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PREFACE

Applications of appropriate experimental designs and statistical techniques forms the backbone of
any research endeavour in agriculture and allied sciences. In order to maintain and improve the
quality of agricultural research, it is of paramount importance that sound and modern statistical
methodologies are used in the collection and analysis of data and then in the interpretation of
results. The use of efficient and cost effective designs and appropriate statistical techniques for
analyzing the data are very crucial to obtain a meaningful interpretation of the investigation. In
this endeavor, ICAR-Indian Agricultural Statistics Research Institute, New Delhi has established
itself in the field of Agricultural Statistics in general and Design of Experiments in particular.

This teaching manual on Statistics: Experimental Designs and Analysis has been prepared for
students of Afghanistan National Agricultural Sciences and Technology (ANASTU),
Afghanistan under a course for their M.Sc. programme in collaboration with PG School IARI,
New Delhi. Total 26 students with 9 from Plant Protection and 17 from Horticulture disciplines
of ANASTU attended this course scheduled from April 13 to May 8, 2020. Due to the COVID-19
pandemic during this period, the course was taken through online mode. The manual contains the
lecture notes on different topics covered during this course starting from the basic statistical
methods, testing of hypothesis, efficient design of experiments and analytical techniques of
experimental data to multivariate statistical techniques along with some other useful statistical
tools like data diagnostics and transformation, probit analysis, logistic regression, non-parametric
test etc.. Emphasis has been also given on interpretation and presentation of results. Notes on
MS-Excel and R along with online tools in the field of design of experiments that have been used
for practical exercises have also been included. We are sure that this manual will be very much
useful for the students in their current and future research studies.

We take this opportunity to thank all the students who have attended the course through online
mode with full devotion and energy. Although every editorial care has been taken in compiling
the teaching manual from available lecture notes of different faculty of ICAR-1ASRI, New Delhi,
errors and omissions are likely to occur. We welcome the constructive suggestions on any
modifications/ improvements in this manual. We are thankful to ANASTU and Professor
Anupam Varma for having faith on us for organizing this course. Our acknowledgements to Dr.
VK Baranwal, Professor (Plant Pathology) and Dr. TK Behera, Professor (Vegetable Science).
We are also grateful to Director, ICAR-IARI, Dean PG School, IARI and Director, ICAR-IASRI,
for their full support for undertaking this course. We are also thankful to one and all for their
efforts and help in preparing this manual.

New Delhi Course Instructors
08 May, 2020
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DESCRIPTIVE STATISTICS

1. Descriptive Statistics

Descriptive statistics are used to describe the basic features of the data in a study. They provide
simple summaries about the sample and the measures. Together with simple graphics analysis,
they form the basis of virtually every quantitative analysis of data. Descriptive Statistics are used
to present quantitative descriptions in a manageable form. In a research study, there may be lots
of measures or we may measure a large number of people on any measure. Descriptive statistics
help us to simplify large amounts of data in a sensible way. Each descriptive statistic reduces lots
of data into a simpler summary. There are two basic methods: numerical and graphical. Using the
numerical approach one might compute statistics such as the mean and standard deviation. These
statistics convey information about the average degree of shyness and the degree to which people
differ in shyness. Graphical methods are better suited than numerical methods for identifying
patterns in the data. Numerical approaches are more precise and objective. Since the numerical
and graphical approaches compliment each other, it is wise to use both.

The raw data consist of measurements of some attribute on a collection of individuals. The
measurement would have been made in one of the following scales viz., nominal, ordinal, interval
or ratio scale.

2. Levels of Measurement

¢ Nominal scale refers to measurement at its weakest level when number or other symbols are
used simply to classify an object, person or characteristic, e.g., state of health (healthy,
diseased).

e Ordinal scale is one wherein given a group of equivalence classes, the relation greater than
holds for all pairs of classes so that a complete rank ordering of classes is possible, e.g.,
socio-economic status.

e When a scale has all the characteristics of an ordinal scale, and when in addition, the
distances between any two numbers on the scale are of known size, interval scale is
achieved, e.g., temperature scales like centigrade or Fahrenheit.

e An interval scale with a true zero point as its origin forms a ratio scale. In a ratio scale, the
ratio of any two scale points is independent of the unit of measurement, e.g., height of trees.
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Descriptive Statistics

3. Types of Descriptive Statistics

e Graphs and Frequency Distribution
These represent the data enabling the researcher to see what the distribution of scores look
like.

e Measures of Central Tendency
These measures are the indices that enable to determine the average score of a group of
scores.

e Measures of Variability
These measures are indices that enable to indicate how spread out a group of scores are.

4. Frequency Distribution

The frequency distribution is a summary of the frequency of individual values or ranges of values
for a variable. Preparation of frequency distribution is an often-used technique in statistical works
when summarizing large masses of raw data, which leads to information on the pattern of
occurrence of predefined classes of events.

Ungrouped Data: The simplest distribution would list every value of a variable and the number
of persons who had each value.

Grouped Data: A way to summarize data is to distribute it into classes or categories and to
determine the number of individuals belonging to each class, called the class frequency. It is
easier to see patterns in the data, but there is loss of information about individual scores.

A tabular arrangement of data by classes together with the corresponding class frequencies is
called a frequency distribution or frequency table. Following is the raw data on some
measurements and its frequency distribution:

86 77 91 60 55
76 92 47 88 67
23 59 72 75 83
77 68 82 97 89
81 75 74 39 67
79 83 70 78 91
68 49 56 94 81

Table 1: Grouped frequency distribution

Class Interval Frequency Proportion Cumulative Frequency
20-under 30 1 0.028 1
30-under 40 1 0.028 2
40-under 50 2 0.057 4
50-under 60 3 0.086 7
60-under 70 5 0.143 12
70-under 80 10 0.287 22
80-under 90 8 0.228 30
90-under 100 5 0.143 35

Following is a frequency distribution of Diameter at Breast Height (DBH) recorded to the nearest
cm, of 80 teak trees in a sample plot.
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Table 2: Frequency distribution of DBH of teak trees in a plot

DBH class Frequency
(cm) (Number of trees)
11-13 11
14 - 16 20
17 -19 30
20 - 22 15
23-25 4
Total 80

5. Graphical Representation of Data

Frequency distributions are often graphically represented by a histogram or frequency polygon.
A histogram consists of a set of rectangles having bases on a horizontal axis (the x axis) with
centres at the class marks and lengths equal to the class interval sizes and areas proportional to
class frequencies. If the class intervals all have equal size, the heights of the rectangles are
proportional to the class frequencies and it is then customary to take the heights numerically
equal to the class frequencies. If class intervals do not have equal size, these heights must be
adjusted. A frequency polygon is a line graph of class frequency plotted against class mark. It can
be obtained by connecting midpoints of the tops of the rectangles in the histogram.
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Fig. 1: Histogram and frequency curce showing the frequency distribution of DBH

The qualitative data is summarized in a frequency, relative frequency, or percent frequency
distribution using bar chart. On the horizontal axis we specify the labels that are used for each of
the classes. A frequency, relative frequency, or percent frequency scale is used for the vertical
axis. Using a bar of fixed width drawn above each class label, the height can be extended
appropriately. The bars are separated to emphasize the fact that each class is a separate category.
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Fig. 2: Bar chart of cropping pattern

Pie chart is commonly used graphical device for presenting relative frequency distributions for
qualitative data. Draw a circle; then use the relative frequencies to subdivide the circle into
sectors that correspond to the relative frequency for each class. Since there are 360 degrees in a
circle, a class with a relative frequency of .25 would consume .25(360) = 90 degrees of the circle.
The above given cropping pattern is displayed in pie chart as follows:

Others
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7%

Cereals
Qilseeds 59%
18%

Fig. 3: Pie chart of cropping pattern

Having prepared a frequency distribution, a number of measures can be generated out of it, which
leads to further condensation of the data. These are measures of location or central tendency,
dispersion, skewness and kurtosis.

6. Measures of Central Tendency
The central tendency of a distribution is an estimate of the "center” of a distribution of values.
There are three major types of estimates of central tendency:

e Mean
e Median
e Mode
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The Mean or average is probably the most commonly used method of describing central
tendency. To compute the mean add up all the values and divide by the number of values. The
arithmetic mean (X) or the mean of a set of N numbers X3, X, Xs,..., X\ IS

Xp + X5 4o Xy
N

Mean =

If the numbers X3, Xa,..., Xk occur fy, fo,...,f times respectively i.e., occur with frequencies fi, f,
..., Tk, the arithmetic mean is

fix, +f,%5 +..+F X,
f,+f, +..+1,

Mean =

Consider the data given in Table 2,

DBH class Frequency (f) X xf
(cm) (Number of trees)
11-13 11 12 132
14-16 20 15 300
17-19 30 18 540
20 - 22 15 21 315
23-25 4 24 96
Total 80 80 1383

Mean = @: 17.29cm.
80

The Median is the score found at the exact middle of the set of values. One way to compute the
median is to list all scores in numerical order, and then locate the score in the center of the
sample. For example, let 8 scores be ordered as 15, 15, 15, 20, 20, 21, 25, 36. Score number 4
and 5 represent the halfway point. Since both of these scores are 20, the median is 20. If the two
middle scores had different values, then average of two would determine the median.

For grouped data, the median is obtained using following:

N
5—(Zf)1
Median = L+ R C,

m

where L is lower class limit of the median class (i.e., the class containing the median), (3:f), is

sum of frequencies of all classes lower than the median class, f, is the frequency of median class
and c is the class interval.

Geometrically, the median is the value of x (abscissa) corresponding to that vertical line which
divides a histogram into two parts having equal areas.
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For Table 2,
DBH class X Frequency (f) Cumulative
(cm) (Number of trees) | Frequency
11-13 12 11 11
14-16 15 20 31
17-19 18 30 61
20 - 22 21 15 76
23 - 25 24 4 80
Total 80 80

N / 2 = 40 which falls in the class 17-19 and is thus the median class.

@—31

Median = 16,5+ 230 3=174cm.

The Mode is the most frequently occurring value in the set of scores. To determine the mode,
order the scores and then count each one. The most frequently occurring value is the mode. In the
example 15, 15, 15, 20, 20, 21, 25, 36, the value 15 occurs three times and is the mode. In some
distributions there is more than one modal value. For instance, in a bimodal distribution there are
two values that occur most frequently. The set 2, 3, 4, 4,4,5,5,7,7, 7,9 has two modes 4 and 7
and is called bimodal.

In case of grouped data, the mode will be the value (or values) of x corresponding to the
maximum point (or points) on the curve. From a frequency distribution or histogram, the mode
can be obtained from the formula,

Mode:L+( f; jc,
f, +f,

where L is the lower class limit of modal class (the class containing the mode), f; is the
frequency of the class previous to the modal class, f; is frequency of the class just after the modal
class and c is the size of modal class.

From Table 2, the maximum frequency is 30 and hence the modal class is 17-19.

15 3 =17.79 cm.
5+20

Mode = 16.5+ (1

Notice that for the same set of scores, we may get different values for the mean, median and
mode. If the distribution is truly normal (i.e., bell-shaped), the mean, median and mode are all
equal to each other. With three different measures of central tendency, how to know which one to
use? The answer depends a lot on the data and what is to be communicated.

While the mean is the most frequently used measure of central tendency, it does suffer from one
major drawback. Unlike other measures of central tendency, the mean can be influenced

6
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profoundly by one extreme data point (referred to as an "outlier"). The median and mode clearly
do not suffer from this problem. There are certainly occasions where the mode or median might
be appropriate. For qualitative and categorical data, the mode makes sense, but the mean and
median do not. For example, when we are interested in knowing the typical soil type in a locality
or the typical cropping pattern in a region we can use mode. On the other hand, if the data is
quantitative one, we can use any one of the averages.

If the data is quantitative, then one has to consider the nature of the frequency distribution. When
the frequency distribution is skewed (not symmetrical) the median or mode will be proper
average. In case of raw data in which extreme values, either small or large, are present, the
median or mode is the proper average. In case of a symmetrical distribution either mean or
median or mode can be used. However, as seen already, the mean is preferred over the other two.
The mean, median, and mode can be related (approximately) to the histogram: the mode is the
highest bump, the median is where half the area is to the right and half is to the left, and the mean
is where the histogram would balance.

The Harmonic mean H of the positive real numbers X1, Xz, ..., X, is defined to be

n
1 1 1
e et SRR
X, X, X

H=

Equivalently, the harmonic mean is the reciprocal of the arithmetic mean of the reciprocals. If a
set of weights wi,...,w, is associated to the dataset Xi,...,X,, the weighted harmonic mean is
defined by

n
W,
i=1

H=—"—
2%

The geometric mean of a data set X, ..., X, IS given by
G=(xlx2...xn)%

When dealing with rates, speed and prices, harmonic mean may be used. If interested in relative
change, as in the case of bacterial growth, cell division etc., geometric mean is the most
appropriate average.

7. Measures of Dispersion

Averages are representatives of a frequency distribution but they fail to give a complete picture of
the distribution. They do not tell anything about the scatterness of observations within the
distribution.

Suppose that we have the distribution of the yields (kg per plot) of two paddy varieties from 5
plots each. The distribution may be as follows:

Variety | 45 42 42 41 40
Variety 11 54 48 42 33 30
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It can be seen that the mean yield for both varieties is 42 kg. But we can not say that the
performance of the two varieties are same. There is greater uniformity of yields in the first variety
whereas there is more variability in the yields of the second variety. The first variety may be
preferred since it is more consistent in yield performance. From the above example, it is obvious
that a measure of central tendency alone is not sufficient to describe a frequency distribution. In
addition to it, a measure of scatterness of observations should be there. The scatterness or
variation of observations from their average is called the dispersion. There are different
measures of dispersion like the range, the quartile deviation, the mean deviation and the standard
deviation.

The Range is simply the highest value minus the lowest value. The Standard Deviation (S.D) is
a more accurate and detailed estimate of dispersion because an outlier can greatly exaggerate the
range. The Standard Deviation shows the relation that set of scores has to the mean of the sample.
The standard deviation is the square root of the sum of the squared deviations from the mean
divided by the number of scores.

Standard Deviation =

If X1, Xo,...,Xk Ooccur with frequencies f;, f,,...,fx respectively, the standard deviation can be
computed as

> fix} 2fix; K
Standard Deviation = , = = —| = , N=Tf,
N N i=1
Consider the data given in Table 2.
DBH class Frequency (f) X fx x*
(cm) (Number of trees)
11-13 11 12 132 1584
14 - 16 20 15 300 4500
17-19 30 18 540 9720
20 - 22 15 21 315 6615
23-25 4 24 96 2304
Total 80 80 1383 24723
2
Standard Deviation = \/24723— (1383J =3.19cm.
80 80

The variance of a set of data is defined as the square of the standard deviation. Mean deviation
is the mean of the deviations of individual values from their average. The average may be either
mean or median. For raw data the mean deviation from the median is the least.
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Measures of Relative Dispersion

Suppose that the two distributions to be compared are expressed in the same units and their
means are equal or nearly equal. Then their variability can be compared directly by using their
standard deviations. However, if their means are widely different or if they are expressed in
different units of measurement, we can not use the standard deviations as such for comparing
their variability. We have to use the relative measures of dispersion in such situations.

There are relative dispersions in relation to range, the quartile deviation, the mean deviation, and
the standard deviation. Of these, the coefficient of variation which is related to the standard
deviation is important. The ratio of standard deviation (S.D) to mean expressed in percentage is
called coefficient of variation,

C.V.=(S.D./ Mean) x 100

The C.V. is a unit-free measure. It is always expressed as percentage. The C.V. will be small if
the variation is small. Of the two groups, the one with less C.V. is said to be more consistent.

The coefficient of variation is unreliable if the mean is near zero. Also it is unstable if the
measurement scale used is not ratio scale. The C.V. is informative if it is given along with the
mean and standard deviation. Otherwise, it may be misleading.

Suppose that the variation in height of seedlings and that of older trees of a species are to be
compared. Let the mean height of seedlings be 50 cm and standard deviation of height of
seedlings be 10 cm. Further let the mean height of trees be 500 cm with standard deviation of
height of seedlings as 100 cm. By the absolute value of the standard deviation, one may tend to
judge that variation is more in the case of trees but the relative variation, as indicated by the
coefficient of variation (20%), is the same in both the sets.

Consider the measurements on yield and plant height of a paddy variety. The mean and standard
deviation for yield are 50 kg and 10 kg respectively. The mean and standard deviation for plant
height are 55 cm and 5 cm, respectively.

Here the measurements for yield and plant height are in different units. Hence, the variability can
be compared only by using coefficient of variation. For yield,

C.V.=(10/50) x 100 = 20 %
For plant height,
C.V.=(5/55)x 100=9.1 %
The yield is subject to more variation than the plant height.

8. Shape of the Distribution

An important aspect of the "description” of a variable is the shape of its distribution, which tells
the frequency of values from different ranges of the variable. A researcher is interested in how
well the distribution can be approximated by the normal distribution Simple descriptive statistics
can provide some information relevant to this issue. For example, if the skewness (which
measures the deviation of the distribution from symmetry) is clearly different from 0, then that
distribution is asymmetrical, while normal distributions are perfectly symmetrical. If the

9
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kurtosis (which measures "peakedness™ of the distribution) is clearly different from 0, then the
distribution is either flatter or more peaked than normal; the kurtosis of the normal distribution is
0.

Skewness is the degree of asymmetry, or departure from symmetry, of a distribution. If the
frequency curve (smoothed frequency polygon) of a distribution has a longer ‘tail’ to the right of
the central maximum than to the left, the distribution is said to be skewed to the right or to have
positive skewness. If the reverse is true, it is said to be skewed to the left or to have negative
skewness. An important measure of skewness expressed in dimensionless form is given by

5
u3

Cefficient of skewness = B, =

where p, and pg are the second and third central moments defined using the formula,
N

> (X =X)

_ i=
My N

For grouped data, the above moments are given by

N
> —x)
i

My = N
For a symmetrical distribution, B;= 0. Skewness is positive or negative depending upon whether
B1 is positive or negative.

Kurtosis is the degree of peakedness of a distribution, usually taken relative to a normal
distribution. A distribution having a relatively high peak is called leptokurtic, while the curve
which is flat-topped is called platykurtic. A bell shaped curve which is not very peaked or very
flat-topped is called mesokurtic. The measure of kurtosis, expressed in dimensionless form, is
given by

Ha

Cefficient of kurtosis = B, = —,

Mo

where ps and p, can be obtained from the formula as given above. The distribution is called
normal if B, = 3. When B, is more than 3, the distribution is said to be leptokurtic. If B, is less
than 3, the distribution is said to be platykurtic.

10
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PROBABILITY DISTRIBUTIONS

The concept of probability plays an important role in all problems of science and every day life
that involves an element of uncertainty. Probabilities are defined as relative frequencies, and to
be more exact as limits of relative frequencies. The relative frequency is nothing but the
proportion of time an event takes place in the long run. When an experiment is conducted, such
as tossing coins, rolling a die, sampling for estimating the proportion of defective units, several
outcomes or events occur with certain probabilities. These events or outcomes may be regarded as
a variable which takes different values and each value is associated with a probability. The values
of this variable depend on chance or probability. Such a variable is called a random variable.
Random variables which take a finite number of values or to be more specific those which do not
take all values in any particular range are called discrete random variables. For example, when 20
coins are tossed, the number of heads obtained is a discrete random variable and it takes values
0,1,...,20. These are finite number of values and in this range, the variable does not take values
such as 2.8, 5.7 or any number other than a whole number. In contrast to discrete variable, a
variable is continuous if it can assume all values of a continuous scale. Measurements of time,
length and temperature are on a continuous scale and these may be regarded as examples of
continuous variables. A basic difference between these two types of variables is that for a discrete
variable, the probability of it taking any particular value is defined. For continuous variable, the
probability is defined only for an interval or range. The frequency distribution of a discrete
random variable is graphically represented as a histogram, and the areas of the rectangles are
proportional to the class frequencies. In continuous variable, the frequency distribution is
represented as a smooth curve.

Frequency distributions are broadly classified under following two heads:
Observed frequency distributions and
Theoretical or Expected frequency distributions

Observed frequency distributions are based on observations and experimentation. As
distinguished from this type of distribution which is based on actual observation, it is possible to
deduce mathematically what the frequency distributions of certain populations should be. Such
distributions as are expected from on the basis of previous experience or theoretical
considerations are known as theoretical distributions or probability distributions.

Probability distributions consist of mutually exclusive and exhaustive compilation of all random
events that can occur for a particular process and the probability of each event’s occurring. It is a
mathematical model that represents the distributions of the universe obtained either from a
theoretical population or from the actual world, the distribution shows the results that are
obtained if many probability samples are taken and the statistics is computed for each sample. A
table listing all possible values that a random variable can take on together with the associated
probabilities is called a probability distribution.

The probability distribution of X, where X is the number of spots showing when a six-sided
symmetric die is rolled is given below:
X 1 2 3 4 5 6
fX) 16 16 1/6 1/6 1/6 1/6
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The probability distribution is the outcome of the different probabilities taken by the function of
the random variable X.

Knowledge of the expected behaviour of a phenomenon or the expected frequency distribution is
of great help in a large number of problems in practical life. They serve as benchmarks against
which to compare observed distributions and act as substitute for actual distributions when the
latter are costly to obtain or cannot be obtained at all.

We now introduce a few discrete and continuous probability distributions that have proved
particularly useful as models for real-life phenomena. In every case the distribution will be
specified by presenting the probability function of the random variable.

DISCRETE PROBABILITY DISTRIBUTIONS

Uniform Distribution

A uniform distribution is one for which the probability of occurrence is the same for all values of
X. It is sometimes called a rectangular distribution. For example, if a fair die is thrown, the
probability of obtaining any one of the six possible outcomes is 1/6. Since all outcomes are
equally probable, the distribution is uniform.

Definition: If the random variable X assumes the values X1,X,...,.Xx With equal probabilities, then
the discrete uniform distribution is given by

P(X=x)= % for i=1,2,...k

Example: Suppose that a plant is selected at random from a plot of 10 plants to record the height.
Each plant has the same probability 1/10 of being selected. If we assume that the plants have
been numbered in some way from 1 to 10, the distribution is uniform with f(x; 10) = 1/10 for x =
1,...,10.

Binomial Distribution

Binomial distribution is a probability distribution expressing the probability of one set of

dichotomous alternatives i.e. success or failure. More precisely, the binomial distribution refers to

a sequence of events which posses the following properties:

1. An experiment is performed under same conditions for a fixed number of trials say, n.

2. In each trial, there are only two possible outcomes of the experiment ‘success’ or ‘failure’.

3. The probability of a success denoted by p remains constant from trial to trial.

4. The trials are independent i.e. the outcomes of any trial or sequence of trials do not affect the
outcomes of subsequent trials.

Consider a sequence of n independent trials. The interest is in the probability of x successes from
n trials, a binomial distribution is obtained where x takes the values from 0,1,...,n.

Definition: A random variable X is said to follow a binomial distribution with parameters n and
p if its probability function is given by

P[X=x] = (D p*g"™™, x=0,1,..,n,0<p<1.

12
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The probability of success are the successive terms of the binomial expansion (gq+p)". The
probable frequencies of the various outcomes in N sets of n trials are N(g+p)". The frequencies
obtained by this expression are known as expected or theoretical frequencies. The frequencies
actually obtained by making experiments are called observed frequencies. Generally, there is
some difference between the observed and expected frequencies but the difference becomes
smaller and smaller as N increases.

The various constants of the binomial distribution are as follows:
Mean = np
Variance = npq (mean > variance)
First moment u; =0
Second moment u, = npq
Third moment p3 = npq(g-p)
Fourth moment s = 3np®g” + npq(1-6pq)

ﬁlz(q—p)"‘ _q-p

l 7/ -
g 7t Jnpg

1-6 1-6
By =3+ T, = M

npq npq

Properties of the binomial distribution

1. The shape and location of the distribution changes as p changes for a given n or as n changes
for a given p. As p increases for a fixed n, the binomial distribution shifts to the right.

2. The mode of the binomial distribution is equal to the value of x which has the largest
probability. The mean and mode are equal if np is an integer.

3. Asnincrease for a fixed p, the binomial distribution moves to right, flattens and spreads out.
When p and q are equal, the distribution is symmetrical, for p and g may be interchanged
without altering the value of any term, and consequently terms equidistant from the two ends
of the series are equal. If p and g are unequal, the distribution is skewed. If p < 1/2, the
distribution is positively skewed and when p > 1/2, the distribution is negatively skewed.

4. If nis large and if neither p nor q is too close to zero, the binomial distribution can be closely
approximated by a normal distribution with standardized variable given by

X—-np

Jnpg

The binomial probability distribution is a discrete probability distribution that is useful in
describing an enormous variety of real life events. For example, an experimenter wants to know
the probability of obtaining diseased trees in a ra 4ndom sample of 10 trees if 10 percent of the
trees are diseased. The answer can be obtained from the binomial probability distribution. The
binomial distribution can be used to know the distribution of the number of seeds germinated out
of a lot of seeds sown.

7=

Ilustration: The incidence of disease in a forest is such that 20% of the trees in the forest have
the chance of being infected. What is the probability that out of six trees selected, 4 or more will
have the symptoms of the disease?

13
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Solution: The probability of a tree having being infected is

_ 20 _1
P10 " s
and the probability of not being infected = 1- % = %

Hence the probability of 4 or more trees being infected out of 6 will be

roxz- (2)3(%)4(%)2 QOE -QOE

Fitting a binomial distribution: When a binomial distribution is to be fitted to the observed

data, the following procedure is adopted:

1. Evaluate mean of the given distribution and then determine the values of p and q. If one of
these values is known, the other can be found out.

2. Expand the binomial (g+p)". The power n is equal to one less than the number of terms in the
expanded binomial.

3. Multiply each term of the expanded binomial by N (the total frequency) in order to obtain the
expected frequency in each category.

Exercise: The following data shows the number of seeds germinating out of 10 on damp filter for
80 sets of seeds. Fit a binomial distribution to this data.

X: 0 1 2 3 4 5 6 7 8 9 10

f: 6 20 28 12 8 6 0 0 0 0 0

- X
Step 1: Calculate X = %
Step 2: Find p and q using mean = np.
Step 3: Expand the binomial 80(q+p)*° and find expected frequencies.

The generalization of the binomial distribution is the multinomial distribution. Whereas in case
of binomial distribution, there are only two possible outcomes on each experimental trial, in the
multinomial distribution there are more than two possible outcomes on each trial. The
assumptions underlying the multinomial distribution are analogous to the binomial distribution.
These are:
1. An experiment is performed under the same conditions for a fixed number of trials, say, n.
2. There are k outcomes of the experiment which may be referred to ey, e, €3,....ex.  Thus the
sample space of possible outcomes on each trial shall be:
S= {el, €7, e3,...,ek}
3. The respective probabilities of the various outcomes i.e., €1, €, €s,...,.ex denoted by pi,p2,
Ps,...,Pk respectively remain constant from trial to trial. (p1+p2+ps+...+pk=1)
4. The trials are independent.

Poisson Distribution
Poisson distribution is a discrete probability distribution and is very widely used in statistical
work. This distribution is the limiting form of the binomial distribution as n becomes infinitely

14
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large and p approaches to zero in such a way that np = A remains constant. A Poisson distribution
may be expected in cases where the change of any individual event being a success is small. The
distribution is used to describe the behaviour of rare events.

Definition: A random variable X is said to follow a Poisson distribution with parameter A if the
probability function is given by

-h A4 X
PIX=x]= & f‘  x=01,.. where e=27183
X!

The various constants of the Poisson distribution are
Mean = A
Variance = A (mean = variance)
First moment u; =0
Second moment p; = A
Third moment pz = A
Fourth moment p = A + 3A2

ol 1
RN Y
1 1

=3+ — = —
B2 x Y2 x

Properties of the Poisson distribution

1. As A increases, the distribution shifts to the right, i.e. the distribution is always a skewed
distribution.

2. Mode: When A is not an integer then unique mode i.e. m = [A]. When X is an integer then
bimodal i.e. m =X and m = A-1.

3. Poisson distribution tends to normal distribution as A becomes large.

In general, the Poisson distribution explains the behaviour of discrete variates where the
probability of occurrence of the event is small and total number of possible cases is sufficiently
large. For example, it is used in quality control statistics to count the number of defects of an
item, or in biology to count the number of bacteria, or in physics to count the number of particles
emitted from a radioactive substance, or in insurance problems to count the number of casualties
etc. The Poisson distribution is also used in problems dealing with the inspection of manufactured
products with the probability that any piece is defective is very small and the lots are very large.
Also used to know the probability of mutations in a DNA segment.

Note also that the only variable needed to generate these distributions is A, the average
occurrence/interval. Moreover, in biology situations often occur where knowing the probability of
no events P(0) in an interval is useful. When x = 0, equation simplifies to P(0) =e™. For example,
we might want to know the fraction of uninfected cells for a known average (A) multiplicity of
virus infection (MOI). Other times, we need to know the average mutation rate/base pair, but our
sequencing determines nearly all wild type sequence, P(0). In each case, if we can determine
either A or P(0), we can solve for the other.
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Fitting a Poisson distribution: The process of fitting a Poisson distribution involves obtaining
the value of A, i.e., the average occurrence, and to calculate the frequency of 0 success. The other
frequencies can be very easily calculated as follows:

N(Po) = Ne™

N(P1) = N(Po) x —

AN IS

N(P2) = N(P1) x >

N(P3) = N(P2) x % etc.

A ‘goodness-of fit’ test will confirm whether or not the fit is close enough to justify the belief that
the distribution is of the Poisson type.

Exercise: The following mutated DNA segments were observed in 325 individuals:
Mutated DNA segments 0 1 2 3 4
Number of individuals 211 90 19 5 0

Fit a Poisson distribution to the data.
Step 1: Calculate the mean
Step 2: Find the different terms N(Po), N(P1),... i.e. the expected frequencies.

Negative Binomial Distribution

The negative binomial distribution is very much similar to the binomial probability model. It is

applicable when the following conditions hold good:

1. An experiment is performed under the same conditions till a fixed number of successes, say c,
are achieved.

2. In each trial, there are only two possible outcomes of the experiment ‘success’ or ‘failure’

3. The probability of a success denoted by p remains constant from trial to trial.

4. The trials are independent i.e. the outcome of any trial or sequence of trials do not affect the
outcomes of subsequent trials.

The only difference between the binomial model and the negative binomial model is about the
first condition.

Consider a sequence of Bernoulli trials with p as the probability of success. In the sequence,
success and failure will occur randomly and in each trial the probability of success will be p. Let
us investigate how much time will be taken to reach the r' success. Here r is fixed, let the number
of failures preceding the r'™ success be x (=0,1,...). The total number of trials to be performed to
reach the r' success will be x+r. Then the probability that r'" success occurs at (x+r)" trial is

X+r-1) .
P(X:x)=( 1 qu o x=0,1,2,...

Ilustration: Suppose that 30% of the items taken from the end of a production line are defective.
If the items taken from the line are checked until 6 defective items are found, what is the
probability that 12 items are examined?
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Solution: Suppose the occurrence of a defective item is a success. Then the probability that there
will be 6 failures preceding the 6™ success will be given by:

(6+6_1] 30)® (.70)® = 0.0396
6_q ) (30°(70)°=0039%.

If r =1, i.e. the first success, then P[X = x] = pq*, x=0,1,2,... which is the probability distribution
of X, the number of failures preceding the first success. This distribution is called as Geometric
distribution.

Hypergeometric Distribution

The hypergeometric distribution occupies a place of great significance in statistical theory. It
applies to sampling without replacement from a finite population whose elements can be
classified into two categories - one which possess a certain characteristic and another which does
not possess that characteristic. The categories could be male-female, employed-unemployed etc.

When n random selections are made without replacement from the population, each subsequent
draw is dependent and the probability of success changes on each draw. The following conditions
characterise the hypergeometric distribution:

1. The result of each draw can be classified into one of the two categories.

2. The probability of a success changes on each draw.

3. Successive draws are dependent.

4. The drawing is repeated a fixed number of times.

Definition: The probability of r successes in a random sample of n elements drawn without

P(r) = — N
(o

The symbol [n, X] means the smaller of n or X.

forr=0,1,2...,[n,X]

This distribution may be used to estimate the number of wild animals in forests or to estimate the
number of fish in a lake.

The hypergeometric distribution bears a very interesting relationship to the binomial distribution.
When N increases without limit, the hypergeometric distribution approaches the binomial
distribution. Hence, the binomial probabilities may be used as approximation to hypergeometric
probabilities when n/N is small.

CONTINUOUS PROBABILITY DISTRIBUTION

Normal Distribution

The normal distribution is “probably” the most important distribution in Statistics. It is a
probability distribution of a continuous random variable and is often used to model the
distribution of discrete random variable as well as the distribution of other continuous random
variables. The basic form of normal distribution is that of a bell, it has single mode and is
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symmetric about its central values. The flexibility of using normal distribution is due to the fact
that the curve may be centered over any number on the real line and it may be made flat or peaked
to correspond to the amount of dispersion in the values of random variable.

Many quantitative characteristics have distribution similar in form to the normal distribution’s
bell shape. For example height and weight of people, the 1Q of people, height of trees, length of
leaves etc. are typically the type of measurements that produces a random variable that can be
successfully approximated by normal random variable. The values of random variables are
produced by a measuring process and measurements tend to cluster symmetrically about a central
value.

2

Definition: A normal distribution in a variate X with mean p and variance «“ is a statistic

distribution with probability function
1 7()(*“)2

e 262
o2n

on the domain # € (===, =), and ” are parameters of the distribution.

f(x) =

—K
(¢
normal variate with zero mean and standard deviation 1. The probability density function of
standard normal variable Z is

1 2
f(z) = —e™ 12
Jon
Area under the normal curve: For normal variable X,
P(a< X <b) = Areaunder f(x) from X =ato X=b

: : . - X :
If X is a normal random variable with mean p and standard deviation o, then Is a standard

T T T T T 1
mean a b X

The probability that X is between a and b (b > a) can be determined by computing the probability
that Z is between (a- n) / o and (b - )/ o. It is possible to determine the area in Fig. ii by using
tables (for areas under normal curve) rather then by performing any mathematical computations.

