(1997) with reference to the D-optimality criterion. In
parallel line assays three major contrasts of importance
are preparation, combined regression and parallelism.
Mukerjee and Gupta (1995) presented A-optimal/
efficient designs for the estimation of these three
contrasts in the context of symmetric parallel line assays.
It has been observed that often a non-equireplicate design
has higher A-efficiency in comparison to a comparable
equireplicate design. These designs require that the block
sizes should be integral multiple of four and are not
always connected and, therefore, do not always ensure
estimability of all contrasts among those effects. Chai
et al. (2001) have considered the problem of obtaining
A-optimal block designs for the estimation of the two
major contrasts namely, preparation and combined
regression in the context of both symmetric and
asymmetric parallel line assays. Srivastava et al. (2007)
have obtained A-efficient designs for estimation of all
the three contrasts of major importance.
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The literature on block designs for multiple parallel
line assays is rather scanty. Das (1985) has given a
method of constructing block designs for multiple
parallel line assays using affine resolvable block designs
and C-designs. Limitation of this method is that the
designs obtained are very large even for small
parameters. Further, the optimality aspects of these
designs have not been discussed.

Keeping this in view, in this communication
A-optimality of block designs for parallel line assays
for the situations in which the experimenter is interested
in comparing several test preparations with a single
standard preparation has been studied in Section 3. The
study is restricted to odd number of test preparations
and one standard preparation. A method of generation
of A-optimal/efficient block designs for symmetric
multiple parallel line assays for estimation of all the three
contrasts of interest, namely preparation, combined
regression and parallelism has been given in Section 4.
As a special case,  we present a catalogue of incomplete
block designs for multiple parallel line assays for one
standard and three test preparations with 3 � m � 8, 8 �
k � 16, k <  4m, bk � 75 where m is the number of doses
of each preparation, b the number of blocks and k is
block size along with the lower bounds to their
A-efficiency in Table 1 (Appendix 3).

In multiple parallel line assays, the main interest is
in estimating only the three contrasts and the
experimenter may not be interested in other treatment
contrasts. For such situations one might think of designs
that ensure estimability of these three contrasts but do
not guarantee the estimability of other contrasts. Keeping
this in view, A- optimality of block designs for multiple
parallel line assays that ensure the estimability of the
three contrasts in question and these designs are
necessarily disconnected otherwise has been
investigated. A general method of construction of
disconnected block designs for multiple parallel line
assays that ensure the estimability of the three contrasts
of interest is given in Section 5. A catalogue of the designs
obtainable from this method of construction for 3 ��m
��8, k = 8, bk ��75 is given in Table 2 in Appendix 3. We
begin with some preliminaries in Section 2.

2. PRELIMINARIES

Consider conducting bioassay with one standard
preparation and odd number of test preparations, c � 1
using an incomplete block design. Let s and  t(q) denote

the doses of standard and test preparations respectively,
q = 1, 2, ..., c. Let the doses of standard preparations be
denoted by si, i = 1,... m and ti

(q) represents the ith dose
of qth test preparation; i = 1, 2, ..., m; q = 1, 2, ..., c.
These doses are equispaced on the logarithmic scale, the
common ratio being same for all the preparations. Let

1 2 m m 1 v( , , , , , , )+= τ τ τ τ τ ′� ��  be the vector of

dose effects, v (c 1)m= + . Then the three major contrasts
namely preparation, combined regression and parallelism
in the normalized form are given respectively as follows:

( )1 c m c m
1

:
2m

= ⊗ − ⊗′ ′U 1 1 I 1

( )2 c 12

12

m(m 1)(c 1)
+= ⊗′ ′

− +
U 1 w

( )3 c c2

6
:

m(m 1)
= ⊗ − ⊗′ ′

−
U 1 w I w

where ( ) ( ) m

1
1,2,...,m m 1

2
′= − + ′w 1 .

3. OPTIMALITY ASPECTS

Consider that a symmetric parallel line assay
involving m (�2) doses each of standard preparation and
c test preparations for c odd is run using an incomplete
block design. For given v = (c + 1) m, the number of
blocks and k the block size, we define D � D(v, b, k), the
class of all block designs involving v doses, b blocks

each of size k. For any design d � D, let isr  and (q )
it

r  be

the replication of dose of ith standard preparation and

qth test preparation, respectively, i 1, 2, , m= � ; q =

1, 2, ..., c. Let 
1 2 m 1 md s s s t (1) t (1)diag(r , r ,...,  r ,  r ,...,  r=R ,

(2) (2) (c) (c)
m m1 1t tt t

r ,..., r ,..., r ,..., r ),  Nd be the v × b incidence

matrix of d and 1
d d d d dk −= − ′C R N N . A fixed effects

additive model is assumed for the data collected through
d with the assumption that the errors are independent
with zero mean and common variance �2. Every
treatment contrast is estimable if and only if
Rank (Cd) = v – 1 and a design that allows estimation of
all treatment contrasts is called a connected design.
Define D1 to be the sub class of D in which τU  is
estimable and D2 be the class of all connected block
designs. Clearly, 2 1D D⊂ . Let Vd be the variance-
covariance matrix of ˆU� , where ˆU�  is the best linear
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unbiased estimator of U� under d and U is
(2c + 1) × v matrix with rows as U1,  U2 and U3. An A-
optimal design for U� in D is the one, which belongs to
D2 and minimizes the trace (Vd) over D1, where trace (.)
denotes trace of a matrix. Here, we consider only those
designs that fulfill this criterion.

