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In the human diet, particularly for most of the vegetarian population, mungbean (Vigna

radiata L. Wilczek) is an inexpensive and environmentally friendly source of protein. Being

a short-duration crop, mungbean fits well into different cropping systems dominated by

staple food crops such as rice and wheat. Hence, knowing the growth and production

pattern of this important legume under various soil moisture conditions gains paramount

significance. Toward that end, 24 elite mungbean genotypes were grown with and

without water stress for 25 days in a controlled environment. Top view and side

view (two) images of all genotypes captured by a high-resolution camera installed

in the high-throughput phenomics were analyzed to extract the pertinent parameters

associated with plant features. We tested eight different multivariate models employing

machine learning algorithms to predict fresh biomass from different features extracted

from the images of diverse genotypes in the presence and absence of soil moisture

stress. Based on the mean absolute error (MAE), root mean square error (RMSE), and

R squared (R2) values, which are used to assess the precision of a model, the partial

least square (PLS) method among the eight models was selected for the prediction

of biomass. The predicted biomass was used to compute the plant growth rates and

water-use indices, which were found to be highly promising surrogate traits as they could

differentiate the response of genotypes to soil moisture stressmore effectively. To the best

of our knowledge, this is perhaps the first report stating the use of a phenomics method

as a promising tool for assessing growth rates and also the productive use of water in

mungbean crop.

Keywords: high throughput phenotyping, plant phenomics, growth rate, mungbean [Vigna radiata (L.) Wilczek],
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INTRODUCTION

In the human diet, particularly for most of the vegetarian
population, mungbean (Vigna radiata L. Wilczek), a legume, is
an economical and environmentally friendly source of protein
(20.97–31.32%) (Yi-Shen et al., 2018). It provides a major amount
of proteins (240 g kg−1) and carbohydrates (630 g kg−1) and a
range of micronutrients in diets (Nair et al., 2013). Mungbean,
being a short-duration crop (∼60–70 days), fits well into different
cropping systems dominated by staple food crops such as rice and
wheat and the crops broadly cultivated in many Asian countries
as well as in the sub-Saharan Africa, dry regions of southern
Europe, warmer parts of Canada, and the USA (Nair et al.,
2013; Hou et al., 2019). However, this crop in the agricultural
landscape is invariably featured by abiotic stresses such as water
scarcity, heat stress, salinity, waterlogging, and low soil fertility
(Kaur et al., 2015; Bindumadhava et al., 2016). Despite its
relatively better stress adaptability than staple cereals, mungbean
is vulnerable to the adverse effects of climate change (Sharma
et al., 2016). This can be a significant food security concern
for countries such as India that often import a large number
of pulses to meet their domestic requirement (Reddy, 2013).
The productivity of this crop can be enhanced by introgressing
tolerance to stresses caused by heat and drought. The exploration
of genetic stocks and dissecting traits contributing resilience to
water scarcity is crucial (Reynolds et al., 2016; Singh and Singh,
2016).

Mungbean genotypes that cover the ground rapidly with more
biomass accumulation (showing early growth vigor) using the
residual or stored soil moisture from preceding crops are a
target for crop improvement programs (Nair et al., 2019). The
crop growth rate estimation based on the plant biomass data at
different intervals (Ajlouni et al., 2020) is a challenge for plant
breeders while selecting the best out of thousands of progenies,
requiring periodic, and destructive sampling (Walter et al., 2015).
This process is tedious and expensive, which also pushes us to
miss a few promising lines (Montes et al., 2011).

Currently, there is an increasing focus on the traits
contributing to drought tolerance and their linkages with genes,
which can be introgressed to a desired agronomic background
through conventional and/or molecular breeding approaches
(Richards et al., 2010; Reynolds et al., 2016). The power of
predicting a relationship between the traits and genes can be
robust if a large set of genotypes are screened phenotypically
for a desired trait or set of traits (Tester and Langridge, 2010).
Several traits have been reported to be associated with drought
tolerance; however, it is feasible to use a few of them for screening
a large number of genotypes by conventional methods (Reynolds
et al., 2016). The early growth rate is very critical for the higher
water-use efficiency of plants like mungbean at the canopy level
as it can help prevent evaporative loss of moisture through the
soil surface. High-throughput phenotyping methods are highly
essential, particularly for this type of trait.

The solution for the identification of genotypes with such a
trait has now emerged in the form of high-throughput plant
phenomics tools that are non-destructive, precise, and rapid as
they harness the power of multi-dimensional imaging science,

information technology, and automation tools (Furbank and
Tester, 2011; Al-Tamimi et al., 2016; Chawade et al., 2019;
Zhao et al., 2019). Imaging systems sense a different fraction of
electromagnetic radiation (EMR) wavelength bands reflected by
the plants instantly as well as dynamically in a way to inform
their responses to environmental stimuli. These non-destructive
phenomics technologies focus on several traits, which, directly or
indirectly, reflect chlorophyll content, the plant water content,
biomass, and growth potential (Andrade-Sanchez et al., 2014).
These technologies have become an integral component of
phenotyping platforms, which combine the plant growth in
an automated controlled environment with a high-throughput
non-invasive imaging to relieve bottlenecks of the phenotype
data collection (Al-Tamimi et al., 2016). For precisely extracting
the desired information about the plant phenotype from these
imaging cameras, phenomics protocols need to be optimized
for continuous monitoring of plant growth and its response to
environmental stimuli such as soil moisture (Zhao et al., 2019).

Several attempts have been made to optimize the methods for
phenotyping the responses of plants to soil moisture deficit (Al-
Tamimi et al., 2016). However, the image-based methods for one
crop may not apply to others due to a vast diversity in plant
architecture across crop species, and the target environments
may vary widely too (Stewart and Peterson, 2015). Hence,
we conducted this study with a dual objective of optimizing
phenomics protocols to identify the mungbean genotypes that
accumulate biomass rapidly and to classify them as high and less
water-consuming types based on their water-use indices.

MATERIALS AND METHODS

Mungbean Germplasm
In the present study, 24 mungbean genotypes that were earlier
evaluated for plant traits such as grain yield, a reaction to
mungbean yellow mosaic virus disease (Nair et al., 2017),
mineral and phenolic contents (Nair et al., 2015) were chosen,
including locally adapted varieties (Supplementary Table 1).
Two experiments were conducted to optimize high-throughput
phenotyping protocols.

