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A 5–9–1 artificial neural network (ANN) model, with a back propagation learning algorithm,

was developed to predict draught requirements of different tillage implements in a sandy

clay loam soil under varying operating and soil conditions. The input parameters of the

network were width of cut, depth of operation, speed of operation, soil moisture content

and soil bulk density. The output from the network was the draught requirement of the

individual tillage implement. The developed model predicted the draught requirement of

mouldboard plough, cultivator and disk harrow with an error< 6.5% when compared to the

measured draught values, whereas the American Society of Agricultural and Biological

Engineers (ASABE) equation predicted these draught values with an error>�30%. Such

encouraging results indicate that the developed ANN model for draught prediction could be

considered as an alternative and practical tool for predicting draught requirement of tillage

implements under the selected experimental conditions in sandy clay loam soils. Further

work is required to demonstrate the generalised value of this ANN in other soil conditions.

ª 2009 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction operating conditions. The magnitude of draught is affected by
For conventional tillage, most of the farmers in India utilise

their available tillage implements with a range of tractor

powers, consequently there is often improper matching of the

tractor and its implement resulting in under loading of tractor

and hence, poor efficiency (Alam, 2000). The draught of tillage

implements plays a vital role in developing more efficient

tillage systems by selecting suitable combinations of tractor

and implement. The availability of data on the draught

requirement of tillage implements is an important factor

while selecting suitable tillage implements for a particular

farm situation. However collecting draught data under wide

range of field conditions is a tedious and time consuming job.

Therefore, draught prediction models are required to predict

the draught of tillage implements under different soil and
(H. Raheman).
Published by Elsevier Ltd
soil type and its condition, tool characteristics, working speed

and depth (Reed, 1937; Gill and Vanden Berg, 1968; Kydd et al.,

1984; Grisso et al., 1996; Al-Janobi and Al-Suhaibani, 1998;

ASAE Standard, 2003). A number of other variables are also

required to be considered while analysing the draught

requirements of tillage implements. Some of these additional

variables, listed by Glancey et al. (1989), were static and

dynamic components of soil shear strength, coefficient of

soil–metal friction, soil density and implement geometry. The

relationship between the draught of plane tillage tools and

speed of operation in different soils has been found to be

linear, second-order polynomial, parabolic and exponential

(Rowe and Barnes, 1961; Siemens et al., 1965; Luth and

Wismer, 1971; Godwin and Spoor, 1977; Godwin et al., 1984;

McKyes, 1985; Swick and Perumpral, 1988; Gupta et al., 1989).
. All rights reserved.
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Nomenclature

A, B, C and D soil and implement parameters; Godwin

et al. (2007) draught equation

A1, B1, C1 machine specific parameters; ASABE draught

equation

BF bending force in the lower link, kN

CF compressive force in the top link, kN

d depth of operation, m

D1 implement draught; ASABE equation, N

eh computed error at hidden layer neuron

eo computed error at output layer neuron

Fi dimensionless soil texture adjustment parameteri

is 1 for fine, 2 for medium, 3 for coarse textural soil

Ht total draught force, kN

L learning rate

Nc number of training cycles

nh number of neurons in hidden layer

R2 coefficient of determination

S speed of operation, km h�1

T tillage depth, cm

TF tensile force in the lower link, kN

Th threshold parameter of hidden layer

To threshold parameter of output layer

tol tolerance limit

U synaptic joint weights between input and hidden

layer

v forward velocity, m s�1

W synaptic joint weights between hidden and

output layer

W1 machine width, m or number of rows or tools

X independent parameters

Y dependent parameter

yh computed output of hidden layer

yo computed output of output layer

q angle of lower link in the horizontal plane, �

4 angle of lower link in the vertical plane, �

b angle of top link in the horizontal plane, �

g angle of top link in the vertical plane, �

rw dry bulk density

Subscripts

D deviation from mean

M mean value

max maximum value of corresponding parameters

min minimum value of corresponding parameters

minps pseudo-minimum percentage error

Abbreviation

ANN artificial neural network

ASABE American Society of Agricultural and Biological

Engineers

BP back propagation

CI cone index

DAS data acquisition system

EORT extended octagonal ring transducer

MSE mean squared error

PE percentage error

PTO power take-off

RBF radial basis function

TLRNN time lagged recurrent neural network
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These differences in the findings are the result of the varia-