Following Gupta and Mukerjee (1996), it can be

seen that 2 1
d d

− −σ − ′V UR U  is non-negative definite for
any d � D1. Hence, for each d � D1

( ) ( )2 1
d dtrace trace− −σ ≥ ′V UR U

i i i i

m c m
q q

s s t t
i 1 q 1i 1

r r
= = =

= α + α∑ ∑∑  where for 1 i m≤ ≤ (3.1)

( )i

2

s 2

c 6 2 m 1
c i ,

2m c 1 2m m 1

+⎛ ⎞ ⎧ ⎫α = + + −⎨ ⎬⎜ ⎟⎝ ⎠+ ⎩ ⎭−

( )(q)
i

2

2t

1 6 2 m 1
1 i

2m c 1 2m m 1

+⎛ ⎞ ⎧ ⎫α = + + −⎨ ⎬⎜ ⎟⎝ ⎠+ ⎩ ⎭− ,

for q = 1, 2, ..., c. (3.2)

Suppose now that 0 2d ∈D  such that

0 0
2 1

d d
− −σ = ′V UR U (3.3)

A design d0 is A-optimal over D if d0 minimizes
the right hand side of (3.3). Appealing to Lemma 3.1 of
Gupta and Mukerjee (1996), (3.3) holds if and only if

0 0
-1
d dUR N = 0 (3.4)

where 
0dN  is v × b incidence matrix of design d0.

If all the three contrasts are considered, (3.4) is
generally not achievable via the method of construction
of Chai et al. (2001), a lower bound to the A-efficiency
may be obtained and using this lower bound, designs
with high A-efficiencies for all the three contrasts can
be obtained. In the sequel, we attempt to achieve this.

4. METHOD OF CONSTRUCTION

In this paper we restrict to the case of conducting
parallel line assay with one standard and c test
preparations, where c is odd. The method of construction
is in accordance with the method proposed by Chai
et al. (2001). For completeness we describe below the
steps to be taken to arrive at an A-optimal design over D.

(i) Let (q)i
i

m c m

s i it
i 1 q 1 i 1

min p p
= = =

⎧ ⎫⎪ ⎪γ = α + α⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑∑ (4.1)

the minimum being taken with respect to
z = (p1, p2 ...,pm)� where pi’s are positive integers

satisfying 
m

i
i 1

(c 1) p bk
=

+ =∑ .

Let * * * *
1 2 m(p ,p , ...,p )= ′z  be a choice of z where

this minimum is attained. Then from (3.1) ,

( )2
dtrace−σ ≥ γV .

(ii) Construct a block design d* � D2 with
v = (c + 1) m, b blocks of size k each, such that for
1 � i ��(c +1) m the ith dose of the preparations is

replicated *
ip  times in d*. Further, *d

N  satisfies

(3.4). Then ( ) ( )*
2 2

d d
trace trace− −σ ≥ γ = σV V .

Hence, d* is an A-optimal block design in D. As
mentioned earlier, if (3.4) is not satisfied we end
up in achieving lower bound to A-efficiency. For
completeness, we give below various steps for the
construction of the designs on the lines similar to
that of Chai et al. (2001).

Step 1: Let i
c 1

G i,m i,..., m i,
2

⎧ −⎛ ⎞= + +⎨ ⎜ ⎟⎝ ⎠⎩

( )c 3
m 1 i,..., c 1 m 1 i ,  1 i m

2

⎫+⎛ ⎞ + − + + − ≤ ≤⎬⎜ ⎟⎝ ⎠ ⎭
.

Then, Gi’s provide disjoint partition of

{ }1, 2,..., v with v (c 1)m= + .

Step 2 : Find � as in (i).

Step 3 : Construct a connected block design d1 with b
blocks each of size k /(c + 1) involving m

treatments, say 1 2 m, ,...,θ θ θ such that iθ  is

replicated *
ip  times in d1, 1 i m.≤ ≤

Step 4 : Obtain a design d* from  d1 by replacing the
treatment  �i in  d1by the  (c + 1) treatments in
the set Gi.

To be clearer, consider the following example.

Designs obtained through the method described
above sometimes yield repeated blocks. We represent
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repeated blocks by a number in parenthesis just after
the (repeated) contents.

Example 4.1: Let c 3, m 3, k 8= = =  and b 4= . The

disjoint partitions are { }1 1G 1, 4, 9, 12 ,= = θ

G2 = {2, 5, 8, 11} = �2 { }3 3and G 3, 6, 7, 10= = θ .

Here * *
1 4p p= = *

9p = *
12p 3,= * * * *

2 5 8 11 p p p p 2= = = =
* * * *
3 6 7 10and p p p p 3= = = = . Let d1 be the design with

four blocks as ( ) ( )1 2 1 3, , ,θ θ θ θ repeated two times,

( )2 3,θ θ . Then the design d	 is given by {1, 2, 4, 5, 8, 9,

11, 12}; {1, 3, 4, 6, 7, 9, 10, 12}(2); {2, 3, 5, 6, 7,
8, 10, 11}.

5.  DISCONNECTED BLOCK DESIGNS FOR
MULTIPLE PARALLEL LINE ASSAYS

Srivastava et al. (2007) in the context of parallel
line assays have proposed disconnected block designs
that are A-optimal for the estimation of major contrasts
of interest but do not guarantee the estimability of other
treatment contrasts. In this section, we adopt similar
approach to obtain A-optimal block designs for multiple
parallel line assays. A general method of construction of
such designs with odd number of test preparations is
given below.

Step 1: As in Section 4, let

 i
c 1 c 3

G i,m i,..., m i, m 1 i,
2 2

⎧ − +⎛ ⎞ ⎛ ⎞= + + + −⎨ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎩

( ) },..., c 1 m 1 i ,  1 i m+ + − ≤ ≤  provide a

disjoint partition of {1, 2, ..., V}, v (c 1)m= + .

Let the sub-set Gi denote a treatment �i,
i = 1, 2, ..., m.

Step 2: Find  * * * *
1 2 m(p , p , ..., p )z = ′  and �� as in

(4.1).