Plant Growth Conditions
In the first experiment, plants were grown initially under open air
(natural) conditions outside a greenhouse in 12-inch-diameter
plastic pots (Nisarga 302) filled with 14 kg clay loam soil.
Physico-chemical properties of the soil were as follows: pH 8.4,
EC 0.24 dSm−1, organic carbon 6.3 g kg−1, 170 kg nitrogen,
17 kg phosphorous, and 140 kg potash ha−1, 72% clay, 24.4%
sand, and 4% silt. Eight seeds were sown in each pot, and
later only three seedlings were maintained. These pots were
shifted to the greenhouse 30 days after sowing. Inside the
greenhouse, temperatures weremaintained at 32/24◦C day/night,
50–65% relative air humidity, and 450–750 µmol m−2s−2 PAR.
Three pots each for well-watered and water-stressed treatment
were maintained (as replicates) for each genotype throughout
the experiment.

In the second experiment, the growing conditions were almost
identical as described above except that the water stress was
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imposed by depleting soil moisture while keeping the control
with the soil moisture level of 60–80% of the field capacity (FC).

Gravimetric Assessment of Soil FC
Air-dried soil was ground to pass through a 5-mm sieve at
room temperature to determine FC. Water holding capacity was
assessed by using a gravimetric method (Canavar et al., 2014).
Five pots, filled with soil as described in the previous section,
were kept in a tray containing water, and the soil was allowed to
absorb water through drainage holes at the bottom of the pots by
capillary action overnight. The wet surface on the top layer of the
soil was considered as an indicator of the completion of capillary
action, and hence allowing the absorption of soil moisture up to
the FC. Then, excess water was allowed to drain by moving the
pots carefully to empty trays without water until there was no sign
of water droplets dripping from the pots. The FC was calculated
based on the initial dry and final weights of the pots. The pot
weights were observed every day, and the reduction in pot weight
was used to calculate relative water losses. Nearly 80 and 50% of
water at FC were maintained in well-watered and water-stressed
treatments, respectively.

Watering and Weighing
In automated plant phenotyping platforms, plants were watered
at the watering/weighing station by using the peristaltic pumps
that supply water or nutrient solutions either as a predefined
fixed volume or as an individually calculated amount being the
difference of a carrier (including pot) weight to a predefined
target weight. There were no mineral deposits and algal growth
on the soil surface area that could affect the image background
quality seen as particle fluorescent signals. During watering
(target volume) with a high-throughput system, both weights
before and after watering were measured and recorded in the
database to estimate the water consumption of plants per day.
These values were used for determining a water-use index (WUI).

Image Acquisition
Plants were imaged regularly by using a Scanalyzer 3D imaging
system (LemnaTec GmbH, Aachen, Germany). The images of
plants were acquired by using light in the visible range of the
electromagnetic spectrum, and five-megapixel color images of the
plants in each pot were captured in the top view and the side view
(Figure 1) at two different rotations (0◦, side view 1; 90◦, side
view 2). High-resolution cameras (piA2400-17gc CCD cameras;
Basler, Ahrensburg, Germany) placed at the top and sides of
imaging chambers were engaged for capturing the images in
the visible range (400–700 nm) of the electromagnetic spectrum.
Near-IR (NIR) images in the top view and two side views (0◦,
side view 1; 90◦, side view 2) were acquired by using a NIR-
300 camera (NIR-600PGE, Allied Vision Technologies GmbH,
Stadtroda, Germany). The camera had a spectral sensitivity of
900–1700 nm and an optical resolution of 320 × 256 pixels. The
water absorption band at 1450 nm is the strongest absorption
feature in this spectral region, and the NIR signal has been used
to estimate the water content in shoots (Seelig et al., 2009).
Since the object recognition in the gray-scale NIR images is
difficult, the identified object from the red green blue (RGB)

images was used to create a mask for overlaying with the NIR
images. The mean gray value (8-bit scale) of the identified objects
from both NIR images was calculated, where the high values
represent a high reflectance and indicate a low water content
while the low gray-scale values represent a high absorption and
high water content. In addition, IR cameras (IRC-320LGE, Allied
Vision Technologies GmbH, Stadtroda, Germany) were engaged
to capture the images to interpret the plants’ surface temperature.

Image Analysis and Data Mining
The LemnaGrid software (LemnaTec GmbH,
Würselen, Germany) was used for image analysis
(Supplementary Figure 1). To get the best segmentation of
the plant image from the background, a region of interest was
defined to get the entire plant’s image, excluding the visible
parts of the imaging hardware (e.g., lifter/turner). Plants were
segmented from the background by using a nearest-neighbor
color classification. The noise was removed through erosion and
dilatation steps before composing all parts identified as a plant
to one object. Since the plants’ height did not vary significantly,
there was no need of accounting image pixels for the changing
distance effect. The output from the image analysis was then
converted into a data table for various image parameters
through the Data miner software (LemnaTec GmbH, Würselen,
Germany). We generated the data on 18 different parameters
(Supplementary Table 2) for each of the three acquired images
(top and two side views) for each of the plants. There were 42
different parameters depicting only the plant geometry available
to predict the biomass of plants for growth responses to different
levels of soil moisture.

Measurement of Actual Plant Biomass
Plants were harvested 67 days after sowing. The leaf and the stem
fresh weights (g) per pot were determined and also on a single-
plant basis by harvesting manually the shoot (above ground)
using amedium-scale balance (Model Ohaus R21PE30). The sum
of leaf and stem fresh weight was considered as the total shoot
biomass. Dry weight was recorded after drying the harvested
shoot biomass in a hot air oven at 65◦C till constant tissue weights
were obtained.

Selection of Biomass Prediction Model
In order to assess plant growth through a time scale, eight
different growth models viz. linear model (LM), random forest
(RF), step model (SM), elastic net, gradient boosting machine
(GBM), principal component (PC), partial least square (PLS)
regression, and multivariate adaptive regression splines (MARS)
were applied by using machine learning algorithms. Actual
measured fresh biomass was used as a reference for predicting
the biomass from all the geometric parameters of each of the
images acquired from the three different views of the plants.
The suitability of each model was judged on how well it
approximated the data based on a best-fit analysis using mean
absolute error (MAE), root mean square error (RMSE), and R2

values (Tables 1A–C). The following formulae were used for
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FIGURE 1 | Red green blue (RGB) image of a mungbean genotype IC-415144 on the top view (A) and side view (B) represents the same plant from 0 to 37 days of

control and water stress treatments.

assessing these parameters.

