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1  Introduction

The climate change has made its strong footprint in the world to the scientific con-

sensus. The foremost reason for this havoc is the emission of greenhouse gases 

mainly through the anthropogenic (human-caused) activities (Cook et  al. 2016). 

The climate system is on the verge of facing a long-term irreversible impact in all of 

its components. Global warming, certainly, is one of the serious threats to our eco-

systems (IPCC 2014). There will be further warming of the globe with the contin-

ued greenhouse gas emissions. The last few decades have witnessed a slow but 

steady escalation in the global temperature (Fig.  1) as well as atmospheric CO2 

concentrations (Fig. 2). In this chapter, the consequences of rising temperature and 

elevated atmospheric CO2 (eCO2) on plants in general and Solanaceous vegetables 

in particular are elaborately discussed.
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2  Impact of Rising Temperature on Plants

According to IPCC (2007), about 2–3 °C change in temperature is predicted over 

the coming 30–50 years. Temperature plays a pivotal role in plant growth and devel-

opment. Each plant species requires a defined range of temperature for completion 

of its life cycle. With the rise in temperature to the optimum level, the vegetative 

development is higher as compared to reproductive development. During the repro-

ductive phase of the plant, the extremely high temperature influences the fertiliza-

tion, pollen viability, and fruit/grain production (Hatfield et al. 2011). Yield potential 

can be significantly hampered if there are extreme temperatures during the pollina-

tion, fruit set, or initial fruit growth stage as well as the reproductive stage. Plant’s 

Fig. 1 Temperature data showing rapid warming of the globe. (Source: https://climate.nasa.gov/

scientific- consensus/)

Fig. 2 The relentless rise of atmospheric carbon dioxide. (Source: https://climate.nasa.gov/

evidence/)
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cardinal temperature requirements decide its yield response towards the extreme 

temperatures. The rise in temperature changes the vapour pressure deficit at the leaf 

surface resulting in increased transpiration. Hastening of foliage aging and shorten-

ing of plant growing season (e.g., shorter grain-filling period) are the major detri-

mental effects of higher canopy temperature (Van de Geijn and Goudriaan 1996). 

Enzymes are highly influenced by temperature and play a significant role in carry-

ing out different biochemical reactions inside the plant cells. The plant may not 

function properly or even dies if any one of the essential enzymes fails. For this 

reason, most of the plant species can survive the high temperature up to a relatively 

narrow range, i.e., 40–45 °C (Senioniti et al. 1986). The temperature, causing the 

inhibition of various cellular functions in C3 species in the cool season, may not 

apparently influence the warm-season C3 species like rice, etc. and C4 species, viz., 

sugarcane, maize, sorghum, etc. (Abrol and Ingram 1996). Abrupt exposure to high 

temperature may lead to membrane injury, loss of cellular contents, disruption of 

cellular functioning, or even death of plant (Ahrens and Ingram 1988). In higher 

plant species, heat stress results in the reduced synthesis of normal proteins while 

increased production of a new set of proteins, viz., heat shock proteins (HSPs) is 

accompanied (Wang et al. 2014). Phenological development of photosensitive crops 

like soybean is also likely to be prominently disturbed due to the high temperature. 

Throughout the twenty-first century, about 2.5–10% of yield loss may occur across 

numerous crop species (Hatfield et al. 2011). As compared to annual crops, peren-

nial crops possess a more complicated relationship with temperature. Exposing the 

apple plants to the high temperature stress (>22  °C) improved the fruit size and 

soluble solids but the firmness, a desirable quality, reduced (Warrington et al. 1999).

3  Elevated Atmospheric CO2 Levels and Plant Responses

The concentration of atmospheric CO2 is increasing at an alarming rate. The aver-

age atmospheric level of CO2 persistently rose from 315 parts per million (ppm) in 

1959 to about 409.78  ppm in 2019 (https://www.esrl.noaa.gov/gmd/ccgg/trends/

global.html). Such a higher level of CO2 is not only likely to have a profound effect 

on the global climate system but also imparts a substantial direct effect on growth, 

development, and various physio-chemical processes of plants (Ziska 2008).

