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Abstract To study the radiation utilization efficiency, latent

heat flux, and simulate growth of rice during post-flood period

in eastern coast of India, on-farm trial was conducted with

three water regimes in main plots (W1 = continuous flooding

of 5 cm, W2 = irrigation after 2 days of water disappearance,

and W3 = irrigation after 5 days of water disappearance)

and five nitrogen levels in subplots (N1 = 0 kg N ha-1,

N2 = 60 kg N ha-1, N3 = 90 kg N ha-1, N4 = 120 kg

N ha-1, and N5 = 150 kg N ha-1) on a rice cultivar, ‘Lalat’.

Average maximum radiation utilization efficiency (RUE) in

terms of above ground dry biomass of 2.09 (±0.05), 2.10

(±0.02), and 1.9 (±0.08) g MJ-1 were computed under W1,

W2, and W3, respectively. Nitrogen increased the RUE sig-

nificantly, mean RUE values were computed as 1.60 (±0.07),

1.78 (±0.02), 2.060 (±0.08), 2.30 (±0.07), and 2.34

(±0.08) g MJ-1 when the crop was grown with 0, 60, 90, 120,

and 150 kg ha-1 nitrogen, respectively. Midday average

latent heat flux (on clear days) varied from 7.4 to 14.9 and 8 to

13.6 MJ m-2 day-1 under W2 and W3 treatments, respec-

tively, at different growth stages of the crop in different sea-

sons. The DSSAT 4.5 model was used to simulate phenology,

growth, and yield which predicted fairly well under higher

dose of nitrogen (90 kg and above), but the model perfor-

mance was found to be poor under low-nitrogen dose.

Keywords Crop modeling � Grain yield � Rice �
Nitrogen � Radiation use efficiency

Introduction

Rice is the staple food in Asia which accounts for 40–46 % of

the irrigated area of all the crops. In seasonal flood prone areas

of east coast of India, rice is grown under irrigated conditions

during post-flood period (dry season), but water availability

during that season is the major constraint for successful rice

cultivation. Since rice requires huge quantity of water, any

water saving in rice cultivation will be significant for optimum

management and utilization of water (Tabbal et al. 2002;

Belder et al. 2004). Also optimum nitrogen rates for sustain-

able rice production are still promising management recom-

mendations in order to increase profit for low-income farmers

of the region (Frageria et al. 1997).

Growth and yield of any grain crop again is largely

determined by radiation interception, the efficiency of

conversion of intercepted radiation to dry matter and par-

titioning of dry matter to grain (Monteith 1972; Gallaghar

and Biscoe 1978; Kar 2005; Figuerola and Berlinger 2006).

In addition to radiation interception, understanding the

latent heat flux will be useful for making effective irriga-

tion scheduling and water budgeting (Tsai et al. 2007;

Alberto et al. 2009; Maruyama and Kuwagata 2010). These

radiation interception and energy balance characteristics of

grain crops were well established in different parts of the

world from unstressed field experiments for wheat (Kiniry

et al. 1989; Gregory et al. 1992), maize (Sivakumar and

Viramani 1984), barley (Gallaghar and Biscoe 1978), pi-

geonpea (Hughes and Keatinge 1983; Robertson et al.

2001), and sunflower (Conner et al. 1985). For rice crop of

eastern coast of India, still there is a paucity of such type of

information where farmers are heavily dependent on irri-

gated rice cultivation during post-flood/dry season. In

rainy/wet season, farmers of the region struggle to grow

rice because of seasonal flood.
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Crop simulation model is one of the important tools to

predict crop growth and productivity as a function of local

weather, soil conditions, and crop management. (Ritchie

et al. 1998; Jones et al. 2003; Bouman et al. 2007; Swain

et al. 2007). CERES-Rice model was used to predict yield

and productivity in many tropical and sub-tropical locations

in Asia and Australia by many authors under different

management practices (Alociljha and Ritchie 1991; Godwin

et al. 1994; Jintrawat 1995; Ritchie et al. 1998; Hoogen-

boom et al. 2004; Sarkar and Kar 2006). But limited sci-

entific information is available regarding the application of

simulation model predicting crop growth and yield under

two management factors like water and nitrogen manage-

ment in post-flood period of coastal region of eastern India.

Keeping the importance of above points in view, in this

investigation, attempt was made to study the variation of

observed phenological events, crop growth (LAI and dry

biomass), grain yield, radiation utilization efficiency, and

latent heat flux under different water and nitrogen man-

agement practices. DSSAT 4.5 model was calibrated and

validated to explore the possibility of predicting crop

growth and yield of rice in the region during post-flood

period under different nitrogen rate and water management

practices.

Materials and methods

Study site

Two years on-farm experiments were conducted during

post-flood period (December to March of 2007–08 and

2008–09) in a representative seasonal flood prone region of

east coast of India (Alisha, Sattyabadi block, Puri, Odisha,

India). The region receives 1,500 mm average annual rain-

fall, but 80 % of it occurs during rainy season (June–Octo-

ber) when flood occurs in the region. The saucer shaped land

form, high rainfall due to southwest monsoon (June–Sep-

tember), and poor drainage condition make the region

waterlogging during rainy season. During that period,

farmers cannot cultivate rice successfully, as a result they

depend on rice cultivation during post-flood dry season.

After receding flood, the land remains dry from January to

May because rainfall during post-flood period is meager and

as a result successful crop cultivation is not possible without

irrigation. In the region, mean maximum temperature ranges

from 37 �C in May to 26 �C in December–January.