Probability associated with a normal random variable X can be determined from Table 1 given at
the end. As indicated in Fig. iii for any normal distribution, 68.27% of the Z values lie within one
standard deviation of mean, 95.45% of values lie within 2 standard deviations of mean and
99.73% of values lie within three standard deviations of mean.
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Fig. i

The normal distribution is symmetric about its mean (zero in this case) and the total area under
curve is 1 (half to the left of zero and half to right), Percentage points (right tail area) of normal
distribution for various values of z are provided in Table 1 in the end.

Properties of normal distribution

1.
2.

ouk w

The normal curve is symmetrical about the mean x = .

The height of normal curve is at its maximum at the mean. Hence the mean and mode of
normal distribution coincides. Also the number of observations below the mean in a normal
distribution is equal to the number of observations above the mean. Hence mean and median
of normal distribution coincides. Thus for normal distribution mean = median = mode.

The normal curve is unimodal at x = p.

The point of inflexion occurs at p £ G.
The first and third quartiles are equidistant from the median.
The area under normal curve is distributed as follows

(@) p+ocovers68.27% of area

(b) w=* 20 covers 95.45% of area

() p+ 3o covers 99.73% of area

Importance of normal distribution

1.

Of all the theoretical distributions, the normal distribution is the most important and is
widely used in statistical theory and work. The most important use of normal distribution is
in connection with generalization from a limited number of individuals observed on to
individuals that have not been observed. It is because of this reason that the normal
distribution is the core heart of sampling theory. The distribution of statistical measures such
as mean or standard deviation tends to be normal when the sample size is large. Therefore,
inferences are made about the nature of population from sample studies.

The normal distribution may be used to approximate many kinds of natural phenomenon
such as length of leaves, length of bones in mammals, height of adult males, intelligence
quotient or tree diameters. For example, in a large group of adult males belonging to the
same race and living under same conditions, the distribution of heights closely resembles the
normal distribution.

For certain variables the nature of the distribution is not known. For the study of such
variables, it is easy to scale the variables in such a way as to produce a normal distribution.
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Table 1: Percentage points (right tail area) of normal distribution for

Probability Distributions

various values of z

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

0.500
0.4602
0.4207
0.3821
0.3446
0.3085
0.2743
0.2420
0.2119
0.1841
0.1587
0.1357
0.1151
0.0968
0.0808
0.0668
0.0548
0.0446
0.0359
0.0287
0.0228
0.0179
0.0139
0.0107
0.0082
0.0062
0.0047
0.0035
0.0026
0.0019
0.0013

0.4960
0.4562
0.4168
0.3783
0.3409
0.3050
0.2709
0.2389
0.2090
0.1814
0.1562
0.1335
0.1131
0.0951
0.0793
0.0655
0.0537
0.0436
0.0351
0.0281
0.0222
0.0174
0.0136
0.0104
0.0080
0.0060
0.0045
0.0034
0.0025
0.0018
0.0013

0.4920
0.4522
0.4129
0.3745
0.2272
0.3015
0.2676
0.2358
0.2061
0.1788
0.1539
0.1314
0.1112
0.0934
0.0778
0.0643
0.0526
0.0427
0.0344
0.0274
0.0217
0.0170
0.0132
0.0102
0.0078
0.0059
0.0044
0.0033
0.0024
0.0018
0.0013

0.4880
0.4483
0.4090
0.3707
0.3336
0.2981
0.2643
0.2327
0.2033
0.1762
0.1515
0.1292
0.1093
0.0918
0.0764
0.0630
0.0516
0.0418
0.0336
0.0268
0.0212
0.0166
0.0129
0.0099
0.0075
0.0057
0.0043
0.0032
0.0023
0.0017
0.0012

0.4840
0.4443
0.4052
0.3669
0.3300
0.2946
0.2611
0.2297
0.2005
0.1736
0.1492
0.1271
0.1075
0.0901
0.0749
0.0618
0.0505
0.0409
0.0329
0.0262
0.0207
0.0162
0.0125
0.0096
0.0073
0.0055
0.0041
0.0031
0.0023
0.0016
0.0012

0.4801
0.4404
0.4013
0.3632
0.3264
0.2912
0.2578
0.2266
0.1977
0.1711
0.1469
0.1251
0.1056
0.0885
0.0735
0.0606
0.0495
0.0401
0.0322
0.0256
0.0202
0.0158
0.0122
0.0094
0.0017
0.0054
0.0040
0.0030
0.0022
0.0016
0.0011

0.4761
0.4364
0.3974
0.3594
0.3228
0.2877
0.2546
0.2231
0.1949
0.1685
0.1446
0.1230
0.1038
0.0869
0.0721
0.0594
0.0485
0.0392
0.0314
0.0250
0.0197
0.0154
0.0119
0.0091
0.0069
0.0052
0.0039
0.0029
0.0021
0.0015
0.0011

0.4721
0.4325
0.3936
0.3557
0.3192
0.2843
0.2514
0.2206
0.1922
0.1660
0.1423
0.1210
0.1020
0.0853
0.0708
0.0582
0.0475
0.0384
0.0307
0.0244
0.0192
0.0150
0.0116
0.0089
0.0068
0.0051
0.0038
0.0028
0.0021
0.0015
0.0011

0.4681
0.4286
0.3897
0.3520
0.3156
0.2810
0.2483
0.2177
0.1984
0.1635
0.1401
0.1190
0.1003
0.0838
0.0694
0.0571
0.0465
0.0375
0.0301
0.0239
0.0188
0.0146
0.0113
0.0087
0.0066
0.0049
0.0037
0.0027
0.0020
0.0014
0.0010

0.4641
0.4247
0.3859
0.3483
0.3121
0.2776
0.2451
0.2148
0.1867
0.1611
0.1379
0.1170
0.0985
0.0823
0.0681
0.0559
0.0455
0.0367
0.0294
0.0233
0.0183
0.0143
0.0110
0.0084
0.0064
0.0048
0.0036
0.0026
0.0019
0.0014
0.0010
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CORRELATION AND REGRESSION

1. Introduction

In order to study the relationship between two or more variables through correlation and or
regression, it is important to visualize the relation between them graphically. Scatter Plot is the
simplest way of the diagrammatic representation of a bivariate data. It gives the idea of the
distribution of the data like well defined positive or negative linear relationships, non-linear
relationships or no apparent relationship.

2. Scatter Plots

It is the simplest way of the diagrammatic representation of a bivariate data. It gives the idea of
the distribution of the data like well defined positive or negative linear relationships, non-linear
relationships or no apparent relationship. The chart can be created using the Graph menu. To
Obtain Scatterplots: from the menus, choose: Graphs— Scatter. SPSS 10.0 gives three types of
scatter plots viz. simple, overlay, matrix, or 3-D. For getting the desired scatter plot click the icon
and then Select Define — Select variables and options for the chart.

To Obtain Simple Scatterplots: From the menus, choose: Graphs — Legacy dialogs —
Scatter/dot — Select the icon for Simple — Select Define — select a variable for the Y-axis and
a variable for the X-axis. (Caution: These variables must be numeric, but should not be in date
format). — if desired, select a variable and move it into the Set Markers by box. Each value of
this variable is marked by a different symbol on the scatterplot. This variable may be numeric or
string. — If desied, one can select a numeric or a string variable and move it into the Label Cases
by box. You can label points on the plot with this variable.

e |f selected, the value labels (or values if no labels are defined) of this variable are used as
point labels.

e If we do not select a variable to label Cases by, case numbers can be used to label outliers and
extremes.

e Select Options to specify the treatment of missing values in the data and control whether
labels are to be displayed for points on the plot.

e Select Titles to define lines of text to be placed at the top or bottom of the plot.

To Obtain Overlay Scatterplots: This option is used to obtain plots for two or more variable
pairs.

Select Graphs— Legacy dialogs — Scatter— Select the icon for Overlay— Select Define —
Select at least two pairs of variables, Select each variable separately. The first variable will
appear in the Current Selections list box as Variable 1, and the second variable will appear as
Variable 2. To deselect a variable, select it again in the source variable list. Once a pair of
variables is selected, move the pair into the Y-X box (Caution: Variables should be numeric, but
should not be in date format.). As in case of simple scatter plots, select a numeric or a string
variable and move it into the Label Cases by box. Points on the plot are labeled with the selected
variable.

To reverse the order of the Y and X variables within a selected pair, select Swap Pair. For the
specification of the treatment of the missing values and case labels display and for titles, follow
the steps as in simple scatter plot.
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To Obtain a Scatterplot Matrix: This option plots all possible combinations of two or more
numeric variables against one another. For obtaining a Scatterplot matrix, select the icon for
Matrix — Select Define — Select at least two Matrix numeric Variables. Rest options are similar
to the earlier ones.

To Obtain 3-D Scatterplots: This option plots three numeric variables in three dimensions.
Select the icon for 3-D— Select Define — Select one variable for the Y-axis, one for the X-axis
and one for the Z-axis. These variables must be numeric, but should not be in date format.

3. Bivariate and Partial Correlation

A correlation coefficient measures the strength of a linear association between two quantitative
variables. The most commonly used measure of linear correlation between two variables is called
the Pearson-product- moment correlation coefficient or simply the sample correlation coefficient
and is denoted by r. The values of the correlation coefficient is not expressed in units of the data,
but range from -1 to +1. While scatterplot provide a picture of the relation, the value of the
correlation is the same if you switch the Y (vertical) and X (horizontal) measures. The sample
correlation coefficient r is estimated by the formula

Cov(X,Y)

JVar(X)Var(Y)
For a sample of size n, the above expression can be written as
. i(xi -x\yi )
i=1 (n _1)5x5y
where sy and sy are the sample standard deviations of the two variables. The formula can be

simplified to

o Sl

i=1 i=1 i=1

n n 2 n n 2
nZX?—(ZXiJ nzyg—(é)ﬁ]

i=1 i=1 i=1

Test of significance of correlation coefficient
Case I: Let the population correlation coefficient of X and Y is denoted by p, then it is often of

interest to test whether p is zero or different from zero, on the basis of observed correlation

coefficient, r. Thus, if r is the sample correlation coefficient based on a sample of n
observations, then the appropriate test procedure for testing the null hypothesis Hy:p=0

against the alternative Hy :p # 0 is:

rvn-2

V1-r2

2. Compare the computed value of |t|, with the table value of t-distribution with (n—2)degrees
of freedom, and at a given level of significance, say 5 % .

1. Compute the quantity t =
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3. If the computed value of |t| exceeds the table value (as in (ii) above), then Hp:p =0 is
rejected against the alternative Hy:p #0.

Case I1: One may be interested in testing Hg :p = py against the alternative Hy : p # pp. This
sample correlation coefficient based on n pairs of observations is based on the following quantity

Log (1+ r)
2 C\l-r
which is a value of a random variable that follows approximately the normal distribution with

mean %Ioge(?—pj and variance 1/(n—3). Thus the test procedure is to compute

_vn-3 1+_r B 1+ po
Z= 5 (Ioge(l_r) Ioge[l_pOD
_ Jn-3 log @L+r)@- pp)
2 LA+ po

and compare to the critical points of the standard normal distribution. For example, if the
absolute value of Z, |Z|>1.96, then the null hypothesis Hg:p = py against the alternative

Hy:p# pp is rejected at 5% level of significance. The alternative hypotheses p < py or
£ > pp can also be tested using one tailed critical points.

Rank Correlation

In some cases, it is not possible to measure the data and only ranking is done. In such situations,
the rank correlation is worked out which is nothing but the Pearson’s Product moment correlation
coefficient and is defined as the correlation between ranks of individuals with respect to two
characters. This is also known as Spearman’s Rank correlation coefficient and lies between -1

and +1. If d; denotes the difference between the ranks of i individual and n denotes the

number of individuals, then the Spearman’s Rank Correlation Coefficient is given by

52
62 4,
_q__i=l
r=1 ———
n(n“-1)
If there is a tie in the ranks, then the ranks assigned is the average of the ranks assigned to these
individuals had there been no tie. In case of ties, the rank correlation coefficient is given by

G{idiz +3(m3 - m)/lZJ
1

r=1- = , where m is the number of individuals having the same rank.

n(n2 -1

If in a group the data on more than two variables is collected and one is interested in obtaining
the measure of linear association between all pairs of variables, then one can obtain the sample

23



Correlation and Regression

correlation coefficient for all possible pairs of variables. The probability of significance of each
of these correlation coefficients can be obtained using any standard statistical software. However,
if one scans the results for more than one pair of variables, the probabilities of significance are
pseudo probabilities because they are designed to test one and only one correlation for
significance and do not reflect the number of correlations tested. As a result some of the
correlations may appear significant when they are not. The Bonferroni method may be used to
adjust the stated significance levels. In this method, we divide the desired level of significance
by m the number of correlation coefficients and if the probability is less than or equal to this
ratio, then the correlation coefficient is significant at that level of significance. Alternatively, we
multiply the probabilities of significance by m the number of correlation coefficients and if the
probability is less than or equal to the desired level of significance, then the correlation
coefficient is significant at that level of significance.

In the situations, when the number of observations or each pair of variables is not constant, one
has to be cautious in scanning these m values to get a sense of the size of one correlation relative
to another.

Partial Correlation
Sometimes the correlation between two variables Y and X1 may be partly due to the correlation

of a third variable, X, with both Y and X1. The true correlation between Y and Xq can only be
observed once the effect of X, has been eliminated. We accomplish this by means of the sample

partial correlation coefficient. Thus, partial correlation measures the linear association between
two variables after the effects of one or more variables are removed. Partial correlation can reveal
variables that enhance or suppress the relation between two particular variables. For example, if
each Sunday for a year, one counts the number of ants in the kitchen at a beach cabin and the
number of cars passing the house in a five-minute interval, the correlation may be close to 1. Are
the cars bringing the ants? Does this sound silly? A third variable, temperature is ignored. When
the weather is hot, the ants flourish and lots of people flock to the beach; when it is cool, the
numbers of both the cars and ants diminish. If the linear effect of temperature is controlled, the
relationship between ants and cars disappears.

The partial correlation of variables Y and X{ after removing the effect of variable X, (or
“controlling” for variable X5) is estimated as follows:

e Regress variable Y on X».

e Regress variable X1 on X».

e For each case, compute the residuals for each of the regression equations.
e Compute the usual Pearson correlation between the two sets of residuals.

The residuals represent variables Y and X1 with the effect of variable X, removed. The partial
correlation coefficient between Y and X1 after eliminating the effect of variable X is denoted
by the symbol ry; 5. If we write the ordinary correlation coefficients for Y and X1, Y and Xo,
and X1 and X5, as ryq, Iyo, and o, respectively, the sample partial correlation coefficient for
Y and X; with X5, held fixed is given by the following definition.
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Partial Correlation Coefficient: The measure of linear relationship between the variable Y and
Xy after making allowance for their association with X5, is estimated by the sample partial

correlation coefficient ry; o, where

K1 —IWyohp
fy12 = 5 b
J(l‘rvzll‘rlz)

A similar definition applies to ryo 1 which measures the correlation between Y and X, after
eliminating the linear effect of Xj.

The partial correlation coefficients obtained after removing the effect of one variable as discussed
above are called partial correlation coefficients of order one. In some situations, however, we
may have to obtain the partial correlation coefficients after eliminating the effects of two or more
variables. The number of variables that are used for eliminating the effects is known as the order
of the sample partial correlation coefficient.

Test of Significance of Partial Correlation Coefficient
Totest Ho @ pjj.12... =0 against Hy : pjj 12 # 0 compute

r..
t— ij.12... \/m

2
Vi,

where @ is the order of the coefficient. This statistic follows t-distribution with n—6—-2
degrees of freedom. Reject Hg if [t| >t,/2n_9-2.

Steps to obtain correlation coefficient using MS-EXCEL: One can compute correlation
coefficient by using Correl function in MS-EXCEL as CORREL (arrayl,array2), where Arrayl
is a cell range of values and Array?2 is a second cell range of values.

One can also obtain bivariate correlations by using Tools — Data Analysis— Correlation and
then choosing the input and output range. For testing of significance or working out the exact
probability level of significance one may use the following:

Probability level of significance can be obtained by TDIST(x,degrees_freedom,tails), x is the
numeric value at which to evaluate the distribution, Degrees_freedom is an integer indicating
the number of degrees of freedom and Tails specifies the number of distribution tails to return.
If tails = 1, TDIST returns the one-tailed distribution. If tails = 2, TDIST returns the two-tailed
distribution.

Alternatively, we can get the t-value of the Student's t-distribution as a function of the probability
and the degrees of freedom by using TINV (probability, degrees freedom). Here, probability is
the probability associated with the two-tailed Student's t-distribution.

3. Regression

In many statistical studies, the goal is to establish a relationship, expressed via an equation, for
predicting typical values of one variable given the value of another variable(s). In such situations,
regression analysis can be of help to us. The term regression is derived from the original heredity
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studies made by Sir Francis Galton (1822-1911) in which he compared the heights of sons to the
heights of fathers. Galton showed that the heights of the sons of tall fathers over successive
generations regressed towards the mean height of the population. In other words, sons of usually
tall fathers tend to be shorter than their fathers and sons of usually short fathers tend to be taller
than their fathers. Now-a-days, the term regression is most of the prediction problems and does
not necessarily imply a regression towards the population mean. In this section, we deal with the
problem of estimating or predicting the value of a dependent variable given a set of independent
variables. We begin with the case of single independent variable.

Simple Linear Regression
Let the variation in response variable (y) is explained by independent variable (x) called

regressor. Simple regression of y on X or equation of a straight line as a statistical model, add a
term for random error (&) because the points do not fall on the line:

y=L00+ b x+e

The slope (A;) is the ratio between the vertical change and the horizontal change along the line.
Atest B; =0 is same as that of a test that correlation coefficient (r) is zero as r = ;s Isy.

The intercept ( £ or constant as it is often called) is where the line intercepts the vertical axis at
x=0.

To represent the errors (€) in the model, draw a short vertical line from each point to the line. The
lengths of these line segments between the line and the plot points are called residuals and are
estimates for the true errors.

In the above equation, y is the dependent or outcome or predicted variable, the one you are
trying to predict; x is the independent or predictor variable; and the intercept ( /) and slope

(By) are coefficients. If the model is a good descriptor of the relation between the variables, one

can use the estimates of the coefficients to predict the value of the dependent variable for new
cases.

Fitting of Simple Regression
Suppose n observations are made on y and X. Then, for each observation we have unobserved

error term ¢j.  We make the following assumptions regarding the &'s, which are random

variables (i) errors are independent (ii) errors have zero mean and constant variance (02). These
assumptions can also be written as

E(5)=0, Var(sj)=c? forall i=12,---n.

Cov(s;,&1)=0 forall i #i'=12,...,n

Estimation of Parameters

The method of least squares for estimating the parameters /3, f1 as also 02, requires the

minimization of the error sum of squares, i.e., the sum of the squares of the vertical line
segments, given by
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n n 2

S=>¢f =2 (vi~Bo - Prxi)

Differentiating S w.r.t. Sy and f1, and equating the derivatives to zero, we get a set of two
equations as

DYi =NBo+ B DX

i1 i-1
n n n 2
2 %Y =B X+ B X
i1 i1 i

These equations are called normal equations. The solution of these equations gives us the
least squares estimates of Sy and S as by and by

by = Sxy/ Sxx
bo =y -byX

0 ni XiYi —(i X J{i Yi]

where Sy, = >’ (x —X)(y; ~§) ="
i=1

n n 2
N> xf {Z X j
i=1

n h
and Sy =Y (x-%)% ="
i-1

Further, let Syy =Sy /(N=1 and
n Xy Xy ( )

Syx =Sy /(N-1).

It should be noted that these estimates do minimize the error sum of squares, S. The fitted
regression equation is thus

9 =Do +byx
or y=y+b(x—X)

The 'hat' over Yy indicates that if were substitute for x a value that is within the observed range
of the predictor X, but has not necessarily been observed, then the regression equation gives us

the predicated y for that given value of x. Note that if we set x=X in the fitted regression
equation, then y =y, meaning thereby that the point ()"(, 7) lies on the regression line.

Estimation of 02

In addition to estimating Sy and pp, an estimate of o2 is required to test hypotheses and

construct interval estimates pertinent to the regression model. Ideally, we would like this estimate
not to depend on the adequacy of the fitted model. This is only possible when there are several

observations on Yy for at least one value of X, or when prior information concerning % is

available. When this approach cannot be used, the estimate of o2 is obtained from the residual
or error sum of squares.
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N2 & .~ \2
SSE= Y &f = (yi-¥i)
i=1 i=1

A convenient computing formula for SSE may be found by substituting ¥ =bg+byXx; and
simplifying, yielding

n
SSE=3 yZ —ny% -byS,y =Sy —bySyy
i=1

The residual sum of square has (n —2) degrees of freedom, two degrees are associated with the
estimates by and by, involved in obtaining ¥;. Now the expected value of SSE is

E(SSE)=(n—2)o? s0 an unbiased estimator of o is

The quantity MSE is called the error mean square or the residual mean square. The square root
of s? is sometimes called the standard error of regression, and it has the same units as the

response variable y. Because o2 depends on the residual sum of squares, any violation of the
assumption on the model errors or any misspecification of the model form may seriously damage

the usefulness of s2 as an estimate of &2.

The above splitting of the total sum of squares due to y's into two components can be formally
put in an Analysis of variance table, as below:

Analysis of Variance: Simple Linear Regression

Source of Variation d.f. S.S. M.S.
Regression 1 by Syy MSR
Deviation form Regression | n—2 SSE | 42 _ SSE/(n—2)=MSE
(Residual)

Total (corrected mean) n-1 Syy

The total variation in Yy is partitioned in two parts as variations due to regression and deviation
from regression. The test statistic is
_ MSR

~ MSE
Fo follows Fy,n_; distribution of Hg: B =0 if Fg >F,1n_5.

0

n
We have seen above that SSE=)" yi2 —n72 —0ySyy =Sy =0y Syy . It can further be simplified
i=1
to
SSE=(n—-1)(syy —b1Sxy)
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Now dividing both sides by (n—1)syy , we obtain

SSE _blsxy
(N=D)syy Syy
r2 zl—i.

(n=Dsyy

From the above, it can be concluded that r2 measures the proportion of the total variation in the
values of Y that can be accounted for or explained by the linear relationship with the values of X.
Thus a correlation of r =0.6 means that 0.36 or 36% of the total variation of the values of Y in

our sample is accounted for by a linear relationship with the values of X. rZ(Square of the
correlation coefficient) is also known the coefficient of determination.

Remark 1: On the similar lines as above, the square of the sample partial correlation coefficient
is called as sample coefficient of partial determination, which represents the ratio of the

unexplained variation to the previously unexplained variation. That is rY21_2 gives us the

proportion of the variation in the values of Y that was unexplained by a regression line involving
only X5 that can now be explained by including Xj in the model along with X .

Precision of estimates
We derive the variances of by,by and y; for obtaining precision of estimates.

3 (xi - XXyi - )

_ _i=l
bl—sxy/Sxx— n

i=1
02
Var(b; )= S
Var(bg ) =Var(y —b;x) =Var(y)+%2 v(b;)

Test of Significance of f's

We are often interested in testing hypothesis about model parameters. The tests are valid, if the
assumption of normality of error terms is satisfied. One may be interested in testing the
hypotheses Hq : Sy =a against Hj : Sy # a. The appropriate test statistic for testing this is

_[po-a _ Jpo-4

t= =
SE(b) 2(1 xZJ

Sl S+ ——

N Sy

29



Correlation and Regression

Which follows, a t-distribution with (n—2) d.f. If Hg is true. Reject Hg if t>t,/0 n 2.

We may be further interested in knowing, whether x is contributing significantly towards
variability in y. This can be known by testing Hg : f; =0 against Hy: 5 #0. We use the
statistic

T
SE(by) [g2
Sy

XX

Which is distributed as t with (n—2) d.f. If Hy is true. Reject Hgif t>ty on .

Alternatively, the analysis of variance can also be used for testing Hq: ;=0 against
Hl:ﬂ1¢0.

Variance of estimated mean and variance of prediction
The variance of ¥; will be derived for the two situations where §; is used as an estimate of the

mean and where it is used as a prediction. Variance when ¥; is used as the estimate of true mean
of y at the specific value of x.

¥i =bo +by X =y —by (xj —X)

The variance of the fitted value attains its minimum of &2 /n when the regression equation is
evaluated at x; =X and increases as the value of x moves away from X .

When y; is used as a predictor for some future observation, the variance for prediction must take

into account the fact that the quantity being predicated is itself a random variable. Therefore,
variance for prediction, Var(yi(pred)) is the variance of the difference between §; and the future

observation Y ¢

Note that the variance for prediction is the variance for estimation plus the variance of the
quantity being predicted.
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Example 3.1:
Data of illustration
Observation y X
No.
1 78.5 7
2 74.3 1
3 104.3 11
4 87.6 11
5 95.9 7
6 109.2 11
7 102.7 3
8 72.5 1
9 93.1 2
10 15.9 21
11 83.8 1
12 113.3 11
13 119.4 10

Model to be fitted is y = Sy + 1 X+ ¢

Normal equations for estimation of parameters are
13y +97b; =12505

97bp +113%; =101320
These can also be written as
13 97 bo B 12505
97 1139| |b; | |101320
Parameter estimates are

by =81.792 by =1.930,
(5.437) (0.581)

The figures in the parenthesis denote the SE of the estimated parameter.

Fitted model is y =81.792+1.930x r2 =0:501)
Test of significance of £'s
@ Ho:fo =0, Hy: fo =0,
81.792
t=———=15.043 t o511 =2.201
(b) Ho: o =0, Hy: fo #0,
t= 193 =3.322
581
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Estimated mean response at x=4
Yo =81792+1.930(4) =89.512
V(9q)=14.829 Table value of t,/p11 =2.201

95% confidence interval for mean response Yy is
89.512-2.2014/14.829 < yy <89.512+2.201y14.829

89.512< y, <95.988

If ¥ is used for prediction of future observation, then
V(90)=140101+14.829=154.930

95% confidence interval of prediction Yq is
89.512+2.201/154.930 i.e. 62.116 to 116.108.

Test for Linearity of Regression

For any given problem we assume the regression is linear and proceed with the estimation of
parameters as discussed above. This assumption is made to avoid laborious calculations. A linear
regression equation is always preferred over a nonlinear regression curve if the assumption of
linearity can be justified. Therefore, the linearity of regression must be tested using the following
test.

Let us select a random sample of n observations using k distinct values of X, says X3 Xp,--+, X,

such that the sample contains n; observed values of the random variable y; corresponding to
X1, Ny observed values of y, corresponding to Xo, ---, N, observed value of y corresponding

n
to Xy, N=Y_nj. We define
i=1
yij = jth value of the random variable y;,

yj =sum of the value of y; inour sample.

Hence, if ny =3 measurements of y are made corresponding of X =X, we could indicate these
observations by Y41,Y42, and ys3. Then y4 =Yaq+ Yao +Ya3. Now the computed value

_ i lk=2)
75 1(n—k)

2 )2
where 2 :Z%—%—bz(n—l)sf
|

2 w2 Y
25 =2V —Zn—'_'
|
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is a value of the random variable F, having an F distribution with k—2 and n—k degree of
freedom under the null hypothesis that the relationship is linear and therefore may be used to test
the hypothesis H, for linearity of regression.

When Hg is true, 77 /(k—2) and 3 /(n—k) are independent estimates of &2

Hp is false, ;(12 /(k—2) overestimates o2. Hence, we reject the hypothesis of linearity of

regression at the « level of significance when our f value falls in a critical region of size «
located in the upper tail of the F distribution.

However, if

Multiple Regression
For the situations with more than one independent variables, X1,X5,..., X, say that are the

causes of variation in Y, we fit multiple regression of y on X's to account for this variation.
Multiple regression of y on x's is denoted as

y=PBo+p1xa+PoXp+-+ fpXp +&

where [y denotes intercept and fi's (i =12,..., p) are called partial regression coefficients.

& 1s random error. f; gives average change in y per unit change in X; keeping other X's
constant.

Fitting of Multiple Regression Model
Suppose n observation are made on y and x's. Then for each observation we have our

unobserved error term &j. We make the following assumptions regarding the random variables
&j's same as those in simple linear regression case.

In order to estimate the unknown parameters Sy, S, 5»,..., Bp, We use the method of least
squares which requires minimization of the error sum of squares, given by

n o, 0 2
S=) ¢ =Z(yi—ﬂo—ﬂlxli—ﬁzxzi—'“—ﬁpxpi)

i=1 i=1

Differentiating S w.r.t. Sy, 5, B2.... Bp and equating the derivatives to zero, we get a set of
p+1 equationsin p+1 unknown as

ZY| =nfy +ﬂllel +IBZZX2| +. +ﬂpzxpl

i=1 i=1 i=1
Z‘ile ﬂOZ]:-XlI +:312in| +IBZZin|X2| +. +,szx1|xp|
ZXZM ,BOZX2| +,312X1|X2, "’ﬂZZXZl +. Jr,sz,)(lepl

i=1 i=1 i=1

n n n n n
D XpiYi = Bo - Xpi + B X4 Xpi + B2 XoiXpi +---+ﬂpzxﬁi
i=1 i-1 i=1 i-1 i=1
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These normal equations can be solved simultaneously to get p+1 unknowns. However, it is

better to solve these equations by inverting the matrix of coefficients of right hand side as this
enables us to test significance of f's in a straightforward manner. The above equations can be

written as

n n n n
n 2. Xij D Xoi o D Xpi Vi
i i i o =)
n n 5 n n ,BO n
XX XX XXX o 2 XiXpi || g 2 X4 Yi
i1 i1 i i i

n n n o, n Po | = In
D Xoi DXiXgi DXy e szixpi : 2. %o Yi
i-1 i-1 i—1 = i-1
: : : : Bp :
pri X1i X pi X3iXpi pi pi Vi
i—1 i-1 i-1 i1 =
_ 1 _
n n n n
n 2 X D Xoi o D Xpi 2 Yi
- i-1 i—1 i—1 i-1
bo n N, n n n
by | | 2% XX 2 XiXe v D XaiXpi D X Yi
i—1 i—1 i—1 i—1 i-1
bo [=| n n no, n n
DX Xa 2 XuiXai o XXyt X XoiXpi || 2 XaiVi
i=1 i—1 i—1 i—1 i-1
by : : : : :
- - n n n n 2 n
2 Xpi L XiXpi 2 XiXpi vt X Xpi 2. Xpi Vi
i1 i—1 i—1 i1 | Lz

Let the inverse of the matrix be denoted by

Coo Cor Co2 - Cop
Ci1 Ci2 - Cpp

cC= Cop - C2p
L Cpp

Then, Var(b;)=cjjo®, i=012,---p and COV(bi’bj)ZCijaz'

Estimation of &2

In addition to estimating f's an estimate of o? is required to test hypotheses and construct

interval estimates pertinent to the regression model. Ideally, we would like this estimate not to
depend on the adequacy of the fitted model. This is only possible when there are several

observations on Yy for at least one value of X, or when prior information concerning % is
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available. When this approach cannot be used, the estimate of o2 is obtained from the residual
or error sum of squares.

se-$ ~Ll-nf

i=1 i=1

The residual sum of square has(n— p—l) degrees of freedom, because p-+1 degrees are
associated with the estimates £'s involved in obtaining yi . Now the expected value of SSE is

E(SSE)=(n— p—1)o-? so an unbiased estimator of o2

62-s2-_S5E _\ise.
n-p-1

The quantity MSE is called the error mean square or the residual mean square. The square root

of s2 is sometimes called the standard error of regression, and it has the same units as the
response variable y .

The above splitting of the total sum of squares due to y's into two components can be formally
put in an Analysis of variance table, as below:

Analysis of Variance for Multiple Linear Regression

Source of Variation d.f. S.S. M.S.

Regression p 2 biSxiy MSR

Deviation form | n—p-1 SSE §2 = SSE/(n— p—1)= MSE
Regression (Residual)

Total (corrected mean) n-1 Syy

Estimate of o2 is this case works out to be

n
- 2 biSxy
2 _ i=1
n-p-1

Test of Significance of ' s

One may be interested in testing the hypotheses Hg: S =0 against Hy: 5j #0 for some i.
The appropriate test statistic for testing this is

Ibl i 2

as Var(bj )=c;j;s
CII

Which follows, under the hypothesis a t-distribution with (n—p—1) d.f, if Hy is true. Reject
HO if t >ta/2,n—p—1'
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Multiple correlation coefficient (R)
The correlation coefficient between the observed values y; and predicted values ¥; is termed as
multiple correlation coefficient (R). Note that 0 <R <1.R is obtained as

R Sumof Squaresduetoregression S
Total corrected sum of squaresof y

2
n n n n n

1

bOZYi+bllei)’i+b22x2i3’i"‘bpzxpi)’i_[ZYi) =

_ | = i=1 i=1 i=L i ) "
n 2 n 2 1
2VEAXY|
i=1 i=L ) N

Test of Significance of R
The test of the null hypothesis that multiple correlation coefficient in the population is zero is

identical to the F -test of the null hypothesis that f; = f, =---= f, =0. The relation is
= R? . n-p-1 _
1-R Y

This F follows F -distribution with p and (n— p—1) d.f. Reject Hy if F>F, pn_p_1.