tions in inertia required to accelerate the sandy soil and also

the variation of the effect of shear rate on the shear strength

and the effect of shear rate on soil–metal interaction proper-

ties in clay soils. Draught requirements of agricultural

implements show considerable spatial variability due to

variations in soil properties and the fracturing of soil. Hence,

a larger area of land is necessary to obtain a representative

mean draught value for a given soil type and condition. Sahu

and Raheman (2006) conducted laboratory experiments with

scale-model tillage implements (mouldboard plough, culti-

vator and disc gang) in sandy clay loam soil at 10– 12% mois-

ture content. They observed that the draught requirement of

all the tillage implements was significantly affected by speed,

depth, width of cut, soil moisture content and soil cone index

(CI) while the characteristic lengths of implement (curvature

and length for mouldboard and tyne, and concavity for disk)

and soil bulk density were found to be non-significant.

A number of empirical polynomial/multi-linear regression

models have been developed in the past by several researchers

for the prediction of draught of tillage implements (Wang et al.,

1972; Collins et al., 1978; Gee-Clough et al., 1978; Kepner et al.,

1982; Kydd et al., 1984; Upadhyaya et al., 1984; Grisso et al., 1996;

Kheiralla et al., 2004; Sahu and Raheman, 2006). However, most

of these models are often subjected to multi-colinearity prob-

lems and their application is limited to those soils and imple-

ments conditions for which they were developed. Most
recently, Godwin et al. (2007) reported the following relation-

ship between the draught, speed and depth of operation for

mouldboard plough:

Ht ¼
�

Ad2 þ Bd
�

v2 þ
�

Cd2 þDd
�

(1)

where, Ht is the total draught force, kN; d is depth of operation,

m; v is forward speed, ms�1; The values of the constants A, B, C

and D determined from this analysis were specific for the

particular soil and plough body geometry. According to ASABE

standards (ASAE, 2003),

D1 ¼W1T
�
Fi

�
A1 þ B1ðSÞ þ C1

�
S2
���

(2)

where, D1 is implement draught, N; F is dimensionless soil

texture adjustment parameter; i is 1 for fine, 2 for medium, 3

for coarse textural soil; A1, B1, C1 are machine specific

parameter; S is speed of operation, km h�1; W1 is machine

width, m or number of rows or tools; T is tillage depth, cm.

This draught prediction equation is used in most parts of the

world and the reported variability for this equation ranges

within �50%. This variability is too large to be used for

selecting the suitable power of tractors.

A few regression equations have been developed to predict

the draught of any tillage implement with respect to the

draught of reference tillage implement in the same soil at

a given depth or speed (Glancey and Upadhyaya, 1995;



Fig. 1 – Arrangement of EORT in the soil bin for laboratory

tests.

b i o s y s t e m s e n g i n e e r i n g 1 0 4 ( 2 0 0 9 ) 4 7 6 – 4 8 5478
Glancey et al., 1996; Desbiolles et al., 1997; Sahu and Raheman,

2006). However, in order to allow prediction of draught of

other tillage implements a large number of experiments are

required for the reference tillage tool operating in the desired

soil condition. As the draught requirement of implements is

an important parameter for the selection of suitable size of

implement and the power of the tractor, it is most essential to

have a suitable model that can accurately predict draught data

under field conditions. Hence, it is necessary to think of

alternative approaches to predict the draught of implements

under field conditions. In the present work, an attempt has

been made to develop soft computing based techniques, i.e.,

a feed-forward artificial neural network (ANN) to model the

draught of various implements.