MAE = Actual values− Predicted values (1)

MSE =
1

N

N
∑

i=1

(Actual values− Predicted values)2 (2)

RMSE =
√
MSE (3)

where N represents the total number of combinations tested for
the validity of the model with relatively higher mean R2 (R-
squared), and less MAE and RMSE were used to finalize the
model for the prediction of the biomass of all the plants for
all the days. R2 inevitably increases with additional predictors
within one data set. However, a cross-validation error decreases
only as long as the additional predictor improves the prediction
accuracy of themodel in an independent data set (Golzarian et al.,
2011). The cross-validation analysis was performed by using the
R package “DAAG” (Bay and Schoney, 1982; Rahaman et al.,
2017). Based on all these analyses, the PLS was prioritized for the
prediction of biomass, which was used to estimate growth rates
and a WUI (Supplementary Table 3).

Growth Rates and WUI
Growth rates were calculated for the entire experimental period
or at different phases of plant growth by using the following
formulae (Williams, 1946).

Absolute Growth Rate (AGR) [gd−1]

AGR(tJ,tk) =
PFBtk − PFBtj

tk− tj
(4)

Relative Growth Rate (RGR) [gg−1d−1]

RGR(tJ,tk) =
ln (PFBtk) − ln

(

PFBtj
)

tk− tj
(5)

where “PFB” refers to the predicted fresh biomass, “tk” and “tj”
are the final day and the initial day, respectively, of the time
interval at which the growth rate was computed.
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TABLE 1 | Validation parameters for different machine learning algorithm-based

prediction models employed for predicting fresh biomass.

Min. 1st Qu. Median Mean 3rd Qu. Max.

(A) MAE

LM 2.45 3.83 4.36 4.46 4.94 8.04

RF 2.24 3.12 3.64 3.69 4.13 5.86

SM 2.32 3.74 4.45 4.33 5.11 6.07

Elasticnet 1.56 2.98 3.54 3.48 4.1 5.27

GBM 2.11 3.2 3.93 3.83 4.49 5.79

PC 1.97 2.85 3.48 3.55 4.09 6.6

PLS 1.74 2.92 3.21 3.44 3.86 6.29

MARS 2.44 3.4 3.92 4.02 4.66 5.93

Min. 1st Qu. Median Mean 3rd Qu. Max.

(B) RMSE

LM 3.32 5 5.77 5.72 6.34 9.74

RF 2.7 4.2 4.97 5.02 5.86 8.02

SM 2.89 4.98 6.02 5.76 6.65 8.13

Elasticnet 1.95 3.98 4.9 4.68 5.23 7.58

GBM 2.79 4.45 5.37 5.12 5.86 7.73

PC 2.4 3.91 4.87 4.92 5.78 8.42

PLS 2.43 3.78 4.27 4.75 5.51 9.00

MARS 3.02 4.67 5.42 5.49 6.42 8.55

Min. 1st Qu. Median Mean 3rd

(C) R squared

LM 0.79 0.91 0.94 0.93 0.96 0.98

RF 0.88 0.93 0.95 0.95 0.96 0.99

SM 0.85 0.92 0.93 0.93 0.95 0.99

Elasticnet 0.88 0.93 0.96 0.95 0.98 0.99

GBM 0.89 0.93 0.95 0.95 0.96 0.99

PC 0.84 0.93 0.96 0.95 0.97 0.99

PLS 0.83 0.94 0.96 0.95 0.97 1.00

MARS 0.87 0.92 0.94 0.94 0.96 0.98

WUI (in mg PFB ml−1) was computed by using the
following formulae,

WUI_BMtj =
PFB

WUCumtj
(6)

WUI_AGR(tk,tj) =
AGR(tk,tj)

WU(tk,tj)
(7)

WUI_RGR(tk,tj) =
RGR(tk,tj)

WU(tk,tj)
(8)

where cumulative “WU” refers to the total amount of water
utilized for both transpiration and evaporation process during
the interval between “tk” and “tj.” WUCum and PFB refer to the
cumulative use of water and the predicted fresh biomass on a
particular day. AGR and RGR refer to the absolute growth rate
and relative growth rate during the interval between tk and tj.

Broad Sense Heritability
Heritability ofWUI_RGRwas calculated by adopting the formula
compiled by Schmidt et al. (2019) and by using the “H2cal”

function of “agridat” package in R. The following equations were
used for the estimation of heritability (H2) by a standard Cullis
et al. (1996) and Piepho andMöhring (2007) method, which have
been explained in the notes given in Supplementary Table 4.

Standard method

H2 =
σ 2
g

σ 2
p

(9)

where σ 2
g is the genotypic variance and σ 2

p is the
phenotypic variance.

Cullis method

H2
Cullis = 1−

v−BLUP
1

2σ 2
g

(10)

where σ 2
g is the genotypic variance and v−BLUP

1 is the mean
variance of a difference of two genotypic BLUPs (best linear
unbiased predictor of genotype main effects) as explained by
Covarrubias-Pazaran (2019).

Piepho and Mohring method

H2
Piepho =

σ 2
g

σ 2
g + v−1BLUE

2

(11)

where σ 2
g is the genotypic variance and v−BLUE

1 is the mean
variance of a difference of two genotypic BLUEs (i.e., adjusted
means based on best linear unbiased estimators for genotype
main effects) as explained by Covarrubias-Pazaran (2019).

Heritability analysis of WUI parameters was carried out with
the data generated during the first 3 weeks after imposing
water stress by taking into consideration the variances due
to replication, treatment (T), days after treatment (DAT), and
genotype (G) in addition to an interaction effect between G ×
T, G × DAT, and G × T × DAT as they all contribute to a
phenotypic variance.

Statistical Analysis
Specific models were selected based on the MAE, RMSE, and
R2 by using the statistical package “Caret” in R (Kuhn, 2008).
We employed the smooth spline function of the Growth Pheno
package designed for R (Brien, 2020) to fit a spline to all predicted
biomass values. The fitted spline derivatives were obtained, and
the AGR and RGR were computed by using them. By default, the
smooth spline will issue an error if it is not having at least four
distinct x-values. On the other hand, fit splines issue a warning
and set all smoothed values and derivatives to NA. The handling
of missing values in the observations is controlled via na.x.action
and na.y.action.