Coefficient of Determination (Rz)

The sample coefficient of multiple determination, denoted by R\?.lZ...p’ is given by

SSE

RZ., = 1-
Y.12 2!
(n-1)sy

where SSE =Sy —Sxy —bySxoy —---—bpSxpy

One can easily see that the coefficient of multiple determination is the square of multiple
correlation coefficient and is denoted by (Rz). This concept is very important as RZ x100 gives

percentage of variation in y explained by regressors. Obviously R2 must lie between 0 and 1.

Thus R? is an indicator of fitness of the fitted model. However, a large value of R2 should not
alone be taken as a measure of goodness of fitted regression model.
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4. Discussion

In addition to predicting the outcome variable for a new sample of data, regression analysis

serves other purposes:

e To assess how well the dependent variable can be explained by knowing the value of the
independent variable (or a set of independent variables).

e To identify which subset from many measures is most effective for estimating the dependent
variable.

For this, one should first explore the variables graphically in scatterplots to ascertain if a linear
model is appropriate for describing the relationship and to identify any possible rogue values
(outliers) that might distort results. Ideally, in an observational study, the configuration of plot
points should form the shape of an American football, for there are fewer points at the low and
high ends of the independent variable than in the middle. In an experimental study, the values of
x are fixed or set at specified levels, so the configuration may not exhibit such a clear pattern.

In assessing the suitability of the data for a regression, it helps to think of the fixed x situation.
Visually scan the distribution of y values for each x (or each small range of x’s) — that is, look at
vertical strips or bands of points extending up from the x axis. Do the y values within each strip
look like a sample from a normal distribution? Is the spread (variance) within each strip roughly
the same across the strips? Or is it considerably greater at one side of the plot than at the other? If
you guess an average value of y for each strip, do these averages fall along a straight line?

More formally, normality is not required for the estimates of the coefficients. To make tests and
estimate confidence intervals, however, these assumptions are required:

e The errors are normally distributed with mean 0.

e The errors have constant variance.

e The errors are independent of each other.

These assumptions are checked by studying the residuals from the model. The Durbin-Watson
statistic can be used to test for the serial correlation of adjacent error terms.

To identify problems, always look at plots of y versus x before the regression and plots of
residuals and diagnostics after the analysis. Non-linearity, Outliers and the presence of sub-
populations can distort the results of regression analysis. Relationships among the dependent and
independent variables may be masked or falsely enhanced if your sample contains subpopulations
(that is, the sample is not homogeneous).

In summary, to help identify problems, always look at plots of y versus x before the regression
and plots of residuals and diagnostics after the analysis.

Steps for fitting a regression equation using MS-EXCEL.: Prepare your data in a Worksheet.
Now choose Tools — Data Analysis — Regression. Then give the range for dependent variable,
independent variables and output range. If a regression equation without intercept is required then
check on Intercept zero.

5. EXxercises

Exercise 5.1: The following data are taken from Berenson and Levine (1992). Fifteen similar
homes built by one developer in various locations around the United States were evaluated in the
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study. The builders recorded the amount of oil consumed in January, the average outside
temperature (in degree Fahrenheit), and the number of inches of attic insulation in each home.

Case Avg.Temp. Insulation(Inches) Oil Consumed in January
1 40 3 275.3
2 27 3 363.8
3 40 10 164.3
4 73 6 40.8
5 64 6 94.3
6 34 6 230.9
7 9 6 366.7
8 8 10 300.6
9 23 10 237.8

10 63 3 121.4
11 65 10 31.4
12 41 6 203.5
13 21 3 441.1
14 38 3 323.0
15 58 10 52.5

1. Draw all possible scatter plots matrix by taking two variables at a time.
2. Fit a multiple linear regression equation using oil consumed as dependent variable and
insulation and average temperature as independent variable

Exercise 5.2: The following data was collected through a pilot sample survey on Hybrid Jowar
crop on yield and biometrical characters. The biometrical characters were average Plant
Population (PP), average Plant Height (PH), average Number of Green Leaves (NGL) and Yield
(Kg./plot).

1. Plot a simple scatter diagram between (i) yield and PP (ii) yield and PH (iii) yield and NGL.
2. Compute bivariate and partial correlations among yield, PP, PH and NGL.

3. Fita multiple linear regression by taking yield as dependent variable.

No. PP PH| NGL| Yield
1] 142.00] 0.5250{ 8.20] 2.470
2| 143.00] 0.6400{ 9.50] 4.760
3| 107.00{ 0.6600{ 9.30] 3.310
4/ 78.00] 0.6600] 7.50| 1.970
5| 100.00{ 0.4600{ 5.90] 1.340
6| 86.50] 0.3450] 6.40] 1.140
7| 103.50| 0.8600] 6.40] 1.500
8| 155.99| 0.3300{ 7.50] 2.030
9| 80.88] 0.2850| 8.40] 2.540

10[ 109.77| 0.5900{ 10.60] 4.900
11| 61.77] 0.2650, 8.30| 2.910
12| 79.11] 0.6600| 11.60{ 2.760
13| 155.99| 0.4200{ 8.10] 0.590

14| 61.81] 0.3400f 9.40{ 0.840
15| 74.50| 0.6300| 8.40] 3.870
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16| 97.00] 0.7050[ 7.20] 4.470
17 93.14] 0.6800] 6.40[ 3.310
18| 37.43| 0.6650| 8.40] 1.570
19| 36.44| 0.2750| 7.40{ 0.530
20{ 51.00] 0.2800{ 7.40{ 1.150
21| 104.00] 0.2800{ 9.80[ 1.080
22| 49.00] 0.4900{ 4.80] 1.830
23| 54.66| 0.3850{ 5.50{ 0.760
24|  55.55| 0.2650{ 5.00{ 0.430
25| 88.44| 0.9800[ 5.00{ 4.080
26| 99.55| 0.6450{ 9.60[ 2.830
27| 63.99] 0.6350] 5.60{ 2.570
28| 101.77] 0.2900{ 8.20{ 7.420
29| 138.66| 0.7200{ 9.90| 2.620
30] 90.22| 0.6300[ 8.40{ 2.000
31 76.92] 1.2500{ 7.30[ 1.990
32| 126.22| 0.5800{ 6.90[ 1.360
33| 80.36] 0.6050[ 6.80] 0.680
34| 150.23] 1.1900{ 8.80[ 5.360
35| 56.50| 0.3550[ 9.70] 2.120
36| 136.00] 0.5900{ 10.20[ 4.160
37| 14450| 0.6100{ 9.80[ 3.120
38| 157.33] 0.6050] 8.80] 2.070
39| 91.99] 0.3800{ 7.70[ 1.170
40| 121.50| 0.5500{ 7.70| 3.620
41) 64.50] 0.3200f 5.70{ 0.670
42| 116.00] 0.4550{ 6.80| 3.050
43 77.50| 0.7200[ 11.80{ 1.700
44| 70.43| 0.6250{ 10.00{ 1.550
45| 133.77| 0.5350{ 9.30| 3.280
46] 89.99| 0.4900[ 9.80] 2.690
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SAMPLING DISTRIBUTIONS

1. Introduction

The term population is referred to any collection of individuals or of their attributes or of results
of operations which can be numerically specified. Thus, there may be population of weights of
individuals, heights of trees, prices of wheat, number of plants in a field, number of students in a
university etc. A population with finite number of individuals or members is called a finite
population. For instance, the population of ages of twenty boys in a class is an example of finite
population. A population with infinite number of members is known as infinite population. The
population of pressures at various points in the atmosphere is an example of infinite population.
For any statistical investigation with large population size, complete enumeration (or census) of
the population is impracticable, for example, estimation of average monthly income of the
individuals in the entire country. Further, in some cases, if the population is infinite, then the
complete enumeration is impossible. As an illustration, to know the total amount of timber
available in the forest, the entire forest cannot be cut to know how much timber is available there.

To overcome the difficulties of complete enumeration, a part or fraction is selected from the
population which is called a sample and the process of such selection is called sampling. For
example, only 20 students are selected from a university or 10 plants are selected from a field. For
determining the population characteristic, instead of enumerating all the units in the population,
the units in the sample only are observed and the parameters of the population are estimated
accordingly. Sampling is therefore resorted to when either it is impossible to enumerate all the
units in the whole population or when it is too costly to enumerate in terms of time and money or
when the uncertainty inherent in sampling is more than compensated by the possibilities of errors
in complete enumeration. The theory of sampling is based on the logic of particular (i.e. sample)
to general (i.e. population) and hence all results will have to be expressed in terms of probability.
To serve a useful purpose, sampling should be unbiased and representative.

The aim of the theory of sampling is to get as much information as possible, ideally the whole of
the information about the population from which the sample has been drawn. In particular, given
the form of the parent population, one would like to estimate the parameters of the population or
specify the limits within which the population parameters are expected to lie with a specified
degree of confidence.

The fundamental assumption underlying most of the theory of sampling is random sampling
which consists in selecting the individuals from the population in such a way that each individual
of the population has the same chance of being selected. Suppose a sample of size n is taken from

N I
a finite population of size N. Then there would be (nj_ N

—m, where n! = n(n-7)...1,

N
possible samples. A sampling technique in which each of the (nj samples has an equal chance

of being selected is known as simple random sampling. Some of the other commonly used
sampling procedures are: Purposive sampling, stratified sampling, systematic sampling and
cluster sampling. The type of sampling to be adopted depends on the objective of the study and
the variability in the population. It may be pointed out that throughout the term random sampling
would always refer to simple random sampling.



Sampling Distributions

1.1 Definitions of Some Important Concepts
Parameter: A parameter is a function of population values.

Example 1.1: Suppose X,, X,,..., X, are N population values. Then population mean () is a
parameter defined as

1NX
IU_WZ i

i=1

Further, population standard deviation (o) is another parameter defined as

N P
o = \/Wg(xl )

Statistic: A statistic is a function of sample values.

Example 1.2: Two of the most commonly used statistics based on a sample of size n are sample
mean (X ) and sample standard deviation (s) defined as

13
x—n;Xi,

N .
= [ 2x-w
In practice, parameter values are not known and their estimates based on the sample values are
used. A statistic is since based on sample values, there can be many choices of the samples that
can be drawn from the population. The distribution of the statistic computed for all possible
values of the sample is called sampling distribution. From the given set of observations,
different statistics are constructed to estimate the parameters. The sampling distributions of these
statistics will, in general, depend on the form and the parameters of the parent population. The
probability of the observed value of the statistics then allows the making of statements about the
parameters and hence conclusions can be drawn about the population. The sampling distributions
are thus fundamental to the entire subject of inference and are described below.

2. Sampling Distribution Based on Other Statistics

Distribution based on some statistics when random sample has been drawn from a normal
population are now described.

2.1 Sampling Distribution of Sample Mean
If X, X,,..., X_is a random sample from a normal distribution with mean x and variance o, then
(o2

Ny

X as defined in Example 1.2 follows normal distribution with mean p and standard deviation

Further, Z = X—Hu follows a normal distribution with mean 0 and variance 1, i.e. N(0,1).

G/\/ﬁ
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Sampling Distributions

Let Z have a standard normal distribution, the probability that Z will exceed a given value z is «,
e

Pl[Z>2,]=a 0<a<l

In other words, as shown by shaded portion in the figure below, « is “Area to the right of the
point z,,”. The probabilities for negative values of z can be obtained by symmetry

Shaded area = «

Table 1 gives the normal probability (right tail area) for various values of z.

Example 2.1: Let X be the mean of a random sample of size 5 from a normal distribution with
mean x =0 and variance o* = 125, then

X-0 S 1
V125/5

2.2 Chi-Square Distribution

This distribution was initially proposed by F.R. Helmert but later on also given independently by
Karl Pearson. It is defined as the distribution of sum of squares of n independent standard normal

P{X >10} =P{

05_0} = P{Z > 2} = 0.0228.

n
variates i.e. if Zy, Z,, ...Z, are n independent standard normal variates, then ZZf follows 4
i=1

distribution with n degrees of freedom and symbolically it can be written as .

It is to be noted here that, square of a standard normal variate will follow a »* distribution with 1
degrees of freedom.

Thus, If X follows 42 distribution with n degrees of freedom, then the probability density function
(pdf) is

( ) 1 e7X/2X(n/2)fl

)= ——— 0<x<ow
2" I(n/2)

The parameter n is also called degrees of freedom, which is a measure of the number of
independent variables.

Properties

e Mean=n

e Variance = 2n

e Mode=n-2,ifn>2

42



Sampling Distributions

e MGF.: (1—2t)’3, |2t <1

e Thus the distribution is positively skewed and leptokurtic
e Sum of independent y%-variates is a y*-variate (additive property)

Graph

Given below is the graph of chi-square distribution for degrees of freedom n = 1, 3 and 6. In case
of n = 1, the mode does not exist. It is seen that the graphs are to the right of 0 and flattens out
towards the right (positively skewed). Also there is no symmetry in the graph.

0.3 -
n=1
0.25 1
0.2 - n=3
X015
=
n=6

0.1 1

0.05

Table
Let X have a x? distribution with n degrees of freedom. Theny2 (o) is defined as that value which
satisfies

PIX>y2()]=a O0<asl

In other words, as shown by shaded portion in the figure below, o is “Area to the right of the
point y2(a)”.

/ Shaded area = «

o (@)
Table 2 gives values of y2(a) for various values of o and n.

Example 2.2: Let X have a chi-square distribution with 7 degrees of freedom. Then from Table 2,
(i)  %%(0.05)=14.067

(i)  x2(0.95)=2.167.
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Sampling Distributions

Application
e To test hypothetical value of population variance
e Goodness-of-fit Test
¢ Independence of Attributes Test
e To test homogeneity of independent estimates of population variance (Bartlett’s Test)
e To test homogeneity of independent estimates of population correlation coefficient

2.3 Sampling Distribution of Sample Variance
Suppose random samples of size n are drawn repeatedly from a normal population with variance
2
o , then
_ 2
X = (n %)s
(o2

2
O

follows a2, distribution. Thus, sample variance s* follows 72,. Mean of s? is ¢ and

4

(n-1)

variance is

2.4 t- Distribution

This distribution was proposed by Sir R.A. Fisher, who is known as the Father of Statistics. It is
defined as the distribution of the ratio of a standard normal variate to the square root of an
independent chi-square variate divided by its degrees of freedom.

In other words, let Z be a standard normal variate, X a 2 variate and if Z and X are independent,
then

= 2
JX/n
has a t - distribution with n degrees of freedom and its pdf is
f(t) = 1 1 , -0 <t< o

1n t2
n B s (n+1)/2
(2 2) [1+ n]

where B(l, m) is beta function defined as B(l, m) = xX"™(1-x)™%, (I, m) > 0.

If LD SIS & is @ random sample from a normal distribution with mean p and variance o, then

the random variable t = X/_\//i is distributed as Student's t-distribution with n-1 degrees of
s/+/n
freedom
Properties
e Mean=0,ifn>1
e Variance = L, n>2
n-2
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Sampling Distributions

e Mode=0

e As, t-distribution is symmetric, all odd order moments about zero as well as all odd order
central moments are zero.

e t- distribution leptokurtic

e M.G.F. does not exist for t-distribution

o t-distribution tends to normal distribution as n tends to infinity

Graph

The graph below shows the probability density function of t-distribution with 3 degrees of
freedom along with that of standard normal distribution N(0,1). The graph of t-distribution is
symmetrical with respect to vertical axis x = 0. It is a bell shaped curve and the spread increases
as n decreases.

N (0,1)

Table
Let tn(c) denote the point for which

P[X>t(a)] =a,

In other words, as shown by shaded portion in the figure below, o is “Area to the right of the
point ty(a)”.

Shaded area = «

ta(a)
Table 3 gives values of t,(o) for various values of o and n.

Example 2.3: Let X have a t-distribution with 7 degrees of freedom, then from Table 3,
(1) P(X>3.499) = 0.005 or t7(0.005) = 3.499

(i)  P(X<-2.998) = P(X > 2.998) = 0.01 —

0.01 0.01

-1 908 1] 2 008
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Sampling Distributions

Applications
e t-test for single Mean
o t-test for equality of means for two independent sample
o t-test for equality of means for paired observation i.e. paired t-test
e t-test for significance of an observed sample correlation coefficient
e t-test for significance of an observed sample regression coefficient
o t-test for significance of an observed partial regression coefficient

2.5 F-Distribution

The F distribution was discovered by George Snedecor, but in honour of Sir R.A. Fisher, he
called it F-distribution. The distribution is defined as the distribution of the ratio of two
independent chi-square variates, divided by their respective degrees of freedom, i.e. if X

followsy; , Y followsy 7 and X and Y are independent,
F:X/W1
Y /n,

follows F-distribution with (n1, ny) degrees of freedom and its pdf is

f(X) _ (r.l1 / nz)nllz X(nl/Z)—l
B Moy (14 Moy

0<x<w

2 2 n,
If X, X;,.., %, is @ random sample of size n; from a normal distribution with mean p and
variance o’ and y,, Yoie Yo, IS @ random sample of size n, from an independent normal
2 2
o . . S
distribution with mean p, and o, then random variable F = XZ;GXZ has a Snedecor’s F-
s, /o
y y
distribution with n;-1 and n,-1degrees of freedom.
Properties
e Mean= M, ,Np>2
n,—2
2 —_—
e Variance = 2n2(n1+2n2 2) ,Np>4
nl(n2 '2) (nz _4)
e Mode= M , Ny > 2
n(n, +2)
Thus mode of F,  distribution, whenever existent, is less than unity.
: : o 1
e There exists a reciprocal relation, i.e. F, | (@)= ————
e Fon (1-a)

e F,,, distribution tends to normal distribution when n; and n; tend to infinity
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Sampling Distributions

Graph
The curve of F distribution depends not only on the two parameters n; and n, but also on the
order in which these occur. It is positively skewed.

1.6 1

n,=60, n,=60

Table
Let F, ,, (o) denote the point for which

PIX>F, ,(@)]=a,

In other words, as shown by shaded portion in the figure below, o is “Area to the right of the
point F, , (a)”.

Shaded area = «

Foun, (@)
Table 4 and Table 5 give the values of F,  (a)for o = 0.01 and 0.05 respectively for various
combinations of the degrees of freedom n; and n..

Example 2.4: The value of F with 6 and 10 degrees of freedom, leaving an area of 0.05 to the
right, is Fy,0(0.05) =3.22.

Ftl.lll
Shaded area = 0.005
0 3.22
Example 2.5: GivenF, 5(0.05) =5.19, then Fs 4 (0.95) :$= 0.19.

Example 4.5.3: Given F,,,,(0.05) = 2.91and F,,,,(0.05) =2.74, then F,,,,(0.05) = 2.80.
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Sampling Distributions

qu.lu F20,10

FIl.lil

Shaded area = 0,05 shaded area = 0,05

Shaded area = 0.05 /

0 291 0 2.74 j

Example 4.5.4: Given F;,,(0.05) =2.42 and F;,,(0.05) = 2.34, then F;,(0.05) =2.38.

2.6 Relation Between t, x?and F distributions
(i) If a random variable X follows t-distribution with n degrees of freedom, then X? follows F-

distribution with ny =1 and n, = n degrees of freedom. In other words, t2 (%) =F,(0).

(if) If a random variable X follows F-distribution with n; and n, degrees of freedom, then as n,
tends to infinity, n, X follows Chi-square with n; degrees of freedom.
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Table 1: Percentage points (right tail area) of normal distribution for various values of z

z

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
11
1.2
1.3
1.4
15
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
3.0

0.500
0.4602
0.4207
0.3821
0.3446
0.3085
0.2743
0.2420
0.2119
0.1841
0.1587
0.1357
0.1151
0.0968
0.0808
0.0668
0.0548
0.0446
0.0359
0.0287
0.0228
0.0179
0.0139
0.0107
0.0082
0.0062
0.0047
0.0035
0.0026
0.0019
0.0013

0.4960
0.4562
0.4168
0.3783
0.3409
0.3050
0.2709
0.2389
0.2090
0.1814
0.1562
0.1335
0.1131
0.0951
0.0793
0.0655
0.0537
0.0436
0.0351
0.0281
0.0222
0.0174
0.0136
0.0104
0.0080
0.0060
0.0045
0.0034
0.0025
0.0018
0.0013

0.4920
0.4522
0.4129
0.3745
0.2272
0.3015
0.2676
0.2358
0.2061
0.1788
0.1539
0.1314
0.1112
0.0934
0.0778
0.0643
0.0526
0.0427
0.0344
0.0274
0.0217
0.0170
0.0132
0.0102
0.0078
0.0059
0.0044
0.0033
0.0024
0.0018
0.0013

0.4880
0.4483
0.4090
0.3707
0.3336
0.2981
0.2643
0.2327
0.2033
0.1762
0.1515
0.1292
0.1093
0.0918
0.0764
0.0630
0.0516
0.0418
0.0336
0.0268
0.0212
0.0166
0.0129
0.0099
0.0075
0.0057
0.0043
0.0032
0.0023
0.0017
0.0012

0.4840
0.4443
0.4052
0.3669
0.3300
0.2946
0.2611
0.2297
0.2005
0.1736
0.1492
0.1271
0.1075
0.0901
0.0749
0.0618
0.0505
0.0409
0.0329
0.0262
0.0207
0.0162
0.0125
0.0096
0.0073
0.0055
0.0041
0.0031
0.0023
0.0016
0.0012

0.4801
0.4404
0.4013
0.3632
0.3264
0.2912
0.2578
0.2266
0.1977
0.1711
0.1469
0.1251
0.1056
0.0885
0.0735
0.0606
0.0495
0.0401
0.0322
0.0256
0.0202
0.0158
0.0122
0.0094
0.0017
0.0054
0.0040
0.0030
0.0022
0.0016
0.0011

0.4761
0.4364
0.3974
0.3594
0.3228
0.2877
0.2546
0.2231
0.1949
0.1685
0.1446
0.1230
0.1038
0.0869
0.0721
0.0594
0.0485
0.0392
0.0314
0.0250
0.0197
0.0154
0.0119
0.0091
0.0069
0.0052
0.0039
0.0029
0.0021
0.0015
0.0011

0.4721
0.4325
0.3936
0.3557
0.3192
0.2843
0.2514
0.2206
0.1922
0.1660
0.1423
0.1210
0.1020
0.0853
0.0708
0.0582
0.0475
0.0384
0.0307
0.0244
0.0192
0.0150
0.0116
0.0089
0.0068
0.0051
0.0038
0.0028
0.0021
0.0015
0.0011

0.4681
0.4286
0.3897
0.3520
0.3156
0.2810
0.2483
0.2177
0.1984
0.1635
0.1401
0.1190
0.1003
0.0838
0.0694
0.0571
0.0465
0.0375
0.0301
0.0239
0.0188
0.0146
0.0113
0.0087
0.0066
0.0049
0.0037
0.0027
0.0020
0.0014
0.0010

0.4641
0.4247
0.3859
0.3483
0.3121
0.2776
0.2451
0.2148
0.1867
0.1611
0.1379
0.1170
0.0985
0.0823
0.0681
0.0559
0.0455
0.0367
0.0294
0.0233
0.0183
0.0143
0.0110
0.0084
0.0064
0.0048
0.0036
0.0026
0.0019
0.0014
0.0010
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Table 2: Percentage points (right tail area) of chi-square distribution for various values of o and
n

a | 099 0.975 0.95 0.50 0.10 0.05 0.025 0.01

n

1 0.000  0.001 0.004  0.455 2.706 3.841 5.024  6.635
2 0.020  0.051 0.103 1386  4.605  5.991 7.378  9.210
3 0.115 0.216 0.352 2.366 6.251 7.815 9.348 11.341
4 0.297  0.484 0.711 3.357 7.779 9.488 11.143 13.277
5 0.554  0.831 1.145  4.351 9.236 11.070 12.832 15.086
6 0.872 1.237 1.635 5.348 10.645 12592 14.449 16.812
7 1.239 1.690 2.167 6.346 12.017 14.067 16.013 18.475
8 1.646 2.180 2.733 7.344 13.362 15,507 17.535 20.090
9 2.088 2.700 3.325 8.343 14684 16.919 19.023 21.666
10 2.558  3.247 3.940 9.342 15987 18.307 20.483 23.209
11 3.053  3.816 4575 10.341 17.275 19.675 21920 24.725
12 3.571 4404 5226 11.340 18549 21.026 23.337 26.217
13 4107  5.009 5.892 12340 19.812 22362 24.736 27.688
14 4660  5.629 6.571 13.339 21.064 23.635 26.119 29.141
15 5.229 6.262 7.261 14339 22307 2499 27.488 30.578
16 5.812 6.908 7.962 15338 23542 26.296 28.845 32.000
17 6.408 7.564 8.672 16.338 24.769 27587 30.191 33.409
18 7.015 8231 9.390 17.338 25.989 28.869 31.526 34.802
19 7.633  8.907 10.117 18.338 27.204 30.144 32.852 36.191
20 8.260  9.591 10.851 19.337 28.412 31.410 34.170 37.566
21 8.897 10.283 11591 20.337 29.615 32.671 35479 38.932
22 9.542 10.982 12.338 21.337 30.813 33.924 36.781 40.289
23 10.196 11.688 13.091 22337 32.007 35172 38.076 41.638
24 10.856  12.401 13.848 23.337 33.196 36.415 39.364 42.980
25 11.524 13.120 14611 24337 34382 37.652 40.646 44.314
26 12.198 13.844 15379 25336 35563 38.885 41.923 45.642
27 12.879 14573 16.151 26.336 36.741 40.113 43.194 46.963
28 13.565 15.308 16.928 27.336 37.916 41.337 44.461 48.278
29 14256  16.047 17.708 28.336 39.087 42557 45.722 49.588
30 14953 16.791 18.493 29.336 40.256 43.773 46.979 50.892
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Table 3: Percentage points (Two tail areas) of t-distribution for various values of o and n

o
n 0.50 0.20 0.10 0.05 0.02 0.01
1 1.000 3.078 6.314 12706 31.821 63.657
2 0.816  1.886  2.920 4.303 6.965  9.925
3 0.765 1.638  2.353 3.182 4541 5841
4 0.741 1533 2132 2.776 3.747  4.604
5 0.727 1476  2.015 2.571 3.365  4.032
6 0.718 1440 1943 2.447 3.143  3.707
7 0.711 1415 1895 2.365 2998  3.499
8 0.706  1.397  1.860 2.306 2.896  3.355
9 0.703 1.383  1.833 2.262 2821  3.250
10 0.700 1372 1.812 2.228 2.764  3.169
11 0.697 1363 1.796 2.201 2718  3.106
12 0695 1.35%  1.782 2.179 2681  3.055
13 0694 1350 1.771 2.160 2650 3.012
14 0692 1345 1.761 2.145 2.624 2977
15 0691 1341 1.753 2.131 2.602  2.947
16 0.690 1.337 1.746 2.120 2583 2921
17 0.689 1.333 1.740 2.110 2.567  2.898
18 0.688 1330 1.734 2.101 2552  2.878
19 0.688 1.328 1.729 2.093 2539 2861
20 0.687 1325 1.725 2.086 2.528  2.845
21 0686 1323 1721 2.080 2518 2831
22 0.686 1.321 1.717 2.074 2508 2819
23 0.685 1319 1714 2.069 2500 2.807
24 0.685 1318 1.711 2.064 2492  2.797
25 0.684 1316 1.708 2.060 2485  2.787
26 0.684 1315 1.706 2.056 2479  2.779
27 0.684 1314 1.703 2.052 2473 2771
28 0683 1313 1.701 2.048 2467  2.763
29 0.683 1311 1.699 2.045 2462  2.756
30 0.683 1.310 1.697 2.042 2457  2.750
35 0.682 1.307 1.690 2.029 2440  2.720
40 0.681 1303 1.684 2.021 2423  2.704
45 0.680 1.302 1.683 2.020 2410  2.690
50 0.679 1.298 1.674 2.010 2400  2.680
60 0679 1296 1.671 2.000 2390 2.660
o0 0.674 1.282 1.645 1.960 2326 2576
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Table 4: Percentage points (right tail area) of F-distribution for various values

of n; and n, for o = 0.01

n
1 1 2 3 4 5 6 8 12 24 o0
n,
1 | 4052.00 4999.50 5403.00 5625.00 5764.00 5859.00 5982.00 6106.00 6234.00 6366.00
2 9850 99.00 99.17 99.25 99.30 99.33 99.37 99.42 99.46 99.50
3 3412 3082 2946 28.71 2824 2791 2749 27.05 26.60 26.11
4 21.20 1800 16.69 1598 1552 1521 1480 1437 1393 13.46
5 16.26 13.27 12.06 11.39 10.97 10.67 10.29 9.89 9.47 9.01
6 13.74 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.31 6.88
7 12.25 9.95 8.45 7.85 7.46 7.19 6.84 6.47 6.07 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.03  5.67 528  4.86
9 10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.11 473 4.31
10 10.04  7.56 655 599 564 539 506 471 433 3091
11 9.65 7.21 6.22 5.67 5.32 5.07 4.24 4.40 4.02 3.60
12 9.33 693 595 541 506 482 450 416 378 3.36
13 9.07 6.70 5.74 5.20 4.86 4.62 4.30 3.96 3.59 3.16
14 8.86 651 556 503 469 446 414 380 343 3.00
15 8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.29 2.87
16 8.53 6.23 5.29 4.77 4.44 4.10 3.89 3.55 3.18 2.75
17 8.40 6.11 5.18 4.67 4.34 4.10 3.79 3.45 3.08 2.65
18 8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.00 2.57
19 8.18 5.93 5.01 4.50 4.17 3.94 3.63 3.30 291 2.49
20 8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23 2.86 2.42
21 8.02 5.78 4.87 4.37 4.04 3.81 3.51 3.17 2.80 2.36
22 7.94 5.72 4.82 4.31 3.99 3.76 3.45 3.12 2.75 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.70 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.66 2.21
25 1.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.62 2.17
26 7.72 5.53 4.64 411 3.82 3.59 3.29 2.96 2.58 2.13
27 7.68 5.49 4.60 411 3.78 3.56 3.26 2.93 2.55 2.10
28 7.64 5.45 4.57 4.07 3.75 3.53 3.23 2.90 2.52 2.06
29 7.60 5.42 4.54 4.00 3.73 3.50 3.20 2.87 2.49 2.03
30 7.56 5.39 451 4.02 3.70 3.47 3.17 2.84 2.47 2.01
40 7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.29 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.30 2.12 1.60
00 6.64 4.61 3.78 3.32 3.02 2.80 2.51 2.18 1.79 1.00
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Table 5: Percentage points (right tail area) of F-distribution for various values

Sampling Distributions

of n; and n, for o = 0.05

ng
1 2 3 4 5 6 8 12 24 00
N
1 161.40 199.50 215.70 224.60 230.20 234.00 238.90 243.90 249.00 254.30
2 1851 19.00 19.16 19.25 1930 19.33 19.37 1941 1945 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.84 8.74 8.64 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 591 5.77 5.63
5 6.61 5.79 541 5.19 5.05 4.95 4.82 4.68 4,53 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 341 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 291 2.74 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.61 2.40
12 4.75 3.88 3.49 3.26 3.11 3.00 2.85 2.69 2.50 2.30
13 4.67 3.80 341 3.18 3.02 2.92 2.77 2.60 242 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13
15 4,54 3.68 3.29 3.06 2.96 2.79 2.64 2.48 2.29 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.24 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.19 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 211 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 245  2.28. 2.08 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.05 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.03 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.38 2.20 2.00 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.18 1.98 1.73
25 4.24 3.38 2.99 2.76 2.60 2.49 2.34 2.16 1.96 1.71
26 4.22 3.37 2.98 2.74 2.59 2.47 2.31 2.13 1.95 1.69
27 4.21 3.35 2.96 2.73 2.57 2.46 2.30 2.13 1.93 1.67
28 4.20 3.34 2.95 2.71 2.56 2.44 2.29 2.12 1.91 1.65
29 4.18 3.33 2.93 2.70 2.54 2.43 2.28 2.10 1.90 1.64
30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.89 1.62
40 4..08 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.79 1.51
60 4..00 3.15 2.76 2.52 2.37 2.25 210 1.92. 1.70 1.39
0 3.84 2.99 2.60 2.37 2.26 2.10 1.94 1.75 1.52 1.00
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TESTING OF HYPOTHESIS

1. Introduction

In applied investigations, one is often interested in comparing some characteristic (such as mean
or variance) of a group with a specified value, or in comparing two or more groups with regard to
the characteristic. For instance, one may want to know whether mean timber yield obtained from
recently felled plantations of a particular age in a particular management unit is some specifid
value, one may wish to know whether average yield of a crop in a certain district is equal to a
specified value, one may wish to compare two species of trees with regard to mean height, to
know if genetic fraction of total variation in a strain is more than a given value. In making such
comparisons, one can not rely on mere numerical magnitudes of index of comparison such as
mean and variance. This is because each group is represented only by a sample of observations
and if another sample were drawn, the numerical value would change. This variation between
samples from the same population can at best be reduced in a well-designed controlled
experiment but can never be eliminated. One is forced to draw inferences in presence of sampling
fluctuations which affect observed differences between groups, clouding real differences.
Statistical science provides an objective procedure for distinguishing whether observed difference
connotes any real difference among groups. Such a procedure is called testing of hypothesis.
Thus, in short, testing of hypothesis is a method of making due allowance for sampling
fluctuation affecting results of experiments or observations. These tests have wide applications in
agriculture, forestry, medicine, industry, social sciences, etc.

1.1 Definitions

Statistical Hypothesis: It is an assumption either about the form or about the parameters of a
distribution. For example, average height of a particular species of tree is 50 feet, normal
distribution has mean 20.

If all the parameters are completely specified, hypothesis is called a simple hypothesis,
otherwise it is a composite hypothesis. For example, average height of tree is 50 feet is a simple
hypothesis and average height of tree is greater than 50 feet is a composite hypothesis.