A few researchers have attempted to develop ANN models to

predict the draught of tillage implements. Zhang and Kushwaha

(1999) developed a radial basis function (RBF) neural network to

predict draught of narrow blades using operating speed, tools

and soil types as input parameters. The data for the develop-

ment of the model were obtained by conducting tests in three

field sites using 5 different narrow blades with operating speed

was in the range of 5 – 60 km h�1. The tests indicated that the

characteristics of draught-speed relation varied greatly with

tools and soil types. They reported that the developed neural

network model for the draught prediction had good general-

isation ability in the sense of interpolation within the range of

input parameters. The soil characteristics (moisture content

and bulk density), width of cut and depth of operation of the

implement were not considered as the input parameters in this

model.Choiet al. (2000) developed atimelaggedrecurrent neural

network (TLRNN) to predict dynamic draught of three kinds of

tillage tools using tool shapes, shearing force and CI of soil as

input parameters. An ANN model was reported to be a prom-

ising modelling method for calculating dynamic draughts.

Al-Janobi et al. (2001) developed a multilayer perception with

error back propagation (BP) learning algorithm based neural

network model to predict specific draught of a chisel plough, an

offset disc harrow, a mouldboard plough and a discplough using

sites (soil properties), tillage implements, ploughing depths and

forward operating speeds as input parameters and the specific

draught as output parameter. The architecture of the ANNs

consisted of two hidden layers with 24 nodes in the first hidden

layer and 12 nodes in the second layer. The hidden and output

layers have a sigmoid transfer functions in neural networks

model and the learning rule was momentum with 0.9 and step

size 1.0. The best result was achieved at 65 000 training runs that

gave minimum mean squared error (MSE) equals to 0.0004

during the training process. The results showed that the varia-

tion of the measured and the specific draught was small with

a correlation coefficient of 0.987 and the MSE between measured

and predicted specific draught was 0.1445. This model was site-

specific model since it does not consider any variation in the soil

properties.

Considering the above, and to overcome the problems

associated with analytical and empirical methods of predict-

ing draught of different tillage systems, an attempt was made

to develop an ANN model for predicting the draught require-

ment of tillage implements, such as mouldboard ploughs,

cultivators and disc harrows for different soil physical

conditions, namely, moisture content and bulk density.
2. Experimental method and materials

To develop the ANN model, a large amount of data related to

draught of different tillage implements (mouldboard plough,

cultivator and disc harrow) under different operating and soil

conditions were obtained by conducting laboratory and field

tests. To obtain draught values under uniform soil conditions,

the laboratory tests were carried out in the soil bin of the

Agricultural and Food Engineering Department, Indian Insti-

tute of Technology, Kharagpur, India (Fig. 1).

2.1. Soil bin

The soil bin comprised a stationary bin, a carriage system,

implement and soil processing trolleys, a power transmission

system, a control unit and instrumentation (Fig. 1). The bin

was 15.0 m long, 1.8 m wide and 0.6 m deep. Two rails, one on

top of each side of the bin wall, were used for supporting the

soil processing and the implement trolleys. The soil process-

ing trolley comprised a frame, rotary tiller, levelling blade and

roller to till, level and compact the soil, respectively to obtain

the desired cone penetration resistance. A sprayer was used to

apply water on the soil to maintain the desired average

moisture content. The different speeds of operation were

obtained by choosing suitable gears of a gear reduction unit

coupled to the input shaft of the revolving drum, which was

attached to soil processing trolley with stainless steel rope. A

control unit, placed outside the soil bin, controlled the direc-

tion of movement of the soil processing trolley. The testing

implement was mounted on the frame of the implement

trolley, where screw jack arrangements were provided to vary

the depth of operation.