ANOVA was carried out with general linear models (GLMs)
by using the “agricolae” package in R. Data were tested
for normality and log-transformed if necessary to satisfy the
assumptions of the statistical methods. The Duncan Multiple
Range Test was implemented for pairwise comparisons of means.
Any pair of means annotated with the same letter in graphs
indicate the absence of a significant difference at 95% CI.
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RESULTS

Performance Evaluations of the Proposed
Model
For the selection and evaluation of themodel, we used the “Caret”
package of R as it takes information from different machine
learning packages such as RF and PCL. It allows nearly identical
lines of codes for different models including those selected for the
present study (Kuhn, 2008). Further, this automatically resamples
the models and conducts parameter tuning. This enables one to
build and compare models with very little overhead.

Preferring the features for regression over the classification
for prediction, we selected eight machine learning models for
the prediction of fresh biomass and evaluated their performance.
When there is a sufficient data set, conventionally, the data are
split into training and test data sets. However, we used a whole
set of corresponding data of image features on the final day of
the experiment when the actual biomass was estimated. This set
of data was not sufficient to split into training and test data for
some of the chosen models. So, instead of splitting the data into
training and test data sets, we preferred realistic model estimates
through built-in resampling. We used a train function of the
Caret package to predict the best regression model and extracted
the best model with an attribute “final.model.” The training
set up for the resampling had repeated CV as a method, 10
times sampling each with five repeats. The object created by this
function was used for the performance evaluation of the models
in the prediction of biomass. During this exercise, we considered
that the goal of a predictive model is to predict the data, which
were never seen before, and hence attention was made to retain
the same data structure for modeling data sets in order to develop
a model that will predict new data sets.

The resampling approach enabled the computation of realistic
R2 values as it involved subsetting of data and using them
repeatedly for prediction as if they are a new set of data. The
process of carrying out this exercise over and over again is
referred to as resampling, which allows a possible bias and
omission of outliers to get the best predictionmodel. This process
provides a realistic R2 to explain the performance of the model
with a new data set and those can also be used for a comparison
of models. This is in contrast to the conventional approach of R2

without sampling, which is not a realistic measure of howwell the
model is likely to perform on a new data set.

R2 is the proportion of variation in the outcome that is
explained by the predictor variables. In multiple regression
models, R2 corresponds to the squared correlation between the
observed outcome values and the predicted values by the model
and is often referred to as the coefficient of determination.
The higher the R2, the better is the model. Other measures for
the performance of the evaluation of prediction models were
RMSE and MAE. RMSE measures the average error performed
by the model in predicting the outcome for an observation.

Mathematically, the RMSE is the square root of the mean squared

error (MSE), which is an average squared difference between
the observed actual outcome values and the values predicted
by the model. So, the lower the RMSE, the better the model.
MAE measures the prediction error. Mathematically, it is an

average absolute difference between the observed and predicted
outcomes, and hence if MAE is lesser the better the model.

Conventionally, Akaike’s information criteria (AIC) and
Bayesian information criteria (BIC) are the commonly used
unbiased estimate of the model prediction error MSE, a metric
developed by the Japanese Statistician, Akaike (1970). The basic
idea of AIC is to penalize the inclusion of additional variables to
a model. It adds a penalty that increases the error when including
additional terms. The lower the AIC, the better the model. On the
other hand, BIC is a variant of AIC with a stronger penalty for
including additional variables to the model. A prediction model
with lower values of AIC and BIC is considered better than the
model having higher values for these estimates.

AIC, which is defined as AIC = 2k−2ln(L), can be employed
for the evaluation of the accuracy of multivariate models like
linear multiple regression, where the number of parameters (k)
is actually the number of predictors used in the multivariate
regression. In addition, AIC computation requires ln(L), which
is a log-likelihood possibly for multivariate LMs. In contrast, the
multivariate computation that involves RF is not fitted by using
maximum likelihood and there is no obvious likelihood function
for it. The second problem is the number of parameters k, for
RF being not clear and any of the parameters such as number of
trees, their depth, number of splits if used in the computation of
AIC, can be misleading. Hence, for evaluation and comparison,
we used the features of Caret package (Kuhn, 2008) that enables
the computation of the realistic MSE, RMSE, and R2 values
by bootstrap resampling with 25 repetitions—this is the default
resampling approach in caret. In our study, there was a marginal
difference in the generally computed, but an unrealistic, R2 value,
and the realistic R2 values were extracted from resampling.

The influence of a number of randomly selected predictors on
the performance of the model is one of the concerns in arriving at
the best performing model, but the best value cannot be derived
analytically and will be different with different data. Hence, to
get the best performance model for each of the machine learning
algorithms, the inbuilt features were used for tuning parameters,
and the best performing models within each of the machine
learning algorithms were used for final comparisons.

For the reason explained above, we preferred the most widely
used performance evaluation metrics of MSE, RMSE, and R2

values along with their statistical parameters (mean, median,
and quartiles) computed for all the samples of each of the eight
models viz. LM, RF, stepwise regression model (SM), GLMnet,
GBM, PC analysis, PLS regression, and MARS for the prediction
of biomass. The Results revealed that PC and PLS were relatively
more efficient with relatively low values for MAE and RMSE
and high R2 values (Table 1, Figure 2). Though the RMSE values
of GLMnet were relatively lower, the range was wider than
PC or PLS. However, we preferred PLS over PC as a cross-
validation revealed that the least RMSE could be achieved with
a minimum number of components relative to the latter model
(Supplementary Figure 2). In addition, 93% of the variance was
explained by only three components in PLS while PC used
nine components.

When the non-availability of test data makes the estimation
of test error very difficult, the situation is handled by methods
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FIGURE 2 | Quantitative relationship between the predicted fresh biomass (PFB) from image-features and the observed plant fresh biomass. Scatter plots of the

manually measured plant biomass (fresh weight) vs. predicted biomass values using eight prediction models: (A) linear model (LM), (B) random forest RF, (C) GLMnet,

(D) gradient boosting machine (GBM), (E) step model (SM), (F) principal component (PC), (G) partial least square (PLS), and (H) multivariate adaptive regression

splines (MARS). The blue line indicates the expected prediction (y = x). The prediction models were evaluated by mean absolute error (MAE), root mean square error

(RMSE), and the percentage of variance explained by the models (the coefficient of determination R2). Each figure in the panel has **R2 values computed as the mean

of R2 of repeated sampling of data and is a more realistic estimate of power of prediction of the model with a new set of data in comparison to the conventional *R2

value derived from the regression equation using a whole set of predicted values without resampling.

such as cross-validation (Varoquaux et al., 2017) that is applied
for estimating the test error (or the prediction error rate) by using
training data. As explained earlier in this section, the model for
prediction was built based on the cross-validation options. In
addition, as a double check of accuracy of the PLS model finally
selected for further use in the experiment, we performed a 10-fold
cross-validation (Figure 3) using the cv.lm function of “DAAG”
package of R (Bay and Schoney, 1982). The cv.lm function gives
internal and cross-validation measures of predictive accuracy for
ordinary linear regression. The data are randomly assigned to
a number of “folds.” Each fold is removed in turn while the
remaining data are used to refit the regression model and to
predict at the deleted observations. The 10-fold cross-validation
was used to assess the prediction performance of the final PLS
model. The ANOVA test revealed that the prediction of fresh
weight by the finalized model was highly significant (p < 2e-16).
Hence, we chose a PLS model for the non-destructive estimation
of biomass of plants from the day of stress treatment.