Crop management

A medium duration (120 days), high-yielding rice variety

‘Lalat’ was grown following standard package of practices in

split plot design with three replications during two growing

seasons. On 23rd December, and 20th December in 2007–08

and 2008–09, respectively, 21 days old seedlings were

transplanted in hills spaced by 20 cm 9 15 cm. The size of

the individual plot being 4 m 9 3 m. The treatments con-

sisted of three water management practices viz., W1 = con-

tinuously submerged of 5 cm depth, W2 = intermittent

submergence of 5 cm and irrigation after 2 days of disap-

pearance of water from soil surface, and W3 = intermittent

submergence of 5 cm and irrigation after 5 days of water

disappearance from the soil surface in main plots and five

N fertilizer application rates, viz., N1 = 0 kg N ha-1,

N2 = 60 kg N ha-1, N3 = 90 kg N ha-1, N4 = 120 kg

N ha-1, and N5 = 150 kg N ha-1 in sub-plots. Irrigation was

necessary every 3 days under W1 whereas it was required

every 5–6 days under W2 and every 8–9 days under W3. The

plots were isolated by ditches of 2.5 m to avoid lateral

movement of water. The leaf length–width measurement

technique with a correction factor was used to measure leaf

area following the procedure of Yoshida 1981.

Leaf area ¼ K � length cmð Þ � width cmð Þ ð1Þ

K correction factor ranges from 0.67 to 0.80 depending

upon variety and growth stages of rice crop. After

calibrating the values measured in the field using graph

paper, the correction factor was fixed as 0.75 for measuring

leaf area at active tillering, pancie initiation, and flowering

stages of the crop. A sub-sample of green leaves and

branches were oven dried to a constant weight at 80 �C for

determining dry biomass.

Radiation utilization efficiency (RUE) and intercepted

photosynthetically active radiation (IPAR)

The rate of increase of biomass density, B (g m-2), is

proportional to the absorbed photosynthetically active

radiation, APAR (MJ m-2 d-1) (Monteith 1977).

dB

dT
¼ e APAR ð2Þ

where e is the radiation use efficiency (RUE) (g MJ-1).

Hence, the cumulative biomass can be obtained by

integrating equation (2):

B ¼ B0 þ e APAR ð3Þ

where APAR is the cumulative absorbed PAR flux density

and B0 is the biomass density at time zero. Regression of

B versus APAR should a linear regression line of slope e and

intercept zero, if no biomass is present prior to the start of

photosynthesis (Pitman 2000). In this study, the dry biomass

at different stages were measured and corresponding

accumulated photosynthetically active radiation (APAR)

were computed to estimate radiation utilization efficiency

(RUE) using the following relationship:
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The mean daily values of solar radiation received above

the crop canopy during different weeks of the crop growth

were estimated using Penman (1948) formula and the

photosynthetically active radiation (PAR) was calculated

by multiplying it with 0.48 following Monteih (1972),

Kailasanathan and Sinha (1984), Kar (2005). The calcula-

tions are as follows:

Ri ¼ Ra I � að Þ aþ b� n=Nð Þ cal cm�2 day�1 ð5Þ

where, Ri incoming solar radiation, cal cm-2, Ra radiation

received at the top of atmospheric, cal cm-2, A reflection

coefficient (0.25 has been used for green crops), N maxi-

mum possible sunshine hours, a, b are constants, N actual

bright sunshine hours.

The unit of APAR in cal cm-2 day-1 was converted

into MJ m-2 s-1 as per the following relationships

1 cal m-2 min-1 = 697 J m-2 s-1,

1 kJ m-2 s-1 = 1.43 cal cm-2 min-1

The intercepted PAR (IPAR) was measured using light

transmission meter (EMS-7) as per the following relationship.

IPAR = incident radiation on the canopy - reflected

radiation by the canopy - transmitted radiation through

the canopy ? reflected radiation from the ground.

IPAR %ð Þ at any canopy height

¼ PAR received at any height of the canopy

PAR incident above the crop canopy
� 100 ð6Þ

The PAR measurement was done in sunny days at

different phenological stages at 11.30 am when

disturbances due to leaf curling were minimum.

Latent heat flux and surface energy balance

Seasonal variation of main components of the energy balance

equation viz., net radiation (Rn), latent heat flux (kE), sensible

heat flux (H), and soil heat flux (G) were computed at periodic

interval and measurement was confined to the plots fertilized

with 120 kg N ha-1 and grown under two water management

practices (W2 and W3) because of limitation in measurement.

Bowen ratio (b) energy balance method was used to compute

latent heat flux (Kar and Kumar 2007, 2009).

Rn ¼ kE þ H þ G ð7Þ

) Rn � G ¼ kE 1þ H

kE

� �
¼ kE ð1þ bÞ ð8Þ

Since,

b ¼ Sensible heat flux Hð Þ
Latent heat flux kEð Þ

kE ¼ ðRn � GÞ
ð1þ bÞ ð9Þ

On the other hand,

Bowen ratio ðbÞ ¼ Sensible heat flux Hð Þ
Latent heat flux ðkEÞ ð10Þ

b ¼ CpPa

Le
T2 � T1ð Þ
e2 � e1ð Þ ð11Þ

where,

Cp: specific heat capacity of air (1 J g-1 �C-1)

Pa: Atmospheric pressure (101.3 kPa)

L: Latent heat of vaporization (2,449 J g-1)

e: ratio of the molecular weight of water to that of air

(0.622)

b ¼ 1� 101:3ð Þ
2449� 0:622ð Þ

T2 � T1ð Þ=z2 � z1

e2 � e1ð Þ=z2 � z1

¼ 0:067
dT=dzð Þ
de=dzð Þ

ð12Þ

Rn - G = available energy, T1 is the temperature at

height, z1, T2 is the temperature at height, z2, e1 is the vapor

pressure at height, z1, e2 is the vapor pressure at height, z2.