2.2. Soil bed preparation in the soil bin

The experiments were conducted using a remoulded sandy

clay loam soil. The average moisture content of soil during

the tests was 10.5% dry basis (d.b.) with a maximum variation

of �1.2% d.b. Before the experiments, the soil bed was

prepared to achieve the desired/required levels of cone
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Fig. 2 – Measurement of draught of tillage implements in

the soil bin: (a) strain gauge arrangements in EORT;

(b) Wheatstone bridge circuit.
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penetration resistance and bulk density. Firstly, the tiller was

used to pulverise the soil after water was sprayed as desired.

Then, the soil was levelled with the levelling blade and
Table 1 – Experimental plan (variable levels) for soil bin and fie

Variables

Independent variables

Soil bin

(i) Tillage tools 3 mouldboard plough (cutting width of 0

offset disk harrow (cutting width 0.09,

(ii) Speed of operation 4 1.2, 2.2, 3.2, 4.2 km h�1

(iii) Depth of operation 0.05, 0.075, 0.1 m

(iv) Soil condition 2 medium (average CI: 856� 68 kPa; rw: 1

average rw: 1170� 25 kg m�3 and moist

Field experiments

(i) Tillage implements 3 mouldboard plough (cutting width of 0

(cutting width of 1.6 m)

(ii) Speed of operation 4 in the range of 3–8 km h�1

(iii) Depth of operation 2 in the range of 0.1–0.25 m

(iv) Soil condition 2 hard (average CI: 1298� 118 kPa; rw: 16

(average CI: 856� 68 kPa; rw: 1170� 25

Dependent variables

Draught for both soil bin tests as well as field ex
compacted by the roller to the desired cone penetration

resistance and bulk density in layers. At the end of each soil

preparation, a hand-operated soil cone penetrometer was

used to measure the cone penetration resistance to a depth

of 0.15 m at intervals of 0.025 m at six locations in the soil bin

following the procedures outlined in the ASABE Standards

(ASAE Standard, 2000). The locations were 2 m apart along

the centre of the bin and were selected to check the soil

condition near the start of the soil bed, in the middle and

towards the end. At each of these locations, two samples

were taken across the bin (0.5 m apart) using a core sample

and a hand-operated soil cone penetrometer. The locations

were chosen so as not to interfere with the tillage tests. To

ensure soil uniformity, soil bed preparation was repeated if

the cone penetration resistances and bulk densities varied

significantly from each other.

2.3. Experimental layout

Experiments were conducted in the laboratory for three tillage

tools (a single furrow mouldboard plough; one, two and

three-tine cultivators; and a disc gang) in medium (CI of

856� 68 kPa, rw of 1360� 57 kg m�3) and soft soil conditions

(CI of 472� 38 kPa, rw of 1170� 25 kg m�3) at four forward

speeds, three depths for mouldboard plough, cultivator and

disc gang with two replications for each combination. The

levels of these variables are given in Table 1.

Field experiments were conducted for three prototype

tillage implements (two furrow mouldboard plough, nine-tine

cultivator and a double gang of seven disc offset disc harrow)

with 37 kW 2wheel-drive tractor in hard and soft soil condi-

tions at four forward speeds, two depths of operation (0.15 and

0.2 m for the mouldboard plough, 0.1 and 0.15 m for the

cultivator and offset disc harrow) with two replications for

each combination. All field tests were conducted in sandy clay

loam soil. A fallow area of approximately 0.6 ha was selected

after rainy season as hard soil condition (CI of 1298� 118 kPa,

rw of 1600� 90 kg m�3). On another plot of 0.6 ha, the medium
ld experiments.