CO2 is the base of all life forms on the earth. Plants utilize CO2 as the basic raw 

material for building up their tissues, which consequently become the ultimate 

source of food for all animals, including humans. A number of research outcomes 

have established the fact that elevated CO2 level in the atmosphere leads to better 

plant growth (Singer and Idso 2009). Long back in 1804, de Saussure, for the first 

time demonstrated better growth in pea plants that are exposed to the increased CO2 

concentrations as compared to the control plants in ambient air. An upsurge of about 

33% in agricultural yield with CO2 enrichment has been reported (Kimball 1983). 

There is an upsurge in the photosynthetic carbon fixation rate by leaves in response 

to the elevated CO2 concentrations in the atmosphere. Towards the rising CO2 

Response of Solanaceous Vegetables to Increasing Temperature and Atmospheric CO2
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concentrations, plants experience and response differently in an open-field condi-

tion as compared to the closed chamber system. Keeping this in mind, free-air car-

bon dioxide enrichment (FACE) technique was developed in the late 1980s. This 

method allows the researchers to raise the CO2 concentrations in an isolated area 

and measure the resultant response of the plants.

Ainsworth and Rogers (2007) reported about 40% increase in the leaf photosyn-

thetic rates in a range of plant species at an increased CO2 level of 475–600 ppm. 

Over the last 35 years, a substantial amount of greenery has been noticed in a quar-

ter to half of the global vegetated lands due to the escalation in the level of atmo-

spheric CO2 that ultimately led to the increase in leaves on the plants causing 

greening (Zhu et al. 2016).

3.1  CO2 Fertilization Effect

It is a well-believed perception that the C4 plant species (maize, sugar cane, sor-

ghum, millets, etc.) are likely to be less responsive towards elevated CO2 than the 

plant species following the C3 photosynthetic pathway (potatoes, rice, cotton, wheat, 

barley, etc.). But, in a twenty-year field experiment, this C3-C4 elevated CO2 para-

digm is surprisingly reversed as during the last 8 years of the experiment, a signifi-

cant enhance in the biomass was observed in C4 instead of the C3 plants (Reich et al. 

2018). This contradictory finding may be because of the availability of nitrogen to 

the C3 plants in a lesser amount than that of the C4 plants with passing time. So, not 

only the plants but also the soil chemistry and microbes play an important role in 

getting this astonishing outcome.

3.2  CO2 Anti-Transpirant Effect

The atmospheric CO2 also influences the crop plant in another imperative manner. 

Higher levels of atmospheric CO2 lead to the decrease of water lost through transpi-

ration in the plants, thus increasing the water-use efficiency. This is due to the con-

traction and/or decrease in the number of tiny pores, i.e., stomata present in the 

leaves through which plants transpire (Wolfe and Erickson 1993; Kimball 2011; 

Deryng et al. 2016).

4  Solanaceous Vegetables

Solanaceae or the nightshade family consists of about 98 genera and 2700 species 

(Olmstead and Bohs 2006). The economically important edible members of this 

family are tomato (Solanum lycopersicum L.), potato (Solanum tuberosum L.), 
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eggplant (Solanum melongena L.), and pepper (Capsicum annuum L.). This family 

also includes a wide array of plant species like tobacco, cape gooseberry, henbane, 

climbing nightshade, belladonna, mandrake, Jimson weed, petunia, etc. belonging 

to the diverse groups based on their nature (Rubatzky and Yamaguchi 1997).

5  Response of Solanaceous Vegetables Towards Rising 
Temperature and Elevated Atmospheric CO2

Climate change, caused mainly by the anthropogenic greenhouse gas emissions, has 

disrupted the ecosystem and these greenhouse gases (CFCs, N2O, CH4, CO2, etc.) 

are the major culprits in the depletion of ozone layer. Vegetable crops under the fam-

ily Solanaceae have occupied a prime position in the world of vegetables. With the 

changing scenario vis-à-vis climate systems, along with other agricultural crops, 

these crops are also significantly influenced. Solanaceous vegetables are basically 

warm season crops requiring an optimum temperature of 20–27 °C for better growth 

and development except for potato which requires a cooler climate. The conse-

quences of high temperature (Table 1) and elevated CO2 are briefly discussed with 

special reference to important members of the Solanaceous vegetable group.