Biomass and Growth Rate
It was observed that the predicted biomass did increase
continuously in well-watered plants while it was nearly
stagnant in water-stressed plants. Approximately a 4-
fold increase in biomass was observed at the end of the
experiment in well-watered plants compared to a nearly
2-fold increase in water-stressed plants (Figure 4A).

Similarly, the AGR showed significant differences in well-
watered (4-fold increase) and water-stressed plants at
initial stages (Figure 4B). The RGR differences between the
treatments were significant in the first week of water stress
(Figure 4C).

Genotypic Variation in Growth Rates
The measured AGR during the first 6 DAT revealed a significant
genotypic variation across water-stressed than well-watered
conditions. The average values for AGR at the initial phase of the
stress were more than 6-fold (Supplementary Figure 3A).
A similar trend was observed in the computed AGR
for the interval between 5 and 12 days after the stress
(Supplementary Figure 3B) or during the interval between
2 and 12 days after the stress (Figure 5). Genotypes such as EC
693367 and IC-415144 maintained higher AGR in contrast to
any other genotypes under soil moisture stress conditions during
the period between 2 and 12 days after stress.

In contrast to AGR, RGR showed a significant genotypic
variation both under well-watered and water-stressed conditions
at the early stages after the stress treatment (2–6 days)
(Supplementary Figure 4A). However, the contrast between the
genotypes was widened and became more conspicuous at later
stages (5–12 days) (Supplementary Figure 4B). RGR measured
for the first 3 weeks after the stress treatment could also
differentiate the genotypic responses more efficiently (Figure 6).
EC 693367 and IC-415144 maintained higher RGR in contrast to
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FIGURE 3 | Cross-validation output for the final PLS model. The “cv.lm” function of “DAAG” package was used for simple linear regression models. The k-fold method

randomly removes k-folds for the testing set and models the remaining (training set) data. Here, we use the commonly accepted 10-fold application. The figure

depicts the cross-validation residual sums of squares, which is a corrected measure of prediction error averaged across all folds. The function also produces a plot of

each fold’s predicted values against the actual outcome variable (y); each fold having a different color.

FIGURE 4 | Biomass and absolute growth rates (AGRs) in well-watered (C) and water-stressed (S): mungbean plants: (A) biomass was predicted by PLS based on

different image parameters, (B) smoothed AGR values were obtained from the predicted biomass, and (C) smoothed relative growth rate (RGR) values were obtained

from the predicted biomass. The solid line represents the grand average of well-watered conditions (blue) and water-stressed conditions (red). Shaded part along the

curve displays CI of 0.95.

any other genotypes under soil moisture stress conditions during
the period between 2 and 12 days after stress.

Water-Use Index
As expected, cumulative water use (WUCum) was 4-fold higher
in well-watered relative to water-stressed plants 3 weeks after
imposing the treatment (Figure 7A). In contrast, the WUI
(WUI_BM) representing the biomass accumulation per unit
of spent water was high in water-stressed relative to well-
watered plants but the treatment difference was not significant
(Figure 7B). In contrast, WUI_AGR computed based on AGR
(Figure 7C) could differentiate the plant responses to water stress
more effectively as compared to the WUI_RGR computed based
on the RGR (Figure 7D), particularly at the early stage after water
stress. With the lapse of time, WUI of both well-watered and the
water-stressed plants were found to be the same. Considering this

fact, the genetic variation for WUI was assessed for the initial 6
days of treatment only.

Genetic Variation in WUI and Tissue Water
Content (Derived From NIR Reflectance)
There was a significant variation in cumulative water-use
WUCum among the genotypes both under well-watered and
water-stressed conditions (Figure 8A); however, the genotypic
differences in the trend of drought responses were more
conspicuous inWUI_RGR (Figure 8B). Under limited irrigation,
genotypes such as IC-415144, EC693367 had high WUI_RGR
relative to genotypes such as NM92 and EC693358 (Figure 8C).

There were significant differences in tissue water contents
among the genotypes studied in this experiment, as reflected
by NIR signals received from the top view and the side view
(Figure 9). NIR signals tend to be higher when emitted from
dry leaves than from wet leaves due to the absorption of

Frontiers in Plant Science | www.frontiersin.org 8 June 2021 | Volume 12 | Article 692564

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Rane et al. Phenomics to Differentiate Mungbean Genotypes

FIGURE 5 | Genetic variation in AGRs during the initial phase in response to two levels in well-watered (C) and water-stressed (S) plants; AGRs were computed for

2–12 days. Each box in the treatment effect represents 60 observations (3 replications and 20 genotypes). Each bar in the genotype effect for each treatment

represents mean values of three replications. Letters represent the significance of differences among mean values as computed by the Duncan multiple range test at

0.95 CI. Genotypes with common letters are not significantly different.

FIGURE 6 | Genetic variation in RGRs during the initial phase in response to two levels in well-watered (C) and water-stressed (S) plants; RGRs were computed for

2–12 days. Each box in the treatment effect represents 60 observations (3 replications and 20 genotypes). Each bar in the genotype effect for each treatment

represents mean values of three replications. Letters represent the significance of differences among mean values as computed by the Duncan multiple range test at

0.95 CI. Genotypes with common letters are not significantly different.

EMR in the NIR range of the spectrum. The results from
the present experiment revealed that the high WUI_RGR
genotypes such as IC-415144 and EC693367 had less tissue water
content compared to EC693360, NM94, and BM2002-1, which

had relatively low WUI_RGR under water-stressed conditions.
Further, it was evident that the genotypes like IC-415144 had
relatively less tissue water content compared to other genotypes
both under well-watered as well as water-stressed conditions
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FIGURE 7 | Assessment of different parameters for water use using

mungbean plants: (A) cumulative water use (WUCum), (B) a biomass-based

water-use index (WU_BM), (C) an AGR-based water-use index, and (D) a

RGR-based water-use index in well-watered (C) and water-stressed (S) plants:

WUCum represents the cumulative water use in ml plant−1 at any given point

of growth while WUI_BM computed as the predicted biomass mg ml−1 water,

WUI_AGR or WUI_RGR was computed for per unit of water as given in

Material and Methods. Solid lines represent the means of all genotypes while

the shaded part indicates the CI at 0.95.

providing a hint that it must be extracting water from soil with
greater efficiency.