Levels

.1, 0.15 and 0.25 m) cultivator (cutting width of 0.2, 0.4 and 0.6 m)

0.337 and 0.367 m)

360� 57 kg m�3 and moisture content 10.5� 1.2%) Soft (472� 38 kPa,

ure content 10.8� 0.5%)

.6 m) cultivator (cutting width of 2.1 m) offset disk harrow

00� 90 kg m�3 and, moisture content 12.5� 0.8%) medium

kg m�3 and moisture content 11.2� 0.5%)

periments
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soil condition (CI of 856� 68 kPa, rw of 1360� 57 kg m�3) was

achieved by ploughing once followed by discing twice and

cultivating twice. Before the experiments, the bulk density,

moisture content and CI data of the plots were collected. They

are summarised in Table 2.
2.4. Instrumentation

2.4.1. Laboratory
In the laboratory the draught requirements of different tillage

implements were measured using an extended octagonal ring

transducer (EORT) as shown in Fig. 2a. This transducer was

designed and fabricated for a maximum force of 3 kN

following the design procedure of Godwin et al. (1993) and

O’Dogherty (1996). For Measuring draught, four electrical

strain gauges, each of 120 U and 2.6 gauge factor, were

mounted on the octagonal faces of the transducer ring to form

the Wheatstone bridge configurations, which was connected

to a Spider 8 data acquisition system (DAS) (Fig. 2b). The

transducer was attached to the front side of the cross bar of

the screw jack arrangement provided in the implement

trolley. The testing implement was mounted to the EORT at

the front.

After fixing the desired depth of operation and selecting

a gear for particular speed, the implement trolley along with

tillage implement was pulled by the soil processing trolley in

the soil bin. Using the calibrated EORT, the draught required to

pull the implement into the soil were measured at different

soil and operating conditions. The data for draught of tillage

implement were continuously acquired by the measuring

system. Simultaneously, to calculate the speed of operation,

the time taken to cover a fixed distance of 10 m was recorded

using a mechanical stopwatch.

2.4.2. Field experiments
The draught requirement of tillage implement in the field was

measured with an instrumented three point linkage of tractor

and a schematic view is shown in Fig. 3. For axial force

measurement in the lower links, eight strain gages were used.

Four gauges, each of 120 U and 2.6 gauge factor were active

and mounted directly on the theoretical neutral axis of lower

links and four dummy gauges were mounted on a separate

mild steel plate (Fig. 4a and b). Gauges R1, R1
0
, R2 and R2

0
were so

oriented (placed opposite to each other on the theoretical

neutral axis) that these were only sensitive to tensile force (Fa

and Fa
0
) and insensitive to bending force (Fb and Fb

0
). Any axial

force in the lower links could be measured with gauges con-

nected in the Wheatstone bridge arrangement as shown in
Table 2 – Mean and deviation of soil bulk density,
moisture content and cone penetration data in the field
before experiments.

Soil
condition

Dry bulk
density
Kg m�3

Moisture content %
(d.b.)

Cone
penetration
resistance

kPa

Hard 1600� 90 12.5� 0.8 1298� 118

Medium 1170� 25 10.8� 0.5 856� 68
Fig. 4c. Similarly, for compensation of lateral forces in the

lower links, the gauges R1 and R1
0

and R2 and R2
0

were posi-

tioned in such a way that if any lateral force existed, such as

when striking a hard structure, the resultant force was not

affected by such a force. This is made possible by providing

a rigid link between the lower link arms so that they could

move together producing tension in gauge R1 and R2 and

compression in gauge R1
0

and R2
0

or vice versa, with no influence

on the bridge balance. The important point to note is that the

strain gauges were mounted on the lower links where the

cross sections of the two arms are equal.

For measuring bending forces in the lower links, eight

strain gages (S1, S1
0
, S2, S2

0
, S3, S3

0
, S4 and S4

0
) were used. In this

case, all gauges were active and mounted directly on the top

and bottom surfaces of the links. Since, all the eight gauges

were strained to same amount when subjected to axial force;

the output of the Wheatstone bridge circuit was not affected

by the tensile force. Thus, all active gauges were sensitive to

bending force only. Bending force caused tensile stress in

gages S1, S1
0
, S2 and S2

0
and compressive stress in gages S3, S3

0
, S4

and S4
0
. Using these strain gages, a Wheatstone bridge circuit

as shown in Fig. 4d was made to measure the bending force.

