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Background 

Multivariate statistical techniques simultaneously analyze measurements on multiple 

variables for each individual under investigation and are widely used in plant breeding 

programs. The main purpose of multivariate data analysis is to study the relationships among 

the (multiple) variables and perform several analyses on the collected samples. The 

multivariate techniques are efficient compared to the univariate counterparts due to their 

ability to consider inter-variable relationships. In this tutorial, we will focus on important 

multivariate data analytical techniques including: (1) Principal Component Analysis; (2) 

Factor Analysis; (3) Cluster Analysis; (4) Discriminant Analysis with real data examples. 

These four types of multivariate analytical techniques are extensively used in Agricultural 

experimental data analysis. 

1. Principal Components Analysis and Factor Analysis  

Principal Components Analysis (PCA) and Factor Analysis (FA) are usually viewed as attempts 

to approximate the relationships among a set of (i.e., multiple) variables. PCA is concerned 

with explaining the variance-covariance structure through a few linear combinations of the 

original variables. Whereas FA is concerned with explaining covariance relationships among 

original variables in terms of a few underlying, but unobservable, random quantities called 

factors. Factors which are generated are thought to be representative of the underlying processes 

that have created the correlations among variables. FA is considered as an extension of PCA and 

its model is also considered to be more elaborative than PCA model. Many a time, PCA and FA 

together called as Common Factor Analysis (CFA). 

The key underlying base to Common Factor Analysis (PCA and FA) is that the chosen 

variables can be transformed into linear combinations of factors. Factors may either be associated 

with 2 or more of the original variables (common factors) or associated with an individual 

variable (unique factors). Loadings relate the specific association between factors and original 

variables. Therefore, it is necessary to find the loadings, then solve for the factors, which will 

approximate the relationship between the original variables and underlying factors. The 

loadings are derived from the magnitude of eigenvalues associated to individual variables. The 

difference between PCA and FA is that for the purposes of matrix computations PCA assumes 

that all variance is common, with all unique factors set equal to zero; while FA assumes that 

there is some unique variance. The level of unique variance is dictated by the FA model which 

is chosen. Accordingly, PCA is a model of a closed system, while FA is a model of an open 

system. Rotation in CFA attempts to put the factors in a simpler position with respect to the 

original variables, which aids in the interpretation of factors. Rotation places the factors into 

positions that only the variables, which are distinctly related to a factor, will be associated. 

Varimax, quartimax, and equimax are all orthogonal rotations, while oblique rotations are   non-

orthogonal.   The   varimax   rotation    maximizes    the   variance   of the loadings, and is also 

the most commonly used rotation method. To analyze data with either PCA or FA, three key 

decisions must be made. They are (i) the factor extraction method (ii) the number of factors to 

extract and (iii) the transformation method to be used. 
For example: Foresters measure data on several characters (e.g., variables) of tree species, such 

as, growth, volume, yield, forest potential, height, collar diameter, diameter at breast height, 

crown diameter, etc. The example data is shown below. Here, the main idea is to 

illustrate CFA approach on this example data using R. The main purpose of this lecture is 
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to focus more on CFA approach using public statistical R software than dealing with its theory. 

Principal Components Analysis 

Example 1: The following data pertains to variables, such as Height, Collar diameter, 

Diameter Breast Height (DBH), and Crown diameter of 36 trees of a particular species. We 

perform PCA on this data using R and provide hand-on to interpret the obtained results.  

Obs. Height Collar diameter DBH Crown diameter 

1 4.00 10.50 6.90 15.13 

2 3.80 7.00 4.30 2.63 

3 4.90 10.30 7.30 21.71 

4 3.00 9.10 5.80 5.24 

5 3.80 9.80 6.40 7.57 

6 4.00 10.90 6.50 8.67 

7 5.30 11.10 6.90 13.09 

8 4.50 10.30 6.50 10.55 

9 4.40 10.30 6.30 11.53 

10 4.70 13.70 9.10 20.66 

11 5.20 14.90 10.50 23.19 

12 5.30 14.90 9.40 18.59 

13 3.60 9.30 6.30 10.21 

14 3.30 6.40 3.70 4.67 

15 5.00 9.70 6.20 12.34 

16 3.70 8.10 5.10 5.89 

17 3.80 9.20 5.60 5.36 

18 4.00 10.30 7.80 7.54 

19 4.90 12.10 8.00 12.93 

20 5.50 12.70 8.70 17.79 

21 5.30 13.60 9.00 12.76 

22 4.80 14.90 10.00 25.62 

23 4.30 13.20 9.10 15.57 

24 5.10 14.50 10.10 22.56 

25 1.50 2.50 1.20 0.17 

26 1.90 3.80 2.50 1.56 

27 2.40 3.90 1.70 0.58 

28 3.80 7.50 5.50 4.47 

29 3.60 9.30 6.50 5.94 

30 3.30 7.00 3.90 4.63 

31 5.60 13.70 9.20 15.26 

32 4.50 9.90 4.70 12.11 

33 5.20 11.20 7.70 12.57 

34 4.60 11.70 9.70 16.21 

35 5.00 18.40 10.80 21.15 

36 4.60 12.80 8.60 14.44 

 