Null Hypothesis (Ho): The hypothesis under test for a sample study is called Null hypothesis
(Ho). It represents a theory that has been put forward, either because it is believed to be true or
because it is to be used as a basis for argument, but has not been proved. For example, in a
clinical trial of a new drug, null hypothesis might be that the new drug is, on average, as effective
as the current drug i.e. Ho: Effect of the two drugs, on the average, is same.

Alternative Hypothesis (H1): Any null hypothesis is tested against a rival, which is called
Alternative hypothesis (H;). For example, mean height (u) of trees of a particular species in a
region is some specified value py, i.e.
Ho: 1= po.
Alternative hypothesis could be any of the following:
Hi: n#po  (Two-tailed)
u<y (Left-tailed)
u>p  (Right-tailed)

For framing a suitable Hy and H;, four possibilities in order of preference are the following:



Testing of Hypothesis

Possibilities Ho Hi
(1) Simple Simple
(i) Simple | Composite
(iii) Composite | Simple
(iv) Composite | Composite

The first one when both are simple is of little practical importance. As Possibility (ii) is preferred
over Possibility (iii), therefore hypotheses should always be structured in such a way that Hy is
simple and H; is composite.

Two Types of Errors

True Situation —» . .

. Ho is True Ho is False
Decision Made 4
Reject Hy Type | error Correct decision
Accept Hy Correct decision Type Il error

Probabilities of these types of error are respectively denoted by o and 3, i.e.
Probability of Type | error = o
and  Probability of Type Il error = 3.

The ideal procedure of hypothesis testing is to minimize both o and . However, this is not
possible in practice because a test which minimizes one type of error, maximizes the other type of
error. As Type | error is considered to be more serious than Type Il error, therefore probability of
Type | error is fixed and probability of Type Il error is minimized. Generally, o is taken to be 5%
or 1%.

Level of Significance (a): It is the size of Type I error. The higher the value of a, less precise is
the result.

Confidence Interval: The confidence interval of a parameter with confidence coefficient 100(1-
a)% is the interval (a, b) such that it is expected to lie in this interval in 100(1-a)% cases.

Test Statistic: A test statistic is a quantity calculated from data. Its value is used to decide
whether or not the null hypothesis should be rejected.

Critical Value(s): The critical value(s) is that value with which value of test statistic in a sample
is compared to determine whether or not the null hypothesis is rejected. The critical value for any
hypothesis test depends on significance level a at which the test is carried out, and whether the
test is one-sided or two-sided.
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Shaded Area = o

¢

Critical Value (one-sided)

Power of a Test: It is defined as the probability of rejecting Ho when it is false. Thus,
Power=1-
Among a given set of tests, best test is one having maximum power.

Steps in Hypothesis Testing

e  State statistical hypotheses
Check assumptions
Calculate test statistic

Set the test criteria
Interpret the results

We now discuss some tests of hypothesis that are based on normal, t, F and chi-square
distributions.

2. Test of Significance for Large Samples
For large n (sample size), almost all the distributions can be approximated very closely by a
normal probability curve, we therefore use the normal test of significance for large samples. If t
is any statistic (function of sample values), then for large sample
z-UEO _ Ny
VO

Thus if the discrepancy between the observed and the expected (hypothetical) value of a statistic
is greater than Z, times the standard error (S.E), hypothesis is rejected at o level of significance.
Similarly if

| t—E@t) | <z, x S.E(),

the deviation is not regarded significant at 5% level of significance. In other words the deviation t
- E(t), could have arisen due to fluctuations of sampling and the data do not provide any evidence
against the null hypothesis which may, therefore be accepted at o level of significance.
If | Z| < 1.96, then the hypothesis Ho is accepted at 5% level of significance. Thus the steps to be
used in the normal test are as follows:

) Compute the test statistic Z under Ho.

iy  If |Z] >3, Ho is always rejected

i) If |Z| <3, wetest its significance at certain level of significance

The table below gives some critical values of Z:
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Testing of Hypothesis

Level of Significance Critical Value (Z,) of Z
Two-tailed test Single tailed test
10% 1.645 1.280
5% 1.960 1.645
1% 2.580 2.330

2.1 Test for Single Mean

A very important assumption underlying the tests of significance for variables is that the sample
mean is asymptotically normally distributed even if the parent population from which the sample
is drawn is not normal.

If xi (i=1,..,n)is a random sample of size n from a normal population with mean u and
2

. o . . o
variance o, then the sample mean is distributed normally with mean p and variance e Based

on this random sample, our aim is to test that mean of the population has a specified value o, i.e.

Ho: 1 =po
The alternative hypothesis could be any of the following:
Hi: w# o (two tailed)
u<po (lefttailed)
> o (right tailed)

Test Statistic:
X~
7=
s/v/n

follows a standard normal distribution.

Test Criteria: Depending on the alternative hypothesis selected, the test criteria are as follows:

Reject Hy at level of
Hh Test significance o if
w#py | Two-tailed |1 Z]>Z
u<p | Left-tailed Z<-Z,
U > o Right-tailed Z>7Z,

Z,, is the table value of Z at level of significance a. If o® is unknown, then it is estimated by

n
sample variance s* (for large n), where s? = ﬁz(xi —x)?
—+i=l

Example 2.1: The mean timber yield obtained from 30 recently felled plantations at the age of 50
years in a particular management unit is 93 m*/ha with a standard deviation of 10 m*ha. Test
whether the mean timber yield is 1200 m®ha based on past records.

Solution: Ho: p =100 m%ha, Hi: p# 100 m*/ha (two tailed test).

Here, X =93 m%ha., n =30, p =100 m%*haand ¢ = 10 m*/ha.
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Thus,

7-93-100_ 544,

Y

Since | Z| > 1.96, we conclude that the data does not provide any evidence in favour of the null
hypothesis Ho may therefore be rejected at 5% level of significance. Hence the decision would be
to accept the alternative hypothesis that there has been significant decline in the productivity of
the management unit with respect to the plantations of the species considered.

Note: The value of sample mean is an acceptable value of population mean if the statistic Z lies

between -Z» t0 Za/z, i.e.
X—

a/2 G \/—

Thus, 100(1-a)% confidence-interval for p is
(X—Z,,,6/\n, X+2Z,,, o//n).

< Z(x/2-

2.2 Test for Difference of Means

Let X, (X,)be the mean of a sample of size n; (ny) from a population with mean p; (u2) and

variance o2 (03). Our aim is to test
Ho: mi=p
against Hy : w # up
H1 > M2
H1< M2

Test Statistic:

Gf 05
ng Ny

follows a standard normal distribution

Test Criteria:
Reject Hy at level of
Hh Test significance o if
W #pe | Two-tailed |1 Z|>Z
w <pp | Left-tailed Z2<-Z,
7= a=%X) 0’ =0.=0
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If o is not known, then its estimate is used

(;2 —o2 = (ny-1)st +(n, -1)s3
n,+n,—-2

2.3 Test for Single Proportion
Suppose in a sample of size n (>30), x be the number of successes. Then observed proportion of
successes = X/n=p. Let P be the population proportion. The hypothesis to be tested is that

population proportion is some specified value Py, i.e.
HoZ pP= Po
Hi: P#Pg
P>Py
P<Py

Test Statistic:
p-Py

Py (1-Py)/n

follows approximately a standard normal distribution.

Test Criteria:
H, Test Rej_ect_ Ho at Ieve.l of
significance a. if
P-P, | Two-tailed 1 Z1> Zop
P<Pg Left-tailed Z<-7Z,
P> Py Right-tailed Z>27Z,

Example 2.2: In a sample of 1000 people, 540 are rice eaters and the rest are wheat eaters. Can
we assume that both rice and wheat are equally popular at 1% level of significance?

Solution: It is given that n = 1000, x = Number of rice eaters = 540, p = sample proportion of
rice eaters =540/1000=0.54.

Ho : Both rice and wheat are equally popular, i.e. P =0.5

Hy:P=0.5

___Pp-Pp _ 054-05
JPo(1-Py)/n  05x0.5/1000

Tabulated value of Z at 1% level of significance is 2.575. Since | Z| < 2.575, therefore Hy is not
rejected and we conclude that rice and wheat are equally popular.

2.4 Test for Difference of Proportions
Suppose we want to compare two populations with respect to the prevalence of a certain attribute
A. Let X3 (X2) be the number of persons possessing the given attribute A in random sample of size
n1 () from 1% (2") population. Then sample proportions will be
X1 X3
Pr=—"yP2="7"
n, n,
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Let P, and P, be the population proportions. Our aim here is to test that there is no significant
difference between population proportions, i.e.
HoZ P]_ = Pz
Hi: P1#P,
P1>P>
P1<P;

Test Statistic:
Z - pl - pZ
\/(PlQl PZQZ)

2

+
n, n

follows approximately a standard normal distribution. In case P; =P, = P (say) and P is not
known, it is estimated as follows:

p = NP1+ NP,

n,+n,
Test Criteria:
H, Test Rej_ect_ Ho at Ieve.l of
significance a. if
P, =P, | Two-tailed (21> Zyo
P1<P, | Left-tailed Z<-Z,
P, >P, | Right-tailed Z>7,

Consider an experiment on rooting of stem cuttings of Casuarina equisetifolia wherein the effect
of dipping the cuttings in solutions of IBA at two different concentrations was observed. Two
batches of 30 cuttings each, were subjected dipping treatment at concentrations of 50 and 100
ppm of IBA solutions respectively. Based on the observations on number of cuttings rooted in
each batch of 30 cuttings, the following proportions of rooted cuttings under each concentration
were obtained. At 50 ppm, the proportion of rooted cuttings was 0.5 and at 100 ppm, the
proportion was 0.37. Test whether the observed proportions are indicative of significant
differences in the effect of IBA at the two concentrations.

Here, p; = 0.5 and p, =0.37. Then gq; = 0.5, 2 = 0.63. The value of n; = n,=30. Thus,

_ 0.5-0.37 1074
(05)(05), (037)(0.8)
30 30

Since the calculated value of Z (1.024) is less than the table value (1.96) at 5% level of
significance, we can conclude that there is no significant difference between proportion rooted
cuttings under the two concentration levels.

3. Test of Significance for Small Samples
In this section, the statistical tests based on t, y* and F are given.
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3.1 Tests Based on t-Distribution

3.1.1 Test for an Assumed Population Mean
Suppose a random sample Xi,..,X, of size n (n>2) has been drawn from a normal population
whose variance o” is unknown. On the basis of this random sample the aim is to test
Ho: pn=po
Ho: p#uo
K> Lo
K< Lo
Test statistic:
t= X— Lo

= ~t, 4,
s//n !

n n
where X :Ein and s® =i2(xi —x)?
n |=l n_li:l

The table giving the value of t required for significance at various levels of probability and for
different degrees of freedom are called the t — tables which are given in Statistical Tables by
Fisher and Yates. The computed value is compared with the tabulated value at o percent level of
significance and at (n-1) degrees of freedom and accordingly the null hypothesis is accepted or
rejected.

3.1.2 Test for the Difference of Two Population Means
Let X,(X,) be the sample mean of a sample of size n; (n;) from a population with mean p; (p)

and variance of the two population be same o?, which is unknown. Our aim is to test
Ho: mi=po
Hi: pi#pz Or up>pp Or py < pp

Let siz, i =1, 2 be sample variances of the two samples. Then common unknown population
variance o? is estimated as
§2 = (n, —1)sf +(n, —1)s;
n,+n, -2

Test Statistic:
X1 =Xy

11
S| —+—
ng Ny
which follows a t-distribution with ny + n, -2 d.f.

Test Criteria:

H Test Reject Hy at level of
! significance o if
w# | Two-tailed [t]> ty 10, 2(a/2)
w <pp | Left-tailed t<-t, n,—2(c)
u>pp | Right-tailed t> th o 2(c)
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This test statistic is used under certain assumptions viz., (i) The variables involved are continuous
(it) The population from which the samples are drawn follow normal distribution (iii) The
samples are drawn independently (iv) The variances of the two populations from which the
samples are drawn are homogeneous (equal). The homogeneity of two variances can be tested by
using F-test.

Example 3.1: A group of 5 plots treated with nitrogen at 20 kg/ha. yielded 42, 39, 48, 60 and 41
kg whereas second group of 7 plots treated with nitrogen at 40 kg/ha. yielded 38, 42, 56, 64, 68,
69 and 62 kg. Can it be concluded that nitrogen at level 40 kg/ha. increases the yield
significantly?

Solution: Ho: iy = pp, Hi: i < e

Here, x, =46,X, =57, s? =121.6

f=_ 36257  _ _17- tio

1 1
1216(=+=
J (5 7)

Since [t| < 1.81 (value of t at 5% and 10 d.f), the yield from two doses of nitrogen do not differ
significantly.

3.1.3 Paired t-test for Difference of Means

When the two samples are not independent but the sample observations are paired together, then
this test is applied. The paired observations are on the same unit or matching units. For example,
to know the impact of a new teaching method on the performance of students, the observations,
in terms of marks, are collected before and after the new teaching method is implemented. Let
(Xi, Vi), 1= 1,...,n be the pairs of observations and let d; = X; - y;. Our aim is to test

Ho: mi=p
H1 VR V)
M1 > U2
H1< M2
Test Statistic:
(o d
sq/\/n

follows t distribution with n-1 d.f., where azl idi and s; :nil %(di ~d)?.
n =1 —li=

Test Criteria:

H, Test Rej_ect_ Ho at Ieve-l of
significance a if
W # | Two-tailed [t]>t (al2)
up<pp | Left-tailed t<-t, (o)
1> Ho Right-tailed t>1t, ()
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3.1.4 Test for Significance of Observed Correlation Coefficient
Given a random sample (X;, Vi) , i = 1,..., n from a bivariate normal population. We want to test
the null hypothesis that the population correlation coefficient is zero i.e.

Ho:p= 0

Hi:p=0

Test Statistic:
= rvn-2

where r is the sample correlation coefficient. Hy is rejected at level a. if
[t] >t (/2)
This test can also be used for testing the significance of rank correlation coefficient.

3.2 Test of Significance Based on Chi-Square Distribution

3.2.1 Test for the Variance of a Normal Population
Let X3, Xa,...,Xn (N>2) be a random sample from a normal population with mean p and variance
. On the basis of this sample our aim is to test

Ho: 0% =03
against Hy : o # 6}
6’ < op
6’ > o2
Test Statistic:
2
n X: —
2 n

=2 |

i=1 Og

follows a chi-square distribution with n d.f. when p is known, and

2
(X, —X n—1)s?
XZ — Z i — ( 2)
i=1 G0 GO
follows a chi-square distribution with n-1 d.f. when p is not known.
Test Criteria:
H, Test ReJect Ho at level of S|gn|_f|cance o if
u is known u is not known
o2 # o2 | Two-tailed < yi@-oal2)or | x*<yi,(1-al2)or
1> xn(a/2) x> Ana(a/2)
o’ <o | Left-tailed 1 <xn-o) 1 <xnal-a)
o’ >o; | Right-tailed 1> %o (o) > Ana(@)

Tables are available for Xz at different levels of significance and with different degrees of
freedom.
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3.2.2 Test for Goodness of Fit
A test of wide applicability to numerous problems of significance in frequency data is the y? test
of goodness of fit. It is primarily used for testing the discrepancy between the expected and the
observed frequency, For instance, one may be interested in testing whether a variable like the
height of trees follows normal distribution. A tree breeder may be interested to know whether the
observed segregation ratios for a character deviate significantly from the Mendelian ratios. In
such situations, we want to test the agreement between the observed and theoretical frequencies.
Such a test is called a test of goodness of fit.

Ho : the fitted distribution is a good fit to the given data

H; : not a good fit.

Test statistic: If O; and E;, i =1,...,n are respectively the observed and expected frequency of i"
class, then the statistic
2
2»_& (0-F)
0=y
i=1 Ei
where r is the number of parameters estimated from the sample, n is the number of classes after

pooling. Hy is rejected at level o if calculated y? > tabulated Xﬁ-r-l (o).

_ 2
An-ri

Example 3.2: In an F, population of chillies, 831 plants with purple and 269 with non-purple
chillies were observed. Is this ratio consistent with a single factor ratio of 3:1?

Solution: On the hypothesis of a ratio of 3:1, the frequencies expected in the purple and non-
purple classes are 825 and 275 respectively.

Frequency
Observed (O;) Expected (E;) O; - Ej
Purpose 831 825 6
Non-purple 269 275 -6
2
v? = iM -0.17.
i=1 Ei

Here % is based on one degree of freedom. It is seen from the table that the value of 0.17 for y?
with 1 d.f corresponds to a level of probability which lies between 0.5 and 0.7. It is concluded
that the result is non-significant.

3.2.3 Test of Independence

Another common use of the x? test is in testing independence of classifications in what are

known as contingency tables. When a group of individuals can be classified in two ways, the

result of the classification in two ways the results of the classification can be set out as follows:
Contingency table

Class A1 A2 A3
B N1 N21 N3y
B, N12 N22 N32
Bs Ni3 N23 N33

Such a table giving the simultaneous classification of a body of data in two different ways is
called contingency table. If there are r rows and ¢ columns the table is said to be an r x ¢ table.

Ho: the attributes are independent
Hi;: they are not independent
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Test statistic:
2
EIJ) 2

r
Z =~ X(r-1) (c-1)

jl i=1 |J

Ho is rejected at level o if x° > X(Zr-l)(c-l)

3.3 Test of Significance Based on F-Distribution

3.3.1 Test for the Comparison of Two Population Variances
Letx;,i=1,...,n; and xj, j=1,...,n, be the two random samples of sizes n; and n, drawn from two

independent normal populations N (u1;,62) and N (u1;,63) respectively. s? ands3 are the sample
variances of the two samples.

2o 1 nzl“(x- —X,)%and s3 —inzz“(x- ~-X,)?
1 n, 1 = i 1 2 nz_lj:1 j 2
_ 14 = 1 32
X =2 X, Xp=—2 X

Ny i= P

Tables are available giving the values of F required for significance at different levels of
probability and for different degrees of freedom. The computed value of F is compared with the
tabulated value and the inference is drawn accordingly.

3.3.2 Test for Homogeneity of Several Population Means

The test of significance based on t-distribution is an adequate procedure only for testing the
significance of the difference between two sample means. In a situation when we have three or
more samples to consider at a time, an alternative procedure is needed for testing the hypothesis
that all the samples are drawn from the same population i.e. they have the same mean. For
Example, 5 fertilizers are applied to four plots each of wheat and yield of wheat on each of the
plot is obtained. The interest is to find whether effects of these fertilizers on the yields is
significantly different or in other words, whether the samples have come from the same normal
population. This is done through F-test that uses the technique of Analysis of Variance
(ANOVA).

ANOVA is the technique of partitioning the total variability into different known components. It
consist in the estimation of the amount of variation due to each of the independent factors
(causes) separately and then comparing these estimates due to assignable factors with the
estimate due to chance factor or experimental error. The F statistic used for testing the hypothesis

Ho: W1 = H2=...=lk (k>2) is
_ Variation among the sample means
Variation within the samples
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Practical on Testing of Hypothesis

1. Independent Samples t-Test

An experiment was conducted to evaluate the effect of inoculation with mycorrhiza on the height
growth of seedlings of Pinus kesiya. In the experiment, 10 seedlings (Group 1) were inoculated
with mycorrhiza while another 10 seedlings (Group 1) were left without inoculation with the
microorganism. Following table gives the height of seedlings obtained under the two groups of
seedlings:

Plot Group | Group Il
1 23.0 8.5
2 17.4 9.6
3 17.0 7.7
4 20.5 10.1
5 22.7 9.7
6 24.0 13.2
7 22.5 10.3
8 22.7 9.1
9 19.4 10.5
10 18.8 7.4

Test whether inoculated and uninoculated seedlings are significantly different.
Solution: Hoy: Mean of Group I (i) = Mean of Group 1l (u2) and Hi: g # o
From the given data X; =20.8, X, =9.61,

2
(23.0)% +(17.4)° +..+ (188)2 — 208"
2 = 10 5724
n = = = 6.36
10-1 9
2
(8.5)% + (9.6)% +...+ (7.4) — O0D° ,
s5 = 10 _243_,-
’ 10-1 9
2 _ (10-1)(636)+(10-)(27)* _57.24+2443 _, .,
10+10-2 18 :
‘. 20.8—19.611 1178
\/4.737(+)
10 10

The computed value of t is compared with the tabular value of t (2.10) at n; + n, - 2 = 18 degrees
of freedom. Since the computed value is greater than 2.10 and it is concluded that the populations
of inoculated and uninoculated seedlings are significantly different with respect to their mean
height.

2. Paired t-Test

The following data pertain to organic carbon content measured at two different layers of a
number of soil pits. Test whether the mean carbon content from two layers of soil pit differ or
not.
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Organic Carbon (%)
Soil pit Layer 1 Layer 2 Difference
(x) (y) (d)
1 1.59 1.21 0.38
2 1.39 0.92 0.47
3 1.64 1.31 0.33
4 1.17 1.52 -0.35
5 1.27 1.62 -0.35
6 1.58 0.91 0.67
7 1.64 1.23 0.41
8 1.53 1.21 0.32
9 1.21 1.58 -0.37
10 1.48 1.18 0.30

The observations are paired by soil pits. The paired t-test can be used in this case to compare the
organic carbon status of soil at the two depth levels.
Solution: Mean of Layer 1 (u;) = Mean of Layer 2 (up) and Hy: pg # pp

n
>.d;
d=1=_ =1'—81:0.181
n 10
1

% = =0.1486

10-1

([(0'38)2 +(047) +..+ (0.302] - afg)z j =5

Thus,

0.181

——==1.485
/0.1486
10

The value of t (1.485) is less than the tabular value, 2.262, for 9 degrees of freedom at the 5%
level of significance. It may therefore be concluded that there is no significant difference between
the mean organic carbon content of the two layers of soil.

3. Goodness of Fit

In an F, population of chillies, 831 plants with purple and 269 with non-purple chillies were
observed. Is this ratio consistent with a single factor ratio of 3:1?

Solution: On the hypothesis of a ratio of 3:1, the frequencies expected in the purple and non-
purple classes are 825 and 275 respectively.

Frequency
Observed (O;) Expected (E;) O; - Ej
Purpose 831 825 6
Non-purple 269 275 -6
2 _E2
=3O B 17

i=1 i
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Here % is based on one degree of freedom. It is seen from the table that the value of 0.17 for y?
with 1 d.f corresponds to a level of probability which lies between 0.5 and 0.7. It is concluded
that the result is non-significant.

4. Equality of Several Means (Analysis of Variance)
Ten varieties of wheat are grown in 3 plots each and the following yields in kg per hectare are

obtained:

Variety —»
Plots 1] 2 3 4 5 6 7 8 9 10
1 7 7 14 11 9 6 9 8 12 9
2 81 9 13 10 9 7 13 13 11 11
3 7] 6 16 11 12 5 11 11 11 11

Test the significance between mean variety yields.
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PLANNING AND DESIGNING OF
AGRICULTURAL EXPERIMENTS

An experiment is usually associated with a scientific method for testing certain phenomena. An
experiment facilitates the study of such phenomena under controlled conditions and thus creating
controlled condition is an essential component. Scientists in the biological fields who are
involved in research constantly face problems associated with planning, designing and
conducting experiments. Basic familiarity and understanding of statistical methods that deal with
issues of concern would be helpful in many ways. Researchers who collect data and then look for
a statistical technique that would provide valid results will find that there may not be solutions to
the problem and that the problem could have been avoided first by a properly designed
experiment. Obviously it is important to keep in mind that we cannot draw valid conclusions
from poorly planned experiments. Second, the time and cost involved in many experiments are
enormous and a poorly designed experiment increases such costs in time and resources. For
example, an agronomist who carries out fertilizer experiment knows the time limitation of the
experiment. He knows that when seeds are to be planted and harvested. The experimenter plot
must include all components of a complete design. Otherwise what is omitted from the
experiment will have to be carried out in subsequent trials in the next cropping season or next
year. The additional time and expenditure could be minimized by a properly planned experiment
that will produce valid results as efficiently as possible. Good experimental designs are products
of the technical knowledge of one's field, an understanding of statistical techniques and skill in
designing experiments.

Any research endeavor may entail the phases of Conception, Design, Data collection, Analysis
and Dissemination. Statistical methodologies can be used to conduct better scientific experiments
if they are incorporated into entire scientific process, i.e., from inception of the problem to
experimental design, data analysis and interpretation. When planning experiments we must keep
in mind that large uncontrolled variations are common occurrences. Experiments are generally
undertaken by researchers to compare effects of several conditions on some phenomena or in
discovering an unknown effect of particular process. An experiment facilitates the study of such
phenomena under controlled conditions. Therefore the creation of controlled condition is the
most essential characteristic of experimentation. How we formulate our questions and hypotheses
are critical to the experimental procedure that will follow. For example, a crop scientist who
plants the same variety of a crop in a field may find variations in yield that are due to periodic
variations across a field or to some other factors that the experimenter has no control over. The
methodologies used in designing experiments will separate with confidence and accuracy a
varietal difference of crops from the uncontrolled variations.

The different concepts in planning of experiment can be well explained through chapati tasting
experiment.

Consider an experiment to detect the taste difference in chapati made of wheat flour of c306 and
pv 18 varieties. The null hypothesis we can assume here is that there is no taste difference in
chapatis made of c306 or pv18 wheat flours. After the null hypothesis is set, we have to fix the
level of significance at which we can operate. The pv18 is a much higher yielding variety than
€306. Hence a false rejection may not help the country to grow more pv1l8 and the wheat
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production may decrease while a false acceptance may give more production of pv18 wheat and

the consumption may be less or practically nil. Thus the false acceptance or false rejection are of

practically equal consequence and we agree to choose the level of significance at a = 0.05. Now

to execute the experiment, a subject is to be found with extrasensory powers who can detect the

taste differences. The colours of c306 and pv18 are different and anyone, even without tasting

the chapatis, can distinguish the chapatis of either kind by a mere glance. Thus the taster of the

chapatis has to be blindfolded before the chapatis are given for tasting. Afterwards, the method

Is to be decided in which the experiment will be conducted. The experiment can be conducted in

many ways and of them three methods are discussed here:

e Give the taster equal number of chapatis of either kind informing the taster about it.

e Give the taster pairs of chapatis of each kind informing the taster about it.

e Give the taster chapatis of either kind without providing him with any information. Let us
use 6 chapatis in each of these methods.

Under first method of experimentation, if the null hypothesis is true, then the experimenter
cannot distinguish the two kinds of chapaties and he will randomly select 3 chapatiS out of 6
chapaties given to him, as made of pvI8 wheat. In that case, all correct guesses are made if
selection exactly coincides with the exactly used wheat variety and the probability for such an

occurrence is:
MO

Under second method,the pv18 wheat variety chapaties are selected from each pair given if the
null hypothesis is true. Furthermore, independent choices are made of pv18 variety chapaties
from each pair. Thus the probability of making all correct guesses is

1/(2)* = 1/8 = 0.125.

In third method the experimenter has to make the choice for each chapati and the situation is
analogous at calling heads or tails in a coin tossing experiment. The probability of making all
correct guesses would then be:

1/2° = 1/64 = .016.

If the experimenter makes all correct guesses in third method as its probability is smaller than the
selected o = 0.05, we can reject the null hypothesis and conclude that the two wheat varieties
give different tastes at chapaties. In other methods the probability of making all correct guesses
does not exceed o = 0.05 and hence with either method, we cannot reject the null
hypothesis even if all correct guesses are made.

However, if 8 chapaties are used by first method and if the taster guesses all of them, we can
reject the null hypothesis, at 0.05 level of significance, as the probability of making all correct
guesses would then be which is smaller than 0.05. 8 chapaties will not enable us

(3)~ *se

to reject the null hypothesis even if all correct guesses are made by second method as the
1

4
probability of making all correct guesses is (%) = 6 =0.06 it is easy to see that if 10 chapaties
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are given by second method and if all correct guesses are made, then we can reject the null
hypothesis at 0.05 level of significance. Not to unduly influence the taster in making guesses, we
should also present the chapaties in a random order rather than systematically presenting them for
tasting.

The above discussed chapati tasting experiment brings home the following salient features of
experimentation:

e  All the extraneous variations in the data should be eliminated or controlled excepting the
variations due to the treatments under study. One should not artificially provide
circumstances for one treatment to show better results than others.

o Far a given size of the experiment, though the experiment can be done in many ways, even
the best results may not turn out to be significant with some designs, while some other
design can detect the treatment differences. Thus there is an imperative need the choose the
right type of design, before the commencement of the experiment, lest the results may be
useless.

o If for some specific reasons related to the nature .of the experiment, a particular method has
to be used in experimentation, then adequate number of replications of each treatment have
to be provided in order to get valid inferences.

e  The treatments have to be randomly allocated to the experimental units.
The terminologies often used in planning and designing of experiments are listed below.

Treatment

Treatment refers to controllable quantitative or qualitative factors imposed at a certain level by
the experimenter. For an agronomist several fertilizer concentrations applied to a particular crop
or a variety of crop is a treatment. Similarly, an animal scientist looks upon several
concentrations of a drug given to animal species as a treatment. In agribusiness we may look
upon impact of advertising strategy on sales a treatment. To an agricultural engineer, different
levels of irrigation may constitute a treatment.

Experimental Unit

An experimental unit is an entity that receives a treatment e.g., for an agronomist or horticulturist
it may be a plot of a land or batch of seed, for an animal scientist it may be a group of pigs or
sheep, for a scientist engaged in forestry research it may be different tree species occurring in an
area, and for an agricultural engineer it may be manufactured item. Thus, an experimental unit
maybe looked upon as a small subdivision of the experimental material, which receives the
treatment.

Experimental Error
Differences in yields arising out of experimental units treated alike are called Experimental Error.

Controllable conditions in an experiment or experimental variable are terms as a factor. For
example, a fertilizer, a new feed ration, and a fungicide are all considered as factors. Factors may
be qualitative or quantitative and may take a finite number of values or type. Quantitative factors
are those described by numerical values on some scale. The rates of application of fertilizer, the
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quantity of seed sown are examples of quantitative factors. Qualitative factors are those factors
that can be distinguished from each other, but not on numerical scale e.g., type of protein in a
diet, sex of an animal, genetic make up of plant etc. While choosing factors for any experiment
researcher should ask the following questions, like What treatments in the experiment should be
related directly to the objectives of the study? Does the experimental technique adopted require
the use of additional factors? Can the experimental unit be divided naturally into groups such that
the main treatment effects are different for the different groups? What additional factors should
one include in the experiment to interact with the main factors and shed light on the factors of
direct interest? How desirable is it to deliberately choose experimental units of different types?

Basic Principles of Design of Experiments

Given a set of treatments which can provide information regarding the objective of an
experiment, a design for the experiment, defines the size and number of experimental units, the
manner in which the treatments are allotted to the units and also appropriate type and grouping of
the experimental units. These requirements of a design ensure validity, interpretability and
accuracy of the results obtainable from an analysis of the observations.

These purposes are served by the principles of:
o Randomization

o Replication

o Local (Error) control

Randomization

After the treatments and the experimental units are decided the treatments are allotted to the
experimental units at random to avoid any type of personal or subjective bias, which may be
conscious or unconscious. This ensures validity of the results. It helps to have an objective
comparison among the treatments. It also ensures independence of the observations, which is
necessary for drawing valid inference from the observations by applying appropriate statistical
techniques.

Depending on the nature of the experiment and the experimental units, there are various
experimental designs and each design has its own way of randomization. Various speakers while
discussing specific designs in the lectures to follow shall discuss the procedure of random
allocation separately.

Replication

If a treatment is allotted to r experimental units in an experiment, it is said to be replicated r

times. If in a design each of the treatments is replicated r times, the design is said to have r

replications. Replication is necessary to

e Provide an estimate of the error variance which is a function of the differences among
observations from experimental units under identical treatments.

¢ Increase the accuracy of estimates of the treatment effects.

Though, more the number of replications the better it is, so far as precision of estimates is
concerned, it cannot be increased infinitely as it increases the cost of experimentation. Moreover,
due to limited availability of experimental resources too many replications cannot be taken.
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The number of replications is, therefore, decided keeping in view the permissible expenditure and
the required degree of precision. Sensitivity of statistical methods for drawing inference also
depends on the number of replications. Sometimes this criterion is used to decide the number of
replications in specific experiments.

Error variance provides a measure of precision of an experiment, the less the error variance the
more precision. Once a measure of error variance is available for a set of experimental units, the
number of replications needed for a desired level of sensitivity can be obtained as below.

Given a set of treatments an experimenter may not be interested to know if two treatment differ
in their effects by less than a certain quantity, say, d. In other words, he wants an experiment that
should be able to differentiate two treatments when they differ by d or more.

The significance of the difference between two treatments is tested by t-test where
_ Yi _yj

J2s? It

Here, y;, and y; are the arithmetic means of two treatment effects each based on r replications,
s? is measure of error variation.

t

Given a difference d, between two treatment effects such that any difference greater than d
should be brought out as significant by using a design with r replications, the following equation
provides a solution of r.

d |
t= ,
V252 [

I’—EXZSZ (1)
=3

where tis the critical value of the t-distribution at the desired level of significance, that is, the
value of tat 5 or 1 per cent level of significance read from the t-table. If s? is known or based on a
very large number of observations, made available from some pilot pre-experiment investigation,
then t is taken as the normal variate. If s? is estimated with n degree of freedom (d.f.) then to
corresponds to n d.f.

When the number of replication is r or more as obtained above, then all differences greater than d
are expected to be brought out as significant by an experiment when it is conducted on a set of
experimental units which has variability of the order of s>. For example, in an experiment on
wheat crop conducted in a seed farm in Bhopal, to study the effect of application of nitrogen and
phosphorous on yield a randomized block design with three replications was adopted. There were
11 treatments two of which were (i) 60 Kg/ha of nitrogen (ii) 120 Kg/ha of nitrogen. The average
yield figures for these two application of the fertilizer were 1438 and 1592 Kg/ha respectively
and it is required that differences of the order of 150 Kg/ha should be brought out significant. The
error mean square (s°) was 12134.88. Assuming that the experimental error will be of the same
order in future experiments and ty is of the order of 2.00, which is likely as the error d.f. is likely
to be more than 30 as there are 11 treatments; Substituting in (1), we get:
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o 2tes?  2x27x213488 4 (approx)
d? 1507 '

Thus, an experiment with 4 replications is likely to bring out differences of the order of 150
Kg/ha as significant.