Normally, the top link is subjected to a compressive range

of forces during tillage. It is subjected to bending force due to

friction on the ball swivel joints, eccentricity and due to the

link itself. Although bending forces in these links are small,

greater accuracy can be obtained by replacing the conven-

tional turn buckle with a strain gauge equipped proving ring.

The link tie tubes were welded to the proving ring clamp

assembly. The proving ring was designed and fabricated from

mild steel ring for a maximum force of 10 kN considering the

design procedure of Godwin et al. (1993) and O’Dogherty (1996).

A schematic view with the detailed dimensions of the proving

ring has been given in Fig. 5a. Four electrical strain gages each

of 120 U and 2.6 gauge factor were mounted on the proving
Fig. 3 – Instrumented three point linkage for measurement

of force and angle of links indicating positions of strain

gages and potentiometers: (1) vertical angle for top link;

(2) horizontal angle for lower link; (3) vertical angle for

lower link; (4) strain gauge positions for axial force; (5)

strain gauge positions for bending force; (6) strain gauge

positions for top link compressive force.



Fig. 4 – Strain gauge arrangements for axial and bending force measurement in lower links of a tractor: (a) arrangement of

strain gauges on lower links; (b) arrangement of dummy gauges on a plate; (c) circuit diagram for axial force measurements

in lower links; (d) circuit diagram for bending force measurements in lower links.
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ring and connected to the Wheatstone bridge configuration as

shown in Fig. 5b to measure the compressive force. Any

compressive force, Fc would cause gauges A and B to have like

strains, while gauges C and D would have opposite strains

with no effect on the bridge balance so long as the amount of

strain in gauges A and B and in gauges C and D were equal.

This was verified by application of a large bending moment on

the member with no effect on the bridge balance.

Further 5 k U rotary potentiometers were fixed one each at

power take-off, on the rocker arm of tractor hydraulic system

and at the side of power take-off (PTO) in a fabricated frame as

shown in Fig. 3 for measuring the vertical angle made by the

upper link, vertical and horizontal angles made by the lower

link, respectively. The shafts of the potentiometers were
Fig. 5 – Force measurement in top link of a tractor three point link

replace turn buckle in top link; (b) circuit diagram for axial force
allowed to rotate freely. Calibrations of the rotary potenti-

ometers were carried out with known angles of the links of

tractor. Output voltages corresponding to the angles of the

links were recorded with the DAS.

Finally, the draught values were computed using the

measured outputs as parameters in the following equation.

Ht ¼ TFcosq cos4þ BFcos4 sinq� CF cosb cosg (3)

where Ht is draught, kN; TF is tensile force in the lower link,

kN; BF is bending force in the lower link, kN; CF is compressive

force in the top link, kN; q is angle of lower link in the hori-

zontal plane; 4 is angle of lower link in the vertical plane; b is

angle of top link in the horizontal plane; g is angle of top link

in the vertical plane.
age system: (a) strain gauge arrangement in proving ring to

measurement.
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3. Development of neural network model

Agricultural systems, such as soil-tool systems, are quite

complex and uncertain and hence they can be considered as

ill-defined systems, characterised by non-linearity, time-

varying properties and many unknown factors. Therefore, it is

essential to make certain assumptions for quantifying the

complex relationships between the input and the output of

a system based on analytical methods. ANN, mimicking the

function of biological brains, has been reported to be an

effective alternative for modelling complex systems in agri-

culture based on their input and output data. The prediction of

dependent parameters has been found to be on a par with or

better than statistical models (Hassan and Tohmaz, 1995;