R-codes: 

Step 1: Create and set the working directory. 

            setwd(“../../file location”) 



 

 

 Step 2: Save the data in a text file and data reading. For example name the data file as: 

“data.txt” 

           dat <- read.table(file="data.txt", header=T, row.names = 1, sep="\t") 

Step 3: PCA 

           dat.pca <- prcomp(dat, center = TRUE,scale. = TRUE) 

Step 4: Results summary(dat.pca) 
 
Importance of components: 
                          PC1     PC2     PC3     PC4 
Standard deviation     1.9008 0.45588 0.37934 0.18753 
Proportion of Variance 0.9033 0.05196 0.03597 0.00879 
Cumulative Proportion  0.9033 0.95523 0.99121 1.00000 
 
Step 5: Representation through a lower ortho-dimensional space. 
Rotation (n x k) = (4 x 4): 
               PC1        PC2        PC3          PC4 
Height       0.4832289  0.8509266  0.1995658 -0.050865416 
Collar diam. 0.5127805 -0.1463091 -0.4324909  0.727049786 
DBH          0.5104606 -0.2202849 -0.4712747 -0.684693116 
Crown diam.  0.4929258 -0.4538637  0.7423108  0.002579604 
 

Interpretation: 

The proportion of total variation accounted for by the first principal component is 0.903 and 

the first two components account for a proportion of .9552. Hence, in further analysis, the 

first or first two principal components PCA1 and PCA2 could replace four variables by 

sacrificing negligible information about the total variation in the system. The scores of 

principal components can be obtained by substituting the values of variables in equations 

of PCAs. For the data under study, the first two principal component scores for first 

observation i.e. for tree1 can be worked out as 

PC1 score = .483 × 4.00 + .512 × 10.50 + .510 × 6.90 + .49 × 15.13  

PC2 score = .851 × 4.00 + -.146 × 10.50 + -.220 × 6.90 - .4533 × 15.13 

Similarly for all other trees the first two principal components scores can be worked out. 

Thus the whole data with four variables can be converted to a new data set with two 

principal components. 

Factor Analysis 

We have demonstrated the FA with the following data example in R. 

Example 2: Consider a hypothetical data on six characters with 15 observations as below: 
Obs. X1 X2 X3 X4 X5 X6 

1 609.40 164.99 61.11 15.77 449.89 318.38 

2 1960.90 4.30 54.74 33.47 37.14 1.43 

3 1846.20 72.92 64.28 36.09 927.87 79.43 

4 1002.70 211.76 49.15 42.60 1198.60 280.20 

5 2801.10 59.43 82.32 4.40 329.55 108.05 

6 1060.00 156.00 69.97 14.07 318.33 229.67 

7 512.80 642.81 68.59 8.74 497.83 865.83 

8 919.40 18.50 77.13 7.63 403.25 142.80 

9 450.40 13.90 54.46 3.48 124.42 25.42 

10 1449.90 129.93 67.04 20.04 530.53 210.44 

11 2153.40 96.49 90.92 12.72 881.04 84.66 

12 1237.85 147.97 64.38 37.43 643.96 165.81 



 

 

13 744.90 95.75 77.27 25.03 551.82 154.47 

14 1320.90 29.11 68.87 28.54 344.87 63.15 

15 1846.20 21.40 63.31 33.87 261.71 12.48 

 

R code: Repeat the Steps 1 and 2.  
        dat.fa <- factanal(dat, factors = n)  ###choose ‘n’ 

Results: 
Uniquenesses: 
   X1    X2    X3    X4    X5    X6  
0.775 0.030 0.741 0.005 0.738 0.005  
 
Loadings: 
   Factor1 Factor2 
X1 -0.474          
X2  0.980          
X3         -0.509  
X4 -0.249   0.966  
X5  0.200   0.471  
X6  0.997          
 
               Factor1 Factor2 
SS loadings      2.282   1.424 
Proportion Var   0.380   0.237 
Cumulative Var   0.380   0.618 
 
Null hypothesis: 2 factors are sufficient 
Chi square statistic: 6.62 (4 degrees of freedom) 
p-value: 0.158  

Interpretation: Before we interpret the results of the FA, recall the basic idea behind it. FA 

creates linear combinations of factors to abstract the variable’s underlying communality. To 

the extent that the variables have an underlying communality, fewer factors capture most of 

the variance in the dataset. This allows us to aggregate a large number of observable 

variables in a model to represent an underlying concept, making it easier to understand the 

data. The variability in our data, is given by Σ, and its estimate  ̂ is composed of the 

variability explained by the factors (linear combination of the factors (communality)) and 

part of the variability cannot be explained by a linear combination of the factors 

(uniqueness). 