Another criterion for determining r is to take a number of replications which ensures at least 10
d.f. for the estimate of error variance in the analysis of variance of the design concerned since the
sensitivity of the experiment will be very much low as the F test (which is used to draw inference
in such experiments) is very much unstable below 10 d.f.

Local Control

The consideration in regard to the choice of number of replications ensure reduction of standard
error of the estimates of the treatment effect because the standard error of the estimate of a
treatment effect is+/s® /1 , but it cannot reduce the error variance itself. It is, however, possible to
devise methods for reducing the error variance. Such measures are called error control or local
control. One such measure is to make the experimental units homogenous. Another method is to
form the units into several homogenous groups, usually called blocks, allowing variation between
the groups.

A considerable amount of research work has been done to divide the treatments into suitable
groups of experimental units so that the treatment effect can be estimated more precisely
Extensive use of combinatorial mathematics has been made for formation of such group
treatments. This grouping of experiment units into different groups has led to the development of
various designs useful to the experimenter. We now briefly describe the various term used in
designing of an experiment

Blocking

It refers to methodologies that form the units into homogeneous or pre-experimental subject-
similarity groups. It is a method to reduce the effect of variation in the experimental material on
the Error of Treatment of Comparisons. For example, animal scientist may decide to group
animals on age, sex, breed or some other factors that he may believe has an influence on
characteristic being measured. Effective blocking removes considerable measure of variation
nom the experimental error. The selection of source of variability to be used as basis of blocking,
block size, block shape and orientation are crucial for blocking. The blocking factor is introduced
in the experiment to increase the power of design to detect treatment effects.

The importance of good designing is inseparable from good research (results). The following
examples point out the necessity for a good design that will yield good research. First, a nutrition
specialist in developing country is interested in determining whether mother's milk is better than
powdered milk for children under age one. The nutritionist has compared the growth of children
in village A, who are all on mother's milk against the children in village B, who use powdered
milk. Obviously, such a comparison ignores the health of the mothers, the sanitary-conditions of
the villages, and other factors that may have contributed to the differences observed without any
connection to the advantages of mother's milk or the powdered milk on the children. A proper
design would require that both mother's milk and the powdered milk be alternatively used in both
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villages, or some other methodology to make certain that the differences observed are attributable
to the type of milk consumed and not to some uncontrollable factor. Second, a crop scientist who
IS comparing 2 varieties of maize, for instance, would not assign one variety to a location where
such factors as sun, shade, unidirectional fertility gradient, and uneven distribution of water
would either favor or handicap it over the other. If such a design were to be adopted, the
researcher would have difficulty in determining whether the apparent difference in yield was due
to variety differences or resulted from such factors as sun, shade, soil fertility of the field, or the
distribution of water. These two examples illustrate the type of poorly designed experiments that
are to be avoided.

Analysis of Variance

Analysis of Variance (ANOVA) is a technique of partitioning the overall variation in the
responses into different assignable sources of variation, some of which are specifiable and others
unknown. Total variance in the sample data is partitioned and is expressed as the sum of its non-
negative components is a measure of the variation due to some specific independent source or
factor or cause. ANOVA consists in estimation of the amount of variation due to each of the
independent factors (causes) separately and then comparing these estimates due to ascribable
factors (causes) with the estimate due to chance factor the latter being known as experimental
error or simply the error.

Total variation present in a set of observable quantities may, under certain circumstances, be
partitioned into a number of components associated with the nature of classification of the data.
The systematic procedure for achieving this is called Analysis of Variance. The initial techniques
of the analysis of variance were developed by the statistician and geneticist R. A. Fisher in the
1920s and 1930s, and is sometimes known as Fisher's analysis of variance, due to the use of
Fisher's F-distribution as part of the test of statistical significance.

Thus, ANOVA is a statistical technique that can be used to evaluate whether there are differences
between the average value, or mean, across several population groups. With this model, the
response variable is continuous in nature, whereas the predictor variables are categorical. For
example, in a clinical trial of hypertensive patients, ANOVA methods could be used to compare
the effectiveness of three different drugs in lowering blood pressure. Alternatively, ANOVA
could be used to determine whether infant birth weight is significantly different among mothers
who smoked during pregnancy relative to those who did not. In a particular case, where two
population means are being compared, ANOVA is equivalent to the independent two-sample t-
test.

The fixed-effects model of ANOVA applies to situations in which the experimenter applies
several treatments to the subjects of the experiment to see if the response variable values change.
This allows the experimenter to estimate the ranges of response variable values that the treatment
would generate in the population as a whole. In it factors are fixed and are attributable to a finite
set of levels of factor eg. Sex, year, variety, fertilizer etc.

Consider for example a clinical trial where three drugs are administered on a group of men and
women some of whom are married and some are unmarried. The three classifications of sex,
drug and marital status that identify the source of each datum are known as factors. The
individual classification of each factor is known as levels of the factors. Thus, in this example
there are 3 levels of factor drug, 2 levels of factor sex and 2 levels of marital status. Here all the
effects are fixed. Random effects models are used when the treatments are not fixed. This occurs
when the various treatments (also known as factor levels) are sampled from a larger population.
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When factors are random, these are generally attributable to infinite set of levels of a factor of
which a random sample are deemed to occur eg. research stations, clinics in Delhi, sire, etc.
Suppose new inject-able insulin is to be tested using 15 different clinics of Delhi state. It is
reasonable to assume that these clinics are random sample from a population of clinics from
Delhi. It describe the situations where both fixed and random effects are present.

In any ANOVA model, general mean is always taken as fixed effect and error is always taken as
random effect. Thus class of model can be classified on the basis of factors, other than these two
factors. ANOVA can be viewed as a generalization of t-tests: a comparison of differences of
means across more than two groups.

The ANOVA is valid under certain assumptions. These assumptions are:

. Samples have been drawn from the populations that are normally distributed.

. Observations are independent and are distributed normally with mean zero and variance o°.

. Effects are additive in nature.

The ANOVA is performed as one-way, two-way, three-way, etc. ANOVA when the number of

factors is one, two or three respectively. In general if the number of factors is more, it is termed
as multi-way ANOVA.
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1. Introduction
In this chapter, three basic designs viz., Completely randomized design (CRD), Randomized
Complete Block Design (RCBD) and Latin Square Design (LSD) are explained in detail.

2. Completely Randomized Design

Designs are usually characterized by the nature of grouping of experimental units and the
procedure of random allocation of treatments to the experimental units. In a completely
randomized design the units are taken in a single group. As far as possible the units forming the
group are homogeneous. This is a design in which only randomization and replication are used.
There is no use of local control here.

Let there be v treatments in an experiment and n homogeneous experimental units. Let the i"
Vv

treatment be replicated rjtimes (i = 1,2,..., v) such that Zri =n. The treatments are allotted at
i=1

random to the units.

Normally the number of replications for different treatments should be equal as it ensures equal
precision of estimates of the treatment effects. The actual number of replications is, however,
determined by the availability of experimental resources and the requirement of precision and
sensitivity of comparisons. If the experimental material for some treatments is available in
limited quantities, the numbers of their replication are reduced. If the estimates of certain
treatment effects are required with more precision, the numbers of their replication are increased.

Randomization

There are several methods of random allocation of treatments to the experimental units. The v
treatments are first numbered in any order from 1 to v. The n experimental units are also
numbered suitably. One of the methods uses the random number tables. Any page of a random
number table is taken. If v is a one-digit number, then the table is consulted digit by digit. If v is
a two-digit number, then two-digit random numbers are consulted. All numbers greater than v
including zero are ignored.

Let the first number chosen be nq; then the treatment numbered nq is allotted to the first unit. If
the second number is n, which may or may not be equal to n; then the treatment numbered n, is
allotted to the second unit. This procedure is continued. When the i treatment number has
occurred r; times, (i =1,2,...,v) this treatment is ignored subsequently. This process terminates
when all the units are exhausted.

One drawback of the above procedure is that sometimes a very large number of random numbers
may have to be ignored because they are greater than v. It may even happen that the random
number table is exhausted before the allocation is complete. To avoid this difficulty the
following procedure is adopted. We have described the procedure by taking v to be a two-digit
number.
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Let P be the highest two-digit number divisible by v. Then all numbers greater than P and zero
are ignored. If a selected random number is less than v, then it is used as such. If it is greater
than or equal to v, then it is divided by v and the remainder is taken to the random number. When
a number is completely divisible by v, then the random number is v. If v is an n-digit number,
then P is taken to be the highest n-digit number divisible by v. The rest of the procedure is the
same as above.

Analysis
This design provides a one-way classified data according to levels of a single factor. For its
analysis the following model is taken:

Yij = p+t +655, i=1,--Vv;j=1,-K,
where yjjis the random variable corresponding to the observation yjjobtained from the i
replicate of the i" treatment, 4 is the general mean, tj is the fixed effect of the i treatment and
€jj is the error component which is a random variable assumed to be normally and independently
distributed with zero means and a constant variance o .

Let D> y;=T; (i=12..,v) be the total of observations from i" treatment. Let further
j

Y T =G. Correction factor (C.F.) =G’/n.
i
\' T2
Sum of squares due to treatments = Zr'— ~C.F.
i=1 i

v
Total sum of squares = > > yﬁ —-C.F.

i=1 j=1
Analysis of Variance
Sources of Degrees of Sum of squares Mean squares F
variation freedom (D.F.) (S.S) (M.S))
Treatments v-1 SST
v 7.2 MST =SST/(v-1) MST/MSE
=Y - -CF.
i1 fi
Error n-v SSE = by MSE =
subtraction SSE/(n-v)
Total n-1 Zyﬁ _CF.
1)

The hypothesis that the treatments have equal effects is tested by F-test where F is the ratio MST /
MSE with (v - 1) and (n - v) degrees of freedom.

3. Randomized Complete Block Design

It has been seen that when the experimental units are homogeneous then a CRD should be
adopted. In any experiment, however, besides treatments the experimental material is a major
source of variability in the data. When experiments require a large number of experimental units,
the experimental units may not be homogeneous, and in such situations CRD can not be
recommended. When the experimental units are heterogeneous, a part of the variability can be
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accounted for by grouping the experimental units in such a way that experimental units within
each group are as homogeneous as possible. The treatments are then allotted randomly to the
experimental units within each group (or blocks). The principle of first forming homogeneous
groups of the experimental units and then allotting at random each treatment once in each group
is known as local control. This results in an increase in precision of estimates of the treatment
contrasts, due to the fact that error variance that is a function of comparisons within blocks, is
smaller because of homogeneous blocks. This type of allocation makes it possible to eliminate
from error variance a portion of variation attributable to block differences. If, however, variation
between the blocks is not significantly large, this type of grouping of the units does not lead to
any advantage; rather some degrees of freedom of the error variance is lost without any
consequent decrease in the error variance. In such situations it is not desirable to adopt
randomized complete block designs in preference to completely randomized designs.

If the number of experimental units within each group is same as the number of treatments and if
every treatment appears precisely once in each group then such an arrangement is called a
randomized complete block design.

Suppose the experimenter wants to study v treatments. Each of the treatments is replicated r
times (the number of blocks) in the design. The total number of experimental units is, therefore,
vr. These units are arranged into r groups of size v each. The error control measure in this
design consists of making the units in each of these groups homogeneous.

The number of blocks in the design is the same as the number of replications. The v treatments
are allotted at random to the v plots in each block. This type of homogeneous grouping of the
experimental units and the random allocation of the treatments separately in each block are the
two main characteristic features of randomized block designs. The availability of resources and
considerations of cost and precision determine actual number of replications in the design.

Analysis

The data collected from experiments with randomized complete block designs form a two-way
classification, that is, classified according to the levels of two factors, viz., blocks and treatments.
There are vr cells in the two-way table with one observation in each cell. The data are orthogonal
and therefore the design is called an orthogonal design. We take the following model:

i=12,.,v;
Yij = U+t +bj +8jj (J :1,2,...,[‘}
where yj; denotes the observation from i treatment in j™ block. The fixed effects u,t;,b j
denote respectively the general mean, effect of the i treatment and effect of the j™ block. The

random variableeij is the error component associated with yjj. These are assumed to be

normally and independently distributed with zero means and a constant variance o2,

Following the method of analysis of variance for finding sums of squares due to blocks,
treatments and error for the two-way classification, the different sums of squares are obtained as

follows: Let Zyij =T; (i :1,2,...,v) = total of observations from i"" treatment and Zyij = Bj
j ]
j=1,---,r = total of observations from j" block. These are the marginal totals of the two-way

data table. Let further, > T; => Bj =G.
i ]
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2

. T;
Correction factor (C.F.) = G%rv, Sum of squares due to treatments = ZIT ~CF.,
i

2
B 3
Sum of squares due to blocks = ZTJ—C.F., Total sum of squares = > yﬁ ~C.F.
J ij
Analysis of Variance
Sources of Degrees of Sum of squares Mean squares F
variation  freedom (D.F.) (S.S) (M.S))
Blocks r-1 B2
ssB =S —L_CF. MSB=SSB/(r-1) MSB/MSE
=~ v
J
Treatments v-1 T2
SST= IT -CF. MST=SST/(v-1) MST/MSE
i
Error (r-1)(v-1) SSE = by subtraction MSE =

SSE/(v-1)(r-1)

Total vr-1 Z yﬁ _CEF.
]

The hypothesis that the treatments have equal effects is tested by F-test, where F is the ratio MST
/ MSE with (v - 1) and (v - 1)(r - 1) degrees of freedom. We may then be interested to either
compare the treatments in pairs or evaluate special contrasts depending upon the objectives of the
experiment. This is done as follows:

The critical difference for testing the significance of the difference of two treatment effects, say
ti —tj is C.D.=t(y_1)(r-1)a/2V2MSE/ T, where t(y_1)(r-1)q/2 is the value of Student's t at

the level of significance « and degree of freedom (v - 1)(r - 1). If the difference of any two-
treatment means is greater than the C.D. value, the corresponding treatment effects are
significantly different.

4. Latin Square Design

Latin square designs are normally used in experiments where it is required to remove the
heterogeneity of experimental material in two directions. These designs require that the number
of replications equal the number of treatments or varieties.

Definition 1. A Latin square arrangement is an arrangement of v symbols in v cells arranged in
v rows and v columns, such that every symbol occurs precisely once in each row and precisely
once in each column. The term v is known as the order of the Latin square.

If the symbols are taken as A, B, C, D, a Latin square arrangement of order 4 is as follows:

A B C D
B C D A
C D A B
D A B C

A Latin square is said to be in the standard form if the symbols in the first row and first column
are in natural order, and it is said to be in the semi-standard form if the symbols of the first row
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are in natural order. Some authors denote both of these concepts by the term standard form.
However, there is a need to distinguish between these two concepts. The standard form is used
for randomizing the Latin-square designs, and the semi-standard form is needed for studying the
properties of the orthogonal Latin squares.

Definition 2. If in two Latin squares of the same order, when superimposed on one another,
every ordered pair of symbols occurs exactly once, the two Latin squares are said to be
orthogonal. If the symbols of one Latin square are denoted by Latin letters and the symbols of
the other are denoted by Greek letters, the pair of orthogonal Latin squares is also called a
graeco-latin square.

Definition 3. If in a set of Latin squares every pair is orthogonal, the set is called a set of
mutually orthogonal latin squares (MOLS). It is also called a hypergraeco latin square.

The following is an example of graeco latin square:

A B C D a y & B Aa By C5 Dgf
B ADC B S v a BA AS Dy Ca
C DAB v a B & Cy Da AB BS
DCB A S B a y DS CB Ba Ay

We can verify that in the above arrangement every pair of ordered Latin and Greek symbols
occurs exactly once, and hence the two latin squares under consideration constitute a graecolatin
square.

It is well known that the maximum number of MOLS possible of order visv-1. Asetofv-1
MOLS is known as a complete set of MOLS. Complete sets of MOLS of order v exist when v is
a prime or prime power.

Randomization

According to the definition of a Latin square design, treatments can be allocated to the v
experimental units (may be animal or plots) in a number of ways. There are, therefore, a number
of Latin squares of a given order. The purpose of randomization is to select one of these squares
at random. The following is one of the methods of random selection of Latin squares.

Let a v x v Latin square arrangement be first written by denoting treatments by Latin letters A, B,
C, etc. or by numbers 1, 2, 3, etc. Such arrangements are readily available in the Tables for
Statisticians and Biometricians (Fisher and Yates, 1974). One of these squares of any order can
be written systematically as shown below for a 5x5 Latin square:

A B C D E
B C D E A
C DE A B
D E A BZC
E A B C D
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For the purpose of randomization rows and columns of the Latin square are rearranged randomly.
There is no randomization possible within the rows and/or columns. For example, the following
is a row randomized square of the above 5x5 Latin square;

A B C D E
B C DE A
E A B CD
D E A BC

C DE AB

Next, the columns of the above row randomized square have been rearranged randomly to give
the following random square:

O O > m
m> O W
> W OO
oOmw >
w O m o

B D EC A

As a result of row and column randomization, but not the randomization of the individual units,
the whole arrangement remains a Latin square.

Analysis
In Latin square designs there are three factors. These are the factors P, Q, and treatments. The
data collected from this design are, therefore, analyzed as a three-way classified data. Actually,

there should have been v observations as there are three factors each at v levels. But because of
the particular allocation of treatments to the cells, there is only one observation per cell instead of
v in the usual three way classified orthogonal data. As a result we can obtain only the sums of
squares due to each of the three factors and error sum of squares. None of the interaction sums of
squares of the factors can be obtained. Accordingly, we take the model

Yijs = U +T +Cj +ts +eijs

where yijjs denotes the observation in the i row, j™ column and under the s™ treatment;
L1 ,C (i, j,s=12,...,v) are fixed effects denoting in order the general mean, the row, the

column and the treatment effects. The ejjs is the error component, assumed to be independently

and normally distributed with zero mean and a constant variance, o2,

The analysis is conducted by following a similar procedure as described for the analysis of two-
way classified data. The different sums of squares are obtained as below: Let the data be

arranged first in a row x column table such that yjj denotes the observation of (i, j)th cell of
table.

Let Ri=>yj =i rowtotal (i=1,2,...v), Cj=Y yjj= i columntotal(j=1,2,...v), Tg=

] |
sum of those observations which come from s" treatment (5= 1,2,..,v),
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2
G :ZRi =grandtotal. Correction factor, C.F.:G—Z. Treatment sum of squares =
i Vv
Z%—C.F., Row sum of squares = ZTI —C.F., Column sum of squares = ZTJ—C.F.
S i i
Analysis of Variance of v xv Latin Square Design
Sources of Variation D.F. S.S. M.S. F
Rows v-1 R2
> —L-CF.
— vV
Columns v-1 c?
> -1 _cF.
7V
T -1 2 2 2 142
reatments v Z-l-i . N s2 /s
sV
Error (v-1)(v-2) By subtraction S ez
2_
Total ve-1 Zyﬁ _CE.
ij

The hypothesis of equal treatment effects is tested by F-test, where F is the ratio of treatment
mean squares to error mean squares. If F is not significant, treatment effects do not differ
significantly among themselves. If F is significant, further studies to test the significance of any
treatment contrast can be made in exactly the same way as discussed for randomized block
designs.

5. Contrasts Analysis

The main technique adopted for the analysis and interpretation of the data collected from an
experiment is the analysis of variance technique that essentially consists of partitioning the total
variation in an experiment into components ascribable to different sources of variation due to the
controlled factors and error. Analysis of variance clearly indicates a difference among the
treatment means. The objective of an experiment is often much more specific than merely
determining whether or not all of the treatments give rise to similar responses. For examples, a
chemical experiment might be run primarily to determine whether or not the yield of the chemical
process increases as the amount of the catalyst is increased. A medical experimenter might be
concerned with the efficacy of each of several new drugs as compared to a standard drug. A
nutrition experiment may be run to compare high fiber diets with low fiber diets. A plant breeder
may be interested in comparing exotic collections with indigenous cultivars. An agronomist may
be interested in comparing the effects of biofertilisers and chemical fertilisers. A water
technologist may be interested in studying the effect of nitrogen with Farm Yard Manure over the
nitrogen levels without farm yard manure in presence of irrigation.
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2.1 Contrasts

n
Let yi1, V2, ...,yn denote n observations or any other quantities. The linear function C =Z|i Yi,
i=1
n
where |;'s are given number such that Z'i =0, is called a contrast of y;'s. Letyi, Y, ....ynbe
i=1
independent random variables with a common mean x and variance 2. The expected value of

n

the random variable C is zero and its variance is O'ZZhZ. In what follows we shall not
i-1

distinguish between a contrast and its corresponding random variable.

Sum of squares (s.s.) of contrasts. The sum of squares due to the contrast C is defined as

n

c? /G_ZVar(C) = C? /[ZI?]. Here o2 is unknown and is replaced by its unbiased estimate,
i=1

I.e. mean square error. It is known that this square has a azgzdistribution with one degree of

freedom when the y;'s are normally distributed. Thus the sum of squares due to two or more

contrasts has also a azgzdistribution if the contrasts are independent. Multiplication of any

contrast by a constant does not change the contrast. The sum of squares due to a contrast as
defined above is not evidently changed by such multiplication.

n n
Orthogonal contrasts. Two contrasts, Cq = Zli yjand Co = ZIi y; are said to be orthogonal if
i=1 i=1

n
and only if Zlimi =0. This condition ensures that the covariance between Cq and C, is zero.
i=1

When there are more than two contrasts, they are said to be mutually orthogonal if they are
orthogonal pair wise. For example, with four observations yi,Y2,Y3,Y4, We may write the

following three mutually orthogonal contrasts:

() yi+y2-Y3-V4

() yi-y2-y3+vq

(i) y1-y2+ys-Vs

The sum of squares due to a set of mutually orthogonal contrasts has a azgzdistribution with as
many degrees of freedom as the number of contrasts in the set.
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ANALYSIS OF COVARIANCE

Introduction

The meaning of ANVOVA is Analysis of Covariance. It is a general linear model with one
continuous outcome variable (quantitative) and one or more factor variables (qualitative).
ANCOVA is a merger of ANOVA and regression for continuous variables. ANCOVA tests
whether certain factors have an effect on the outcome variable after removing the variance for
which quantitative predictors (covariates) account. The inclusion of covariates can increase
statistical power because it accounts for some of the variability.

It is well known that in designed experiments the ability to detect existing differences among
treatments increases as the size of the experimental error decreases, a good experiment attempts
to incorporate all possible means of minimizing the experimental error. Besides proper
experimentation, a proper data analysis also helps in controlling experimental error. In situations
where blocking alone may not be able to achieve adequate control of experimental error, proper
choice of data analysis may help a great deal. By measuring one or more covariates - the
characters whose functional relationships to the character of primary interest are known - the
Analysis of Covariance (ANCOVA) can reduce the variability among experimental units by
adjusting their values to a common value of the covariates. For example, in an animal feeding
trial, the initial body weight of the animals usually differs. Using this initial body weight as a
covariate, the final weights recorded after the animals have been subjected to various
physiological feeds (treatments) can be adjusted to the values that would have been obtained had
there been no variation in the initial body weights of the animals at the start of the experiment.
An another example, in a field experiment where rodents have (partially) damaged some of the
plots, covariance analysis with rodent damage as a covariate could be useful in adjusting plot
yields to the levels that they should have been had there been no rodent damage in any plot.

ANCOVA requires measurement of the character of primary interest plus the measurement of
one or more variables known as covariates. It also requires that the functional relationship of the
covariates with the character of primary interest is known beforehand. Generally a linear
relationship is assumed, though other type of relationships could also be assumed.

Consider the case of a variety trial in which weed incidence is used as a covariate. With a known
functional relationship between weed incidence and grain yield, the character of primary interest,
the covariance analysis can adjust grain yield in each plot to a common level of weed incidence.
With this adjustment, the variation in yield due to weed incidence is quantified and effectively
separated from that due to varietal difference.

ANCOVA can be applied to any number of covariates and to any type of functional relationship
between variables viz. quadratic, inverse polynomial, etc. Here we illustrate the use of covariance
analysis with the help of a single covariate that is linearly related with the character of primary
interest. It is expected that this simplification shall not unduly reduce the applicability of the
technique, as a single covariate that is linearly related with the primary variable is adequate for
most of the experimental situations in agricultural research.

Uses of Covariance Analysis in Agricultural Research
There are several important uses of covariance analysis in agricultural research. Some of the most
important ones are:


http://www.answers.com/topic/general-linear-model
http://www.answers.com/topic/analysis-of-variance
http://www.answers.com/topic/regression-analysis
http://www.answers.com/topic/covariate
http://www.answers.com/topic/statistical-power
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1. To control experimental error and to adjust treatment means.
2. Toaid in the interpretation of experimental results.
3. To estimate missing data.

Error Control and Adjustment of Treatment Means

It is now well realized that the size of experimental error is closely related to the variability
between experimental units. It is also known that proper blocking can reduce experimental error
by maximizing the differences between the blocks and thus minimizing differences within
blocks. Blocking, however, can not cope with certain types of variability such as spotty soil
heterogeneity and unpredictable insect incidence. In both instances, heterogeneity between
experimental plots does not follow a definite pattern, which causes difficulty in getting maximum
differences between blocks. Indeed, blocking is ineffective in the case of nonuniform insect
incidences because blocking must be done before the incidence occurs. Furthermore, even though
it is true that a researcher may have some information on the probable path or direction of insect
movement, unless the direction of insect movement coincides with the soil fertility gradient, the
choice of whether soil heterogeneity or insect incidence should be the criterion for blocking is
difficult. The choice is especially difficult if both sources of variation have about the same
importance.

Use of covariance analysis should be considered in experiments in which blocking couldn't
adequately reduce the experimental error. By measuring an additional variable (e.g., covariate X)
that is known to be linearly related to the primary variable Y, the source of variation associated
with the covariate can be deducted from experimental error. This adjusts the primary variable Y
linearly upward or downward, depending on the relative size of its respective covariate. The
adjustment accomplishes two important improvements:

1. The treatment mean is adjusted to a value that it would have had; had there been no
differences in the values of the covariate.

2. The experimental error is reduced and the precision for comparing treatment means is
increased.

Although blocking and covariance techniques are both used to reduce experimental error, the
differences between the two techniques are such that they are usually not interchangeable. The
ANCOVA can be used only when the covariate representing the heterogeneity among the
experimental units can be measured quantitatively. However, that is not a necessary condition for
blocking. In addition, because blocking is done before the start of the experiment, it can be used
only to cope with sources of variation that are known or predictable. ANCOVA, on the other
hand, can take care of unexpected sources of variation that occur during the experiment. Thus,
ANCOVA is useful, as a supplementary procedure to take care of sources of variation that cannot
be accounted for by blocking.

When covariance analysis is used for error control and adjustment of treatment means, the
covariate must not be affected by the treatments being tested. Otherwise, the adjustment removes
both the variation due to experimental error and that due to treatment effects. A good example of
covariates that are free of treatment effects are those that are measured before the treatments are
applied, such as soil analysis and residual effects of treatments applied in the past experiments. In
other cases, care must be exercised to ensure that the covariates defined are not affected by the
treatments being tested. This technique can be illustrated through the following example:
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Example 1: A trial was designed to evaluate 15 rice varieties grown in soil with a toxic level of
iron. The experiment was in a RCB design with three replications. Guard rows of a susceptible
check variety were planted on two sides of each experimental plot. Scores for tolerance for iron
toxicity were collected from each experimental plot as well as from guard rows. For each
experimental plot, the score of susceptible check (averaged over two guard rows) constitutes the
value of the covariate for that plot. Data on the tolerance score of each variety (Y variable) and

Analysis of Covariance

on the score of the corresponding susceptible check (X variable) are shown below:

Scores of tolerance for iron toxicity (YY) of 15 rice varieties and those of the corresponding

guard rows of a susceptible check variety (X) in a RCB trial

Variety Replication-I Replication-11 Replication-111

Number X Y X Y X Y
1. 15 22 16 13 16 14
2. 16 14 15 23 15 23
3. 15 24 15 24 15 23
4. 16 13 15 23 15 23
5. 17 17 17 16 16 16
6. 16 14 15 23 15 23
7. 16 13 15 23 16 13
8. 16 16 17 17 16 16
9. 17 14 15 23 15 24
10. 17 17 17 17 15 26
11. 16 15 15 24 15 25
12. 16 15 15 23 15 23
13. 15 24 15 24 16 15
14, 15 25 15 24 15 23
15. 15 24 15 25 16 16

The usual analysis of variance without using the covariate (X variable) is as follows:

Source DF SS Mean Square FValue Pr>F
Replication 2 104.0444 52.0222 2.85 0.0745
Treatment 14 265.9111 18.9937 1.04 0.4448
Error 28 510.6222 18.2365
Total 44 880.5778
R-Square C.v. Root MSE Y - Mean

0.4201 21.5436 4.2704 19.82222

Using the covariate, the analysis is the following:

Source DF S.S. M.S. F-Value Pr>F

Replication 2 22.4802 11.2402 2.71 0.0844

Treatment 14 152.5606 10.8972 2.63 0.0151

Covariate X 1 398.7516 398.7516 96.24 0.0001

Error 27 111.8707 4.1434

R-Square C.Vv. Root MSE Y Mean
0.8730 10.2689 2.0355 19.8222
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It is interesting to note that the use of a covariate has resulted into a considerable reduction in the
error mean square and hence the CV has also reduced drastically. This has helped in catching the
small differences among the treatment effects as significant. This was not possible when the
covariate was not used. The covariance analysis will thus result into a more precise comparison

of treatment effects.

The probability of significance of pairwise comparisons among the least square estimates of the

treatment effects are given below:

1 2

—

0.0666 0.3370

OCoOoO~No ol WN -

0.4431 0.8425 0.2497 .
0.0019 0.0237 0.1620 0.0157
0.3370 1.0000 0.3370 0.8425
1.0000 0.3370 0.0666 0.4431
0.0252 0.1834 0.6757 0.1320
0.0232 0.1697 0.6751 0.1191
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Pr > |T| HO: LSMEAN(i)=LSMEAN(j)
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ANALYSIS OF REPEATED MEASURES DATA

1. Introduction

The term “repeated measures” refers broadly to the data in which the response of each
experimental unit or subject is observed on multiple occasions or under multiple conditions. Thus
repeated measurements refer to the situation in which multiple measurements of the response
variable are obtained, over several time periods, from each experimental unit, such as an animal.
Usually, the responses are taken over time, as in growth of animal weights are measured
weekly/monthly production of fruit over the years from the same tree. Repeated measurement
data are obtained in animal science, horticulture, clinical trials, medical science, physiological,
psychological experiments, etc.

Repeated measures experiments are a type of factorial experiment, with group and time as the
two factors. They have been used commonly in animal, plant, and human research for several
decades, but only in recent years statistical and computing methodologies been available to
analyze them effectively and efficiently. The objectives of repeated measures data analysis are to
examine and compare response trends over time. This can involve comparisons of groups at
specific times, or averaged over time. It also can involve comparisons of times within a group.
These are objectives common to any factorial experiment. The important feature of repeated
measures experiments that requires special attention in data analysis is the correlation pattern
among the responses on the same individual (animal) over time.

2. Methods for Analyzing Repeated Measures

Responses measured on the same animal are correlated because they contain a common
contribution from the animal. Moreover, measures on the same animal close in time tend to be
more highly correlated than measures far apart in time. Also, variances of repeated measures
often change with time. These potential patterns of correlation and variation may combine to
produce a complicated covariance structure of repeated measures. Special methods of statistical
analysis are needed for repeated measures data because of the covariance structure. Standard
regression and analysis of variance methods may produce invalid results because they require
mathematical assumptions that do not hold with repeated measures data. In repeated measures
analysis of variance, the effects of interest are

) between-subject effects such as GROUP

i) within-subject effects such as TIME

i) interactions between the two types of effects such as GROUP*TIME.

There are several statistical methods used for analyzing repeated measures data. Here we give
from basic to sophisticated methods for the analysis of repeated measure data using SAS
software. These include:

) Separate analyses at each time point,

i) Univariate analysis of variance,

iii) Univariate and multivariate analyses of time variables, and
Iv) Mixed model methodology.

Separate analyses at each time point do not require special methods for repeated measures and do
not directly address the objectives of examining and comparing trends over time. The other three
approaches require special methodology and software. Development of statistical methods for
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repeated measures data has been an active area of research in the past two decades because of
advancements in computing hardware and software. Enhancements in the SAS System reflect the
advancements in methodology and hardware. In SAS System the GLM procedure enabled users
to perform univariate analysis of variance but did not provide valid standard errors for most
estimates. Moreover, conclusions derived from univariate analysis of variance are often invalid
because the methodology does not adequately address the covariance structure of repeated
measures. The REPEATED statement is now available to the SAS in the GLM procedure and
Mixed procedure. PROC GLM provides both univariate and multivariate tests for repeated
measures for one response. Another approach to analysis of repeated measures is via general
mixed models. This approach can handle balanced as well as unbalanced or missing within-
subject data, and it offers more options for modeling the within-subject covariance. The main
drawback of the mixed models approach is that it generally requires iteration and, thus, may be
less computationally efficient. The results provided by the REPEATED statement are based on
univariate and multivariate analyses of contrast variables computed from the repeated measures
variables. This approach basically bypassed the problems of covariance structure rather than
addressing them directly. The REPEATED statement enabled users to obtain statistical tests for
effects involving time trends. However, the tests were inefficient and the problem of incorrect
standard errors remained. In addition, missing data on even one measure of an animal caused all
the data for that animal to be ignored. Mixed procedure provided capabilities of mixed model
methodology for analysis of repeated measures data. Use of mixed model methodology enabled
the user to directly address the covariance structure and greatly enhanced the user’s ability to
analyze repeated measures data by providing valid standard errors and efficient statistical tests.