Kanali, 1997; Kushwaha and Zhang, 1998). With their high

learning abilities, ANNs capable of identifying and modelling

the complex nonlinear relationships (or behaviours) that

occur between the inputs and the outputs of a system without

requiring a complete knowledge of the governing laws. The

advantage of using neural networks over statistical methods

lies in their abilities to automate the process of model selec-

tion and also their ability to model nonlinear mapping. Among

the various types of existing ANN approaches, a multilayer

feed-forward neural network (as shown in Fig. 6) with BP

algorithm and gradient descent learning rule, which has

become most popular in engineering applications was used in

this study. The network comprised one input layer, one

hidden layer and one output layer. Independent variables

were the width of cut (X1), depth of operation (X2), speed of

operation (X3), soil moisture content (X4) and soil bulk density

(X5). The dependent variable was draught (Y ). While devel-

oping ANN model, available data were divided into two sets at

random, one set (75% of the data) was used for training of the

model and the other set (remaining 25%) was used for vali-

dation of the model. The neural network model was devel-

oped in MATLAB 7 (The Math Works, Inc., Natick, MA, US)

environment. The sigmoid transfer function was used in the

hidden layer and output layer. The algorithm used for training

the ANN is shown in Fig. 7. In the present case, normalisation

(coding) of the input data sets (i.e., X1, X2, X3, ... X5) was

carried out within the range of �1 and þ1, while the output

data sets (i.e., Y ) was between 0 and þ1. Xmax, Xmin and x,
Fig. 6 – Architecture of developed multilayer feed-forward

neural network for draught prediction.
represented, respectively the maximum, minimum and coded

value of an input variable X. The coded value of Xmax was þ1

and that of Xmin was �1. The relationship between X and x

could be expressed by the following equations (Rajasekaran

and Pai, 2004).

XM ¼ ðXmax þ XminÞ=2 (4)

XD ¼ ðXmax � XMÞ (5)

x ¼ ðX� XMÞ=XD (6)

X ¼ x� XD þ XM (7)

The relationship between actual Y and coded values y of the

dependent variables was developed such that the coded value
No

No

Yes

End

Final values of U, W, Th, and To 

Count number of cycles, nc 

nc < Nc 

Compute Unew, Wnew, Thnew, and Tonew

No

Fig. 7 – Algorithm for training the ANN model.
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of Ymax was 0. A parameter Yminps representing pseudo-

minimum of actual minimum Ymin was introduced as given

below:

Yminps ¼ Ymin � ðYmax � YminÞ (8)

The relationship between Y and y then could be expressed as:

YM ¼ ðYmax þ YminÞ=2 (9)

YD ¼ ðYmax � YMÞ (10)

y ¼ ðY � YMÞ=YD (11)

Y ¼ y� YD þ YM (12)

Inputs and outputs of the system determined the number

of neurons in the input and output layer of the network,

respectively. Thus, input and output layers had five and one

neurons, respectively. The number of neurons in the hidden

layer was usually set at less than twice the number of

neurons in the input layer (Rajasekaran and Pai, 2004). For

single hidden layer networks, although there are a number

of rules of thumb to obtain the best number of hidden layer

nodes, the best approach found was to start with a small
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Fig. 9 – Computed variation of error with variation in

number of neurons in the hidden layer of ANN model

during training: (>) mean square error; (6) percent error.
number of nodes and to slightly increase the number until

no significant improvement in model performance is ach-

ieved. In this study, both the learning rate(L) and the

number of neurons were decided by running the model with

varying L (0.5– 0.8) and numbers of nodes (5– 11) in the

hidden layer. The training cycles were varied from 5000 to

60 000 during training and it was found that after 50 000

cycles, the level of error reached a minimum and there was

no further reduction in error was achieved. During training

of the network, input–output pairs were presented to the

network and weights of the synaptic joints between input-

hidden layer and hidden-output layer were adjusted to

minimise the error between actual and predicted values. PE

between the actual and the predicted values of dependent

variable was reduced gradually with completion of each of

the computation cycle. After completion of training, the final

adjusted connection weights were fixed and the model was

validated using a new set of data, which was not used

during the training. Of the several numerical indicators, the

two important ones selected for the present study were MSE

and PE and are as given below:
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Fig. 11 – Comparison of measured and predicted draught

values of tillage implements with validating data: (D) ANN

model; (3) ASABE Eqn.; (---) D30%; (– - –) L30%.