5.1  Tomato

At the optimum temperature range, viz., 21–24 °C, the tomato plant growth achieves 

the peak of the sigmoid curve. Deviation from this range will impart a detrimental 

influence on the growth and development of plant. The exposure of tomato plants to 

short periods of high temperature affect more severely if coincide with the critical 

plant growth phase (Geisenberg and Stewart 1986; Haque et al. 1999; Araki et al. 

2000). Both day and night temperature play significant role in fruit yield and quality 

Table 1 High-temperature injury symptoms in solanaceous vegetables

Vegetable Injury symptoms

Tomato Flower drop and underdevelopment of ovaries, no fruit setting beyond 35 °C day 

temperature, interruption of lycopene synthesis in fruits; sunscald and blotchy 

ripening in the affected tissues

Potato Reduction or complete inhibition of tuberization, reducing sugar contents, 

physiological weight loss of tuber, bacterial wilt, black scurf/canker and black 

heart disorder

Hot and 

sweet pepper

Decrease in pollen production, reduced fruit set, reduced seed set, smaller fruit 

size, premature loss of fruits with sunburn necrosis, blossom end rot on the 

fruits, poor ripening, and color development of fruits.

Brinjal Poor fruit and seed set, distorted floral buds and fruits, decrease in pollen 

production, yellow, bronze, or brown spot on the fruit due to sunburn.

Response of Solanaceous Vegetables to Increasing Temperature and Atmospheric CO2
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(Iwahori and Takahashi 1964; Abdalla and Verkerk 1968; Kuo et al. 1979; Hann and 

Hernandez 1982). However, within a certain range, tomato plants have the potential 

to integrate temperature. Tomato plants exposed to a constant temperature regime 

may suffer a yield loss whereas a fluctuating temperature regime often does not 

impart any significant effect on yield (Adams et al. 2001; de Koning 1988, 1990). 

Both the vegetative and reproductive phases are considerably influenced by high 

temperature which ultimately affects the fruit yield and quality (Figs. 3, 4 and 5). 

The number of days for seed germination in tomato is decreased in response to the 

elevated temperature. Temperature does not have any pivotal impact on dry matter 

partitioning (Heuvelink 1995) while the fruit ripening can be hindered due to the 

extreme temperatures (Lurie et al. 1996). In the experiments conducted by Hurd and 

Graves (1984, 1985), it is demonstrated that there is a decrease in the time taken for 

fruit maturity in the initial part of the season. The reason may be due to the higher 

mean temperature in the early phase of the season. There is a positive correlation 

between fruit temperature of 10–30 °C and fruit growth rate, with an increase of 

5 μm h−1 °C−1 in the fruit diameter (Pearce et al. 1993). A shorter crop production 

time is the outcome of higher temperature during the plant growth, but with lower 

yield and small-sized fruits (Rylski 1979a, b; Sawhney and Polowick 1985).

The plant developmental rate and timing of first flowering are affected by the 

temperature differences during vegetative phase. The fruit firmness, development 

time, and yield are also significantly influenced by the timing, duration, and magni-

tude of short-term temperature pulses (Adams and Valdés 2002; Mulholland et al. 

2003). For successful tomato production, an average daily temperature of 29  °C 

during the two-week period up to the opening of flowers has been considered as the 

critical temperature (Deuter et al. 2012). The constant air temperatures of ≥30 °C 

can hinder the normal ripening and softening of detached mature green tomato 

fruits (Mitcham and McDonald 1992). If the temperature surpasses 32.2 °C during 

Fig. 3 Effect of high temperature on tomato plants (a) susceptible (pot 1) vs. heat-tolerant (pot 2) 

tomato plant, and (b) Field view of susceptible (yellow encircled) and heat-tolerant (white encir-

cled) tomato plants. (Source: NICRA project, ICAR-Indian Institute of Vegetable Research, 

Varanasi)
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Fig. 4 Response of tomato varieties (pot 1: Punjab Chhuhara, pot 2: CLN-1621, and pot 3: 

H-88-78-1) to high temperature; exposure period (a) 0 h (b) 16 h (c) 32 h, and (d) 48 h. (Source: 

ICAR-Indian Institute of Vegetable Research, Varanasi)

Fig. 5 Effect of temperature on fruit set in tomato during winter and summer seasons. (Source: 