Here we shall illustrate the univariate and multivariate methods of analysis and their respective
advantages and shortcomings. The statistical analysis methods illustrated focus on group (sex)
comparisons at specific times, group comparisons averaged over times, and on changes over time
in specific groups. Differences between groups (male and female) are computed at individual
times and averaged across times.

Separate analyses at each time and the GLM REPEATED statement require the data to be
organized in “multivariate mode.” That is, there is one row per experimental unit in the data set,
and the measurements at each time are considered separate response variables. The univariate
ANOVA and MIXED procedure require that the data be organized in “univariate mode,” that is,
one row per experimental unit at each time.

We use the data obtained on body weight (kg) of pigs for the male and female. The body weights
of pigs are collected at interval of 4 weeks since birth to 20 weeks of age and are given in Table -
1. Here the sex has two levels.

Table 1: Body weights of pigs maintained at Jabalpur

Animal Sex Week

No. 0 4 8 12 16 20
1 Male 1 4.8 12.6 16 21 22.6
2 Male 1 4.2 7 10 14 22
3 Male 0.8 4 6 6.4 10 15
4 Male 0.8 4 6 9 13 21
5 Male 0.8 5 9.4 11 14 23
6 Male 0.8 3.2 7 10 15 22
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7 Male 0.8 3.2 5.5 7.4 12 17
8 Male 0.8 3.4 7 8.7 12.4 19.2
9 Female 1 5.4 10 13 17.4 26.4
10 Female 1.2 4.8 12.6 16 20 21
11 Female 1 4.6 13 18 22 24
12 Female 0.8 4.2 8 11 13 18
13 Female 0.8 3.8 7 7.2 12 19
14 Female 1 54 11 14 19 22
15 Female 1 6 5.4 10 17 26.8
16 Female 1 3.4 7.8 10 13 17.8

Now the analysis of this data by using different methods with the use of software is given below:

1) Analysis at Individual Time Points

Analysis of data at each time point examines group effects separately at individual observation
times and makes no statistical comparisons among times. This can be anlysed by using even in
Microsoft Excel (easily available software). In it we make a file in Microsoft Excel by taking
columns as the levels of the groups and then using Anova single factor command in Data
Analysis command in Tools. This process is repeated for each time point.

No inference is drawn about trends over time, so this method is not truly a repeated measures
analysis. Use of analysis at each time point is usually at a preliminary stage of data analysis and
is not a preferred method because it does not address time effects. The only advantage in this
method is that if we do not have any statistical software the data can be analyzed in Microsoft
Excel.

I1) Univariate ANOVA when the data follow a trend

Some of the repeated measures data such as growth, lactation data follow a trend. The analysis of
such data can be done by fitting the appropriate such as linear, quadratic curves etc. on each of
the animal. A set of estimates of parameters of these repeated data are estimated. These estimates
are further analyzed to determine the effect of factors. The drawback of this method is that we are
using the estimates of parameter which are not the true values and that may not be normally
distributed.

I11) Univariate Analysis of Variance Using the General Linear Model

Univariate analysis of variance (ANOVA), is the method most commonly applied to repeated
measures data that makes comparisons between times. It treats the data as if they were from a
split-plot design with the animals as whole-plot units and animals at particular times as sub-plot
units. This approach also is referred to as a split plot in time analysis. If measurements have equal
variance at all times, and if pairs of measurements on the same animal are equally correlated,
regardless of the time lag between the measurements, then the univariate ANOVA is valid from a
statistical point of view, and, in fact, yields an optimal method of analysis. However,
measurements close in time are often more highly correlated than measures far apart in time,
which will invalidate tests for effects involving time. For this procedure data is to be set in
univariate mode

IV) Analysis of Contrast Variables

Contrast variables in repeated measures data are linear combinations of the responses over time
for individual animals. A familiar example from basic statistical methodology is given by the
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orthogonal polynomials (Snedecor and Cochran, 1980), which represent linear, quadratic, cubic,
etc., trends over time. Another example is the set of differences between responses at consecutive
time points, that is, changes from time 1 to time 2, time 2 to time 3, and so forth. A set of contrast
variables can be used to analyze trends over time and to make comparisons between times in
repeated measures data. The original repeated measures data for each animal are transformed into
a new set of variables given by a set of contrast variables. Then, multivariate and univariate
analyses can be applied to these new variables. This provides a method for analyzing repeated
measures data that evades some of the covariance structure problems that invalidate univariate
ANOVA analyses, as discussed in the previous section.

V) Mixed Model Analysis

As noted above, analysis of repeated measures data requires special attention to the covariance
structure due to the sequential nature of the data on each animal. Procedures discussed previously
either avoid the issue (analysis of contrast variables) or ignore it (univariate analysis of variance).
Ignoring the covariance issues may result in incorrect conclusions from the statistical analysis.
Avoiding the issues may result in inefficient analyses, which is tantamount to wasting data. The
general linear mixed model allows the capability to address the issue directly by modeling the
covariance structure.

There are two basic steps in performing a repeated measures analysis using mixed model
methodology. The first step is to model the covariance structure. The second step is to analyze
time trends for groups by estimating and comparing means.

Measures on different animals are independent, so covariance concern is only with measures on
the same animal. The covariance structure refers to variances at individual times and to
correlation between measures at different times on the same animal. There are basically two
aspects of the correlation. First, two measures on the same animal are correlated simply because
they share common contributions from the animal. This is due to variation between animals.
Second, measures on the same animal close in time are often more highly correlated than
measures far apart in time. This is covariation within animals. Three different structures will be
shown here and one will be chosen as best among the three. First, a structure known as
compound symmetry (CS) will be fitted. This structure specifies that measures at all times have
the same variance, and that all pairs of measures on the same animal have the same correlation.
The implication is that the only aspect of the covariance between repeated measures is due to the
animal contribution, irrespective of proximity of time.

Implications

Computer software is currently available that enables researchers to analyze repeated measures
data using mixed model methodology. This methodology provides more valid and efficient
statistical analyses of repeated measures. Implementation of this methodology requires the data
analyst to model the variance and correlation structure of the data as a first step. Then,
comparisons of groups and trends over time can be analyzed.

Illustration: An experiment was conducted to study the fruit (mango) weight for two types of
pollination for four verities of mango with three replications. The experiment was planned with
following parameters.

Factors Levels | Values
Type of pollination 2 Selfed (1); Open pollination (2)
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variety 4 Amarpali (1), Pusa (2), Arunima (3), Malika (4)
Replication 3 1,2,3

The data of fruit weight is given in Table-1.

Table-1: Fruit weight (g) at different time points

Pollination | Variety | Replication Time points (Weeks)
method 7 14 21 28

1 1 1 0.0325 0.2304 0.3580 0.412
1 1 2 0.0402 0.2364 0.449 0.521
1 1 3 0.046 0.2339 0.357 0.457
1 2 1 0.0243 0.224 0.426 0.512
1 2 2 0.0497 0.124 0.387 0.587
1 2 3 0.0406 0.1989 0.42 0.518
1 3 1 0.0348 0.1286 0.258 0.453
1 3 2 0.0335 0.0742 0.187 0.387
1 3 3 0.033 0.045 0.086 0.231
1 4 1 0.086 0.231 0.451 1.96

1 4 2 0.0533 0.249 0.449 1.345
1 4 3 0.0721 0.413 0.521 1.756
2 1 1 0.107 0.368 0.857 2.436
2 1 2 0.1225 0.326 0.511 1.957
2 1 3 0.089 0.14 0.355 2.594
2 2 1 0.0421 0.061 0.588 1.812
2 2 2 0.0515 0.078 0.677 1.571
2 2 3 0.0381 0.073 0.621 1.426
2 3 1 0.0413 0.0426 0.643 2.26

2 3 2 0.0312 0.0427 0.752 2.13

2 3 3 0.0317 0.047 0.632 2.563
2 4 1 0.1455 0.297 0.623 1.288
2 4 2 0.983 0.334 0.421 1.314
2 4 3 0.2286 0.308 0.545 1.074

Analyze the data for main effects of the factors and their interaction with time points using the
repeated methodology.
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1. Introduction

In large-scale experimental programmes it is necessary to repeat the trial of a set of treatments
like varieties or manures at a number of places or in a number of seasons. The places where the
trial is repeated are usually experimental stations located in the tract. The aim of repetition is to
study the susceptibility of treatment effects to place variation. More generally, the aim of
repetition is to find out treatments suitable for particular tracts in which case the trials are carried
out simultaneous on a representative selection of sites.

Further, the purpose of the research carried out at experimental stations is to formulate the
recommendations for the practitioners which consist of a population quite extensive either in
space or time or both. Therefore, it becomes necessary to ensure that the results obtained from
researches are valid for at least several places in the future and over a reasonably heterogeneous
space.

A single experiment will precisely furnish information about only one place where the
experiment is conducted and about the season in which the experiment is conducted. It has, thus,
become a common practice to repeat an experiment at different places or over a number of
occasions to obtain valid recommendations taking into account place to place variation or
variation over time or both. In such cases of repeated experiments appropriate statistical
procedures for a combined analysis of data would have to be followed by the analysis of
individual experiments varying with their objectives. In combined analysis of data, the main
points of interest would be
) to estimate the average response to given treatments and
i) to test consistency of the responses from place to place or occasion to occasion i. e.
interaction of the treatment effects with places or years.

The utility and the significance of the estimates of average response depend on whether the
response is consistence from place to place or changes with it, in other words on the absence or
the presence of interaction.

The results of a set of trials may, therefore, be considered as belonging to one of the following
four types:

1) the experimental errors are homogeneous and the interaction is absent,

ii) the experimental errors are homogeneous and the interaction is present,

i) the experimental errors are heterogeneous and the interaction is absent, and

iv) the experimental errors are heterogeneous and the interaction is present.

The meaningfulness of average estimates of treatment responses would therefore, depend largely
upon the absence of presence of this interaction analysis.

2. Analysis Procedure
For combined analysis or analysis for groups of Experiments following steps are to be followed

Step I: Construct an out line of combined analysis of variance over years or for places or
environment, based on the basic design used. For example, the data of grain yield for four places,
four treatments each treatment replicated five times is given in Table-1.
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Step I1: Perform usual Analysis of variance for the given data. Here the experiment conducted is
in randomized complete block design. So perform analysis of four places separately for the four
places. This may be done either in SAS, SPSS or EXCEL software.

Step I11: We have p error mean squares that belongs to p RBD conducted and we have to test
the homogeneity of variances. Now we have following two situations:

Situation I: Whenp =2
In this situation, we apply F-test for testing the homogeneity of variances. Here null and alternate

hypothesis are Ho: 62 =3 and Hy: o7 # 3. Let Se? and Se3 are the mean square errors (mse)

for the two places. Then the value of F statistics will be Se?/Se? and this value will be tested

against the Table F value at n;and n, degrees of freedom at 5 % level of significance, where
niand n, are degrees of freedom (df) for error for the two places, respectively. If the calculated
value of F is greater than tabulated F value then the null hypothesis of homogeneity of variance is
rejected and the data is heterogeneous in different places, otherwise it is homogeneous.

Situation 11: When p > 2

In this situation, we apply Bartlett's Chi-square test. Here null and alternate hypothesis are

Ho: of =o5 =---=0} against the alternative hypothesis

2

H, : at least two of the o2's are not equal, where o2 is the error variance for i ™ place/ location.

Let Se,?, Se,’, ..., Se,” are the mse of p locations respectively and ny, ny,
locations. The test statistics

S >, Iogs —Zn Iogs where 2 =zni5§i
p-1 — ! ¢ Zn
1 1

3(p 1) (Z n, Zn

n, are the df for p

LRRE)

and if nj=n
, _n[plogs? - logs:]
N CTS R
3np

where y2, follows 7*  distribution with p - 1 degree of freedom.

If the calculated value of ;(f,_l is greater than tabulated ;(5_1 value at p-1df then the null

hypothesis of homogeneity of variance is rejected and the data is heterogeneous in different
places, otherwise it is homogeneous.

Step IV: If error variances are not homogeneous, then for performing the combined analysis of
weighted least square is required, the weight being the reciprocals of the root mean square error.
The weighted analysis is carried out by defining a new variable as newres = res/ root mean
square. This transformation is similar to Aitken’s transformation. This new variable is thus
homogeneous and thus combined analysis of variance can performed on this new variable. If
error variance variances are homogeneous then there is no need to transform the data.

Step V: Now one can view the groups of experiments as a nested design with several factors
nested within one another. The places/ locations are treated as big blocks, with the experiments
nested within these. The combined analysis of data, therefore, can be done as that a nested
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design. For doing the analysis, the replication wise data of treatments at each place/ location
provide useful information. An advantage of this analysis is that there is a further reduction in
error sum of squares because one more source of variability is taken out from the experimental
error thus reducing the experimental error. This may also lead to the reduction in the value of CV.

Step VI: Next step in the analysis is to test for the significance of place x treatment interaction.
It can be seen that the question whether the interaction place x treatment is significant, that is
whether the difference between treatments tend to vary from place to place can be settled by
comparing the mean square for place x treatment with the estimate of error variance by the F-
test. If the mean square is found to be non-significant it means interaction is absent. If this
interaction is assumed to be non-existence, sum of squares for treatments x places and the error
sum of squares can be pooled and a more precise estimate of error can be obtained for testing the
significance of treatment differences. If, however, interaction is significant i. e. treatment effects
are varying with places, then the appropriate mean square for testing the significance of
treatments is the mean square due to place x treatment.

Exercise
Table-1: Data for grain yield (kg/ plot) with four treatments in five replications
Place Replication
Treatment | 11 i v V

1 1 33.6 33.7 30.9 33.3 15.0
2 34.0 27.2 46.2 36.7 11.6
3 30.5 33.2 15.1 33.3 29.7
4 30.8 14.4 14.2 9.5 12.0

2 1 28.8 28.8 35.2 41.6 43.2
2 46.4 43.2 38.4 54.4 57.6
3 35.2 32.0 32.0 25.6 33.6
4 51.2 40.0 49.6 51.2 49.6

3 1 30.1 38.1 21.4 17.6 14.3
2 36.1 18.3 38.0 31.0 26.6
3 27.2 40.7 15.5 18.1 12.3
4 37.8 54.5 13.2 18.1 7.3

4 1 23.8 48.8 19.5 28.8 34.4
2 15.2 39.0 39.8 52.0 31.2
3 40.2 52.0 33.0 41.2 35.0
4 43.2 46.8 34.5 44.5 38.0
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1. Introduction

Incomplete block designs are desirable when number of treatments to be tested is large and / or
complete blocks are unavailable or inappropriate. These designs were introduced by Yates in
order to eliminate heterogeneity to a greater extent as compared to a complete block design, when
the number of treatments is large. The precision of the estimate of a treatment effect depends on
the number of replications of the treatment - the larger the number of replications, the more is the
precision. Similar is the case for the precision of estimate of the difference between two treatment
effects. If a pair of treatment occurs together more number of times in the design, the difference
between these two treatment effects can be estimated with more precision. To ensure equal or
nearly equal precision of comparisons of different pairs of treatment effects, the treatments are so
allocated to the experimental units in different blocks of equal sizes such that each treatment
occurs at most once in a block and it has an equal number of replications and each pair of
treatments has the same or nearly the same number of replications. When the number of
replications of all pairs of treatments in a design is the same, then we have an important class of
designs called Balanced Incomplete Block (BIB) designs and when there are unequal number of
replications for different pairs of treatments, then the designs are called as Partially Balanced
Incomplete Block (PBIB) designs. Another important class of incomplete block designs is lattice
designs. Some of these are Balanced Incomplete Block (BIB) designs while others are Partially
Balanced Incomplete Block (PBIB) designs.

2. Balanced Incomplete Block (BIB) Designs

A BIB design is an arrangement of v treatments in b blocks each of size k (<v) such that
(1) Each treatment occurs at most once in a block

(i)  Each treatment occurs in exactly r blocks

(ili)  Each pair of treatments occurs together in exactly A blocks.

Example 2.1: A BIB designforv=b=5,r=k=4and A =3 in the following:

Blocks

(1,2,3,4)
(1,2,3,5)
(1,2,4,5)
(1,3,4,5)
(2,3,4,5)

OB [wN|F-

The symbols v, b, r, k, A are called the parameters of the design. These parameters satisfy the
relations

vr = bk ...(21)
and  A(v-1) =r(k-1) ...(2.2)

A BIB design cannot exist unless (2.1) and (2.2) are satisfied. For instance, no design exists for v
=b =6and r =k = 3since, from (2.2) A=6/5 is not an integer. However, these conditions are not
sufficient for the existence of a BIB design. Even if both (2.1) and (2.2) are satisfied, it does not
follow that such a design exists. For example, no BIB design exits forv=15b=21,r=7,k =5,


http://www.iasri.res.in/Lattic_designs/bib.html
http://www.iasri.res.in/Lattic_designs/pbib.html
http://www.iasri.res.in/Lattic_designs/pbib.html
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and A = 2 even though both conditions are satisfied. In search of a criterion for the availability of
a BIB design, Fisher proved that no design with b<v is possible.

Construction of BIB Designs
There is no single method of constructing all BIB designs. Solutions of many designs are still
unknown. We describe below a few well known series of BIB designs.

2.1 Unreduced BIB Designs
These designs are obtained by taking all combinations of the v treatments k at a time. Therefore,
the parameters of all unreduced BIB designs are:

v,k b="YC,,r="1C 4, A= "2Cy,

The BIB design for v = 5 treatments given in the previous section is an example of an unreduced
BIB design in blocks of size 4.

Example 2.1: Letv =5, k = 3, then b = °C3= 10, r = *C, = 6 and A = 3C;. The 10 blocks are:

Blocks
(1,2,3)
(1,2,4)
(1,2,5)
(1,3,4)
(1,3,5)
(1,4,5)
(2,3,4)
(2,3,5)
(2,4,5)

10 (3,4,5)

O[NNI |01~ |WIN|F

These unreduced designs usually require a large number of blocks and replications so that the
resulting designs will often be too large for practical purposes.

2.2 BIB Designs using MOLS

Before we describe the method, we explain the concept of mutually orthogonal Latin squares
(MOLS) which will be used in the construction of BIB designs.

A Latin square of order s is an arrangement of s symbols in an s x s array such that each symbol
occurs once in each row and once in each column of the array. For example, the following are 4 x
4 Latin squares of order 4 in symbols A, B, C, and D:

ABCD ABCD ABCD
BADC CDAB DCBA
CDAB DCBA BADC
DCBA BADC CDAB

Two Latin squares are pairwise orthogonal if, when one square is superimposed on the other,
each symbol of one Latin square occurs once with each symbol of the other square. Three or
more squares are mutually orthogonal if they are pair-wise orthogonal. The three 4 x 4 Latin
squares above are mutually orthogonal.
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A complete set of s-1 mutually orthogonal Latin squares is known to exist for any s = p", where p
is a prime number. Tables can be found in Fisher and Yates (1963). Now we describe the
methods of constructing BIB designs using MOLS.

Suppose v= s° treatments are set out in an s x s array. A group of s blocks each of size s is
obtained by letting the rows of the array represent blocks. Another group of s blocks is given by
taking the columns of the array as blocks. Now suppose one of the orthogonal Latin squares is
superimposed on to the array of treatments. A further group of s blocks is obtained if all
treatments common to a particular symbol in the square are placed in a block. Each of the s-1
orthogonal squares produces a set of s blocks in this manner. The resulting design is a BIB design
with parametersv=s? b=s*+s k=s r=s+1,A=1.

Example 2.2: For v = 3% = 9 treatments a 3 x 3 array and a complete set of mutually orthogonal
Latin squares of order 3 x 3 are :

123 ABC ABC
456 CAB BCA
789 BCA CAB

Four groups of 3 blocks are obtained from the rows, columns and the symbols of the two squares,
as follows:

Blocks
1,2,3) (1,5,9)
Rows (4,5,6) Firstsquare (2,6,7)
(7,8,9) (3,4,8)
1,4,7) (1,6, 8)
Columns (2,5,8) Secondsquare (2,4,9)
(3,6,9) (3,5,7)

It can be checked that this is a BIB design with parametersv=9,b=12,r=4,k=3,and A = 1.

2.3 Randomization Procedure

(i) Allot the treatment symbols (1,2,...,v) to the v treatments at random.
(i) Allot the groups of k treatments to the b blocks at random.

(ili)  Randomize the positions of the treatment numbers within each block.

2.4 Statistical Analysis
Consider the following model:

Observation = General mean + treatment effect + block effect + random error.

Random errors are assumed to be independently and identically distributed normally with mean
zero and constant variance o®. On minimising the error sum of squares with respect to the
parameters, we get a set of normal equations which can be solved to get the estimates of different
contrasts of various treatment and block effects.

Now we compute
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G = Grand total of observations
y = grand mean = G/n, where n= vr = bk = total number of observations

Ti= Sum of obervations for treatment i, (i=1,2,..., V)
B; = Sum of observations in block j, (j=1,2,..., b)
CF=G%/n,
Q; = adjusted i™ treatment total
= T; - (Sum of block totals in which treatment i occurs) / Block size (k)

A solution for the i treatment effect is,

7 =(kQ) /(A V) i=12, ..V
Adjusted treatment mean for treatment i= i"" treatment effects (7j) + grand mean (Y ).

Various sums of squares can be obtained as follows:

(i)  Total Sum of Squares (TSS) = = (observations)? - CF

(i) Treatment Sum of Squares unadjusted (SST,)=[Z Tiz] Ir-CF
(iii) Block Sum of Squares unadjusted (SSBy) = [2 BJ?] /k-CF
(iv) Treatments Sum of Squares adjusted (SSTp) =X 7, Q;

(v) ErrorSS (SSE) =TSS -SSBy - SSTa

(vi) Blocks sum of squares adjusted (SSBa) = SSTa + SSBy - SSTy
The analysis of variance for a BIB design is given below:

Table 2.1: ANOVA for a BIB (v, b, r, k, A) Design

Source DF SS MS F
Treatment (unadj.) v-1 SSTy
Blocks (unadjusted) b-1 SSB,
Treatments (adjusted) v-1 SSTa | MST MST/MSE
Blocks (adjusted) b-1 SSBa | MSB MSB/MSE
Error n-b-v+1 | SSE | MSE
Total n-1 TSS

Note: MST =SSTa/ (v-1), MSB = SSBa / (b-1) and MSE =SSE /(n-b-v + 1)
Coefficient of Variation = (vVMSE / ¥) x 100

Standard error of difference between two adjusted treatment means = [2k MSE/ (kv)]“ 2.
C.D. = toos x [2k MSE/ (W) |2

3. Partially Balanced Incomplete Block (PBIB) Designs

BIB designs may not fit well to many experimental situations as these designs may not be
available for all numbers of treatments and block sizes or may require a large number of
replications. To overcome these difficulties PBIB designs were introduced. In these designs the
variance of every estimated elementary contrast among treatment effects is not the same. The
definition of PBIB designs is based on the association scheme.
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Association Scheme

Given v treatment symbols 1,2,..,v, a relation satisfying the following conditions is called an m-

class association scheme (m >2):

(i) Any two symbols are either 1%, 2" .., or m™ associates; the relation of association being
symmetric, i.e., if the symbol a is the i associate of B, then B is the i associate of .

(ii) Each symbol o has n; i™ associates, the number n; being independent of «,

(iii) If any two symbols o and B are i™ associates, then the number of symbols that are j"
associates of o and k™ associate of B is pijk and is independent of the pair of i associates o
and B.

The numbers v, n; and pijk (i,j,k = 1,2,...,m) are called the parameters of the association scheme
and satisfy the following relations:

m
donj=v-1
i1

m .
Zpljk :nj -1, |f|:J
k=1

=nj, if iz
nipijk = njpjik

Example 3.1: Consider v=12 treatments denoted by numbers 1 to 12. Form 3 groups of 4
symbols each as follows: (1,2,3,4), (5,6,7,8), (9,10,11,12). We now define any two treatments as
first associates if they belong to the same group, and second associates if they belong to the
different groups. Here, n; = 3, n, = 8.

Definition: Given an association scheme with m classes (m >2) we have a PBIB design with m

associate classes based on the association scheme, if the v treatment symbols can be arranged into

b blocks, such that

(i) Every symbol occurs at most once in a block.

(if) Every symbol occurs in exactly r blocks.

(iii) If two symbols are i associates, then they occur together in A; blocks, the number 2; being
independent of the particular pair of i associates o and B.

The numbers v, b, r, k, A; (i =1,2,...,m) are called the parameters of the design. It can be easily
seen that

m
vr=bk and > nix; =r(k-1).
i=1
It may be mentioned that as in the case of BIB designs, the complementary design of a PBIB with
parameters v,b,r,.k,A; is also a PBIB design having the same association scheme with the
parameters v =v, b '=b, r'=b-r, k'=v-k, A =b-2r+A;.

PBIB designs can be broadly classified into (i) two-associate class PBIB designs (ii) three-
associate class PBIB designs and (iii) higher associate class PBIB designs. Two-class association
schemes and the two-associate PBIB designs have been extensively studied in the literature and
are simple to use. As an illustration, we describe Group Divisible (GD) association scheme and
the designs based on it.
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3.1 GD Association Scheme

Let v = mn symbols be arranged into m groups of n symbols each. A pair of symbols belonging to
the same group is first associates [n; = n-1] and a pair of symbols belonging to different groups is
second associates [n, = n(m-1)]. A PBIB (2) design based on a GD scheme is called a GD design.

Method of Construction of Some GD Designs

Let D be a BIB design with parameters v = m, b, r, k, . Obtain a design D" from D by replacing
the i™ treatment (i=1,2,...,v) in D by n new treatment symbols iy, iz,...,i.. D" is a group divisible
design with the following parameters v'=mn, b= b, r'=r, k'= nk, m, n, Ay =r , Ao=A.

Example 3.1: Consider the following BIB design with parameters (4, 4, 3, 3, 2):

(1,2,3)
(1,2,4)
(1,3,4)
2,3,4)

Replacing 1 by a, b; 2 by c, d; 3 by e, f and 4 by g, h, the following GD design with parameters v
=8,b=4,r=3,k=6,11 =3, A= 2. is obtained:

(@, b,c,def
(@ b,c,d g h)
(@ b,e f,g,h)
(c,d,e f,g,h)

3.2 Triangular association scheme and Design

3.2.1 Association scheme: Let there be n(n-1)/2 treatments arranged in a square array of size n
such that the positions of the principal diagonal of the array are left blank, the n(n-1)/2 positions
above the principal diagonal are filled up by the v treatment symbols and the positions below the
principal diagonal are filled up by the v symbols in such a manner that the resultant arrangement
is symmetrical about the principal diagonal.

Two treatments are first associates if they belong to same row or same column of the array and

second associates, otherwise. Triangular scheme exists when n>5 and here v=n(n-1)/2, n>5,
ni1=2(n-2), n,=(n-2)(n-3)/2

P _ (n-2) (n-3) P, — 4 2(n-4)
T 03) [(0m-a12] T [204)  [(n-4)(n5)]/2

Example 3.2.1: For n=5

*1112]3 |4
1/*[5]6 |7
2(5/*18 |9
3|16[8]* [10
41719110 *
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Table 2.2 shows the various associates of all the treatments.

Table 2.2
1% Associates 2" Associates
Treatment
1 2,3,45,6,7 8,9,10,
2 1,3,45,8,9 6,7, 10
3 1,246,810 57,9
4 1,2,3,7,9,10, 5,6,8
5 1,2,6,7,8,9 3,4,10
6 1,3,5,7, 8,10 2,49
7 1,45, 6, 9,10, 2,3,8
8 2,3,5,6,9,10 14,7
9 2,45,7, 8,10 1,3,6
10 3,4,6,7,8,9 1,2,5

3.2.2 Method of construction of Triangular designs: A two class association scheme is called
triangular design if it is based on triangular association scheme. In a triangular association
scheme, if we take each row as a block then the resultant design is triangular design with
parameters v =n (n-1)/2, b=n, r=2, k=n-1, A,=1, A,=0.

Example 3.2.2: Suppose n=5, giving rise to v=10 treatments as follows:

*11(2]3 |4
1]*]5]|6 |7
215/*18 |9
3|/6/8|* |10
417/9]10 |~

Taking each row as block, the following triangular design is obtained:

1 2 3 4
1 5 6 7
2 5 8 9
3 6 8 10
4 7 9 10

Here, v =10, b=5, r=2, k=4, A1=1, A,=0.
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1. Introduction

Factorial Experiments are experiments that investigate the effects of two or more factors or input
parameters on the output response of a process. Factorial experiment design, or simply factorial
design, is a systematic method for formulating the steps needed to successfully implement a
factorial experiment. Estimating the effects of various factors on the output of a process with a
minimal number of observations is crucial to being able to optimize the output of the process.

In a factorial experiment, the effects of varying the levels of the various factors affecting the
process output are investigated. Each complete trial or replication of the experiment takes into
account all the possible combinations of the varying levels of these factors. Effective factorial
design ensures that the least number of experiment runs are conducted to generate the maximum
amount of information about how input variables affect the output of a process.

For example, an experiment on rooting of cuttings involving two factors, each at two levels, such
as two hormones at two doses, is referred to as a 2 x 2 or a 2 factorial experiment. Its treatments
consist of the following four possible combinations of the two levels in each of the two factors.

Treatment Combination
Treatment number
Hormone Dose (ppm)
1 NAA 10
2 NAA 20
3 IBA 10
4 IBA 20

The total number of treatments in a factorial experiment is the product of the number of levels of
each factor; in the 22 factorial example, the number of treatments is 2 x 2 = 4, in the 2° factorial,
the number of treatments is 2 x 2 x 2 = 8. The number of treatments increases rapidly with an
increase in the number of factors or an increase in the levels in each factor. For a factorial
experiment involving 5 clones, 4 espacements, and 3 weed-control methods, the total number of
treatments would be 5 x 4 x 3 = 60. Thus, indiscriminate use of factorial experiments has to be
avoided because of their large size, complexity, and cost. Furthermore, it is not wise to commit
oneself to a large experiment at the beginning of the investigation when several small preliminary
experiments may offer promising results. For example, a tree breeder has collected 30 new clones
from a neighbouring country and wants to assess their reaction to the local environment. Because
the environment is expected to vary in terms of soil fertility, moisture levels, and so on, the ideal
experiment would be one that tests the 30 clones in a factorial experiment involving such other
variable factors as fertilizer, moisture level, and population density. Such an experiment,
however, becomes extremely large as factors other than clones are added. Even if only one factor,
say nitrogen or fertilizer with three levels were included, the number of treatments would increase
from 30 to 90. Such a large experiment would mean difficulties in financing, in obtaining an
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adequate experimental area, in controlling soil heterogeneity, and so on. Thus, the more practical
approach would be to test the 30 clones first in a single-factor experiment, and then use the
results to select a few clones for further studies in more detail. For example, the initial single-
factor experiment may show that only five clones are outstanding enough to warrant further
testing. These five clones could then be put into a factorial experiment with three levels of
nitrogen, resulting in an experiment with 15 treatments rather than the 90 treatments needed with
a factorial experiment with 30 clones.

The amount of change produced in the process output for a change in the ‘level' of a given factor
is referred to as the 'main effect’ of that factor. Table 1 shows an example of a simple factorial
experiment involving two factors with two levels each. The two levels of each factor may be
denoted as 'low' and ‘high', which are usually symbolized by '-' and '+' in factorial designs,
respectively.

Table 1. A Simple 2-Factorial Experiment

A(-) A(+)
B (-) 20 40
B (+) 30 52

The main effect of a factor is basically the ‘average' change in the output response as that factor
goes from ' to '+'. Mathematically, this is the average of two numbers: 1) the change in output
when the factor goes from low to high level as the other factor stays low, and 2) the change in
output when the factor goes from low to high level as the other factor stays high.

In the example in Table 1, the output of the process is just 20 (lowest output) when both A and B
are at their -' level, while the output is maximum at 52 when both A and B are at their '+' level.
The main effect of A is the average of the change in output response when B stays '-' as A goes
from =" to '+', or (40-20) = 20, and the change in output response when B stays '+' as A goes from
“'to '+, or (52-30) = 22. The main effect of A, therefore, is equal to 21.

Similarly, the main effect of B is the average change in output as it goes from '-' to '+', i.e., the
average of 10 and 12, or 11. Thus, the main effect of B in this process is 11. Here, one can see
that the factor A exerts a greater influence on the output of process, having a main effect of 21
versus factor B's main effect of only 11. It must be noted that aside from 'main effects', factors
can likewise result in 'interaction effects.' Interaction effects are changes in the process output
caused by two or more factors that are interacting with each other. Large interactive effects can
make the main effects insignificant, such that it becomes more important to pay attention to the
interaction of the involved factors than to investigate them individually. In Table 1, as effects of
A (B) is not same at all the levels of B (A) hence, A and B are interacting.

Thus, interaction is the failure of the differences in response to changes in levels of one factor, to
retain the same order and magnitude of performance through out all the levels of other factors OR
the factors are said to interact if the effect of one factor changes as the levels of other factor(s)
changes.
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Graphical representation of lack of interaction between factors and interaction between factors are
shown below. In case of two parallel lines, the factors are non-interacting.

Fesponze
Bl - oo _Hespcunse b
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400 - / b 40
20 1 20 4
1) 43 (4}
10 A
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Factor Factor

If interactions exist which is fairly common, we should plan our experiments in such a way that
they can be estimated and tested. It is clear that we cannot do this if we vary only one factor at a
time. For this purpose, we must use multilevel, multifactor experiments.