Step 3: For v (c 1)m= + , m 2= µ , 
 is a positive
integer, choose only those designs for which

** * *
u qm u (q 1)m u 1p p p ,+ + − += = 1�u�
 ,0�q�c.

For v (c 1)m= + , m 2 1= µ + , choose only
those designs for which

** * *
u qm u (q 1)m u 1p p p+ + − += = , for 1 � u � 
,

0 � q � c and 
** *

1 (2q 1)m 1
2

p p 2t,µ+ + += = t is

positive integer and 0 q c≤ ≤ .

Step 4: Construct a block design d1 with b blocks each
of size 2 involving m treatments,

1 2 m, ,...,θ θ θ  such that �j appears with

m j 1− +θ  in  *
jp  blocks, 1 j m≤ ≤ . For

m 2 1= µ + , the block containing m 1

2

+θ
 twice

is repeated t times.

Step 5: Obtain a design d* from d1 by replacing the
treatment �j in  d1 by (c + 1) treatments in Gj,

1 j m≤ ≤ .

It may be noted that for v (c 1)m= + , m = 2�� the

total number of blocks in d1 is **
u

u 1

b p
µ

=
= ∑  while for

v (c 1)m= + , m 2 1= µ + , the total number of blocks in

d1 is **
u

u 1

b p t
µ

=
= +∑ .

We present below designs obtainable through above
method of construction in terms of the structure of
incidence matrix, separately for both even and odd
number of doses. This representation is helpful in proving
the A-optimality of these designs that ensure estimability
of the three major contrasts of importance.

5.1 Block Designs with Even Number of Doses

For even number of doses, block designs with

v (c 1)m 2(c 1)= + = + µ  and k 2(c 1)= + can easily be

constructed after obtaining **
up , 1 u≤ ≤ µ  in Step 3. For

some integer n, let *
nI  be an  n × n  matrix given by

*
n

0 ... 0 1

0 ... 1 0

... ... ... ...

1 ... 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

I .

Then the v × b incidence matrix of the design is
given by
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(c 1) *+
⎡ ⎤

= ⊗ ⎢ ⎥
⎢ ⎥⎣ ⎦

M
N 1

M
(5.1)

where M is the 
�× b matrix given by

**
up

u 1

,
µ

=
= ′⊕M 1 (5.2)

u 1

µ

=
⊕  denoting the direct sum of matrices, M* is 
 × b

matrix obtained by taking the mirror image of M, i.e.,
* *

�M = I M , ⊗  denotes the Kronecker product of

matrices and 1t is a t × 1 vector of ones. We illustrate
this with the following example.

Example 5.1: Let  c = 3, m = 6, b = 6 and k = 8.  For this

design **
1p 3= , **

2p 2= , **
3p 1=  and M and  M* are

M = 

1 1 1 0 0 0

0 0 0 1 1 0

0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,

M* =  

0 0 0 0 0 1

0 0 0 1 1 0

1 1 1 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

The block contents of the design are given by
{1,6,7,12,13,18,19,24}(3); {2,5,8,11,14,17,20,23}(2);
{3,4,9,10,15,16,21,22}. This design is A-optimal for
estimating three contrasts of importance. The
corresponding connected block design with the same
parameters (given at S. No. 32 of Table 1 Appendix 3)
has efficiency 0.9008. Further, the efficiency of
parallelism contrast is only 0.7591.

5.2 Designs with Odd Number of Doses

For odd number of doses, the block designs with

v (c 1)m= + , m 2 1= µ +  and k 2(c 1)= +  can easily be

constructed after obtaining **
up , 1 u 1≤ ≤ µ + in step 3.

The v b×  incidence matrix is given by

*

*

*

tb

(c 1) tb

*
tb

2

µ×µ×

+

µ×µ×

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⊗ ′ ′⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M 0

N 1 0 1

M 0
(5.3)

where *b b t= − , **
upu 1

µ

=
= ⊕ + ′M 1  and M* is as defined

earlier.

Example 5.2: Let c = 3, m = 5, b = 6 and k = 8.  For this

design **
1p 3= , **

2p 2= , **
3p 2= . Here the matrix M is

given by

1 1 1 0 0

0 0 0 1 1

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

M ,

and the design is given by {1, 5, 6, 10, 11, 15, 16, 20}(3);
{2, 4, 7, 9, 12, 14, 17, 19}(2); {3, 3, 8, 8, 13, 13, 18, 18}.
The corresponding connected design (at S. No. 18 of
Table 1) has efficiency 0.9519, whereas the design
obtained in this example is A-optimal for estimating the
three contrasts of interest.

It may be observed easily that the designs
constructed in this section are necessarily disconnected.
However, these designs ensure the estimability of all the
three major contrasts of importance. We, thus, have the
following theorem:

Theorem 5.1. The design d* obtained by following Steps
1-5 in the method described earlier is disconnected but
the three major contrasts of importance are estimable
through d*.

Proof. The proof is given in Appendix 1.

From the above methods of construction and the
structure of N (both for even and odd m) one can easily
show that UR–1N = 0. Further, the designs so obtained
satisfy (4.1) and thus (3.4). Therefore, the design d* is
A-optimal. Thus, we have

Theorem 5.2. The design d* obtained by following Steps
1-5 in the methods described earlier is A-optimal for
estimating all the three contrasts of major importance.

Proof. The proof is given in Appendix 2.

6. DISCUSSIONS AND TABLES OF DESIGNS

In Table 1 (Appendix 3), A-efficient block designs
for multiple symmetric parallel line assays for three test
reparations and one standard preparation are presented.
Complete solution of the designs is given in the column
of block contents. Repeated blocks are shown by a
number in parentheses just after the (repeated) block.
Similarly, “+dx” indicates that the blocks of design
number “x” are to be added to the other block(s) shown
in the same row.