Kumar et al. 2017)
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the critical stages of flowering and pollination, the yield is severely affected as the 

fruit set is reduced and the fruits become smaller in size and of poor quality (Sato 

et  al. 2001). At elevated temperatures, the flower clusters emerge faster (Adams 

et  al. 2001), and consequently, more number of fruits per plant appear initially 

(Fig. 3). Vegetative growth is penalised due to the growth of these fruits, however a 

delay in growth and development of newly set fruits, or flower or fruit abortion may 

occur (De Koning 1989; Kumar et al. 2017). A single factor cannot be the sole rea-

son for poor fruit set in tomato at elevated temperature as it is considered as a com-

plex trait (Rudich et al. 1977; Prendergast 1983).

Temperature alone or with other environmental parameters influences both the 

vegetative and reproductive phases of tomato. Several consequences of high tem-

peratures on tomato plants include unnatural flower development, bud drop, persis-

tent flower and calyx, anther splitting, poor anther dehiscence, degeneration of 

embryo sac and endosperm, scanty pollen production, reduced stigma receptivity 

and fertilization, low pollen viability, ovule abortion, decreased carbohydrate avail-

ability and protein content, reduction in number of seeds per fruit and fruit size, and 

other developmental abnormalities (Hazra et al. 2007). Sato et al. (2002) discussed 

the developmental modifications in anthers, especially anomalies in the endothe-

cium and epidermis, poor pollen formation, and the problem of strontium opening 

are the resultant of elevated temperature during the pre-anthesis stage. There are 

also reports of splitting of stigma, antheridial cone, and stylar exsertion (Rudich 

et  al. 1977; Levy et  al. 1978; El Ahmadi and Stevens 1979). Peet et  al. (1998) 

observed the harmful effect of heat stress on development of ovule and embryo, and 

ovule viability. The pollination is restricted as the stigma dehydrated due to high 

temperature. A 2–4 °C increase from the optimal temperature imparted detrimental 

effect on gamete development and supressed the capability of pollinated flowers to 

become seeded fruits (Peet et al. 1997; Sato et al. 2001; Firon et al. 2006). Seven to 

fifteen days prior to anthesis is the critical phase of sensitivity to moderately ele-

vated temperatures (Sato et  al. 2002). Under moderately high temperature, the 

decrease in the fruit set is not primarily due to scanty pollen production rather 

because of poor pollen release and viability (Sato et al. 2006). The high temperature- 

tolerant genotypes produced higher number of pollen grains than the sensitive geno-

types (Abdelmageed et  al. 2003). So, this criterion can be useful in picking 

heat-tolerant genotypes. In cherry tomato, reduction in lycopene and starch content 

is observed as the fruit temperature increased by about 1 °C (Gautier et al. 2005). 

Most of the research works that have targeted the thermo-effect on fruit quality 

attributes were primarily on postharvest ripening (Dalal et al. 1968; Lurie et al. 1996).

Tomato, being a C3 plant, is expected to be influenced by the eCO2 levels under 

the changing climate system. Nilsen et al. (1983) have reported about the upsurge in 

the photosynthetic rate in tomato cv. Virosa, grown at the elevated CO2 concentra-

tions of 500–2000 ppm. There is an increase of early yield in tomato by 15% in 

response to the elevated CO2 of 900 μmol mol−1 with additional light (Fierro et al. 

1994). In tomato (cv. Arka Ashish), a significantly higher plant height, leaf area per 

plant, and stem dry mass were recorded when the plants are exposed to 550 ppm of 

CO2 whereas for the parameters like number of branches, leaves per plant, leaf dry 
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mass, and total dry mass, 700 ppm CO2 was found to be superior. Moreover, CO2 at 