Rn was measured using BABUC M net radiometer

where the hemispherical polyethylene windshield domes

protect the net radiometer sensor devices. G was computed

with the equation, G ¼ 0:4� Rn Expð�Ke � LAIÞð Þ, where

‘Ke’ is the extinction coefficient, LAI = leaf area index

(Kar and Kumar 2007). Experiments show that the value of

Ke ranged between 0.45 and 0.65 which was nearly equal to

the extinction coefficient reported by (Uchijima 1976)

within a rice canopy. The temperature, wind velocity, and

humidity sensors (Weather Meter, Kestrel 2500) were

installed inside the cropped field on a tower at a distance of

0.5 m which measures temperature, relative humidity, and

wind velocity at 1-h interval at three different heights. The

recorded output of all the sensors were downloaded with

the help of a PC and analyzed.

Crop growth simulation using DSSAT model

The DSSAT 4.5 model was calibrated with the observed

crop growth and yield data set of 2007–08, obtained from

plots fertilized with 120 kg N ha-1. The model performed

good in simulation of growth, phenology, grain yield, and

biomass during calibration process. To select the most

suitable set of coefficients, an iterative approach proposed

by Hunt et al. (1993) was used. A detailed description of

the cultivar coefficients used for final calibration of the

model is presented in Table 1. After the calibration of the

cultivar coefficients, the accuracy of the model was

checked with observed data for the remaining nitrogen

treatments. The experimental data collected in 2008–09
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season were used for independent model evaluation for

predicting data for anthesis, maturity, grain yield, leaf area

index, and total biomass.

Statistical analysis

The statistical analysis of the data was carried out using

standard statistical techniques (Gomez and Gomez 1984).

The analysis of variance (ANOVA) study of crop and

instrumental observations was done using SAS 9.2 pack-

age. The significant differences between treatments were

determined using Fisher’s unrestricted least significant

difference at p = 0.05.

Result

Soil profile information used for simulation

The measured soil profile data of the experimental field uti-

lized as input for DSSAT model are presented in Table 2. The

soil within the experimental area was found to be relatively

homogeneous and soil texture is clayey in nature where clay

content varied from 41.6 % (0.15–0.30 m) to 63.5 %

(0.30-0.45 m). The bulk density was 1.45 Mg m-3 at 0–0.15

layer and it increased with soil depth, at 0.90–1.20 m layer, it

was 1.63 Mg m-3. The pH was slight to moderately acidic

and no salt problem was detected in the soil. The organic

carbon content was relatively higher (6.11 g kg-1) at upper

layer (0–15 cm) while at deeper layer it was 3.12 g kg-1.

The water content at field capacity was 0.452 m3 m-3 at

0–0.15 m layer and the highest water content was

0.555 m3 m-3 at 0.45–0.60 m soil depth.

Observed phenological development, crop, growth,

and yield attributes

The effect of treatments on number of days to active tillering,

panicle initiation, flowering/anthesis, and maturity are pre-

sented in Table 3. Water management effects were non-

significant on days to active tillering, panicle initiation, days

to flowering/anthesis and to maturity, but effect of nitrogen

on these phenophases were found highly significant. Statis-

tically minimum days to flowering (89.5 days) and maturity

(118.9 days) were taken by plants when no nitrogen was

applied (N1). Average numbers of days to maturity were

more in N4 and N5 with the duration being 125.6 and

126.5 days, respectively.

Observed growth and productivity of the crop as influ-

enced by water management and irrigation regimes are also

analyzed and are presented in Table 4. Water management

effect on above ground dry biomass (AGDB) accumulation

was non-significant between W1 and W2, but AGDM under

W3 was significantly reduced. On the other hand, AGDB

production responded positively to nitrogen application.

Averaged over sowing dates, maximum AGDB at maturity

to value of 14,757 kg ha-1 was achieved in N5 followed by

in N4 (14,561 kg ha-1), N3 (11,694 kg ha-1), and N2

(9,092 kg ha-1) treatment which were statistically signifi-

cant. The treatments N4 and N5 produced maximum plant

height, LAI, and ultimately produced more biomass.

Lowest LAI and AGDB were recorded when no nitrogen

was applied (N1).

No significant difference was observed between W1 and

W2 in case of leaf area development, but in W3 LAI was

reduced significantly. Nitrogen application dose signifi-

cantly affects maximum LAI for all the three stages studied

(active tillering, panicle initiation, and flowering stages).

At flowering time, averaged over years and water man-

agement practices, LAI reached to a value of 5.57 in the N5

treatment followed by N4 (5.34), N3 (5.0), N2 (3.91), and N1

(2.59) treatments. Greater leaf expansion in rice was

ascribed in N4 and N5 treatments due to higher growth rate

and rapid leaf area development.

No significant yield difference was also achieved

between W1 and W2 water management treatments, but

under W3 treatment yield was reduced significantly.

Nitrogen dose significantly influenced grain yield. Highest

grain yield (5,331 kg ha-1) was obtained under N5 nitro-

gen treatment which was statistically at par with N4

(5,297 kg ha-1). Results also showed that with increased

nitrogen levels from 0 to 120 kg ha-1, grain yield was

increased significantly. Plots with 0 kg N ha-1 (N1) pro-

duced significantly less grain yield (2,667 kg ha-1) as

compared to plots fertilized with 60 kg N ha-1 and above.

Under N2 (60 kg ha-1) and N3 (90 kg ha-1), grain yield of

3,723 and 4,696 kg ha-1 were obtained, respectively.