For any single treatment contrast q��, estimable in

a block design, it is known that ( ) 2ˆvar −= σ′ ′q � � � � ,
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where C– is a generalized inverse of C, the information
matrix of the block design. From Lemma 3.1 of Gupta

and Mukerjee (1996), ( ) 2 1ˆvar −≥ σ′ ′q � � � � . Now, let

V1 denote theoretical lower bound to sum of variances
of best linear unbiased estimators (BLUEs) of the three
contrasts and V2, the sum of variances of BLUEs of these
contrasts under our designs. A lower bound to

A-efficiency is, therefore, given by 1 2e V V= . Again
let  V3 denote theoretical lower bound of variance of
BLUE of the parallelism contrast and V4 the variance of
BLUE of parallelism contrast under our designs. A lower
bound to efficiency of the parallelism contrast is given

by 1 3 4e V V= . The values of  e and  e1 are given in the

Table 1 (Appendix 3).

We have catalogued 58 designs along-with their
A-efficiencies. SAS programs are extensively used for
finding A-optimal incomplete block designs for

bioassays and the program for obtaining optimum **
ip ’s

is available with the authors.

The disconnected block designs that ensure the
estimation of three contrasts of interest obtained through

the above method of construction with c = 3, 3 m 8≤ ≤ ,

k 8= , bk 75≤  are presented in Table 2 (Appendix 3).
These designs are A-optimal for estimation of the three
contrasts of interest.
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APPENDIX 1

Proof of Theorem 5.1

(a) m (= 2�) even

The concurrence matrix NN� for the design is

=′NN c+1 m⊗J R .

where
*

m *
,

R R
R

R R

µ µ

µ µ

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

R
= diag ** ** **
1 2(p , p ,...,p ),µ

µR  = ** ** **
1 1diag(p ,p ,...,p )µ µ− , *Rµ  = µR *

µI  and

*
µR  = *

µI µR . R = c 1 d+ ⊗I R  where

Rd = ( )diag µ µR R . The C matrix is given by

[ ]c 1 c m c 1 m
1

( )
2(c 1) + += ⊗ + − ⊗

+
C I R R J R

where 
*

c *

(2c 1)
.

(2c 1)

µ µ

µ µ

⎡ ⎤+ −
⎢ ⎥=
⎢ ⎥− +⎣ ⎦

R R
R

R R

Rank (C) = ( )(c 1)m m 2+ −  and thus the design is

disconnected for m > 2. A linear function of treatment

effects, ′q �  is estimable if and only if q C C q− =′ ′ ,

where C– is a generalized inverse of C. In our case C– is
given by

( )
c m
0 c 0

m c m m
c 0 c c

−
′⎡ ⎤⊗′⎢ ⎥=

⎢ ⎥⊗ ⊗ − + ⊗⎣ ⎦

R 1 R
C

1 R I R R J R

where 

1 * 1
c

* 1 1

2

2

R R
R

R R

− −
µ µ
− −

µ µ

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

,  
1 * 1

m
* 1 1

R R
R

R R

− −
µ µ
− −

µ µ

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

c
0 12

0 0
R

0 R−
µ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 and 

* 1
m
0 1

.
0 R

R
0 R

−
µ
−
µ

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

Then 

2c

*
2c

*c 2c 2c

0 0 0

C C I I 0

I
1 0 I I

I

µ×µ µ×µ µ× µ

−
µ µ µ× µ

µ
µ×µ µ

µ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
− ⊗ ⊗⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦

.

Consider now the matrix U of normalized treatment
contrasts as given in (3.1). We partition w as

( )1 2w w w ′= ′ ′  such that w1(w2) contains first (last) 


elements of w. As *
1 2w w Iµ= −′ ′ , it can easily be seen

that -UC C U= . Thus, the contrasts U�  are estimable
using the design d*.

(b) m (= 2��+ 1) odd

The concurrence matrix NN′  is given by

NN =′  
c+1 mJ R⊗

where 

*

**
m 1

*

2p

µ µ

µ+

µ µ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ′ ′
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R 0 R

R 0 0

R 0 R

.

c 1 dR I R+= ⊗  where ( )**
d 1diag pµ µ+ µ=R R R

The C matrix is given by

[ ]c 1 c m c 1 m
1

( )
2(c 1)

C I R R J R+ += ⊗ + − ⊗
+

where 

*

**
c 1

*

(2c 1)

2p

(2c 1)

R 0 R

R 0 0

R 0 R

µ µ

µ+

µ µ

⎡ ⎤+ −
⎢ ⎥
⎢ ⎥= ′ ′
⎢ ⎥
⎢ ⎥− +⎢ ⎥⎣ ⎦

.

Rank (C) = 
(m 1)

(c 1)m
2

++ −  and thus the design

is disconnected for m 3≥ .

 ( )
c m
0 c 0

m c m m
c 0 c c

R 1 R
C

1 R I R R J R
−

′⎡ ⎤⊗′⎢ ⎥=
⎢ ⎥⊗ ⊗ − + ⊗⎣ ⎦

where  

1 * 1

c
**

1

* 1 1

2

2

p

0 2

R 0 R

R 0 0

R R

− −
µ µ

µ+
− −

µ µ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ′ ′
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,
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1 * 1

m

* 1 1

− −
µ µ

− −
µ µ

⎡ ⎤
⎢ ⎥

= ′ ′⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R 0 R

R 0 0 0

R 0 R
, 

c
0

12 −
µ

⎡ ⎤
⎢ ⎥

= ′ ′⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0

R 0 0 0

0 0 R

 and   

* 1

m
0

1

.