Compared to the constant level of soil moisture stress,
depletion of the soil moisture condition represents open field
environments that face unexpected drought or limited irrigation.
The level of depletion could easily be monitored in a high-
throughput mode for all genotypes. The stress imposed in the
second experiment did result in the depletion of soil moisture
from 70 to <50% of the FC while the same was around to
be constantly 75% in well-watered plants (Figure 10A). The
impact of imposed water stress was also reflected by the
NIR signals that increased from about 180 to 220 with a
gradual reduction in soil moisture (Figure 10B). There was
a significant difference among genotypes in their capacity to
extract water from the soil (Figure 10C). Genotypes such as
IC-415144, which had high WUI and drier leaves in the
previous experiment, found to deplete more soil moisture
relative to other genotypes, thus substantiating the results of the
previous experiment.

Heritability of WUI
Heritability in a broad sense was computed for WUI derived
from fresh biomass, AGR, or RGR at the early stages of stress.
Heritability of traits WUI_AGR or WUI_RGR was higher than
that ofWUI_BM. This could be attributed to the relatively higher
heritability of AGR and RGR at the early stages of water stress
(Supplementary Table 4).

DISCUSSION

Drought tolerance, a complex plant trait, is highly influenced
by the time of occurrence, intensity, duration, and the plant
growth stage (Araus et al., 2012; Passioura, 2012). The drought
stress experienced by a mungbean crop is typical as it has to
survive on the stored or residual soil moisture in the later
stages of growth with the luxury of wetness in the early stages
(Bindumadhava et al., 2016; Sharma et al., 2016). Further, being
a very short-duration crop, a rapid growth at the early stages is
crucial for gaining biomass enough to feed all reproductive-stage
needs. Hence, the assessment of growth rate assumes to be more
significant than biomass at any given crop stage and/or time. Such
approaches have been demonstrated to assess the plant growth
in crops like barley (Chen et al., 2014; Neumann et al., 2015),
rice (Hairmansis et al., 2014; Yang et al., 2014; Campbell et al.,
2015; Al-Tamimi et al., 2016), wheat (Nagel et al., 2015), and
model crops like Arabidopsis (Zhang et al., 2012; Slovak et al.,
2014). Some of these studies had also focused on the methods
to assess water-use efficiency in crop plants (Al-Tamimi et al.,
2016). However, so far, to the best of our knowledge, no high-
throughput protocol reported on the assessment of growth rates
in legumes likemungbean. Hence, the present study was designed
and aimed as a more practical approach toward optimizing
the phenotyping method in mungbean genotypes for assessing
growth rates and a WUI under controlled drought conditions.

Determination of Plant Biomass
Most of the conventional studies rely on the determination
of plant biomass by a destructive sampling method, which is
resource intensive as demonstrated in rice (Yang et al., 2014),
wheat (Golzarian et al., 2011), and other annual and perennial
grass species (Tackenberg, 2007), and the measurement of water
use in a single plant is highly cumbersome. Despite their high
accuracy, these methods have limitations in integrating dynamic
nature of plant responses in different stress environments.

Further, destructive and periodic sampling does not permit
the collection/harvesting of seeds from individual lines tested
in crop breeding programs, as seen in rice (Hairmansis et al.,
2014). Hence, the focus of the present study has been on using
the imaging-based non-destructive approach to predict the plant
biomass without a periodic sampling of the whole plant. Image-
based biomass estimationmethods developed so far used the total
biomass at the end of the experiment or the biomass estimated
during the measurement of other traits such as shoot fresh weight
and shoot dry weight as well (Tackenberg, 2007; Golzarian et al.,
2011).

Several methods were suggested earlier to estimate biomass
non-destructively and were based on the area of color pixels
derived from an analysis of the images of plants from three
different views in barley (Neumann et al., 2015) and rice (Al-
Tamimi et al., 2016). To further improve the accuracy of the
biomass estimation in cereals, an additional parameter such
as compactness derived from the images was also suggested
(Rahaman et al., 2017). However, we observed that these
models have prediction errors when extending to legume
crops such as mungbean. Hence, eight different multivariate

Frontiers in Plant Science | www.frontiersin.org 10 June 2021 | Volume 12 | Article 692564

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Rane et al. Phenomics to Differentiate Mungbean Genotypes

FIGURE 8 | Genetic variation in (A) cumulative water use (WUCum, ml plant−1), (B) WUI_RGR derived from RGR as in Material and Methods, and (C) genetic

variation in WUI_RGR of mungbean genotypes under well-watered (C) and water-stressed (S) conditions. In (C), the values for each box in the treatment effect

represent 60 observations (3 replications and 20 genotypes), and each bar in the genotype effect for each treatment represents mean values of three replications.

Letters represent the significance of differences among mean values as computed by the Duncan multiple range test at 0.95 CI. Genotypes with common letters are

not significantly different.

analysis models were tested with machine learning algorithms
to predict the plant biomass, including several image parameters
across three different views of plants as predictors. Based on
MSE, RMSE, and R2 values, both PC and PLS methods were
relatively more efficient than other models in the prediction
of biomass (Table 1). We finally chose a PLS method for
the plant biomass prediction as it did not differ significantly
from the PC analysis. The choice of the PLS method was
further supported by cross-validation of the predicted and actual
fresh biomass recorded at the end of the experiment. The
predicted biomass showed a clear trend when plotted against
days after the water stress treatment with the growth almost
stationary in stressed plants and continuous in well-watered

plants, which matched with general anticipation. After the
confirmation of the precision of the selected model through a
robust validation tool, the biomass computed for each day was
used for the estimation of growth rates. A similar approach was
followed for rice to assess salinity tolerance (Al-Tamimi et al.,
2016).

Plant Growth Rate
The initial growth rate (in place of biomass) is a good measure
of the capacity of plants to cope with soil moisture limitations.
Some plants may continue their growth by acquiring water
efficiently while others may stall the growth during water stress
and then recover after the retrieval of stress. The growth rate
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FIGURE 9 | Genetic variation in the tissue water content of mung bean genotypes as indicated by near-IR (NIR) signals. (A) Values indicate normalized values of NIR

signals received from the top view and (B) side view of well-watered (c) and water-stressed (s) plants of mungbean. Values for each box in the treatment effect

represent 60 observations (3 replications and 20 genotypes) and each bar in the genotype effect for each treatment represents mean values of three replications.