Table 1 Genotype coefficients of rice variety ‘Lalat’ used for

calibration

Genetic coefficients Values

P1: time period in growing degree days (base 9 �C) from

emergence to end of juvenile phase

565

P2R: photoperiod sensitivity (degree day delay per hour

increase in day length)

118

P5: degree days (base 9 �C) from beginning of grain-filling

(3–4 days after flowering) to physiological maturity

430

P2O: critical photo period (h) 10.5

G1: potential spikelet number coefficient as estimated from

number of spikelets per g main culm ? spike dry weight

at anthesis (g)

63

G2: single dry grain weight (g) 0.028

G3: tillering coefficient 1

G4: temperature tolerance coefficient 1
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Intercepted photosynthetically active radiation (IPAR)

The IPAR was measured at different phenological stages

and peak values of it as influenced by water management

and nitrogen application are depicted in Figs. 1 and 2,

respectively. Study revealed that IPAR (%) was higher in

boot leaf stage (coincided with maximum leaf area index)

followed by flowering stage. In regard to water manage-

ment practices, peak intercepted PAR were 83.9 and

82.6 % for W1 and W2, respectively, which was signifi-

cantly different from W3. But the differences were found to

be non-significant between W1 and W2 water management

treatments.

Nitrogen levels significantly affected the amount of peak

radiation intercepted. Averaged over years and water

management practices, mean peak IPAR was 92.4 % when

plots were fertilized with 150 kg N ha-1 (N5) followed by

N4 plots (90.8 %) which were not significantly different.

The IPAR of 69.3, 73.5, and 69.3 % was recorded with 0,

60 and 90 kg N ha-1. The increase in IPAR (%) with

higher level of nitrogen was due to better crop growth,

which produced maximum plant height, LAI, and total dry

matter.

Radiation utilization efficiency in terms of total

biomass

The Radiation Utilization Efficiency (RUE) in terms of

total above ground dry biomass was computed as per the

procedure mentioned in materials and methods and RUE as

Table 2 Measured soil profile data of the experimental field utilized as input of DSSAT 4.5 model for calibration and validation

Soil parameters Soil profile depth (m)

0–0.15 0.15–0.30 0.30–0.45 0.45–0.60 0.60–0.90 0.90–1.20

Lower limit (m3 m-3) of soil moisture 0.193 0.232 0.254 0.235 0.211 0.223

Upper limit, drained (m3 m-3) of soil moisture 0.452 0.532 0.555 0.472 0.488 0.448

Upper limit, saturated (m3 m-3) of soil moisture 0.586 0.637 0.641 0.594 0.592 0.554

Root growth factor (0–1) 1.000 1.000 0.607 0.497 0.368 0.172

Sat. hydraulic conductivity, macropore (cm h-1) 39.3 3.24 7.87 1.63 1.63 1.63

Bulk density (Mg m-3) 1.45 1.54 1.59 1.54 1.57 1.61

Organic carbon (g kg-1) 6.11 5.01 5.25 4.95 3.85 3.12

Clay (\0.002 mm) (%) 41.6 61.6 63.5 51.2 49.2 47.2

Silt (0.05–0.002) (%) 25.4 17.1 11.3 21.2 23.3 21.2

pH in water 6.8 6.8 6.2 6.3 6.4 6.5

Table 3 Duration of important phenological stages as influenced by water management and irrigation regimes

Factors Days to active tillering Days to panicle initiation Days to flowering/anthesis Days to maturity

Water management (W)

W1 42.2a 59.1a 93.2a 122.1a

W2 43.3a 59.2a 93.8a 123.4a

W3 43.3a 59.5a 92.8a 122.8a

Significance NS NS NS NS

Nitrogen levels (N)

N1 40.0d 56.7d 89.5e 118.9d

N2 42.1c 57.8c 91.3d 121.3c

N3 43.2b 59.2b 94.2c 123.6b

N4 44.7a 62.6a 95.6b 125.6a

N5 44.7a 62.5a 97.6a 126.5a

Significance ** ** ** **

W 9 N NS NS NS NS

The values in the column followed by same letters are not significant at 5 % level of significance

S significant, NS not significant, W1 continuous flooding of 5 cm, W2 irrigation after 2 days of water disappearance, W3 irrigation after 5 days of

water disappearance, N1 0 kg N ha-1, N2 60 kg N ha-1, N3 90 kg N ha-1, N4 20 kg N ha-1, N5 150 kg N ha-1

* Significant at 1 % level of significance; ** significant at 5 % level of significance
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influenced by water management and nitrogen applications

are presented in Figs. 3 and 4, respectively. Among water

management practices, W3 plots registered lower RUE of

1.90 g MJ-1 for AGDM accumulation as compared to

other W1 (2.09 g MJ-1) and W2 (2.10 g MJ-1). Significant

differences were found in RUE among N treatments. High

dose of N increased RUE significantly, mean RUE vales

were computed as 1.60, 1.78, 2.06, 2.30, and 2.34 g MJ-1

for N1 (0 kg N ha-1), N2 (60 kg N ha-1), N3 (90 kg

N ha-1), N4 (120 kg N ha-1), and N5 (150 kg N ha-1)

treatments, respectively. The lower values of mean RUE

was registered from plots fertilized with 0 and

60 kg N ha-1 (N1 and N2), which might be attributed to

less biomass and grain yield in those plots. Interaction

between water management practices and nitrogen rate

were found to be non-significant.