The running of factorial combinations and the mathematical interpretation of the output responses
of the process to such combinations is the essence of factorial experiments. It allows to
understand which factors affect the process most so that improvements (or corrective actions)
may be geared towards these.

We may define factorial experiments as experiments in which the effects (main effects and
interactions) of more then one factor are studied together. In general if there are ‘n’ factors, say,
Fi1, Fa,..., Fn and i™ factor has s; levels, i=1,...,n, then total number of treatment combinations is

n
H s, . Factorial experiments are of two types.
i=1

Experiments in which the number of levels of all the factors are same i.e all s;’s are equal are
called symmetrical factorial experiments and the experiments in at least two of the s;i‘s are
different are called as asymmetrical factorial experiments. Factorial experiments provide an
opportunity to study not only the individual effects of each factor but also there interactions. They
have the further advantage of economising on experimental resources. When the experiments are
conducted factor by factor much more resources are required for the same precision than when
they are tried in factorial experiments.

2. Experiments with Factors Each at Two Levels

The simplest of the symmetrical factorial experiments are the experiments with each of the
factors at 2 levels. If there are ‘n’ factors each at 2 levels, it is called as a 2" factorial where the
power stands for the number of factors and the base the level of each factor. Simplest of the
symmetrical factorial experiments is the 2 factorial experiment i.e. 2 factors say A and B each at
two levels say 0 (low) and 1 (high). There will be 4 treatment combinations which can be written
as

00 =ag bo
10 =g bo

1;  Aand B both at first (low) levels
a; Aatsecond (high) level and B at first (low) level
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01 =ag b1
11 =y b1

b ; A at first level (low) and B at second (high) level
ab; A and B both at second (high) level.

In a 22 factorial experiment wherein r replicates were run for each combination treatment, the
main and interactive effects of A and B on the output may be mathematically expressed as
follows:

A=[ab+a-b-(1)]/2r; (main effect of factor A)
B=[ab+b-a-(1)]/2r; (main effect of factor B)
AB =Jab + (1) -a-b]/2r;, (interactive effect of factors A and B)

where r is the number of replicates per treatment combination; a is the total of the outputs of each
of the r replicates of the treatment combination a (A is 'high and B is 'low); b is the total output
for the n replicates of the treatment combination b (B is 'high' and A is 'low); ab is the total output
for the r replicates of the treatment combination ab (both A and B are 'high’); and (1) is the total
output for the r replicates of the treatment combination (1) (both A and B are low’).

Had the two factors been independent, then [ab + (1) - a - b] / 2n will be of the order of zero. If
not then this will give an estimate of interdependence of the two factors and it is called the
interaction between A and B. It is easy to verify that the interaction of the factor B with factor A
is BA which will be same as the interaction AB and hence the interaction does not depend on the
order of the factors. It is also easy to verify that the main effect of factor B, a contrast of the
treatment totals is orthogonal to each of A and AB.

Table 2. Two-level 2-Factor Full-Factorial

RUN Comb. M A B AB
1 (1) + - - +
2 a + + - -
3 b + - + -

4 = 2° ab + + + +

Consider the case of 3 factors A, B, C each at two levels (0 and 1) i.e. 2° factorial experiment.
There will be 8 treatment combinations which are written as

000 =apbpco =(1); A, BandC all three at first level

100 =a; bpcp = a; A atsecond level and B and C at first level

010 =agbyco = b; Aand C both at first level and B at second level
110 =a; by cp =ab; A and B both at second level and C is at first level.
001 =agbgcy = ¢ ; Aand B both at first level and C at second level.
101 =a; bpcy = ac; A and C at second level, B at first level

011 =apbycy = be; Als at first level and B and C both at second level
111 =a; by c; =abc; A, B and C all the three at second level

In a three factor experiment there are three main effects A, B, C; 3 first order or two factor
interactions AB, AC, BC; and one second order or three factor interaction ABC.
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Table 3. Two-level 3-Factor Full-Factorial Experiment Pattern

RUN | Comb. M A B AB C AC BC ABC
1 Q) + - - + - + + -
2 a + + - - - - + +
3 b + - + - - + - +
4 ab + + + + - - - -
5 c + - - + + - - +
6 ac + + - - + + - .
7 bc + - + _ + _ +
8=2° | abc + + + + + + + +

Main effect A = %{[abc] -[bc] +[ac] -[c] + [ab] -[b] + [a] -[1]}

NG N

(a-1) (b+1) (c+1)
AB =% [(abc)-(bc) -(ac) +c) - (ab) - (b) - (a)+ (1) ]
ABC = % [ (abc) - (bc) - (ac) + (c) - (ab) + (b) + (a) - (1) ]

or equivalently,
AB =

A~

(a-1) (b-1) (c+1)

ABC = % (a-1) (b-1) (c-1)

The method of representing the main effect or interaction as above is due to Yates and is very
useful and quite straightforward. For example, if the design is 2 then

A =(1/2% [ (a-1) (b+1) (c+1) (d+1) ]
ABC = (1/2% [ (a-1) (b-1) (c-1) (d+1)]

In case of a 2" factorial experiment, there will be 2" (=v) treatment combinations with ‘n’ main

n n
effects, (2) first order or two factor interactions, (3) second order or three factor interactions,
ny . _ _ n " . .
4 third order or four factor interactions and so on , 0 (r-1)™ order or r factor interactions

n
and (n) (n-1)™ order or n factor interaction. Using these v treatment combinations, the

experiment may be laid out using any of the suitable experimental designs viz. completely
randomised design or block designs or row-column designs, etc.
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Steps for Analysis

1. The Sum of Squares (S.S.) due to treatments, replications [in case randomised block design is
used], due to rows and columns (in case a row-column design has been used), total S.S. and
error S.S. is obtained as per established procedures. No replication S.S. is required in case of a
completely randomised design.

2. The treatment sum of squares is divided into different components viz. main effects and
interactions each with single d.f. The S.S. due to these factorial effects is obtained by dividing
the squares of the factorial effect total by r.2". For obtaining 2"-1 factorial effects in a 2"
factorial experiment, the ‘n’ main effects is obtained by giving the positive signs to those
treatment totals where the particular factor is at second level and minus to others and dividing
the value so obtained by r.2"*, where r is the number of replications of the treatment
combinations. All interactions can be obtained by multiplying the corresponding coefficients
of main effects.

For a 2° factorial experiment, the S.S. due to a main effect or the interaction effect is obtained
by dividing the square of the effect total by 4r. Thus,

S.S. due to main effect of A = [A]%/ 4r, with 1 d.f.
S.S. due to main effect of B = [B]/ 4r, with 1 d.f
S.S. due to interaction AB = [AB]?/ 4r, with 1 d.f.

3. Mean squares (M.S) is obtained by dividing each S.S. by corresponding degrees of freedom.
4. After obtaining the different S.S.’s, the usual Analysis of variance (ANOVA) table is

prepared and the different effects are tested against error mean square and conclusions drawn.
5. Standard errors (S.E.’s) for main effects and two factor interactions:

MSE

S.E of difference between main effect means = ?
r.

S.E of difference between A means at same level of B=S.E of difference between B

2MSE
means at same level of A= 2MSE
r.2"?
In general,
- : , : 2MSE
S.E. for difference between means in case of a r-factor interaction = ot
I

The critical differences are obtained by multiplying the S.E. by the student’s t value at a% level
of significance at error degrees of freedom.

The ANOVA for a 2° factorial experiment with r replications conducted using a RCBD is as
follows:
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ANOVA
Sources of Variation DF S.S. M.S. F
Between Replications r-1 SSR MSR=SSR/(r-1) | MSR/MSE
Between treatments 22-1=3 SST MST=SST/3 MST/MSE
A 1 SSA=[A)/4r MSA=SSA MSA/MSE
B 1 SSB=[B]¥/4r MSB=SSB MSB/MSE
AB 1 SSAB=[AB]*/4r | MSAB=SSAB | MSAB/MSE
Error (r-1)(2%-1) SSE MSE=SSE/3(r-
=3(r-1) 1)
Total r2’>-1=4r-1 | TSS

ANOVA for a 23-factorial experiment conducted in RCBD with r replications is given by

ANOVA
Sources of DF SS MS F
Variation
Between r-1 SSR MSR=SSR/(r-1) MSR/MSE
Replications
Between treatments |  2°-1=7 SST MST=SST/7 MST/MSE
A 1 SSA MSA=SSA MSA/MSE
B 1 SSB MSB=SSB MSB/MSE
C 1 SSC MSC=SSC MSC/MSE
AB 1 SSAB MSAB=SSAB MSAB/MSE
AC 1 SSAC MSAC=SSAC MSAC/MSE
BC 1 SSBC MSBC=SSBC MSBC/MSE
ABC 1 SSABC MSABC=SSABC | MSABC/MSE
Error (r-1)(23-1) SSE MSE=SSE/7(r-1)
=7(r-1)
Total r.23-1=8r-1 | TSS

Similarly ANOVA table for a 2" factorial experiment can be made.

3. Experiments with Factors Each at Three Levels

When factors are taken at three levels instead of two, the scope of an experiment increases. It
becomes more informative. A study to investigate if the change is linear or quadratic is possible
when the factors are at three levels. The more the number of levels, the better, yet the number of
the levels of the factors cannot be increased too much as the size of the experiment increases too
rapidly with them. Consider two factors A and B, each at three levels say 0, 1 and 2 (3*factorial
experiment). The treatment combinations are

112



Factorial Experiments

00 =aghy =1 ; A and B both at first levels

10 =ahp =a ; Ais at second level and B is at first level
20 =aby =a? ; Aisatthird level and b is at first level

01 =agh; =D ; Ais at first level and B is at second level
11 =ab; =ab ; Aand B both at second level

21 =ab; =a’b ; Aisatthird level and B is at second level
02 =ah, =b®> ; Aisat first level and B is at third level
12 =ab, =ab? ; Alisat second level and B is at third level
22 =ab, =a%h? ; Aand B both at third level

Any standard design can be adopted for the experiment.

The main effects A, B can respectively be divided into linear and quadratic components each with
1d.f. as AL, Ag, BL and Bq. Accordingly AB can be partitioned into four components as A B,
AL BQ, AQ B|_, AQ BQ.

The coefficients of the treatment combinations to obtain the above effects are given as

Treatment

Totals— | [1] |[a] |[a?%] |[b] | [ab] | [a%b] | [b?] | [ab?] | [a®b?] | Divisor

Factorial

Effects 4

M +1 [+1 [+1 [+1 [+1 [+1 [+1 [+1 [+1 Or=rx3?

AL -1 [0 [+1 |-1 |0 |+1 [-1 |0 +1 Br=rx2x 3
Ag +1 [-2 |[+1 |+1 |-2 |[+1 |+1 |-2 +1 18r=6x3

BL -1 (-1 |1 |0 [0 |0 +1 |[+1 | +1 Br=rx2x3
AL BL +1 [0 [-1 [0 [0 O -1 (0 +1 Ar=rx2x2
Ag BL -1 [+2 |1 |0 [0 O +1 |-2 +1 12r=rx6x2
Bo +1 |41 |+1 |-2 |-2 |-2 +1 | +1 +1 18r=rx3x6
AL Bg -1 [0 [+1 [+2 [0 |-2 -1 (0 +1 12r=rx2x6
Ao Bo +1 (2 [+1 |-2 [+4 |-2 +1 |-2 +1 36r=rx6x6

The rule to write down the coefficients of the linear (quadratic) main effects is to give a
coefficient as +1 (+1) to those treatment combinations containing the third level of the
corresponding factor, coefficient as 0(-2) to the treatment combinations containing the second
level of the corresponding factor and coefficient as -1(+1) to those treatment combinations
containing the first level of the corresponding factor. The coefficients of the treatment
combinations for two factor interactions are obtained by multiplying the corresponding
coefficients of two main effects. The various factorial effect totals are given as

[A] = +1[a’b?]+0[ab?] -1[b%]+1[ab]+0[ab] -1[b]+1[a’]+O[a] -1[1]
[Ag] = +1[a’b?] -2[ab?]+1[b?]+1[a’b] -2[ab]+1[b]+1[a?] -2[a]+1[1]
[B] = +1[a’b?]+1[ab®]+1[b’]+0[a’b]+0[ab]+0[b] -1[a?] -1[a] -1[1]
[ABL] = +1[a*b?]+0[ab?] -1[b*]+0[ab]+0[ab]+0[b] -1[a’]+O[a] -1[1]
[AoBL]= +1[a’h?] -2[ab?]+1[b’]+0[a’b]+0[ab]+0[b] -1[a*]+2[a] -1[1]
[Bol = +1[a’b?]+1[ab*]+1[b?] -2[a’b] -2[ab] -2[b] -1[a’] -1[a] -1[1]
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[ALBg]= +1[a’b?]+0[ab?] -1[b?] -2[a*b]+0[ab]+2[b]+1[a?]+0[a] -1[1]
[AoBg] = +1[a’b’] -2[ab*]+1[b?] -2[a’b]+4[ab] -2[b]+1[a*] -2[a]+1[1]
Factorial effects are given by
AL= [A._]/r3 AQ: [AQ]/I’3 BL= [B._]/r3 ABL= [A|_B|_]/r3
AQBL: [AQBL]/I'.?) BQ = [BQ]/I’3 ALBQ = [ALBQ]/T.3 AQBQ = [AQBQ]/T.3

The sum of squares due to various factorial effects is given by

2 2 2 2
SSA, = M; SSA, = &; SSB, = M; SSAB. = —[ALBL] ;
r.2.3 r.6.3 r.3.2 r.2.2
2 2 2 2
SSAQB. = (A ; SSBo= EL; SSALBq = [ABo] ; SSAQBq = [AcBo] ;
r.6.2 r.3.6 r.2.6 r.6.6
If a RBD is used with r-replications then the outline of analysis of variance is
ANOVA
Sources of Variation D.f SS MS
Between Replications r-1 SSR MSR=SSR/(r-1)
Between treatments 3°-1=8 SST MST=SST/8
A 2 SSA MSA=SSA/2
A|_ 1 SSAL MSAL: SSAL
AQ 1 SSAQ MSAQ:SSAQ
B 2 SSB MSB=SSB/2
B|_ 1 SSBL MSBL: SSBL
BQ 1 SSBQ MSBQ:SSBQ
AB 4 SSAB MSAB=SSAB/2
A|_B|_ 1 SSALBL MSALBL:SSALBL
AQBL 1 SSAQBL MSAQBL:SSAQBL
ALBQ 1 SSALBQ MSALBQ:SSALBQ
AQBQ 1 SSAQBQ MSAQBQ:SSAQBQ
Error (r-1)(3°-"1) SSE MSE=SSE/8(r-1)
=8(r-1)
Total r.3%-1=9r-1 TSS

In general, for n factors each at 3 levels, the sum of squares due to any linear (quadratic) main
effect is obtained by dividing the square of the linear (quadratic) main effect total by r.2.3™
1(r.6.3™). Sum of squares due to a “p’ factor interaction is given by taking the square of the total
of the particular interaction component divided by r.(a; a; ...ap). 3", where ay, ay,...,a, are taken as
2 or 6 depending upon the linear or quadratic effect of particular factor.

4. Confounding in Factorial Experiments
When the number of factors and/or levels of the factors increase, the number of treatment
combinations increase very rapidly and it is not possible to accommodate all these treatment
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combinations in a single homogeneous block. For example, a 2° factorial would have 32
treatment combinations and blocks of 32 plots are quite big to ensure homogeneity within them.
A new technique is therefore necessary for designing experiments with a large number of
treatments. One such device is to take blocks of size less than the number of treatments and have
more than one block per replication. The treatment combinations are then divided into as many
groups as the number of blocks per replication. The different groups of treatments are allocated to
the blocks.

There are many ways of grouping the treatments into as many groups as the number of blocks per
replication. It is known that for obtaining the interaction contrast in a factorial experiment where
each factor is at two levels, the treatment combinations are divided into two groups. Such two
groups representing a suitable interaction can be taken to form the contrasts of two blocks each
containing half the total number of treatments. In such case the contrast of the interaction and the
contrast between the two block totals are given by the same function. They are, therefore, mixed
up and can not be separated. In other words, the interaction has been confounded with the blocks.
Evidently the interaction confounded has been lost but the other interactions and main effects can
now be estimated with better precision because of reduced block size. This device of reducing the
block size by taking one or more interaction contrasts identical with block contrasts is known as
confounding. Preferably only higher order interactions, that is, interactions with three or more
factors are confounded, because their loss is immaterial. As an experimenter is generally
interested in main effects and two factor interactions, these should not be confounded as far as
possible.

When there are two or more replications, if the same set of interactions are confounded in all the
replications, confounding is called complete and if different sets of interaction are confounded in
different replications, confounding is called partial. In complete confounding all the information
on confounded interactions are lost. But in partial confounding, the confounded interactions can
be recovered from those replications in which they are not confounded.

Advantages of Confounding

It reduces the experimental error considerably by stratifying the experimental material into
homogeneous subsets or subgroups. The removal of the variation among incomplete blocks (freed
from treatments) within replicates results in smaller error mean square as compared with a RBD,
thus making the comparisons among some treatment effects more precise.

Disadvantages of Confounding

¢ In the confounding scheme, the increased precision is obtained at the cost of sacrifice of
information (partial or complete) on certain relatively unimportant interactions.

e The confounded contrasts are replicated fewer times than are the other contrasts and as such
there is loss of information on them and they can be estimated with a lower degree of
precision as the number of replications for them is reduced.

¢ An indiscriminate use of confounding may result is complete or partial loss of information on
the contrasts or comparisons of greatest importance. As such the experimenter should
confound only those treatment combinations or contrasts which are of relatively less or of
importance at all.

e The algebraic calculations are usually more difficult and the statistical analysis is complex,
especially when some of the units (observations) are missing.
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Confounding in 2° Experiment
Although 2 is a factorial with small number of treatment combinations but for illustration
purpose, this example has been considered. Let the three factors be A, B, C each at two levels.

Factorial Effects » A B C AB AC BC ABC
Treat. Combinations 4
(@D - - - + + + .
@) + - - - - + +
(b) - + - - - -
(ab) + + - + - -
(© - - + + - - +
(ac) + - + - + - -
(bc) - + + - + -
(abc) + + + + + + +

The various factorial effects are as follows:

A = (abc) + (ac) + (ab) + (a) - (bc) - (c) - (b) - (1)

B =(abc) + (bc) + (ab) + (b) - (ac) - (c) - (a) - (1)
C =(abc) + (bc) + (ac) + (c) - (ab) - (b) - (a) - (2)
AB = (abc) + (c) +(ab) + (1) - (bc) - (ac) - (b) - (a)
AC =(abc) + (ac) + (b) +(1)-(bc)-(c) - (ab) - (a)
BC =(abc) +(bc) + (@) +(1)- (ac) - (c) - (ab) - (b)
ABC = (abc) + (c) +(b) +(a)- (bc) - (ac) - (ab) - (1)

Let the highest order interaction ABC be confounded and we decide to use two blocks of 4 units
(plots) each per replicate.

Thus in order to confound the interaction ABC with blocks all the treatment combinations with
positive sign are allocated at random in one block and those with negative signs in the other
block. Thus the following arrangement gives ABC confounded with blocks and hence we loose
information on ABC.

Replication |
Block 1: (1) (@ab) (ac) (bc)
Block 2: @) (b) (©) (abc)

It can be observed that the contrast estimating ABC is identical to the contrast estimating block
effects.

The other six factorial effects viz. A, B, C, AB, AC, BC each contain two treatments in block 1
(or 2) with the positive signs and two with negative sign so that they are orthogonal with block
totals and hence these differences are not influenced among blocks and can thus be estimated and
tested as usual without any difficulty. Whereas for confounded interaction, all the treatments in
one group are with positive sign and in the other with negative signs.

Similarly if AB is to be confounded, then the two blocks will consists of

Block 1 | (abc) (©) (ab) (1)
Block 2 | (bc) (ac) (b) (@)
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Here AB is confounded with block effects and cannot be estimated independently whereas all
other effects A, B, C, AC, Bc and ABC can be estimated independently.

When an interaction is confounded in one replicate and not in another, the experiment is said to
be partially confounded. Consider again 2° experiment with each replicate divided into two
blocks of 4 units each. It is not necessary to confound the same interaction in all the replicates
and several factorial effects may be confounded in one single experiment. For example, the
following plan confounds the interaction ABC, AB, BC and AC in replications I, I, Il and IV
respectively.

Rep. | Rep. 11 Rep. 111 Rep. IV
Block 1 Block 2 | Block 3 Block 4 | Block5  Block 6 | Block 7 Block 8
(abc) (ab) (abc) (ac) (abc) (ab) (abc) (ab)
(a) (ac) (c) (be) (bc) (ac) (ac) (bc)
(b) (bc) (ab) (a) (a) (b) (b) (a)
(©) 1) 1) (b) 1) (©) 1) (©)

In the above arrangement, the main effects A, B and C are orthogonal with block totals and are
entirely free from block effects. The interaction ABC is completely confounded with blocks in
replicate 1, but in the other three replications the ABC is orthogonal with blocks and
consequently an estimate of ABC may be obtained from replicates II, 11l and V. Similarly it is
possible to recover information on the other confounded interactions AB (from I, 1lI, 1V), BC
(from I, 11, IV) and AC (from I, Il, 11I). Since the partially confounded interactions are estimated
from only a portion of the observations, they are determined with a lower degree of precision than
the other effects.

For carrying out the statistical analysis, the various factorial effects and their S.S. are estimated in
the usual manner with the modification that for completely confounded interactions neither the
S.S due to confounded interaction is computed nor it is included in the ANOVA table. The
confounded component is contained in the (2p-1) degrees of freedom (D.f.) (in case of p
replicates) due to blocks. The partitioning of the d.f for a 2° completely confounded factorial is as
follows.

Source of Variation D.f
Blocks 2p-1
A 1
B 1
C 1
AB 1
AC 1
BC 1
Error 6(p-1)
Total 8p-1

In general for a 2" completely confounded factorial in p replications, the different d.f’s are given
as follows:
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Source of Variation D.f
Replication p-1
Blocks within replication | p(2"'-1)
Treatments 2"-1-(2""-1)
Error By subtraction
Total p2"-1

The treatment d.f has been reduced by 2""-1 as this is the total d.f confounded per block.

In case of partial confounding, we can estimate the effects confounded in one replication from the
other replication in which it is not confounded. In (2", 2") factorial experiment with p replications,
following is the splitting of d.f’s.

Source of Variation D.f
Replication p-1

Blocks within p(2™'-1)
replication

Treatments 2"-1

Error By subtraction
Total p2"-1

The S.S. for confounded effects are to be obtained from those replications only in which the given
effect is not confounded.

5. Fractional Factorial

In a factorial experiment, as the number of factors to be tested increases, the complete set of
factorial treatments may become too large to be tested simultaneously in a single experiment. A
logical alternative is an experimental design that allows testing of only a fraction of the total
number of treatments. A design uniquely suited for experiments involving large number of factors
is the fractional factorial. It provides a systematic way of selecting and testing only a fraction of
the complete set of factorial treatment combinations. In exchange, however, there is loss of
information on some pre-selected effects. Although this information loss may be serious in
experiments with one or two factors, such a loss becomes more tolerable with large number of
factors. The number of interaction effects increases rapidly with the number of factors involved,
which allows flexibility in the choice of the particular effects to be sacrificed. In fact, in cases
where some specific effects are known beforehand to be small or unimportant, use of the
fractional factorial results in minimal loss of information.

In practice, the effects that are most commonly sacrificed by use of the fractional factorial are
high order interactions - the four-factor or five-factor interactions and at times, even the three-
factor interaction. In almost all cases, unless the researcher has prior information to indicate
otherwise one should select a set of treatments to be tested so that all main effects and two-factor
interactions can be estimated.

In forestry research, the fractional factorial is to be used in exploratory trials where the main
objective is to examine the interactions between factors. For such trials, the most appropriate
fractional factorials are those that sacrifice only those interactions that involve more than two
factors.
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With the fractional factorial, the number of effects that can be measured decreases rapidly with
the reduction in the number of treatments to be tested. Thus, when the number of effects to be
measured is large, the number of treatments to be tested, even with the use of fractional factorial,
may still be too large. In such cases, further reduction in the size of the experiment can be
achieved by reducing the number of replications. Although the use of fractional factorial without
replication is uncommon in forestry experiments, when fractional factorial is applied to
exploratory trials, the number of replications required can be reduced to the minimum.

Another desirable feature of fractional factorial is that it allows reduced block size by not
requiring a block to contain all treatments to be tested. In this way, the homogeneity of
experimental units within the same block can be improved. A reduction in block size is, however,
accompanied by loss of information in addition to that already lost through the reduction in
number of treatments.

6. Practicals on Factorial Experiments

Exercise 1: Analyse the data of a 2° factorial experiment conducted using a RCBD with three
replications. The three factors were the fertilizers viz. Nitrogen (N), Phosphorus (P) and
Potassium (K). The purpose of the experiment is to determine the effect of different kinds of
fertilizers on crop yield. The yields under 8 treatment combinations for each of the three
randomized blocks are given below:

Block- |
npk 1) K np p n nk pk
450 101 265 373 312 106 291 391

Block- 11
p nk k np 1) npk pk n
324 306 272 338 106 449 407 89
Block- 111
p npk nk (1) n k pk np

323 471 334 87 128 279 423 324

Analysis
Step 1. The data is arranged in the following table:

Blocks Treatment Combinations Total

J
(1) n p np k nk pk npk

B; 101 106 312 373 265 291 391 450 2(288?

1

2291

B, 106 89 324 338 272 306 407 449 (B2)

2

B; 87 128 323 324 279 334 423 471 2(:;6?

3

Total 294 323 959 1035 816 931 1221 1370 | 6949
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| | M) (T2 (T (T (T (To) () (T | (G) ]

Grand Total G = 6949,

Number of observations (n) =24 = (r.2")

G?  (6949)°

Correction Factor (C.F.) = =2012025.042

Total S.S. (TSS) = Sum (Obs.)? - C.F = (1012 +106° +...+ 449+ 471%) - C.F = 352843.958

_ [(2289) +(22:1) +(2369) ]—C.F

r. B?
Block (Replication) S.S (SSR) = _ 12—; —-C.F
j=
=520.333
\ T—2
Treatment S.S.(SST) = T‘ -C.F
i=1
~ (294)% +(323°+(959)% + (1039 +(816)* + (93D + (1221)° + (1370)°
3

—2012025042=3486512913

-CF

_ 7082029

Error S.S.(SSE) =Total S.S - Block S.S - Treatment S.S
= 352843.958 - 520.333 - 348651.2913 = 3672.3337

Step 2: Main effects totals and interactions totals are obtained as follows:

N = [npk]- [pK] +[nk] - [K] +[np] - [p]+[n]- [1] = 369
P = [npk]+ [pK] - [nk] - [K] +[np] +[p] -[n]- [1] = 2221
K = [npk]+ [pK] +[nk] +[K] - [np] - [p] -[n]- [1] = 1727

NP = [npk] - [pk] - [nk] +[K] +[np] - [p] -[n]+[1] = 81
NK' = [npk] - [pk] +[nk] - [K] - [np]+ [p] -[n]+[1] = 159
PK = [npk]+ [pK] - [nk] - [K] - [np]- [p]+[n]+[1] = -533
NPK = [npk] - [pk] - [nk] +[K] - [np]+ [p]+[n]- [1] =-13

FactorialeffectTotal
r2"'(=12)
(Factorial effect Total)2
r.2" (= 24)

Factorial effects =

Factorial effect SS =

Here Factorial Effects
N=30.75, P=185.083, K=143.917, NP=6.75, NK=13.25, PK=-44.417, NPK=-1.083

SSdueto N =5673.375
SS due to P = 205535.042
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SS due to K =124272.0417
SS due to NP = 273.375

SS due to NK=1053.375
SS due to PK =11837.0417
SS due to NPK=7.04166.

Step 3: M.S. is obtained by dividing S.S.’s by respective degrees of freedom.

ANOVA
Sources of DF SS MS F
Variation
Replications r-1=2 520.333 260.167 0.9918
Treatments 23.1=7 348651.291 49807.3273 189.8797*
N (s-1)=1 5673.375 5673.375 21.6285*
P 1 205535.042 205535.042 783.5582*
K 1 124272.042 124272.042 473.7606*
NP 1 273.375 273.375 1.0422
NK 1 1053.375 1053.375 4.0158
PK 1 11837.041 11837.041 45.1262*
NPK 1 7.0412 7.0412 0.02684
Error (r-1) (2"-1)=14 3672.337 262.3098
Total r.2"-1=23 352843.958

*indicates significance at 5% level of significance

Step 5: S.E of difference between main effect means =, /r'v;% =8.098

S.E of difference between N means at same level of P or K = S.E of difference between P (or K)
means at same level of N =S.E of difference between P means at same level of K = S. E. of

MSE = 11.4523. tos at 14 d.f. = 2.145.

r.2""

difference between K means at same level of P =

Accordingly critical differences (C.D.) can be calculated.

Exercise 2: The data on mean maximum culm height of Bambusa arundinacea tested with two
levels of spacing (Factor A, 10 m x 10 m and 12 m x 12m) and three levels of age at planting
(Factor B, 6, 12 and 24 months) laid out in RCBD with three replications is given below.

Treatment combination Maximum culm height of a clump (cm)
Rep. | Rep. 11 Rep. 111

a1by 46.50 55.90 78.70

a1by 49.50 59.50 78.70
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a1bs 127.70 134.10 137.10
azby 49.30 53.20 65.30
ab, 65.50 65.00 74.00
aohs 67.90 112.70 129.00
ANOVA of a 2 x 3 Factorial Experiment in RCBD
Source of Df SS MS F
variation
Replication 2 2040.37 1020.187 8.60*
Treatment 5 14251.87 2850.373 24.07*
A 1 12846.26 6423.132 3.45
B 2 408.98 408.980 54.12*
AB 2 996.62 498.312 4.20*
Error 10 1186.86 118.686
Total 17 17479.10

*Significant at 5% level.

The result indicates that the main effect of factor A (spacing) is not significant at the 5% level of
significance. The analysis shows a significant interaction between spacing and age, indicating that
the effect of age vary with the change in spacing.

Exercise 3: A 3% experiment was conducted to study the effects of the two factors Nitrogen (N)
and Phosphorus (P) (each at three levels 0, 1, 2) on sugar beets. Two replications of nine plots
each were used. The table shows the plan and the percentage of sugar (approximated to nearest
whole number).

Replication

Treatment

% of sugar

14
15
16
15
16
18
17
19
17

NORFRPRFPPEPINFPREFPPFPLPONMODNO|IZ
P OPFRPODNDMNMNORFPMNMNMNPEFPOORKR|T
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0 1 16
0 2 16
2 2 19
2 0 16

Analyse the data.
Analysis

Step 1: Sum of squares for replications, treatments and total sum of squares is obtained by
arranging the data in a Replication x Treatment table as follows:

Treatment Combinations Total
Rep. 1 n n? P np np p* np® nPp’
00 10 20 01 11 21 02 12 22

1 16 19 15 14 17 15 16 18 17 147
(Ry)
2 18 19 16 16 17 19 16 20 19 160
(Ro)
Total | 34 38 31 30 34 34 32 38 36 307

(M) (@) (@3 ([T @) (@To) (T2 (To) (To) | (G)

Grand Total = 307,
No. of observations (N) = r.3? =18

(307)?

Correction Factor (C.F.) = =5236.0556

Total S.S.(TSS) = Sum(observation)*-C.F. = 16%+18%+...+17°+19%-5236.0556 = 48.9444

R? + R’ 147% +160°
9

Replication SS (SSR) -C.F.= 9 5236.0556 =9.3888

Sum(treatment totals)?
r

2 2 2 2
_ 34° +38°+...+38° + 36 _5236.0556 = 32.4444

2
Error SS = Total SS - Replication SS - Treatment SS =7.1112

-C.F

Treatment SS (SST) =

Step 2: Obtain various factorial effects totals

[N =+1[n°p’]+0[np’] -L[p’]+1[n°p]+0[np] -1[p]+1[n’]+0[n] -1[1] =

[No] =+1[n?p?] -2[np?]+1[p?]+1[n2p] -2[np]+1[p]+1[n?] -2[n]+1[1] =-23
[P =+1[n°p’]+1[np’]+1[p*]+0[n°p]+0[np]+0[p] -1[n’] -1[n] -1[1] =
[NLP] =+1[n°p’]+0[np’] -1[p*]+0[n°p]+0[np]+0[p] -1[n]+0[n] -1[1] =7

[NoPu] =+1[np?] -2[np°]+1[p°]+0[n°p]+0[np]+0[p] -L[n°}+2[n] -1[1] =
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[Po]l  =+1[n°p’]+1[np’]+1[p?] -2[n°p] -2[np] -2[p] -1[n*] -1[n] -1[1] ~ =13
[NLPo] =+1[n°p’]+0[np’] -1[p°] -2[n°p]+O[np]+2[p]+1[n]+0[n] -1[1] =7
[NQPol=+1[n*p’] -2[np’1+1[p°] -2[n’p]+4[np] -2[p]+1[n’] -2[n]+1[1] ~ =-11

Step 3: Obtain the sum of squares due to various factorial effects

2
SSNL_ = NS 5 = 2.0833; = [ of = 2 1460aa,
r.2.3 r.6.3 36
2 5 2 2
SSP, = M _3 0.7500; SSN.P._= M . 6.1250;
r32 12 r.2.2 8
i 2 ,
SSNoPL = o] _ 3 _ oz, SSPq= [ Q]Z = 4.6944;
r.6.2 24
i 2 ,
SSN.Pg = Vol _ EN° 5 0a7. : SSNoPq = [ o Q] _ CID7 16806
r.2.6 24 r.6.6 72
ANOVA
Sources of Variation DF SS MS F
Between Replications 1 9.3888 9.3888 10.5623*
Between treatments 8 32.4444 4.0555 4.5624*
N 2 16.7774 8.3887 9.4371*
N_ 1 2.0833 2.0833 2.3437
No 1 14.6944 14.6944 16.5310*
P 2 5.4444 2.7222 3.0624
P 1 0.7500 0.7500 0.8437
Po 1 4.6944 4.6944 5.2811
NP 4 10.2223 2.5556 2.875
NP 1 6.1250 6.1250 6.8905*
NoPL 1 0.3750 0.3750 0.4219
N Po 1 2.0417 2.0417 2.2968
NoPo 1 1.6806 1.6806 1.8906
Error 8 7.1112 0.8889
Total 17 48.9444

*indicates the significance at 5%

124




SPLIT AND STRIP PLOT DESIGNS

1. Split Plot Design

1.1 Introduction

In conducting experiments, sometimes some factors have to be applied in larger experimental
units while some other factors can be applied in comparatively smaller experimental units.
Further some experimental materials may be rare while the other experimental materials may be
available in large quantity or when the levels of one (or more) treatment factors are easy to
change, while the alteration of levels of other treatment factors are costly, or time-consuming.
One more point may be that although two or more different factors are to be tested in the
experiment, one factor may require to be tested with higher precision than the others. In all such
situations, a design called the split plot design is adopted.