−
µ

−
µ

⎡ ⎤
⎢ ⎥

= ′ ′⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 R

R 0 0 0

0 0 R

Then

( 1) ( 1) ( 1) ( 1) c(2 1)

*
1 c(2 1)

1 c(2 1) 2

µ+ × µ+ µ+ ×µ µ+ × µ+

−
µ µ× µ µ× µ+

µ+ ×µ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= −⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0

C C I 0 I 0

X 0 X

where X1 = 

1

c 1

*
1

1

I 0

1 0

I 0

µ µ×

×µ

µ µ×

⎡ ⎤−⎢ ⎥
⎢ ⎥⊗ −′
⎢ ⎥
⎢ ⎥−⎣ ⎦

 and

X2 =  

1

c 1 1

1

1 .

I 0 0

I 0 0

0 0 I

µ µ× µ×µ

×µ ×µ

µ×µ µ× µ

⎡ ⎤
⎢ ⎥

⊗ ′ ′⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

The proof of estimability follows on the lines of
proof for even number of doses and noting that in this

case ( )1 20w w w
′= ′ ′ .

APPENDIX  2

Proof of Theorem 5.2

(a) m (= 2�) even

As per the Method 5.1 we have

(c 1) *
.

M
N 1

M
+

⎡ ⎤
= ⊗ ⎢ ⎥

⎢ ⎥⎣ ⎦

Therefore, 
-1

1
(c 1) -1 *

R M
R N 1

R M

µ−
+

µ

⎡ ⎤
⎢ ⎥= ⊗
⎢ ⎥
⎣ ⎦

.

We have  

-1
1

-1 -1
2

-1
3

U R N

UR N U R N

U R N

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

.

Writing

( ) ( )1 c c
1

:
2m

U 1 1 1 I 1 1µ µ µ µ⎡ ⎤= ⊗ ⊗ − −′ ′ ′ ′⎣ ⎦ ,

we have -1
1 = ′U R N 0 .

We partition w as ( )1 2w w w ′= ′ ′  such that w1(w2)

contains first (last) 
 elements of w.  It is easy to see

that *
1 2w w Iµ= −′ ′ . As a consequence

( )2 c 12

12

m(m 1)(c 1)
U 1 w+= ⊗′ ′

− +
  and, therefore,

1 1 1 *
2 1 22

12(c 1)
R

m(m 1)
U N w R M w R M− − −

µ µ
+ ⎡ ⎤= +′ ′⎣ ⎦−

( )* 1 1 *
2 22

12(c 1)

m(m 1)
w I R M w R I M 0− −

µ µ µ µ
+= − + =′ ′ ′
−

since * 1 1 *I R R I− −
µ µ µ µ= .

Again, ( )3 c c2

6
:

m(m 1)
U 1 w I w= ⊗ − ⊗′ ′

−
and we have –1

3U R N 0= ′ .

(b) m (= 2��+ 1) odd

As per Method 5.1, we have

**
c 1 1

*

p .

M 0

N 1 0

M 0

+ µ+

⎡ ⎤
⎢ ⎥

= ⊗ ′⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Therefore,   

-1

1
c 1

-1 *

1 .

µ
−

+

µ

⎡ ⎤
⎢ ⎥

= ⊗ ′⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R M 0

R N 1 0

R M 0
Writing

( ) ( )1 c c
1

1 : 1
2m

U 1 1 1 I 1 1µ µ µ µ⎡ ⎤= ⊗ ⊗ − − −′ ′ ′ ′⎣ ⎦

we have –1
1U R N .= ′0
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We partition w as ( )1 20w w w ′= ′ ′  such that

w1(w2) contains first (last) 
 elements of w. It is easy to

see that *
1 2w w Iµ= − .

As a consequence

( )2 c 12

12

m(m 1)(c 1)
U 1 w+= ⊗′ ′

− +
 and, therefore,

( )1 * 1 1 *
2 2 22

12(c 1)
0

m(m 1)
U R N w I R M w R I M 0− − −

µ µ µ µ
+ ⎡ ⎤= − + =′ ′ ′⎣ ⎦−

since * 1 1 *I R R I− −
µ µ µ µ= .

Again, ( )3 c c2

6
:

m(m 1)
U 1 w I w= ⊗ − ⊗′ ′

−
and we

have –1
3U R N 0= ′ . As the designs constructed satisfy

(4.1) and (3.5) both for even and odd number of doses,
they are A-optimal for estimating the three contrasts of
major importance.

No. b **
up Block contents e

1
e

m = 3, k = 8

1. 2 2, 1, 1 {1, 2, 4, 5, 8, 9, 11, 12}; {1, 3, 4, 6, 7, 9, 10, 12} 0.9000 0.9565

2. 3 2, 2, 2 D1 + {2, 3, 5, 6, 7, 8, 10, 11} 0.9000 0.9545

3. 4 3, 2, 3 D2 + {1, 3, 4, 6, 7, 9, 10, 12} 0.9375 0.9740

4. 5 4, 2, 4 D3 + {1, 3, 4, 6, 7, 9, 10, 12} 0.9545 0.9825

5. 6 5, 3, 4 {1, 3, 4, 6, 7, 9, 10, 12} (4); {1, 2, 4, 5, 8, 9, 11, 12}; 0.9643 0.9853
{2, 2, 5, 5, 8, 8, 11, 11}

6. 7 6, 3, 5 D5 + {1, 3, 4, 6, 7, 9, 10, 12} 0.9706 0.9885

7. 8 6, 4, 6 D6 + {1, 2, 4, 5, 8, 9, 11, 12} 0.9706 0.9880

8. 9 7, 4, 7 {1, 3, 4, 6, 7, 9, 10, 12} (6); {1, 2, 4, 5, 8, 9, 11, 12};
{2, 3, 5, 6, 7, 8, 10, 11}; {2, 2, 5, 5, 8, 8, 11, 11} 0.9750 0.9902

m = 4,  k = 8

9. 3 2, 1, 1, 2 {1, 4, 5, 8, 9, 12, 13, 16}; {1, 3, 5, 7, 10, 12, 14, 16};
{2, 4, 6, 8, 9, 11, 13, 15} 0.9706 0.9889