Radiation utilization efficiency in terms of grain yield

The effects of water management and nitrogen treatments

on radiation use efficiency for grain yield (RUEgy) are

presented in Figs. 5 and 6, respectively. Similar trend was

observed in this case also like radiation utilization effi-

ciency in terms of above ground dry biomass. The values of

RUEgy recorded were 0.69, 0.68, and 64 g MJ-1 in W1,

W2, and W3, respectively, which indicated that RUEgy

between W1 and W2 are not significantly different. Nitrogen

application doses also significantly affect radiation

Table 4 Crop growth and productivity of rice (cv Lalat) as influenced by water management and irrigation regimes

Factors LAIAT LAIPI LAIFL BDBAT

(kg ha-1)

ABDBPI

(kg ha-1)

ABDBFL

(kg ha-1)

ABDBMAT

(kg ha-1)

Grain yield

(kg ha-1)

Water management (W)

W1 1.37a 4.26a 4.72a 563a 3617a 7182a 11577a 4524a

W2 1.34a 4.21a 4.73a 556a 3584a 7112a 11520a 4440a

W3 1.11b 3.55b 3.83b 475b 3271b 6218b 10092b 4064b

Significance * ** * * ** ** ** **

Nitrogen levels (N)

N1 0.514d 2.21d 2.59d 390d 2050d 4775d 7228d 2667d

N2 0.928c 3.07c 3.91c 495c 2953c 5368c 9092c 3723c

N3 1.61b 4.67b 5.0b 539b 3268b 7195b 11694b 4696b

N4 1.65a 5.01a 5.34a 615a 4566a 8438a 13561a 5297a

N5 1.69a 5.26a 5.57a 622a 4614a 8510a 13757a 5331a

Significance ** ** ** ** ** ** ** **

Interaction: W 9 N NS NS NS NS NS NS NS NS

The values in the column followed by same letters are not significant at 5 % level of significance

S significant, NS not significant, LAIAT LAI at active tillering stage, LAIPI LAI at panicle initiation stage, LAIFL LAI at flowering stage, ABDBAT

above ground biomass at active tillering stage, ABDBPI above ground biomass at panicle initiation stage, ABDBFL above ground biomass at

flowering stage, ABDBMAT above ground biomass at maturity stage

* Significant at 1 % level of significance; ** significant at 5 % level of significance

Fig. 1 Peak values of intercepted photosynthetically active radiation

(IPAR) as influenced by water management treatments (pooled data

of 2 years). The column followed by same letters are not significant at

5% level of significance

Fig. 2 Peak values of intercepted photosynthetically active radiation

(IPAR) as influenced by nitrogen treatments (pooled data of 2 years).

The column followed by same letters are not significant at 5% level of

significance
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utilization efficiency in terms of grain yield. Averaged over

years and water management treatments, maximum RUEgy

was recorded by N5 treatment (0.74 g MJ-1 RUEgy). The

radiation use efficiency for grain yield (RUEgy) was

computed as 0.58, 0.62, 0.69, and 0.73, g MJ-1 for N1, N2,

N3, and N4 treatments, respectively, which were signifi-

cantly different.

Crop evapo-transpiration and water use efficiency

Water-use efficiency (WUE) is a common expression of

plant productivity. It may represent the ratio of total above

ground dry biomass or dry seed weight to the seasonal

evapotranspiration (ET). With this approach, different

cultural practices can be assessed to determine optimum

use of limited irrigation water. Based on latent heat flux

evapotranspiration of the crop grown with 120 kg N ha-1

under W2 and W3, water management treatments were

computed and results are depicted in Figs. 7 and 8 for the

year 2007–08 and 2008–09, respectively. Crop evapo-

transpiration (ETc) was found to be the highest at boot leaf

stage which ranged from 5.95 mm day-1 under W3 to

6.08 mm day-1 under W3 in 2007–08. In 2008–09, the ETc

ranged from 5.75 mm day-1 under W3 to 6.44 mm day-1

under W2. Total crop ETc was computed as 622 and

598 mm under W2 and W3, respectively, in 2007–08 and in

2008–09 total crop ETc were 632 and 608 mm under W2

and W3, respectively. Crop water-use efficiency (pooled

data of 2 years) was computed in terms of both total bio-

mass and grain yield and are presented in Figs 9 and 10,

respectively. Crop water use efficiencies of 8.67 and

8.07 kg ha-1 mm-1 (in terms of grain yield) were obtained

under W2 and W3 water management treatments, respec-

tively, when the crop was grown with 120 kg N ha-1.

Whereas, crop water use efficiencies of 22.6 and

22.1 kg ha-1 mm-1 (in terms of total biomass) were

obtained under W2 and W3 water management treatments,

respectively, with same nitrogen treatment.

Fig. 3 Radiation utilization efficiency of rice (cv. LaIat) in terms of

total above ground dry biomass as influenced by water management

treatments (pooled data of 2 years). The column followed by same

letters are not significant at 5% level of significance

Fig. 4 Radiation utilization efficiency of rice (cv. Lalat) in terms of

total above ground dry biomass as influenced by nitrogen treatments

(pooled data of 2 years). The column followed by same letters are not

significant at 5% level of significance

Fig. 5 Radiation utilization efficiency of rice (cv. LaIat) in terms of

grain yield as influenced by water management treatments (pooled

data of 2 years). The column followed by same letters are not

significant at 5% level of significance

Fig. 6 Radiation utilization efficiency of rice (cv. LaIat) in terms of

grain yield as influenced by nitrogen treatments (pooled data of

2 years). The column followed by same letters are not significant at

5% level of significance
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Latent heat flux and surface energy balance

The seasonal variation of surface energy flux over rice

stand grown with 120 kg ha-1 during two seasons

(2007–08 and 2008–09) were measured at periodic inter-

vals under W2 and W3 plots and mid day average values of

10.00–15.00 h are depicted in Figs. 11, 12, 13, and 14.