Table 3 – Draught parameters considered for predicting
draught of tillage implements by ASABE equation.

Tillage tool Width/
Units

Machine
parameter

Soil
parameter

A1 B1 C1 F2

Mouldboard m 652 0.0 5.1 0.70

Cultivator (Primary

tillage)

Tools 46 2.8 0.0 0.85

Offset disc

harrow (Primary

tillage)

m 364 18.8 0.0 0.88
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MSE ¼ 1
n

Xn

i¼1

�
Yi� Yi0

�2
(13)

PE ¼ 1
n

Xn

i¼1

jYi� Yi0j
Yi

� 100 (14)

where Yi is the measured draught, kN and Yi
0
is the predicted

draught, kN.

A total 163 sets of draught data were used in the present

study. Out of this, 122 sets were used for training the

feed-forward BP neural network with gradient decent method

of learning and 41 sets were used for validation of the devel-

oped neural network. To have wide range of operating speeds,

data selected for training and validating the developed ANN

model comprised both laboratory and field measurements. In

the laboratory tests, the implements could not be operated

beyond 4.5 km h�1 because of practical limitations.
4. Results and discussion

The ANN model was developed by training the network with

various combination of L and number of neurons in the

hidden layer. Among the number of combinations, a L of 0.6

and 9 neurons in the hidden layer resulted in the lowest MSE

and PE values. The variation in the MSE and PE with variation

in L for the prediction model of mouldboard plough is shown

in Fig. 8, when 9 numbers of neurons were considered in the

hidden layer. When the L was<0.6, the search process was too

slow and 60 000 cycles were found to be insufficient to obtain

the low MSE, whereas at L> 0.6, the increments in the search

process was too large and it did not reach optimum values

with low MSE. Similarly, variations in the MSE and PE for

mouldboard plough with varying numbers of neurons in the

hidden layer are shown in Fig. 9, when a L of 0.6 was consid-

ered. The lowest value of MSE (0.0264) and PE (6.4380) were

observed when the L was 0.6 and 9 neurons were considered

in the hidden layer. A similar trend was observed for ANNs

developed for other implements. Hence, the final network was

developed with 9 neurons in the hidden layer. It was trained

with L of 0.6. The measured and predicted draught values are

compared in Fig. 10 for the validation data sets. Good agree-

ment between measured and predicted draught values was

found with a coefficient of determination (R2) of 0.99, indi-

cating that the ANN model had successfully learnt from the

training data set to enable correct interpolation.
The experimental draught values for the different tillage

implements (validating data) were compared with the draught

values predicted by the ANN model as well as by the ASABE

equation in Fig. 11. The draught parameters considered for

predicting draught of tillage implements by ASABE equation

are as listed in Table 3. The agreement between the predicted

and measured draught values was greater for the ANN model

than the ASABE equation. The variations were >�30% of the

measured values using the ASABE equation as compared to

<6.5% using the ANN. This low variation, which is within the

acceptable range, confirmed the reliability of the network in

predicting the draught requirement of different tillage imple-

ments in a sandy clay loam soil. However, more studies are

required for other soils to make it a generalised ANN model.
5. Conclusions

Based on the results of this study, the following specific

conclusions were drawn:

1. A 5–9–1 neural network was capable of predicting draught

requirement of tillage implements in sandy clay loam soil

under varying operating and soil conditions as indicated

by high R2 (0.99), low MSE (0.0264) and low PE (6.4%).

2. The low variability between the measured and predicted

draught values over the range of tillage implements

implies that the multilayer feed-forward neural network

with BP algorithm and gradient descent learning rule was

able to suitably model complex soil–tool system under the

selected experimental conditions.

Further work is required to demonstrate the generalised

value of this ANN model for the selected tillage implements

operating in other soil conditions.
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