700 ppm concentrations have demonstrated highest photosynthetic rate, number of 

flowers, fruits per plant, fruit set (%), and fruit yield per plant as compared to CO2 

at 500 ppm and the control (Mamatha et al. 2014). Nutritional quality of tomato is 

also significantly influenced by increased CO2 levels. According to Wei et al. (2018), 

eCO2 has resulted in a substantial increase in nitrate content in tomato fruits. The 

total antioxidant capacity, phenols, and flavonoids have decreased to a greater 

degree at 550  μmol  mol−1 CO2. However, ascorbic acid concentration increased 

notably at 700  μmol  mol−1 (Mamatha et  al. 2014). At early fruiting phase, the 

sucrose content of fruits has increased greatly due to the elevated CO2 as compared 

to the later stage of fruiting (Islam et al. 1996). There has been a mismatch between 

fruit colour and maturity as eCO2 exposure of plants leads to the increase in the 

synthesis of colour pigments in fruits but up to a lower degree than the total solids 

and soluble sugar synthesis (Zhang et  al. 2014). As the sugar concentration in 

tomato fruits gradually increases from green to red stage, the elevated CO2 thus 

resulted in higher accumulation of soluble sugar (Winsor et al. 1962). Khan et al. 

(2013) demonstrated the acceleration of maturity along with the promotion of fiber 

and soluble sugar accumulation in cv. Eureka. In normal nitrogen availability condi-

tion, eCO2 had negatively affected the lycopene, soluble sugar, and soluble solids 

content in the fruits whereas in higher nitrogen availability, their concentrations are 

promoted (Helyes et al. 2012). Under salt-stress conditions (7 dS m−1), there was an 

upsurge in the fruit yield due to the elevated CO2 levels while the other quality attri-

butes like acidity, total soluble solids, and total soluble sugar remain constant (Li 

et al. 1999). The effect of eCO2 on lycopene content is inconsistent, possibly due to 

the thermo-sensitivity of lycopene (Krumbein et al. 2012), so no significant impact 

has been established (Dong et al. 2018).

5.2  Potato

The potato has occupied the third most important food crop position after rice and 

wheat, and is considered as the most important non-grain crop in the world. Potato 

performs well under cool climatic conditions and is highly affected by elevated 

temperatures at different stages of its life cycle (Levy and Veilleux 2007). For net 

photosynthesis, the lowest, optimum, and highest temperatures reported are 0–7 °C, 

16–25 °C, and 40 °C, respectively (Kooman and Haverkort 1995). The establish-

ment stage is affected by the temperature, particularly soil temperature. There are 

alterations in the morphological attributes of the plant like smaller size of com-

pound leaves and leaflets leading to the reduction in leaf area index (Ewing 1997; 

Fleisher et al. 2006). A linear correlation is observed between the leaf appearance 

rate and temperature range (9–25 °C), and beyond 25 °C, no subsequent increase is 

detected (Kirk and Marshall 1992). Moreover, Benoit et  al. (1983) also reported 

25 °C to be the optimum temperature for leaf expansion. Light interception reduces 

as the leaves cannot undergo full expansion in response to the increasing 
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temperature. A reduced specific leaf area is reported in the varieties grown in hot 

climatic conditions (Midmore and Prange 1991). Therefore, there is a linear rise in 

the leaf expansion up to 24 °C, but at 35 °C, a linear decline is observed (Kooman 

and Haverkort 1995). Similarly, a linear relationship between temperature and stem 

elongation is noted up to 35 °C (Manrique 1990) and is accelerated by low night and 

high day temperatures (Moreno 1985). As yield is a resultant of light use efficiency 

and intercepted radiation, yield is penalized at elevated temperatures owing to the 

declined ground-cover duration that is positively interlinked with yield (Vander 

Zaag and Demagante 1987). High temperatures strongly suppress the tuber forma-

tion, reduce the fitness of seed tubers, lessen the shelf life of potato tubers, lower the 

amount of assimilated carbon partitioned to tuber starch, and hastens the leaf senes-

cence (Menzel 1985; Ewing 1981; Fahem and Haverkort 1988; Wolf et al. 1991; 

Hancock et al. 2014; Sonnewald et al. 2015). Warmer temperature below 21 °C was 

found to accelerate the tuber initiation (Kooman et al. 1996). Moderately elevated 

temperature can also lead to severe tuber yield reduction without any considerable 

effect on total biomass and photosynthesis (Peet and Wolfe 2000). Moreover, at 

higher temperature, the translocation of biomass production is also restricted. Above 

two-thirds of the total photosynthates were translocated to the tubers at 18 °C, how-

ever hardly 50% translocated at 28 °C (Randeni and Caesar 1986) which suggests 

that the shoot portion of the plant is more favored for assimilates over the tubers 

resulting higher growth of haulm and restricted tuber production. High temperature 

also significantly restricts the tuber bulking rate in potato (Struik 2007) which may 

be due to the relationship with the hindered sugar to starch conversion (Krauss and 

Marschner 1984). The sprout growth is also inhibited by temperatures above the 

optimum (Midmore 1984) as a result of subapical necrosis (McGee et al. 1986). 