Study revealed that during growing period, net radiation

(Rn) varied from 14.5 to 17.4 MJ m-2 day-1 in 2007–08.

In 2008–09, the net radiation varied from 14.4 to

18.7 MJ m-2 day-1.

The latent heat flux (LE) was largely found to be varied

with leaf area index (LAI) which showed peak when LAI

was maximum. In 2007–08, under W2 treatment, the mid-

day average latent heat flux (on clear days) varied from

7.7 MJ m-2 day-1 (during transplanting stage) to

Fig. 7 Crop evapo-transpiration of rice during 2007–08 under W2

and W3 water management with 120 kg N ha-1

Fig. 8 Crop evapo-transpiration of rice during 2008–09 under W2

and W3 water management with 120 kg N ha-1

Fig. 9 Crop water use efficiency of rice (cv. Lalat) in terms of grain

yield with 120 kg N ha-1 under W2 and W3 water management

treatments

Fig. 10 Crop water use efficiency of rice (cv. Lalat) in terms of total

above ground biomass with 120 kg N ha-1 under W2 and W3 water

management treatments

Fig. 11 Latent heat flux and surface energy balance of rice

(cv. LaIat) under W2 water management during 2007–08

Fig. 12 Latent heat flux and surface energy balance of rice

(cv. LaIat) under W3 water management during 2007–08
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14.8 MJ m-2 day-1 (during boot leaf stage to flowering

stage). Whereas in W3 treatment, it varied from 8.0 to

13.6 MJ m-2 day-1 in different rice growth stages. In

2008–09, the LE ranged from 6.6 to 15.9 MJ m-2 day-1 in

different growth stages of the crop under W2 water man-

agement treatment and 7.9 to 14.3 MJ m-2day-1 under W3

treatment.

The variation of soil heat flux (G) of the crop during

growth seasons clearly reflects the change of crop growth.

The ‘G’ showed peak value during early vegetative and

maturity growth stages when crop coverage was minimum

and soil was dry. Afterward, the course of ‘G’ was

affected by development of crop canopy or leaf area

index. Midday average ‘G’ value of the crop ranged from

0.46 to 3.4 MJ m-2 day-1 in 2008–09 and 0.45 to 3.39

MJ m-2 day-1 in 2007–08 under W2 treatment. Whereas,

in W3, it ranged from 0.60 to 3.59 MJ m-2 day-1 in

2007–08 and varied from 0.56 to 3.65 MJ m-2 day-1 in

2008–09. The ‘G’ reduced drastically with the increasing

canopy cover and growth. The ratio of G/Rn from maxi-

mum LAI to senescence stage was found to be 7–13.5 %

over the crop. Soil heat flux showed declining trend dur-

ing the peak growth stage which coincided with maximum

leaf area index (LAI).

Crop growth modeling

Cultivar genetic coefficients and calibration of the model

Calibration results showed that model predicted number of

days to flowering with the error of 1.05, 2.10, and 3.19 % for

W1, W2, and W3 water management treatments, respectively.

Only 1–3 days difference was recorded between observed

and simulated days to flowering under different water

management practices. The model simulated number of days

from planting to physiological maturity with error of -0.80,

0.79, and 1.58 % under W1, W2, and W3 treatments,

respectively. In calibrating leaf area index, the model under

estimated the maximum LAI and simulated with the larger

errors of -6.51, -9.01, and -6.25 % under W1, W2, and W3

treatments, respectively. There was a good agreement

between observed and simulated above ground biomass at

harvest with the error ranging from -0.52 % for W1,

-0.62 % for W2, and -1.63 % for W3. The simulation of

grain yield was also well correlated with the error of -0.37,

0.62, and 1.91, among simulated and observed values under

W1, W2, and W3 treatments, respectively.

Model evaluation

Accuracy of the model simulations and performance of

genetic coefficients were assessed by running the model

with data sets of 2007–08 against nitrogen treatments 0, 60,

90, and 150 kg ha-1. Study revealed that the time for

flowering/anthesis was delayed by 1–5 days with increase

in N level under different water management treatments. At

higher N rate (150 kg N ha-1), days to anthesis were clo-

sely predicted with the error of 0 to -1.07 %. At low

N levels (0 and 60 kg ha-1), there were greater differences

between predicted and observed values and the error

between simulated and observed values were 4.44 to

5.68 %. This showed that days to anthesis were affected by

N rates, but the model is not able to predict the days to

anthesis closely under N stress conditions because DSSAT

model might assume optimum N conditions in predicting

crop phenology. Similar trend was observed in simulation

of days to maturity, yield, dry biomass, and leaf area index

also. In general, error between simulated and observed

values were closer at higher nitrogen levels (90 kg N ha-1

and above) as compared to lower applied dose (0 and

60 kg N ha-1). Among different plant attributes, larger

percentage of errors was observed in predicting the maxi-

mum leaf area index.

Further, validity of DSSAT model was evaluated by

comparing simulated and observed data collected during

year 2008–09 under five nitrogen rates viz., 0, 60, 90, 120,

and 150 kg N ha-1. The corresponding simulation results

of grain yield are shown in Table 5. There was good

Fig. 13 Latent heat flux and surface energy balance of rice

(cv. LaIat) under W2 water management during 2008–09

Fig. 14 Latent heat flux and surface energy balance of rice

(cv. LaIat) under W3 water management during 2008–09
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agreement between observed and simulated grain yield

under 90 N kg ha-1 and above nitrogen levels.

These results showed the model was able to predict the rice

phenology accurately at higher N levels, but under N stress

conditions, there could be greater deviations in model pre-

dictions. For accurate phenology and crop growth predictions

in N-deficient tropical soils, a N stress factor needs to be

incorporated into the model for farmers and researchers to be

able to use it with confidence. Similar recommendations were

given by Kiniry (1991) in maize crop.