10. 4 2, 2, 2, 2 D9 + {2, 3, 6, 7, 10, 11, 14, 15} 0.9310 0.9726

11. 5 3, 2, 2, 3 D10 + {1, 4, 5, 8, 9, 12, 13, 16} 0.9800 0.9920

12. 6 4, 2, 2, 4 D11 + {1, 4, 5, 8, 9, 12, 13, 16} 0.9940 0.9978

13. 7 4, 3, 3, 4 D12 + {2, 3, 6, 7, 10, 11, 14, 15} 0.9844 0.9936

14. 8 5, 3, 3, 5 D13 + {1, 4, 5, 8, 9, 12, 13, 16} 0.9925 0.9971

15. 9 6, 3, 3, 6 D14 + {1, 4, 5, 8, 9, 12, 13, 16} 0.9966 0.9988

APPENDIX 3

Table 1. A-efficient  block designs (connected) with c = 3, 3 � m ���������k���	
��k���4m��bk ����
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m = 5,  k = 8

16. 4 2, 2, 1, 1, 2 {1, 5, 6, 10, 11, 15, 16, 20}; {2, 4, 7, 9, 12, 14, 17, 19}; 0.7857 0.9053
{1, 3, 6, 8, 13, 15, 18, 20}; {2, 5, 7, 10, 11, 14, 16, 19}

17. 5 3, 2, 1, 2, 2 D16 + {1, 4, 6, 9, 12, 15, 17, 20} 0.9176 0.9671

18. 6 3, 2, 2, 2, 3 D17 + {3, 5, 8, 10, 11, 13, 16, 18} 0.9519 0.9803

19. 7 4, 2, 2, 2, 4 D18 + {1, 5, 6, 10, 11, 15, 16, 20} 0.9684 0.9879

20. 8 4, 3, 2, 3, 4 D19 + {2, 4, 7, 9, 12, 14, 17, 19} 0.9560 0.9825

21. 9 5, 3, 2, 3, 5 D20 + {1, 5, 6, 10, 11, 15, 16, 20} 0.9721 0.9896

m = 6,  k = 8

22. 5 2, 2, 1, 1, 2, 2 {1, 6, 7, 12, 13, 18, 19, 24}; {2, 5, 8, 11, 14, 17, 20, 23}; 0.7606 0.8931
{1, 4, 7, 10, 15, 18, 21, 24}; {2, 3, 8, 9, 16, 17, 22, 23};
{5, 6, 11, 12, 13, 14, 19, 20}

23. 6 3, 2, 1, 1, 2, 3 D22 + {1, 6, 7, 12, 13, 18, 19, 24} 0.7591 0.9008

24. 7 3, 2, 2, 2, 2, 3 D23 + {3, 4, 9, 10, 15, 16, 21, 22} 0.8143 0.9164

25. 8 3, 3, 2, 2, 3, 3 D24 + {2, 5, 8, 11, 14, 17, 20, 23} 0.8687 0.9426

26. 9 4, 3, 2, 2, 3, 4 D25 + {1, 6, 7, 12, 13, 18, 19, 24} 0.8850 0.9529

m = 7,  k = 8

27. 6 2, 2, 2, 1, 1, 2, 2 {1, 7, 8, 14, 15, 21, 22, 28}; {2, 6, 9, 13, 16, 20, 23, 27}; 0.7632 0.8924
{3, 5, 10, 12, 17, 19, 24, 26}; {1, 4, 8, 11, 18, 21, 25, 28};
{2, 7, 9, 14, 15, 20, 22, 27}; {3, 6, 10, 13, 16, 19, 23, 26}

28. 7 3, 2, 2, 1, 2, 2, 2 D27 + {1, 5, 8, 12, 17, 21, 24, 28} 0.9146 0.9648

29. 8 3, 2, 2, 2, 2, 2, 3 D28 + {4, 7, 11, 14, 15, 18, 22, 25} 0.9491 0.9789

30. 9 3, 3, 2, 2, 2, 3, 3 D29 + {2, 6, 9, 13, 16, 20, 23, 27} 0.9587 0.9831

m = 4,  k = 12

31. 2 2, 1, 1, 2 {1,  2,  4,  5, 6, 8, 9, 11, 12, 13, 15, 16}; 0.9706 0.9889
{1, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 16}

32. 3 3, 2, 2, 2 D31 + {1, 2, 3, 5, 6, 7, 10, 11, 12, 14, 15, 16} 0.9696 0.9872

33. 4 4, 2, 2, 4 {1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16} (2); 0.9706 0.9889

{1, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 16} (2)

34. 5 5, 3, 3, 4 D33 + {1, 2, 3, 5, 6, 7, 10, 11, 12, 14, 15, 16} 0.9752 0.9900

35. 6 6, 3, 3, 6 {1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16} (3); 0.9706 0.9889

{1, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 16} (3)

m = 5,  k = 12

36. 3 2, 2, 1, 2, 2 {1, 3, 5, 6, 8, 10, 11, 13, 15, 16, 18, 20}; 0.9494 0.9794

{1, 2, 4, 6, 7, 9, 12, 14, 15, 17, 19, 20};

{2, 4, 5, 7, 9, 10, 11, 12, 14, 16, 17, 19}

No. b **
up Block contents e

1
e
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37. 4 3, 2, 2, 2, 3 D36 + {1, 3, 5, 6, 8, 10, 11, 13, 15, 16, 18, 20} 0.9706 0.9881