Kim et al. (2017) revealed a contrasting result of substantial decrease of 11% of 

tuber yield per degree of temperature rise in the range of 19.1–27.7  °C than the 

reported value of about 3–4.6% reduction per 1 °C temperature increase in the range 

of 13.81–25.45 °C (Peltonen-Sainio et al. 2010; Fleisher et al. 2017). At elevated 

temperatures, the marketable tubers become smaller in size due to the decreased 

sink strengths of tubers (Geigenberger 2003; Baroja-Fernández et al. 2009). At ele-

vated temperature, there is a higher utilization of assimilated carbohydrate for res-

piration, thus resulting in reduced tuber formation (Hijmans 2003). During a study 

on potato cvs. Kufri Surya (heat tolerant) and Kufri Chandramukhi (heat suscepti-

ble), a significantly higher rate of transpiration, stomatal conductance, and photo-

synthesis was observed in Kufri Surya at the higher temperature. Moreover, the rise 

in temperature led to an upsurge in chlorophyll content in both the cultivars whereas 

biosynthesis of gibberellic acid was restricted in cv. Kufri Surya (Singh et al. 2015). 

The CO2 compensation point and dark respiration rates increased at high tempera-

tures. The net photosynthesis rate has revealed a decline at the high temperature of 

40–42  °C or after shifting the plants from the temperature regimes (daytime) of 

22–32 °C (Wolf et al. 1990). The combined effect of heat and drought stress that 

sustained for 14 days has reduced the yield of the tolerant cultivars by about 25% 

and by over 50% in susceptible cultivars of potato (Rykaczewska 2013). A rise in 

temperature during the later stages of plant development had a detrimental effect on 
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the sprouting of tubers in the soil prior to harvest. The growth stage of the plant 

largely influences the thermo-response of the potato cultivars. The earlier the growth 

stage, higher will be the damage severity with respect to the plant growth and total 

tuber yield. The physiological defects of tubers and secondary tuberization should 

also be taken into consideration along with total tuber yield regarding the thermo- 

tolerance in potato (Rykaczewska 2015). High temperature also affected the infec-

tion rate of various diseases of potato. Chung et al. (2006) have reported the highest 

number of plants infected with potato virus Y-O and potato virus A at 20 °C; and 

potato leafroll virus at 25  °C.  The infestation of Myzus persicae (potato peach 

aphid) is advanced by 2 weeks for each 1  °C increase in the mean temperature. 

Furthermore, there is a positive correlation between aphid population upsurge; and 

minimum relative humidity and maximum temperature (Dias et al. 1980; Biswas 

et al. 2004). Most of the Indian potato varieties are furnished with single specific 

trait of interest, viz., high yielding, early maturing, high biotic/abiotic stress toler-

ance/resistance, etc. (Table 2).

Potato plants with short-term exposure to increased CO2 have demonstrated an 

increase in the photosynthetic rates (Donnelly et  al. 2001a; Vandermeiren et  al. 

2002). Sicher and Bunce (1999) proposed that the acclamatory reaction to enhanced 

CO2 is the resultant of the reduced RuBisCO (Ribulose bisphosphate carboxylase/

oxygenase) activity rather than any decline in the leaf content of this protein. 

Contrarily, Schapendonk et al. (2000) reported that the acclimation is a complicated 

mechanism caused due to the negative response of sink-source balance induced by 

high temperature and irradiance. A positive correlation is found between the CO2 

assimilation and concentration. An increase in total biomass by 27–66% is observed 

by doubling the ambient CO2 level (Collins 1976; Wheeler et al. 1991; Van De Geijn 

and Dijkstra 1995; Donnelly et al. 2001a; Olivo et al. 2002; Heagle et al. 2003). At 

elevated (up to 700 μmol mol−1) and super-elevated (1000–10,000 μmol mol−1) CO2 

Table 2 Trait-specific performance of Indian potato varieties

Variety name

Yield potential 

(t/ha)