Discussion

Rice (Oryza sativa L.) is a major food grain crop of India

and in eastern coast of India there are many factors

responsible for low yield of rice such as plant density,

sowing time, imbalanced fertilizer application water defi-

cit, etc. Among various factors, the growth and yield of a

crop can be adversely affected by deficient nitrogen

because it plays a central role in plant growth as an

essential constituent of cell components. The crop matured

early (119 days) when no nitrogen was applied, whereas,

higher doses of nitrogen (90 kg ha-1 and above) delayed

the crop maturity period by 5–8 days. The probable reason

could be that nitrogen had enhanced vegetative growth,

which delayed reproductive stage. Nitrogen significantly

influenced the performance of crop growth parameters like

leaf area index, biomass, etc. Greater LAI could be

attributed to significant increases in leaf expansion i.e.,

length and breadth due to high N levels. Greater leaf

expansion due to more nitrogen was ascribed to higher rate

Table 5 Comparison of simulated and observed crop parameters with 0, 60, 90, 120, and 150 kg N ha-1 in 2008–09

Nitrogen (kg ha-1) W1 W2 W3

OBS SIM Error (%) OBS SIM Error (%) OBS SIM Error (%)

Comparison of simulated and observe days to anthesis at different nitrogen levels

0 89 96 5.61 90 94 4.44 89 94 4.49

60 92 95 3.22 91 95 4.39 90 94 4.44

90 94 95 1.06 94 95 1.06 93 93 0

120 95 96 1.05 96 97 1.04 95 96 1.05

150 97 97 0 98 97 -1.02 97 98 1.03

Comparison of simulated and observe days to maturity at different nitrogen levels

0 118 124 5.08 120 115 -4.10 120 125 5.04

60 120 124 3.83 121 125 3.31 120 124 4.16

90 124 125 0.83 124 125 1.61 124 123 -0.81

120 126 127 0.79 126 125 -0.79 126 125 -0.79

150 127 127 -0.78 127 127 0 126 126 0

Comparison of simulated and observe maximum leaf area index at different nitrogen levels

0 2.75 2.53 -3.63 2.75 2.80 9.45 2.23 2.50 4.03

60 3.88 3.45 -11.08 4.11 4.35 -13.62 2.89 3.45 10.57

90 5.10 4.90 -3.92 5.20 5.45 4.80 4.43 4.50 1.58

120 5.82 5.55 -4.63 5.86 5.89 0.511 4.60 4.63 0.65

150 5.97 5.65 -5.36 5.99 5.95 -0.66 4.73 4.75 0.42

Comparison of simulated and observe mean total biomass (kg/ha) at different nitrogen levels

0 7,453 7,055 -5.34 7,850 7,454 -5.04 6,369 6,100 -4.22

60 9,405 8,935 -4.99 9,299 8,922 -4.01 8,551 8,035 -6.03

90 12,305 12,102 -1.64 11,911 11,850 -0.51 10,816 10,750 -0.61

120 14,325 13,459 -6.04 14,209 14,120 -0.62 12,133 12,247 0.93

150 14,357 14,120 -1.65 14,334 14,160 -1.21 12,563 12,500 -0.50

Comparison of simulated and observe mean total grain yield (kg/ha) at different nitrogen levels

0 2,840 2,545 -10.38 2,717 2,477 8.83 2,461 2,655 7.88

60 3,819 3,515 -7.91 3,775 3,546 6.06 3,530 3,750 6.23

90 4,853 4,800 -1.09 4,758 4,705 1.11 4,418 4,346 -1.62

120 5,385 5,312 -1.35 5,450 5,422 0.51 4,910 5,023 2.30

150 5,458 5,400 -1.06 5,458 5,512 0.68 4,953 5,074 2.44
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of cell division and cell enlargement by Wright (1982).

Total dry matter (TDM) production increased steadily after

crop establishment until maturity in all the treatments. The

increase in TDM with higher level of nitrogen was due to

better crop growth, which gave maximum plant height,

LAI, and ultimately produced more biological yield.

Increased plant height in rice with the increasing levels of

N fertilizer may be attributed to greater supply of nitrogen

resulting in increased nitrogen metabolism. Nitrogen stress

in plots fertilized with lesser levels of nitrogen might be the

cause of less LAI that leads to lower radiation interception,

growth rate, radiation utilization efficiency, and therefore,

grain number and yield. This appeared to increase the

length of internodes resulting in higher plant height when

nitrogen was optimally used and less plant height was

observed at lower levels of nitrogen (Schinir et al. 1990;

Dingkuhn et al. 1990).

Declining water quality and quantity are also major

concerns for sustainability of irrigated rice-based produc-

tion system in Aisa. Our study revealed that continuous

flooding of 5-cm depth (W1) and irrigation after 2 days of

disappearance of water (W2) produced biomass, leaf area

and yield satistically at par, but irrigation after 5 days of

disappearance of water (W3) resulted significant reduction

in dry biomass and yield. Under W3 conditions, water

availability might not matched with the water required for

satisfying the outflows (seepage, S, and percolation, P) to

the surroundings and depletions to the atmosphere (evap-

oration, E, and transpiration, T) (De Datta 1981; Tuong

et al. 1996; Tuong 1999). Working in different parts of

India, similar findings also reported by many earlier

workers (Sandu et al. 1980; Tripathi et al. 1986; Mishra

et al. 1997; Singh et al. 2001). Tabbal et al. (2002) reported

that in transplanted and wet seeded rice, keeping the soil

continuously around saturation reduced yields on an aver-

age by 5 % and water inputs by 35 % and increased water

use efficiency by 45 % compared with flooded conditions.