From the above FA it is evident that two factors are sufficient as the test is not significant. 

Variables X1, X2, and X6 define factor 1 (high loadings on factor 1, small or negligible 

loadings on factor 2), variables X3, X4, and X5 define factor 2 (high loadings on factor 2, 

small or negligible loadings on factor 1). 

Cluster Analysis and Discriminant Analysis 

 

Rudimentary, exploratory procedures are often quite helpful in understanding the 

complex nature of multivariate relationship. Searching the data for a structure of "natural" 

grouping is an important exploratory technique. The most important techniques for data 

classification are: Cluster analysis and Discriminant analysis. 



 

 

Although both cluster and discriminant analyses classify objects into different categories, 

discriminant analysis requires one to know group membership for the cases (i.e., prior class 

information) used to decide the classification rule whereas in cluster analysis group 

membership for all cases is unknown. In addition to membership, the number of groups is also 

generally unknown. In cluster analysis the units within cluster are similar but different between 

clusters. The grouping is done on the basis of some criterion like similarities measures etc. Thus 

in the case of cluster analysis the inputs are similarity measures or the data from which these 

can be computed. 

Cluster Analysis 

Cluster analysis is a technique used for combining observations into groups such that: 

(a) Each group is homogeneous or compact with respect to certain characteristics i.e., 

observations in each group are similar to each other. 

(b) Each group should be different from other groups with respect to the characteristics 

i.e., observations of one group should be different from the observations of other 

groups. 

There are various mathematical methods which help to sort objects in to a group of similar 

objects called a Cluster. Cluster analysis is used in diversified research fields. In biology, 

cluster analysis is used to identify diseases and their stages. For example by examining patients 

who are diagnosed as depressed, one finds that there are several distinct sub-groups of 

patients with different types of depression. In marketing cluster analysis is used to identify 

persons with similar buying habits. By examining their characteristics it becomes possible to 

plan future strategies more efficiently. 

Example 3: We will use the data given in Example 2 for cluster analysis using R. 

Steps 1, 2: Follow the Steps 1 and 2 mentioned in PCA.  

Step 3: Normalize the data (Sometimes normalization is essential for cluster analysis) 

means <- apply(dat1,2,mean) 

sds <- apply(dat1,2,sd) 

nor <- scale(dat1,center=means,scale=sds) 

Step 4: Calculate the distance matrix 
 distance = dist(nor) 

Step 5: Select the clustering method 

a. Default method (Hierarchical agglomerative clustering) 

mydata.hclust = hclust(distance) 

plot(mydata.hclust) 

 

Cluster membership:  

member = cutree(mydata.hclust, n) ###Select n (number of clusters, say 
n=3) 
[1] 1 1 2 2 1 1 3 1 1 1 1 2 1 1 1 
Table: member 
 1  2  3  
 11  3  1  
 
 



 

 

Dendrogram: 

 

b. Average linkage method 

mydata.hclust = hclust(distance, method = “average”) 

plot(mydata.hclust) 

Cluster membership:  

member = cutree(mydata.hclust, n) ###Select n (number of clusters, 
say n=3) 
[1] 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 
Table: member 
   1  2  3  
   11  3  1  

 
Dendrogram: 

 
c. K-means clustering 

set.seed(123)  ##set seed for results reproducibility 

kc<-kmeans(nor,3) 

print(kc) 

 
K-means clustering with 3 clusters of sizes 5, 3, 7 
Cluster members: 
 [1] 3 1 2 2 1 3 3 3 3 3 1 2 3 1 1 
Cluster means: 
           X1         X2          X3          X4         X5         X6 
1  1.01492019 -0.5231903  0.40335875  0.07683345 -0.4159255 -0.6089339 
2  0.05085677  0.1264368 -0.75013641  1.30454261  1.3631827 -0.0362353 
3 -0.74673875  0.3195201  0.03337364 -0.61397073 -0.2871315  0.4504822 
 



 

 

Within cluster sum of squares by cluster: 
[1] 17.946535  4.653991 29.628320 (between_SS / total_SS =  37.8 %) 
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