Crop maturity 

perioda

Heat 

tolerance

Drought 

tolerance

Late blight 

resistance

Kufri Sindhuri 30–35 Late High Medium Sensitive

Kufri Arun 30–35 Medium Sensitive High High

Kufri 

Chandramukhi

20–25 Early Sensitive High Sensitive

Kufri Chipsona 30–35 Medium Sensitive Medium High

Kufri Bahar 30–35 Medium Sensitive Medium Sensitive

Kufri Kanchan 25–30 Medium Sensitive Medium Medium

Kufri Surya 25–30 Early High Medium Sensitive

Kufri Megha 25–30 Medium Sensitive Medium High

Kufri Jyoti 25–30 Medium Sensitive Medium Medium

Kufri Khyati 25–30 Early Sensitive High High

Kufri Pukhraj 35–40 Early Sensitive High Medium

Source: Gatto et al. (2016, 2018)
aEarly: 70–90 days, Medium: 90–100 days, and Late: >110 days
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levels, a decrease in the stomatal conductance of potato leaves has been reported 

(Sicher and Bunce 1999; Lawson et al. 2001; Finnan et al. 2002). It is expected that 

the reduction in the stomatal conductance enhances the water use efficiency of 

potato. Olivo et al. (2002) have reported a reduction of 16% in the transpiration rate 

and increase in the instantaneous transpiration efficiency by 80%. In potato, the leaf 

chlorophyll content pattern fluctuates in correspondence with the developmental 

stages of the plants (Finnan et al. 2005). During the later stage of plant growth (after 

tuber initiation), increased CO2 level negatively affected the leaf chlorophyll con-

tent (Lawson et al. 2001; Bindi et al. 2002). In an open top chamber experiment, an 

increased CO2 concentration of 680 ppm resulted in a 40% rise in the light-saturated 

photosynthetic rate of completely expanded leaves in the upper canopy of cv. Bintje 

during tuber initiation phase due to the cumulative influence of decrease in the pho-

tosynthetic ability and a 12% decline in the stomatal conductance (Vandermeiren 

et al. 2002). With the exposure to elevated CO2, the tuber yield is stimulated and the 

extent of tuber yield is highly dependent on numerous additional factors like grow-

ing conditions, agronomy, and cultivar. The starch and dry matter content in potato 

tubers enhances while the glycoalkaloid and nitrogen content in tubers reduces in 

response to enriched CO2 (Finnan et al. 2005). Miglietta et al. (1998) reported about 

10% increase rate in the tuber yield for each 100 ppm rise in CO2 level. The response 

of potato plant towards the elevated CO2 varies on the basis of variety and nutrition 

(Olivo et al. 2002). With optimum supply of nutrients, dry matter yield is signifi-

cantly influenced by doubling the ambient CO2 level, whereas, in nitrogen deficit 

condition, a minor negative response to CO2 enrichment is noticed (Goudriaan and 

De Ruiter 1983). Under increased CO2 concentrations, there are no alterations in the 

number of tubers; however, improvement was seen in the tuber weight primarily 

due to the rise in the cell number in tubers without affecting the cell volume (Collins 

1976; Donnelly et  al. 2001b; Chen and Setter 2003). Contrarily, Miglietta et  al. 

(1998) and Craigon et al. (2002) have reported an increase in the number of tubers. 

The intensification of starch and soluble sugars in the tubers in response to the ele-

vated CO2 has resulted in enhanced browning and acrylamide synthesis upon frying 

(Donnelly et al. 2001b; Kumari and Agrawal 2014). Högy and Fangmeier (2009) 

revealed a varying effect of eCO2 on the processing and nutritional quality of potato. 

Fangmeier et al. (2002) emphasized the need for necessary alterations in fertilizer 

practices in the upcoming CO2-rich global climate system with special significance 

on the quality of potato tubers as the concentration of crude protein was influenced 

by CO2 along with O3. At different water-stress levels, consistency was observed in 

potato yield enhancement under elevated CO2 concentrations (Fleisher et al. 2008).