It was observed that during mid-growth stage when

canopy is fully developed and water does not limit tran-

spiration (soil is wet), latent heat flux consumes most of the

energy from net radiation. As the soil dries toward the

maturity period, water becomes less available for evapo-

transpiration. At the beginning, when the crop was not

developed fully, the sensible heat flux or soil heat flux was

higher and these values were decreased with the increase of

canopy growth. Similar observations were reported by

Perez et al. (1999), Mo and Liu (2001), Figuerola and

Berliner (2006).

Another prerequisite for high yields is a high production of

total dry matter (TDM) per unit area that can be attained

through optimizing the assimilate area i.e., leaf area index

(LAI) to intercept more PAR and improving the radiation use

efficiency. In this study, average maximum radiation

utilization efficiency (RUE) in terms of above ground dry

biomass of 2.09 (±0.05), 2.10 (±0.02), and 1.9

(±0.08) g MJ-1 were computed under W1, W2, and W3,

respectively. Higher dose of nitrogen increased the RUE sig-

nificantly, mean RUE values were computed as 1.60 (±0.07),

1.78 (±0.02), 2.060 (±0.08), 2.30 (±0.07), and 2.34

(±0.08) g MJ-1 when the crop was grown with 0, 60, 90, 120,

and 150 kg ha-1 nitrogen, respectively. RUE in terms of

above ground dry biomass was found to be smaller in nitrogen

and water stressed plots. Averaged over year and water man-

agement practices, peak intercepted photosynthetically active

radiation (IPAR) of 69.3, 73.5, 81.8, 90.8, and 92.4 % was

measured under 0, 60, 90, 120, and 150 kg ha-1 nitrogen,

respectively. The RUE of C3 crops were computed within the

range of 1.2–1.93 g MJ-1 for different parts of the world,

example (1.2–2.93 g MJ-1) for wheat (Kiniry et al. 1989;

Siddique et al. 1989; Gregory and Eastham 1996). Reported

RUE for pea ranged from 0.91 to 2.50 g MJ-1 (Martin et al.

1994; Jannink et al. 1996; Thomson and Siddique 1997).

Siddique et al. (1989) found that RUE (based on above ground

biomass) was smaller for a given biomass if a greater propor-

tion of biomass is partitioned to roots. Hamblin et al. (1990)

and Jamieson et al. (1995) suggested that often more successful

environments have higher root–shoot ratios that lead to lower

RUE estimates based on above ground dry biomass. Investi-

gation of crop root–shoot dynamic would permit determination

of the partitioning factor for biomass/PAR relations.

CERES-Rice has been evaluated for many tropical and

sub-tropical locations across Asia and in temperate cli-

mates in Japan and Australia. In this study over the data

sets examined for validating phenology, crop growth and

yield, the of CERES-Rice embedded DSSAT 4.5 model

predicted fairly well at higher dose of nitrogen, but model

performance was poor under conditions of low nitrogen.

The model also underestimated leaf area index under all

conditions. Under the conditions of Philippines, Alociljha

and Ritchie (1991) reported good agreement between

observed and predicted number of days to anthesis and

maturity, with RMSE of 4 and 3 %, respectively. Tongyai

(1994) concluded that the number of days to physiological

maturity was overestimated by 9–12 days in Bangkok.

Jintrawat (1995), however, reported accurate predictions of

phenology for both photoperiod sensitive and insensitive

cultivars, but the heading dates were underestimated for a

photo-sensitive cultivar, especially for early planting dates.

The capability to simulate photoperiod effects has since

been included in CERES-Rice. At temperate and sub-

tropical locations in Japan (Seino 1995), the model pre-

dicted days to physiological maturity of unspecified culti-

vars quite well, with normalized RMSE = 2 % and

D-index = 1.0. In sub-tropical northwest India (Timsina

et al. 1995), the absolute RMSE for both anthesis and

maturity was 6 days, but D-index was 0.72 for anthesis and

Paddy Water Environ (2014) 12:285–297 295

123



0.96 for maturity, indicating less satisfactory performance

of the model. In south India (Saseendran et al. 1998a, b),

prediction of anthesis was less accurate with RMSEs of

Jaya and IR8 of 4.4 and 4.2 days, and D-index = 0.65 and

0.84, respectively. Mall and Aggarwal (2002) compared

the performance of CERES-Rice and ORYZA1N at 11

locations from north to south India, including four in

northwest India. Predicted values were within 15 % of

observations for both models, with similar RMSE of

4.5 days (CERES-Rice) and 4.8 days (ORYZA1N).

Conclusion

The crop matured early (119 days) when no nitrogen was

applied, whereas, higher doses of nitrogen (90 kg ha-1 and

above) delayed the crop maturity period by 5–8 days. The

probable reason could be that nitrogen had enhanced veg-

etative growth, which delayed reproductive stage. Nitrogen

significantly influenced the performance of crop growth

parameters like leaf area index, biomass, etc. Greater LAI

could be attributed to significant increases in leaf expan-

sion i.e., length and breadth due to high N levels. Greater

leaf expansion due to more nitrogen was ascribed to higher

rate of cell division and cell enlargement. The increase in

RUE and IPAR with higher level of nitrogen was due to

better crop growth, which produced maximum plant height,

LAI, and total dry matter. No significant difference in crop

growth and development was achieved between W1 (con-

tinuous flooding of 5 cm) and W2 (irrigation after 2 days of

water disappearance), but significant difference was

obtained in biomass and yield production when the crop

was grown under W3 (irrigation after 5 days of water

disappearance).
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