38. 5 4, 3, 2, 2, 4 D37 + {1, 2, 5, 6, 7, 10, 11, 14, 15, 16, 19, 20} 0.9716 0.9890

39. 6 5, 3, 2, 3, 5 D38 + {1, 4, 5, 6, 9, 10, 11, 12, 15, 16, 17, 20} 0.9718 0.9894

m = 6,  k = 12

40. 3 2, 2, 1, 1, 1, 2 {1, 2, 6, 7, 8, 12, 13, 17, 18, 19, 23, 24}; 0.9878 0.9953
{1, 4, 6, 7, 10, 12, 13, 15, 18, 19, 21, 24};

{2, 3, 5, 8, 9, 11, 14, 16, 17, 20, 22, 23}

41. 4 3, 2, 1, 1, 2, 3 D40 + {1, 5, 6, 7, 11, 12, 13, 14, 18, 19, 20, 24} 0.9590 0.9854

42. 5 3, 3, 2, 2, 2, 3 D41 + {2, 3, 4, 8, 9, 10, 15, 16, 17, 21, 22, 23} 0.9540 0.9810

43. 6 4, 3, 2, 2, 3, 4 D41 + {1, 4, 6, 7, 10, 12, 13, 15, 18, 19, 21, 24}; 0.9669 0.9872

{2, 3, 5, 8, 9, 11, 14, 16, 17, 20, 22, 23}

m = 7,  k = 12

44. 4 2, 2, 2, 1, 1, 2, 2 {1, 6, 7, 8, 13, 14, 15, 16, 21, 22, 23, 28}; 0.9710 0.9885

{2, 3, 6, 9, 10, 13, 16, 19, 20, 23, 26, 27};

{3, 4, 5, 10, 11, 12, 17, 18, 19, 24, 25, 26};

{1, 2, 7, 8, 9, 14, 15, 20, 21, 22, 27, 28}

45. 5 3, 2, 2, 1, 2, 2, 3 {1, 4, 7, 8, 11, 14, 15, 18, 21, 22, 25, 28}; 0.9851 0.9944

{2, 3, 6, 9, 10, 13, 16, 19, 20, 23, 26, 27};

{1, 5, 7, 8, 12, 14, 15, 16, 17, 20, 23, 24, 28};

{1, 3, 7, 8, 10, 14, 15, 19, 21, 22, 24, 28};

{2, 5, 6, 9, 12, 13, 17, 19, 23, 24, 26}

46. 6 3, 3, 2, 2, 2, 3, 3 D45 + {2, 4, 6, 9, 11, 13, 16, 18, 20, 23, 25, 27} 0.9559 0.9819

m= 8,  k = 12

47. 4 2, 2, 1, 1, 1, 1, 2, 2 {1, 4, 8, 9, 12, 16, 17, 21, 24, 25, 29, 32}; 0.9809 0.9926

{2, 3, 7, 10, 11, 15, 18, 22, 23, 26, 30, 31};

{1, 6, 8, 9, 14, 16, 17, 19, 24, 25, 27, 32};

{2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31}

48. 5 3, 2, 2, 1, 1, 2, 2, 2 {1, 4, 8, 9, 12, 16, 17, 21, 24, 25, 29, 32}; 0.9810 0.9926

{2, 3, 7, 10, 11, 15, 18, 22, 23, 26, 30, 31};

{1, 3, 6, 9, 11, 14, 19, 22, 24, 27, 30, 32};

{1, 5, 8, 9, 13, 16, 17, 20, 24, 25, 28, 32};

{2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31}

49. 6 3, 2, 2, 2, 2, 2, 2, 3 D48 + {4, 5, 8, 12, 13, 16, 17, 20, 21, 25, 28, 29} 0.9704 0.9878

m = 5,  k = 16

50. 2 2, 1, 1, 2, 2 {1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20}; 0.9900 0.9961

{1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20}

51. 3 3, 2, 2, 2, 3 {1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20} (2); 1.0000 1.0000

{1, 3, 3, 5, 6, 8, 8, 10, 11, 13, 13, 15, 16, 18, 18, 20}

No. b **
up Block contents e

1
e
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52. 4 4, 3, 2, 3, 4 {1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20} (3); 1.0000 1.0000

{1, 3, 3, 5, 6, 8, 8, 10, 11, 13, 13, 15, 16, 18, 18, 20}

m = 6,  k = 16

53. 3 3, 2, 1, 1, 2, 3 {1, 2, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 19, 20, 23, 24} (2); 1.0000 1.0000

{1, 3, 4, 6, 7, 9, 10, 12, 13,  15, 16, 18, 19, 21, 22, 24}

54. 4 3, 3, 2, 2, 3, 3 D53 + {2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 17, 20, 21, 22, 23} 1.0000 1.0000

m = 7,  k = 16

55. 3 2, 2, 2, 1, 1, 2, 2 {1, 2, 6, 7, 8, 9, 13, 14, 15, 16, 20, 21, 22, 23, 27, 28}; 0.9943 0.9978

{1, 3, 5, 7, 8, 10, 12, 14, 15,  17, 19, 21, 22, 24, 26, 28};

{2, 3, 4, 6, 9, 10, 11, 13, 16, 18, 19, 20, 23, 25, 26, 27}

56. 4 3, 2, 2, 2, 2, 2, 3 {1, 2, 6, 7, 8, 9, 13, 14, 15, 16, 20, 21, 22, 23, 27, 28} (2); 1.0000 1.0000

{1, 3, 5, 7, 8, 10, 12, 14, 15,  17, 19, 21, 22, 24, 26, 28};

{3, 4, 4, 5, 10, 11, 11, 12, 17, 18, 18, 19, 24, 25, 25, 26}

m= 8,  k = 16

57. 3 2, 2, 1, 1, 1, 1, 2, 2 {1, 2, 7, 8, 9, 10, 15, 16, 17, 18, 23, 24, 25, 26, 31, 32}; 1.0000 1.0000