A significant effect on potato production in India is projected in response to the 

cumulative effect of eCO2 and high temperature (Table 3).
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5.3  Pepper

Temperature possesses a pivotal role in proper growth, flowering, and fruit set in 

sweet pepper (Rylski and Spigelman 1982; Polowick and Sawhney 1985). Even a 

short-term exposure (20 min) of pepper plants to high temperature, viz., >40 °C can 

be detrimental to net photosynthesis rate (Hanying et al. 2001).

The pre-anthesis period in sweet pepper is not sensitive to elevated temperature 

and there is no effect on stamen or pistil viability. However, at later stages of the 

plant’s life cycle, fertilization is affected by high temperature and a reduction in 

fruit setting is observed (Erickson and Markhart 2002). Fierro et al. (1994) reported 

a yield increment of 11% in pepper under the influence of enhanced CO2 

(900 μmol mol−1) with supplementary light (ambient +100 μmol m−2 PAR). Elevated 

temperatures at the time of flowering are responsible for improper pollen tube 

growth, faulty germination and fertilization leading to flower abscission and 

decrease in fruit setting (Usman et al. 1999; Aloni et al. 2001).

The productivity of greenhouse pepper and other C3 plants increases up to 50% 

or higher with CO2 enrichment (Nederhoff 1994; Akilli et  al. 2000). With the 

increase in application duration, the efficiency of CO2 enrichment has improved. 

Vafiadis et al. (2012) suggested that the application of CO2 enrichment is feasible 

under elevated temperatures with a positive response in terms of yield in pepper. 

The increased CO2 level has a significant effect on components of free amino acid 

in sweet pepper (Piñero et al. 2017). A reduction in nitrogen level in leaves by 10% 

was observed in comparison with the reference leaves after 58 days under variable 

CO2 enrichment conditions (Porras et al. 2017). Under Mediterranean conditions, 

variable CO2 enrichment has demonstrated an enhanced production of sweet pepper 

(Alonso et al. 2010).

5.4  Eggplant

Flowering and fruit setting is eggplant is highly thermo-responsive (Nothmann et al. 

1979). Among the Solanaceous vegetables, eggplant is the most thermophilic one 

(Abak et al. 1996). An increase in stem diameter and plant height in response to 

Table 3 Per cent change in potato production in India as influenced by increased temperature and 

elevated CO2 (without adaptations)

Atmospheric CO2 conc. (ppm)

Increase in temperature (°C)

Nil (2009) 1 (2020) 2 3 (2050) 4 5 (2090)

369 (2009) 0.0 −6.27 −17.09 −28.10 −42.55 −60.55

400 (2020) 3.40 −3.16 −14.57 −25.54 −58.63 −58.63

550 (2050) 18.65 11.12 −1.25 −13.72 −30.25 −49.94

Values in parentheses are likely years for associated temperature increase and CO2 concentrations 

(Source: Singh et al. 2009)
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enhanced temperatures was observed in eggplant (Pearson 1992; Uzun 1996; 

Cemek 2002). Cemek et  al. (2005) observed a higher plant height in eggplants 

raised in double polyethylene-cladded greenhouses (having a higher temperature) 

than that of the single polythene-cladded greenhouses. Fruit set in eggplant reduced 

as low as 10% in warm Mediterranean regions in response to the cumulative effect 

of low humidity and high temperatures (Passam and Bolmatis 1997). When the 

maximum temperature enhanced by 1 °C over the range of 28–34 °C during the first 

five days of flowering, the rate of fruit setting reduced by 0.83% (Sun et al. 1990).

Fruit yield in the eggplant cv. Cava increased by 13%, 28%, and 18% with con-

centrations of 0.1, 0.2, and 0.3 g l−1 CO2 in irrigation water, respectively as com-

pared to the control (Aguilera et  al. 2000). They also reported the highest fruit 

weight and fruit yield in 0.3 and 0.2 g l−1 dose.

6  Conclusion

Vegetable crops are highly vulnerable towards the climatic vagaries and respond in 

terms of reduction in production, productivity, and quality. Environmental con-

straints like increasing temperature and elevated CO2 have significantly affected the 

Solanaceous vegetable crops influencing their yield and quality. Thus, the need of 

the hour is to undertake more research works to identify and/or develop climate- 

resilient genotypes and advanced technologies to maintain a sustainable production 

system and safeguard the food as well as nutritional security under the inconsistent 

global climate system.
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