Letters represent the significance of differences among mean values as computed by the Duncan multiple range test at 0.95 CI. Genotypes with common letters are

not significantly different.

assessment can differentiate these two groups of plants (Condon
et al., 2004; Lopes et al., 2011). In our study, AGR and RGR
were considered for assessing the effectiveness of treatments
and the effect of genotypes as demonstrated earlier in rice
on salt tolerance (Al-Tamimi et al., 2016). As evident from
the results, there were significant treatment effects on AGR
and RGR computed for two phases of the early growth of
mungbean. However, genetic variations in AGR, as well as
RGR, were more conspicuous in water-stressed plants. This

approach could differentiate the genotypes of mungbean capable
of maintaining a relatively higher growth even with limited soil
moisture. This feature is crucial for short-duration crops like
mungbean, which are accommodated between the two major
consecutive crops (mostly cereals) in the commonly practiced
cropping (cereal-legume-cereal) system to make the best use
of time, space, and moisture leftover in the soil after the
harvest of the previous crop, mostly a cereal (Raina et al.,
2019).
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FIGURE 10 | Responses of the selected mungbean genotypes to depleting soil moisture. (A) Level of soil moisture as indicted by % field capacity (FC) in well-watered

(c) and water-stressed (s) plants. Solid lines represent mean values for all genotypes in each of the treatments. (B) Tissue water content in response to the depletion of

soil moisture as indicated by NIR signals. High and low NIR values indicated more and less tissue water content, respectively. Values indicated along the curve

represent days after withdrawal of water application to pots. (C) Rate of depletion of soil moisture in different mungbean genotypes; each value is an average of three

replications of water-stressed plants. Letters represent the significance of differences among the mean values as computed by the Duncan multiple range test at 0.95

CI. Genotypes with common letters are not significantly different.

Water-Use Index
In this study, we derived and projected water-use efficiency
through WUI, a ratio of biomass accumulated to water use
(both transpiration by plant and evaporation from the soil
surface), often projected as a trait for the improvement of
crop productivity in water-deficit agroecologies. Implicitly, crop
genotype/s that show more biomass per unit of water can be
promising candidates in drought research for developing types
of tolerance. Transpiration combines the plant’s physiological
and environmental parameters that determine water relations in
plants (Sinclair, 2012). Hence, it is emphasized that component
traits contributing to transpiration efficiency need to be
investigated to improve the effective use of available water
through the growing season for maximizing the growth and
productivity of crop plants. In this context, our focus was on plant
trait—early ground cover—that defines the capacity of plants to
protect the root zone soil moisture by preventing direct exposure
to sunlight. Soil moisture saved in this process can be made
available for transpiration to improve water-use efficiency (Raina
et al., 2016).

Genotypes that accumulate more biomass can be identified
by assessing the growth rates while the water-use estimation
is a tedious task. High-throughput phenomics methods are
rightly equipped with systems to monitor and replenish the
water requirements of several plants regularly. This provision
has frequently been used to create the desired level of water
stress and assess the water use of crop plants’ genotypes (Al-
Tamimi et al., 2016). Assessing water-use indices at various water

regimes and growing scenarios helps understand the cause-effect
relationship between the biomass accumulation and the extent
of water use (Sheshshayee et al., 2003). It is also evident that
the interrelationship between cumulative water transpired to
the biomass production is not always straightforward, which
largely depends on whether mesophyll or stomatal factors drive
the process (Udayakumar et al., 1998; Sheshshayee et al., 2003;
Bindumadhava et al., 2005, 2011). From this background, too,
WUI holds a larger significance than measuring WUE either
at a single-plant level and/or canopy level (Sheshshayee et al.,
2003; Bindumadhava et al., 2011). Hence, we explored different
ways to derive WUI for differentiating mungbean genotypes for
their water-use efficiency at the canopy level. We imply that
measuring WUI non-invasively with the phenomics approach
is highly effective in deducing the factors that determine plant
biomass and water use. In our study, there was a remarkable
difference in the cumulative water use as well as biomass
accumulation between well-watered and water-stressed plants.
The data revealed that mungbean genotypes, in general, maintain
their capacity to use water efficiently even with a limited
water supply, as evident from a non-significant difference in
RGR between well-watered and water-stressed plants at the
later stages of growth. On the other hand, WUI computed as
the ratio of AGR to actual water use could differentiate the
treatment effects at the initial phases of imposed water stress.
Further, these indices also clearly differentiate the genotypes
with respect to their capacity to use water efficiently for
maintaining growth.
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Heritability of traits is an issue when a novel trait is suggested
for use in a breeding program for the improvement of crops.
The broad sense heritability (H2) of a trait is the proportion
of an overall phenotypic variance attributable to a genotype
(Schmidt et al., 2019). It is a descriptive measure to assess the
utility and precision of the results obtained from the cultivar
responses in trials. Hence, H2 values were computed for growth
rate and WUI indices derived in this study. Reasonably high
values ofH2 for WUI_AGR andWUI_RGR provide evidence for
suggesting these two parameters as excellent surrogate traits to
distinguish the responses ofmungbean genotypes to a suboptimal
level of soil moisture and interpret genotypic variations for the
productive use of water. This can be attributed to the fact that
the growth rate can evade the error due to the initial differences
in biomass. Here, we could also test the hypothesis that the
genotypes with a low WUI probably deplete more soil moisture
relative to other genotypes with a high WUI. This was confirmed
from our second validation experiment in which the stressed
plants were grown by depleting soil moisture in contrast to the
first experiment in which the soil moisture was restricted at a
suboptimal level. Additionally, the NIR signals revealed that the
genotypes having a higher WUI tend to be drier than those with
less WUI when the mean values of these parameters for the
first 3 weeks after the water stress were considered. It indicates
that these genotypes possibly need more water and deplete soil
moisture rapidly. Hence, high WUI genotypes might be having
an efficient root system, and it needs to be examined further for
using genotypes with this trait as donor lines in the mungbean
improvement program.