{1, 4, 5, 8, 9, 12, 13, 16, 17, 20,  21, 24, 25, 28, 29, 32};

{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}

58. 4 3, 2, 2, 1, 1, 2, 2, 3 D57 + {1, 3, 6, 8, 9, 11, 14, 16, 17, 19, 22, 24, 25, 27, 30, 32} 1.0000 1.0000

No. b **
up Block contents e

1
e
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Table 2. A-optimal block  designs (disconnected) with c = 3,  3 � m � 8, k = 8, k < 4m, bk � 75

No. b **
up Block contents

m = 3

1. 3 2, 2, 2 {1, 3, 4, 6, 7, 9, 10, 12}(2); {2, 2, 5, 5, 8, 8, 11, 11}

2. 4 3, 2, 3 {1, 3, 4, 6, 7, 9, 10, 12}(3); {2, 2, 5, 5, 8, 8, 11, 11}

3. 5 4, 2, 4 {1, 3, 4, 6, 7, 9, 10, 12}(4); {2, 2, 5, 5, 8, 8, 11, 11}

4. 8 6, 4, 6 {1, 3, 4, 6, 7, 9, 10, 12}(6); {2, 2, 5, 5, 8, 8, 11, 11} (2)

5. 9 7, 4, 7 {1, 3, 4, 6, 7, 9, 10, 12}(7); {2, 2, 5, 5, 8, 8, 11, 11} (2)

m = 4

6. 3 2, 1, 1, 2 {1, 4, 5, 8, 9, 12, 13, 16}(2); {2, 3, 6, 7, 10, 11, 14, 15}

7. 4 2, 2, 2, 2 {1, 4, 5, 8, 9, 12, 13, 16}(2); {2, 3, 6, 7, 10, 11, 14, 15} (2)

8. 5 3, 2, 2, 3 {1, 4, 5, 8, 9, 12, 13, 16}(3); {2, 3, 6, 7, 10, 11, 14, 15} (2)

9. 6 4, 2, 2, 4 {1, 4, 5, 8, 9, 12, 13, 16}(4); {2, 3, 6, 7, 10, 11, 14, 15} (2)

10. 7 4, 3, 3, 4 {1, 4, 5, 8, 9, 12, 13, 16}(4); {2, 3, 6, 7, 10, 11, 14, 15} (3)

11. 8 5, 3, 3, 5 {1, 4, 5, 8, 9, 12, 13, 16}(5); {2, 3, 6, 7, 10, 11, 14, 15} (3)

12. 9 6, 3, 3, 6 {1, 4, 5, 8, 9, 12, 13, 16}(6); {2, 3, 6, 7, 10, 11, 14, 15} (3)

m = 5

13. 6 3, 2, 2, 2, 3 {1, 5, 6, 10, 11, 15, 16, 20}(3); {2, 4, 7, 9, 12, 14, 17, 19} (2);{3, 3, 8, 8, 13, 13, 18, 18}

14. 7 4, 2, 2, 2, 4 {1, 5, 6, 10, 11, 15, 16, 20}(4); {2, 4, 7, 9, 12, 14, 17, 19} (2); {3, 3, 8, 8, 13, 13, 18, 18}

15. 8 4, 3, 2, 3, 4 {1, 5, 6, 10, 11, 15, 16, 20}(4); {2, 4, 7, 9, 12, 14, 17, 19} (3); {3, 3, 8, 8, 13, 13, 18, 18}

16. 9 5, 3, 2, 3, 5 {1, 5, 6, 10, 11, 15, 16, 20}(5); {2, 4, 7, 9, 12, 14, 17, 19} (3); {3, 3, 8, 8, 13, 13, 18, 18}

m = 6

17. 5 2, 2, 1, 1, 2, 2 {1, 6, 7, 12, 13, 18, 19, 24} (2); {2, 5, 8, 11, 14, 17, 20, 23} (2);

{3, 4, 9, 10, 15, 16, 21, 22}

18. 6 3, 2, 1, 1, 2, 3 {1, 6, 7, 12, 13, 18, 19, 24} (3); {2, 5, 8, 11, 14, 17, 20, 23} (2);

{3, 4, 9, 10, 15, 16, 21, 22}

19. 7 3, 2, 2, 2, 2, 3 {1, 6, 7, 12, 13, 18, 19, 24} (3); {2, 5, 8, 11, 14, 17, 20, 23} (2);

{3, 4, 9, 10, 15, 16, 21, 22} (2)

20. 8 3, 3, 2, 2, 3, 3 {1, 6, 7, 12, 13, 18, 19, 24} (3); {2, 5, 8, 11, 14, 17, 20, 23} (3);

{3, 4, 9, 10, 15, 16, 21, 22} (2)

21. 9 4, 3, 2, 2, 3, 4 {1, 6, 7, 12, 13, 18, 19, 24}(4); {2, 5, 8, 11, 14, 17, 20, 23} (3);
{3, 4, 9, 10, 15, 16, 21, 22} (2)

m = 7

22. 8 3, 2, 2, 2, 2, 2, 3 {1, 7, 8, 14, 15, 21, 22, 28} (3); {2, 6, 9, 13, 16, 20, 23, 27} (2);

{3, 5, 10, 12, 17, 19, 24, 26} (2); {4, 4, 11, 11, 18, 18, 25, 25}

23. 9 3, 3, 2, 2, 2, 3, 3 {1, 7, 8, 14, 15, 21, 22, 28} (3); {2, 6, 9, 13, 16, 20, 23, 27} (3);
{3, 5, 10, 12, 17, 19, 24, 26} (2); {4, 4, 11, 11, 18, 18, 25, 25}