Relevance of Growth Rates to Field
Performance of Mungbean Genotypes
Many of the genotypes included in the present study were
examined earlier for their seed yield under a prevailing high
temperature environment due to delayed sowing (Sharma et al.,
2016; Bindumadhava et al., 2018). In these studies, genotypes
such as EC693357, EC693358, Harsha, and ML1299 were found
to be heat tolerant, and KPS1, EC693363, NM92, and VC6372
were sensitive. Of several abiotic constraints, high temperature,
and drought stresses go hand-in-hand, implying an increase
in air temperatures tending to heat up soil temperatures,
thereby depleting soil moisture (Bindumadhava et al., 2016;
Priya et al., 2019; Douglas et al., 2020). Any crop/plant
genotypes withstand high temperatures through organizing or
reorganizing intrinsic cellular mechanisms, and could manage
soil moisture stress better (Bindumadhava et al., 2016; Nair
et al., 2019; Douglas et al., 2020). There is also a consensus
that drought-sensitive genotypes experience a sense of high
temperature stress when water is withdrawn from their stress
thresholds (Sheshshayee et al., 2003; Bindumadhava et al.,
2016; Douglas et al., 2020). Similarly, the genotypes that
perform well under the soil moisture depletion can handle
high temperature stress effectively as a strategic synergy at
molecular and gene levels, which have been amply suggested
and demonstrated (Bindumadhava et al., 2016; Priya et al., 2019;
Chaudhary et al., 2020). Interestingly, EC693357, EC693358,

and ML1299 showed salt tolerance both at a seedling and
also whole plant level (Manasa et al., 2017). It has been
observed that drought-tolerant genotypes of legume crops such
as chickpea can tolerate the drought and heat more effectively
as compared to those, which could tolerate only the high
temperature (Awasthi et al., 2017). These observations all
together support the interpretation that the method developed
by us to identify promising genotypes being relevant to
field performance.

Our data revealed that the AGRs of EC693357 (0.14), ML1299
(0.10), and EC693358 (0.09) were 3- to 4-fold higher than those
in sensitive genotypes, such as VC6372 (0.03) and NM92 (0.022)
during the initial phases of water stress. Similarly, most of
the high temperature-tolerant genotypes had a higher biomass
production per unit of water relative to the sensitive genotypes
such as VC6372 and NM92. Further, WU_RGR recorded in
NM92 was substantially lesser than that of the high temperature-
tolerant lines; however, KPS1, which was reported to be sensitive
in field studies, also had high WU_RGR. It is suggested that the
superior genotypes such as EC693367 and IC-415144 with higher
initial growth rates than the promising genotypes mentioned
above can also be useful as donors in the genetic improvement
of mungbean for drought and high temperature stresses, which
is largely due to their rapid growth with a higher extraction or
utilization of available soil moisture. Possibly, the higher capacity
of evaporative cooling reflected indirectly from higher depletion
(or higher transpiration) of soil moisture in these genotypes,
particularly at the reproductive stage, might be contributing
to the cooler canopy, as shown in the present study, but
needs further investigation. IC-415144 is one of the recent
collections from arid regions of Rajasthan, India, and has not
been studied extensively. In a previous study (Raina et al., 2016),
IC-415144 exhibited a low excised leaf water loss and appeared
to have a better control over stomatal mechanisms, which
might be contributing to high water-use indices. In the present
study, WUI_AGR and WUI_RGR could efficiently differentiate
genotypes that use more water than others for producing the
same amount of biomass. Moderate-to-high heritability recorded
for WUI_AGR and WUI_RGR using different methods support
the use of these traits as surrogates for efficient selection in
mungbean breeding programs.

Suggested Screening Protocol for Early
Growth Rate and Water Use in Mungbean
If the canopy level water-use efficiency trait is a strategy to
harvest more grains from legume crops like mungbean, an
early growth rate with a high biomass accumulation can serve
as a reliable selection criterion. Phenotyping this trait in a
high-throughput mode can be effective if the non-destructive
estimation of biomass is derived from the changes in plant
features that can be extracted from the images captured
periodically (Figure 11). Based on our study, we propose a high-
throughput phenotyping protocol for mungbean that should
involve: (1) the imposition of suboptimal soil moisture stress, (2)
acquisition of different parameters of images of plants from the
top view and side view, (3) identification of the suitable biomass
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FIGURE 11 | A suggested phenotyping protocol for mungbean genotypes. Workflow for image-derived biomass model construction consists of the following steps:

(1) image acquisition, (2) image processing, (3) different geometric and color-related phenotypic trait observed, (4) biomass harvested manually at the last day of

imaging and fresh weight and dry weight measured, (5) different machine learning algorithms RF, SM, GLMnet, LM, GBM, PC, PLS, MARS models were used to

predict plant biomass, (6) model validation, (7) model selection, evaluation, and result interpretation, and (8) selection of genotypes with high water-use index (WUI).

prediction models that use machine learning algorithms to
interpret different image parameters, (4) determination of growth
rates based on a smoothed biomass curve for each genotype at
the early growth stages under imposed stress conditions, and
(5) estimation of the productive use of water by plants with
the WUI derived from the predicted biomass. The protocol
can help in phenotyping mungbean genotypes for their capacity
to cover the ground rapidly in order to prevent soil moisture
loss, and thus contributing to an enhancement in the canopy
level water-use efficiency. Alternatively, genotypes with high
WUI can serve as promising donors for improving water-use
efficiency in mungbean that is to be grown in soil with poor water
holding capacity.

CONCLUSION

In this study, we focused mainly on optimizing the phenomics
method for identifying water-use efficient genotypes (use less

water to produce relatively more biomass) of a legume crop
such as mungbean by applying high-throughput phenotyping
approach. The model proposed by us to predict the biomass
that is essential for assessing the plant growth rates, employs
different parameters extracted from the images at two levels of
soil moisture regimes. When integrated with the soil moisture
extraction, this model enables a high-throughput non-destructive
estimation of crop capacity to continue its growth even under
limited available soil moisture. The method would be useful
to advance our views for the accurate assessment of water-use
efficiency involving a high-throughput image analysis. Water-
stressed plants are a better choice than well-watered plants for
assessing the genetic variation in the early stage growth rates
of legume crops like mungbean. The genetic variation in a
WUI at the early stages compared to the later stages of water

stress would be more effective in the selection of genotypes.

Surrogate traits such as WUI_AGR and WUI_RGR explain
water-use efficiency at the canopy level and can help phenotyping
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legume crops like mungbean for tolerance to depleting soil
moisture stress that occurs during drought or restricted
irrigation. It can further facilitate the identification of relevant
genes for the molecular marker-aided genetic improvement
of the mungbean.
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