A split plot design is a design with at least one blocking factor where the experimental units
within each block are assigned to the treatment factor levels as usual, and in addition, the blocks
are assigned at random to the levels of a further treatment factor. The designs have a nested
blocking structure. In a block design, the experimental units are nested within the blocks, and a
separate random assignment of units to treatments is made within each block. In a split plot
design, the experimental units are called split-plots (or sub-plots), and are nested within whole
plots (or main plots).

In split plot design, plot size and precision of measurement of effects are not the same for both
factors, the assignment of a particular factor to either the main plot or the sub-plot is extremely
important. To make such a choice, the following guidelines are suggested:

Degree of Precision- For a greater degree of precision for factor B than for factor A, assign factor
B to the sub-plot and factor A to the main plot e.g. a plant breeder who plans to evaluate ten
promising rice varieties with three levels of fertilization, would probably wish to have greater
precision for varietal comparison than for fertilizer response. Thus, he would designate variety as
the sub-plot factor and fertilizer as the main plot factor. Or, an agronomist would assign variety to
main plot and fertilizer to sub-plot if he wants greater precision for fertilizer response than variety
effect.

Relative Size of the Main effects- If the main effect of one factor (A) is expected to be much
larger and easier to detect than that of the other factor (B), factor A can be assigned to the main
plot and factor B to the sub-plot. This increases the chance of detecting the difference among
levels of factor B which has a smaller effect.

Management Practices- The common type of situation when the split plot design is automatically
suggestive is the difficulties in the execution of other designs, i.e. practical execution of plans.
The cultural practices required by a factor may dictate the use of large plots. For practical
expediency, such a factor may be assigned to the main plot e.g. in an experiment to evaluate
water management and variety, it may be desirable to assign water mangement to the main plot to
minimize water movement between adjacent plots, facilitate the simulation of the water level
required, and reduce border effects. Or, if ploughing is one of the factors of interest, then one
cannot have different depths of ploughing in different plots scattered randomly apart.



Split and Strip Plot Designs

1.2 Randomization and Layout

There are two separate randomization processes in a split plot design — one for the main plot and
another for the sub-plot. In each replication, main plot treatments are first randomly assigned to
the main plots followed by a random assignment of the sub-plot treatments within each main plot.
This procedure is followed for all replications. A possible layout of a split plot experiment with
four main plot treatments(a=4), three sub-plot treatments(b=3), and four replications(r=4) is given
below:

Rep. | Rep. Il Rep. Il Rep. IV
by | bs | by | b bs | by [ b2 | by bs | by [ b2 | bs b, | bs [ bs | by
bs | by | by | bs b1 | b, [ b1 | bs b, | bs [ bs | b, b1 | by [ b1 | b2
by | by | bs | by b, | bs [ bs | b, by | by [ by | by bs | by [ b2 | bs
a a a1 a a a A a3 B a & A a a a3 a

The above layout has the following important features — e The size of the main plot is b times the
size of the sub-plot, e Each main plot treatment is tested r times whereas each sub-plot treatment
is tested ar times, thus the number of times a sub-plot treatment is tested will always be larger
than that for the main plot and is the primary reason for more precision for the sub-plot treatments
relative to the main plot treatments.

This concept of splitting each plot may be extended further to accommodate the application of
additional factors. An extension of this design is called the split-split plot design where the sub-
plot is further divided to include a third factor in the experiment. The design allows for 3 different
levels of precision associated with the 3 factors. That is, the degree of precision associated with
the main factor is lowest, while the degree of precision associated with the sub-sub plot is the
highest.

1.3 Model
The model for simple split plot design is

Yijk SU+PitTT A+ 5ij + Bk + (’EB)jk—i- Eijk
fori=12,...r,j=1,2, ...,a, k=12, ...b,

where,
Yijk : observation corresponding to k™ level of sub-plot factor(B), j" level of main plot
factor(A) and the i"" replication.
u : general mean
pi :i"block effect
Tj - ™ main plot treatment effect
Bk : k™ sub-plot treatment effect

(tB)jk : interaction between j™ level of main-plot treatment and the k™ level of sub-

plot treatment
The error components §;; and eij are independently and normally distributed with means zero and
respective variances 6% and o?.
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1.4 Analysis
Whole-Plot analysis:
This part of the analysis is based on comparisons of whole-plot totals:

The levels of A are assigned to the whole plots within blocks according to a randomized
complete block design, and so the sum of squares for A needs no block adjustment. There
are a —1 degrees of freedom for A, so the sum of squares is given by

SsA= Zy_zj Irb—y? /rab
J
[ The “dot” notation means “add over all values of the subscript replaced with a dot” ]

There are r —1 degrees of freedom for blocks, giving a block sum of squares of
ssSR=Y_yf lab-y? [rab
i

There are a whole plots nested within each of the r blocks, so there are, in total, r(a -1)
whole-plot degrees of freedom. Of these, a —1 are used to measure the effects of A leaving (r
—1)(a —1) degrees of freedom for whole-plot error. Equivalently, this can be obtained by the
subtraction of the block and A degrees of freedom from the whole-plot total degrees of
freedom i.e. (ra-1) —(r-1) —(a-1) =(r-1)(a-1).
So, the whole plot error sum of squares, is obtained as
sSE; =Y > yf;./b—y? /rab-ssR-ssA

i

The whole plot error mean square msk; = ssk; / (r —1)(a —1), is used as the error estimate to
test the significance of whole plot factor(A).

Sub-plot analysis:
This part of the analysis is based on the observations arising from the split-plots within whole
plots:

There are rab —1 total degrees of freedom, and the total sum of squares is
sstot=>_>">"y5, —y’ /rab
i ]k

Due to the fact that all levels of B are observed in every whole plot as in a randomized
complete block design, the sum of squares for B needs no adjustment for whole plots, and is
given by -
ssB=>"y?, /ra—y? /rab, corresponding to b -1 degrees of freedom.

K

The interaction between the factors A and B is also calculated as part of the split-plot
analysis. Again, due to the complete block structure of both the whole-plot design and the
split-plot design, the interaction sum of squares needs no adjustment for blocks. The number
of interaction degrees of freedom is (a —1)(b —1), and the sum of squares is

SS(AB)=>" > y%, Ir—y? Irab-ssA-ssB
ik

Since there are b split plots nested within the ra whole plots, there are, in total, ra(b —1)
split-plot degrees of freedom. Of these, b —1 are used to measure the main effect of B, and (a
—1)(b -1) are used to measure the AB interaction, leaving ra(b-1) — (b-1) — (a-1)(b-1) =
a(r-1)(b—1) degrees of freedom for error. Equivalently, this can be obtained by subtraction
of the whole plot, B, and AB degrees of freedom from the total i.e. (rab -1) — (ra— 1) — (b -
1)—-(a-1)(b-1) =a(r-1)(b -1).
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The split-plot error sum of squares can be calculated by subtraction:
SSE, = sstot — sSR — SSA — ssE; — sSB — ss(AB).

e The split-plot error mean square msE, = ssE, / a(r —1)(b —1) is used as the error estimate in
testing the significance of split-plot factor(B) and interaction(AB).

e The analysis of variance table is outlined as follows:
ANOVA

Source of Variation Degrees of Sum of Mean Square F
Freedom Squares

Whole plot analysis

Replication r-1 ssR - -
Main plot treatment(A) a-1 SSA msA msA/msE;
Main plot error(E;) (r-1)(a-1) SSE; msE; =E,

Sub-plot analysis

Sub-plot treatment(B) b-1 ssB msB msB/msE;
Interaction (@-1)(b-1)  ss(AB)  ms(AB) ms(AB)/msE;
(AxB)

Sub-plot error(E») a(r-1)(b-1)  ssk; msE; =E,

Total rab-1 sstot

1.5 Standard Errors and Critical Differences

: . . 2E
Estimate of S.E. of difference between two main plot treatment means = ba
r
: . 2E,
Estimate of S.E. of difference between two sub-plot treatment means = .| —>
ra

Estimate of S.E. of difference between two sub-plot treatment means
. 2E,
at the same level of main plot treatment = . |—>
r

Estimate of S.E. of difference between two main plot treatment

2[(b-1)E, +E, |
rb
Critical difference is obtained by multiplying the S.Eq4 by tse, table value for respective error d.f.

for (i), (ii) & (iii). For (iv), as the standard error of mean difference involves two error terms, we
use the following equation to compute the weighted t values:

{= (b-1)E,t, +E,t,
(b-1)E, +E,
where t, and ty, are t-values at error d.f. (E,) and error d.f.(Ep) respectively.

means at the same or different levels of sub-plot treatment = \/

Example 1: In a study carried by agronomists to determine if major differences in yield response
to N fertilization exist among different varieties of jowar, the main plot treatments were three
varieties of jowar (V1. CO-18, V,: CO-19 and V3. C0-22), and the sub-plot treatments were N
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rates of 0, 30, and 60 Kg/ha. The study was replicated four times, and the data gathered for the
experiment are shown in Table 1.

Table 1: Replication-wise yield data.

N rate, Kg/ha

Replication Variety 0 30 60
Yield, kg per plot

I V1 15.5 17.5 20.8
V, 20.5 24.5 30.2

V3 15.6 18.2 18.5

Il Vi 18.9 20.2 24.5
V, 15.0 20.5 18.9

V3 16.0 15.8 18.3

I Vi 12.9 14.5 13.5
V, 20.2 18.5 25.4

V3 15.9 20.5 22.5

v V1 12.9 13.5 18.5
V, 13.5 17.5 14.9

V3 12.5 11.9 10.5

Analyze the data and draw conclusions.

Steps of analysis:

e Calculate the replication totals (R), and the grand total (G) by first constructing a table for the
replication x variety totals shown in Table 1.1, and then a second table for the variety x
nitrogen totals as shown in Table 1.2.

Table 1.1 Replication x Variety (RA) - table of yield totals.

Variety
Replication Vi V, V3 Rep.Total(R)
I 53.8 75.2 52.3 181.3
I 63.6 54.4 50.1 168.1
11 40.9 64.1 58.9 163.9
vV 44.9 45.9 34.9 125.7
Variety Total(A) 203.2 239.6 196.2
Grand Total(G) 639.0

Table 1.2 Variety x Nitrogen (AB) - table of yield totals.

Variety

Nitrogen V1 V> V3 Nitrogen
Total(B)

No 60.2 69.2 60.0 189.4
N; 65.7 81.0 66.4 213.1
N, 77.3 89.4 69.8 236.5

e Compute the various sums of squares for the main plot analysis by first computing the
correction factor:
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2
- _ G’ _ (639

= = 11342.25
rab 4x3x3

Total S.S. (sstot) = [ (15.5)* + (20.5)° + ... +(10.5)°] - C.F.
= 637.97

Replication S.S. (ssR) = -C.F.

RZ
ab
_ (181.3)2 + (168.1)2 + (163.9)2 + (125.7)2
3x3

—11342.2¢

=190.08

AZ
S.S. due to Variety (ssA) = Z‘;b -C.F.

_ (203.2F +(239.6F +(196.2f ;1540 o

4x3
90.487

_ > (RA?
Main plot error S.S. (ssEj) = B C.F.—ssR—ssA

_(53.8 +(63.6) +... +(34.97

3 —11342.25-190.08—-90.487

=174.103
Compute the various sums of squares for sub-plot analysis:

BZ
S.S. due to Nitrogen (ssB) = Z&a -C.F.

_ (1894 + (21317 +(236.5F ;1040 0

4x3
92.435

: D (AB)’
S.S. due to Interaction (A x B) = f—C.F.—SSA—SSB

_ (60.2) +(65.7) +... +(69.8)

A —11342.25-90.487—-92.435

=9.533
Sub-plot error S.S. (ssE;) = Total S.S. — All other sum of squares
= 637.97 — (1190.08 + 90.487 + 174.103 + 92.435 +9.533)
= 81.332

Calculate the mean square for each source of variation by dividing the S.S. by its
corresponding degrees of freedom and compute the F value for each effect that needs to be
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tested, by dividing each mean square by the corresponding error mean square, as shown in
Table 1.3.

Table 1.3 ANOVA

Source of Degrees of Sumof Squares Mean F

variation freedom Square

Replication 3 190.08 63.360

Variety(A) 2 90.487 45.243 1.56™

Error(a) 6 174.103 29.017(Ez)

Nitrogen(B) 2 92.435 46.218 10.23"

VarietyxNitrogen 4 9.533 2.383 <1
(AxB)

Error(b) 18 81.332 4.518 (Ep)

Total 35 637.97

" _not significant, ~ - significant at 1% level.

e  Compute the coefficient of variation for the main plot and sub-plot as:

JE JE
cv(a) = X2 %100, and cv(b) = X2 x100 respectively.
G.M G.M

e Compute standard errors and to make specific comparisons among treatment means compute
respective critical differences only when F-tests show significance differences and interpret.

e Conclusion: There was no significant difference among variety means. Yield was
significantly affected by nitrogen. However, the interaction between N rate and variety was
not significant. All the varieties gave significant response to 30 kg N/ha as well as to 60 kg
N/ha.

2. Strip Plot Design

2.1 Introduction

Sometimes situation arises when two factors each requiring larger experimental units are to be
tested in the same experiment, e.g., suppose four levels of spacing and three levels of methods of
ploughing are to be tested in the same experiment. Here both the factors require large
experimental units. If the combinations of the two factors at all possible levels are allotted in a
R.B.D. in the normal way, the experimental plots shall have to be very large thereby bringing
heterogeneity. So, it will not be appropriate. On the other hand if one factor (spacing) is taken in
main plots and other factor (methods of ploughing) is taken in sub-plots within main plots, the
sub-plots shall have to be large enough. Hence split plot design also will not be appropriate. In
such situations a design called Strip plot design is adopted.

The strip plot is a 2-factor design that allows for greater precision in the measurement of the
interaction effect while sacrificing the degree of precision on the main effects. The experimental
area is divided into three plots, namely the vertical-strip plot, the horizontal-strip plot, and the
intersection plot. We allocate factors A and B, respectively, to the vertical and horizontal-strip
plots, and allow the intersection plot to accommodate the interaction between these two factors.
As in the split plot design, the vertical and the horizontal plots are perpendicular to each other.
However, in the strip plot design the relationship between the vertical and horizontal plot sizes is
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not as distinct as the main and sub-plots were in the split plot design. The sub-plot treatments
instead of being randomized independently within each main plot as in the case of split plot
design are arranged in strips across each replication. The intersection plot, which is one of the
characteristics of the design, is the smallest in size.

2.2 Randomization and Layout

In this design each block is divided into number of vertical and horizontal strips depending on the
levels of the respective factors. Let A represent the vertical factor with a levels, B represent the
horizontal factor with b levels and r represent the number of replications. To layout the
experiment, the experimental area is divided into r blocks. Each block is divided into b horizontal
strips and b treatments are randomly assigned to these strips in each of the r blocks separately and
independently. Then each block is divided into a vertical strips and a treatments are randomly
assigned to these strips in each of the r blocks separately and independently. A possible layout of
a strip plot experiment with a =5 (a3, a,, as, a4, and as), b =3 (b1, b2, and bs) and four replications
is given below:

Rep. | Rep. Il Rep. 11l Rep. IV
b, b1 b3 b,
by bs b1 bs
bs b, b, by
dqg a1 ap as as dp d4 a3z 4d1 as ds dq a1 az a2 dz3 d1 d4 ds a2

The strip plot design sacrifices precision on the main effects of both the factors in order to
provide higher precision on the interaction which will generally be more accurately determined
than in either randomised blocks or simple split plot design. Consequently this design is not
recommended unless practical considerations necessitate its use or unless the interaction is the
principle object of study.

2.3 Model
The model for strip plot design is

Yij = p+ pi+ 04+ (paij + Pic + (PPik+ ()i + &iji
fori=12,...r,j=1,2, ...,a, k=12, ...b,

where,
Yijk : observation corresponding to j™ level of factor A, k™ level of factor B and i replication
u : general mean

pi :i"block effect
(oh : effect of j" level of factor A
Bk  effect of k™ level of factor B

(of)j : interaction between j™ level of factor A and the k™ level of factor B
The error components (paij, (pB)ik and i are independently and normally distributed with
means zero and respective variances %, 6%, and o%.
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2.4 Analysis

In statistical analysis separate estimates of error are obtained for main effects of the factor, A and
B and for their interaction AB. Thus there will be three error mean squares applicable for testing
the significance of main effects of the factors and their interaction separately.

Suppose 4 levels of spacings (A) and 3 levels of methods (B) of ploughing are to be tested in the
same experiment. Each replication is divided into 4 strips vertically and into 3 strips horizontally.
In the vertical strips the four different levels of spacings are allotted randomly and in the
horizontal strips three methods of ploughing are allotted randomly. Let there be 4 replications(R).
The analysis of variance is carried out in three parts viz. vertical strip analysis, horizontal strip
analysis and interaction analysis as follows:

Form spacing x replication (A x R) table of yield totals and from this table compute the S.S.
due to replication, S.S. due to spacings and S.S. due to interaction - Replication x Spacing
i.e. error(a).

Form method x replication (B x R) table of yield totals and from this table compute the S.S.
due to methods and S.S. due to interaction - Replication x Method i.e. error(b).

Form spacing x method (A x B) table of yield totals and from this table compute the S.S.
due to interaction - Spacing x Method.

Total S.S. will be obtained as usual by considering all the observations of the experiment
and the error S.S. i.e. error(c) will be obtained by subtracting from total S.S. all the S.S. for
various sources.

Now, calculate the mean square for each source of variation by dividing each sum of squares
by its respective degrees of freedom.

Compute the F-value for each source of variation by dividing each mean square by the
corresponding error term.

The analysis of variance table is outlined as follows:

ANOVA
Source of Variation Degrees of Sum of Mean F
Freedom Squares Square
Replication(R) (r-1)=3 ssR - -
Spacing(A) (@-1)=3 SSA msA msA/msE;
Error(a) (r-1(a-1)=9 SSE; msE; =E,
Method(B) (b-1)=2 ssB msB msB/msE;
Error(b) (r-1)(b-1)=6 SSE, msE; =Ey
SpacingxMethod (a-1)(b-1)=6 sS(AB)  ms(AB) ms(AB)/msEs
(AxB)
Error(c) (r-1)(a-1)(b-1)=18  ssEs msE; =E.
Total (rab-1)= 47 sstot
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2.5 Standard Errors and Critical Differences

a

rb

) . 2E
Estimate of S.E. of difference between two B level means = .[—2
ra

Estimate of S.E. of difference between two A level means =

Estimate of S.E. of difference between two A level means at the same level of B means

\/2[(b-1)Ec +E,]
rb

Estimate of S.E. of difference between two B level means at the same level of A means

\/2[(a-1)Ec+Eb]

ra

Critical difference is obtained by multiplying the S.Eq4 by tsy, table value for respective error d.f.
for (i) & (ii). For (iii) & (iv), as the standard error of mean difference involves two error terms,
we use the following equation to compute the weighted t values:

_ (b-1)E.t. +E,t, _ (a-1)E .t +E,t,

t= ,and t=
(@a-1)E, +E,

(b-1)E, +E respectively,
-1)E, +E,

where t,, t, and t. are t-values at error d.f. (E,), error d.f.(Ep) and error d.f.(E.) respectively.
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RESPONSE SURFACE DESIGNS

1. Introduction

The subject of Design of Experiments deals with the statistical methodology needed for making
inferences about the treatment effects on the basis of responses (univariate or multivariate)
collected through the planned experiments. To deal with the evolution and analysis of methods
for probing into mechanism of a system of variables, the experiments involving several factors
simultaneously are being conducted in agricultural, horticultural and allied sciences. Data from
experiments with levels or level combinations of one or more factors as treatments are normally
investigated to compare level effects of the factors and also their interactions. Though such
investigations are useful to have objective assessment of the effects of levels actually tried in the
experiment, this seems to have inadequate, especially when the factors are quantitative in nature.
The above analysis cannot give any information regarding the possible effects of the intervening
levels of the factors or their combinations, i.e., one is not able to interpolate the responses at the
treatment combinations not tried in the experiment. In such cases, it is more realistic and
informative to carry out investigations with the twin purposes:

a) To determine and to quantify the relationship between the response and the settings of a
group of experimental factors.

b) To find the settings of the experimental factors that produces the best value or the best set of
values of the response(s).

If all the factors are quantitative in nature, it is natural to think the response as a function of the
factor levels and data from quantitative factorial experiments can be used to fit the response
surfaces over the region of interest. Response surfaces besides inferring about the twin purposes
can provide information about the rate of change of a response variable. They can also indicate
the interactions between the quantitative treatment factors. The special class of designed
experiments for fitting response surfaces is called response surface designs. A good response
surface design should possess the properties viz., detectability of lack of fit, the ability to
sequentially build up designs of increasing order and the use of a relatively modest, if not
minimum, number of design points. Before formulating the problem mathematically, we shall
give examples of some experimental situations, where response surface methodology can be
usefully employed.

Example 1: The over-use of nitrogen (N) relative to Phosphorus (P) and Potassium (K) concerns
both the agronomic and environmental perspective. Phosphatic and Potassic fertilizers have been
in short supply and farmers have been more steadily adopting the use of nitrogenous fertilizers
because of the impressive virtual response. There is evidence that soil P and K levels are
declining. The technique of obtaining individual optimum doses for the N, P and K through
separate response curves may also be responsible for unbalanced fertilizer use. Hence,
determining the optimum and balanced dose of N, P and K for different crops has been an
important issue. This optimum and balanced dose should be recommended to farmers in terms of
doses from the different sources and not in terms of the values of N, P and K alone, as the
optimum combination may vary from source to source. However, in actual practice the values of
N, P and K are given in terms of kg/ha rather than the combined doses alongwith the source of
the fertilizers.
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Example 2: For value addition to the agriculture produce, food-processing experiments are being
conducted. In these experiments, the major objective of the experimenter is to obtain the
optimum combination of levels of several factors that are required for the product. To be
specific, suppose that an experiment related to osmotic dehydration of the banana slices is to be
conducted to obtain the optimum combination of levels of concentration of sugar solution,
solution to sample ratio and temperature of osmosis. The levels of the various factors are the
following

Factors Levels
1. Concentration of sugar solution 40%, 50%, 60%, 70% and 80%
2. Solution to sample ratio 1:1,3:1,5:1, 7:1and 9:1
3. Temperature of 0SmMosis 25°C, 35°C, 45°C, 55°C and 65°C

In this situation, response surface designs for 3 factors each at five equispaced levels can be used.

Example 3: Yardsticks (a measure of the average increase in production per unit input of a given
improvement measure) of many fertilizers, manures, irrigation, pesticides for various crops are
being obtained and used by planners and administrators in the formulation of policies relating to
manufacture/import/subsidy of fertilizers, pesticides, development of irrigation projects etc.

The yardsticks have been obtained from the various factorial experiments. However, these will
be more reliable and satisfy more statistical properties, if response surface designs for slope
estimation are used.

In general response surface methodology is useful for all the factorial experiments in agricultural
experimental programme that are under taken so as to determine the level at which each of these
factors must be set in order to optimize the response in some sense and factors are quantitative in
nature. To achieve this we postulate that the response is a function of input variables, i.e.

Yu = o0y, Xau - Xvu)+ €y (1.1)
where u=12,..., N represents the N observations and X;, is the level of the it factor in the u™
observation. The function ¢ describes the form in which the response and the input variables are
related and e, is the experimental error associated with the u' observation such that E (e))=0
and Var(e,) = ¢>. Knowledge of function ¢gives a complete summary of the results of the
experiment and also enables us to predict the response for values of the x;, that are not included
in the experiment. If the function ¢is known then using methods of calculus, one may obtain the
values of xq,xo,...,x, which give the optimum (say, maximum) response. In practice the
mathematical form of ¢is not known; we, therefore, often approximate it, within the
experimental region, by a polynomial of suitable degree in variables X;,. The adequacy of the

fitted polynomial is tested through the usual analysis of variance. Polynomials which adequately
represent the true dose-response relationship are called Response Surfaces and the designs that
allow the fitting of response surfaces and provide a measure for testing their adequacy are called
response surface designs. If the function ¢in (1.1) is of degree one in X;,'s i.e.

we call it a first-order response surface in x, xo,...,%, . If (1.1) takes the form

136



Response Surface Designs

v v v=1 v
Yu =PBo+ D Fi%iy +Zﬂiixi2u + 2D BiirKiuXiu +ey (1.3)
= =

i=1i'=i+1

We call it a second-order (quadratic) response surface. Henceforth, we shall concentrate on the
second order response surface which is more useful in agricultural experiments.

2. The Quadratic Response Surface
The general form of a second-degree (quadratic) surface is
2 2 2
Yu =PBo + Prxw + BaXoy +-.+ ByXyu + PriXy, + BaoXy, + o+ PXvu +
ProXauXou + P13XwXay + -+ Py_1vXv—1uXvu + €y

Let us assume that Xx;,'s satisfy the following conditions:

N |V
(A) Z{Hxi‘ﬁi}zo, if any o is odd, for o =012 or3 and ) aj <4.
u=1{u=1

N
(B) ZX,ZU =constant (for all i) =NA, (say)
u=1

N
©) fo[J = constant (for all i) = CNA4 (say) (2.1)
u=1

N
(D) ZXizuxiz,u —constant = NA, (say), for all i =i’

u=1
We shall estimate the parameters fgi's through the method of least squares. Let
bo,bi's, bii's, bjj’'s denote the best linear unbiased estimate of Sy, 5's, Gi's, Giir's respectively.
Under the above restrictions on X;,'s, the normal equations are found to be:

N v
D" yu =Nby+ N2 > b
u=1

N
inu Yu = NAob;

u=1

N

> XiuXiuYu = NAabiir (2.2)
u=1

N

ZXizu Yu = NAobg + CNAh;i + NAy Zbi’i'

u=1 i'#i

Vv
= NAgho +(C ~DNAgbji + NAg Y b
i=1

Solving the above normal equations, we obtain the estimates b; ‘s as
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bp = {/14(C+v 12 JZZZx,qu}/

u=1 =lu=1
N
bj = ZXiUYU/Niz
“:Ii (2.3)
bji = inuxi'uyu/N/M
u=1
- 2 2, RoRn 2
bjj = leu Yu-— (32 14)2 leu)’u (c-1) 1214ZYU C 1)N14]
U=, i=lu=1
where  A=(C+v-1)l4 —vﬂ% :
The variances of and covariances between the estimated parameters are as follows:
V(bg)=44(C +v-1)o2 /N4
V(bi)=0?/Nzy
V(biir)=o?/NA
( (1 ) / 4 (2.4)

V(o) - o2+ [ -2 e -]
Covbg, bjj )= —lgaz/NA
Coubij, byjr)= (ﬂ% — 4 )0‘2 / [(C-DN2y4]

Other covariances are zero. From the above expressions it is clear that a necessary condition for
the design to exist is that A>0. Thus, a necessary condition for a Second Order Design to exist
is that

E) 44/ >v/(C+v-1) (2.5)
If y is the estimated response at any given experimental point (xq, Xog.-... X0 ), then the variance
of yis given by

V(§)=V ){Zx,o}rv b,,)[leo}v bii )(z leox ,OJ

=li'=i+1

+2Cov(by, b,,{leo}r 2Cov(b,,,b,r,f{z > xax; ’0]

=1i'=1+1

(2.6)

Vv

If ZXiZO =d?, where d is the distance of the point (x0, X20,.... Xy0) from the origin, then we may
i=1

write

V(9)=V(b)+d 2V (b;)+ 2Cou(bg,bii )]+ d v (b
v-1 v
+ > > x@xE Vv (biir )+ 2Coubij b ) - 2V (bii )]

i=li'=i+1

(2.7)
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From the above expression, it is clear that if the coefficient of VZ_% i‘,xizoxiz'o iIs made equal to

zero, the variance of the estimated response at (xlo,xzo,...,xvo)I:vliIIIZIE;; a function of d, the

distance of the point (x;g, xop,.... Xy ) from the origin. Now, the coefficient of VZ_:l Zleizoxiz'o is
i=1i'=i+1

v (biir )+ 2 Covlbij, by ) - 2V (bij)

_o° _1+2(‘5‘*4)_ 2 {M%‘MH (2.8)

N4 ACc-1) (C-1)

0'2 i 2
-9 |1-_<
NAg [ (C—l)}

Obviously, this is zero, if and only if C =3. Thus, when C =3, the variance of the estimated
response at a given point, the response being estimated through a design satisfying (A), (B), (C),
(D), (E) becomes a function of the distance of that point from the origin. Such designs are called
as Second Order Rotatable Designs (SORD). We may now formally define a SORD:

Let us consider N treatment combinations (points) {xiu}, i=12..,v,u=12,...,N to form a design

in v factors, through which a Second-degree surface can be fitted. This design is said to be a
SORD if the variance of the estimated response at any given point is a function of the distance of
that point from the origin. The necessary and sufficient conditions for a set of points
{Xiuh 1=12,..,v,u=12,...,N to form a SORD are

N |V
(A”) Z{Hxi‘f‘j}=o, if any o is odd, for o =02 or3 and ) a; <4.
u=1{u=1

N
B) Y x&=Ni

u=1
(€) D xiy = constant=3N, i=12,..v
u
(D) Zx,zuxiz,u =NAyq ; =i
u
() g/ >v/(v+2) (2.9)

The conditions (A’), (B’) and (D) are same as conditions (A), (B) and (D) in (2.1).
We now prove the following.

Lemma: If a set of points {xj,, i=12,...,v,u=12,..,N}, satisfying (A”), (B*), (C’) and (D’) are
such that every point is equidistant from the origin, then

/14//1% =v/(v+2) (2.10)
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Proof: Let d be the distance of any point from the origin. Then, since all the points are
equidistant from the origin, we have

d2 1 N(v P
:NZ leu =VAp
u=\i=1
s 18(& ) i
4% =3 2 L
u=1\i=1
N
and %Z‘[ZX,“ZZ Zx,uxl,u]
u=lli=1 =li'=i+1

=3l +V(v-1)ls
Thus, v223 =3vig +v(v-1)24
or, /14(v+2)—vﬂ% =0

An arrangement of points satisfying (A’), (B’), (C’) and (D’) but not (E’) is called a Second
Order Rotatable Arrangement (SORA). A SORA can always be converted to an SORD by adding
at least one central point.

A near stationary region is defined as a region where the surface slopes along the v variable axes
are small compared to the estimate of experimental error. The stationary point of a near stationary
region is the point at which the slope of the response surface is zero when taken in all the

directions. The coordinates of the stationary point xg =(X.0,X20. ., x\,o)’ are obtained by
differentiating the following estimated response equation with respect to each X; and equating the
derivatives to zero and soIving the resulting equations

b0+Zb,x, +Z:b,,xI +Z Zb,,'x,x, (2.11)

i=1li'=i+1

In matrix notation (2.11) can be written as

Y(x)=bg +x'b + x'Bx (2.12)
where Xx=(x,Xp..... %), b=(0op,0,....1,)
and
bp1 bpp/2 ... by /2
B bp/2 bpy ... byyl/2
blv/2 b2v/2 e bvv

From equation (2.12)

() _ =b+2Bx (2.13)

The stationary point X is obtained by equating (2.13) to zero and solving for x, i.e.
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xg=—Bb (214)
To find the nature of the surface at the stationary point we examine the second derivative of

Y(x). From (2.13)
0%Y(x)

ox°
The stationary point is a maximum, minimum or a saddle point according as B is negative
definite, positive definite or indefinite matrix. If 4, 1»,..., A, represent the v eigenvalues of B.

Then it is easy to see that if 4, 1y,..., 4, are

(i) All negative, then at xq the surface is a maximum

(i) All positive, then at xq the surface is a minimum

(ilf)  of mixed signs, i.e. some are positive and others are negative, then X is a saddle point of
the fitted surface.

=2B (since B is symmetric).

Furthermore, if 4; is zero (or very close to zero), then the response does not change in value in
the direction of the axis associated with x; variable. The magnitude of 4; indicates how quickly
the response changes in the direction of axis associated with X; variable.

The conditions in (2.1) and (2.9) help in fitting of the response surfaces and define some
statistical properties of the design like rotatability. However, these conditions need not necessary
be satisfied before fitting a response surface. This can be achieved by using the software
packages like the Statistical Analysis System (SAS). PROC RSREG fits a second order response
surface design and locates the coordinates of the stationary point, predict the response at the
stationary point and give the eigenvalues 1, 1»,...,4, and the corresponding eigen vectors. It also
helps in determining whether the stationery point is a point of maxima, minima or is a saddle
point. The lack of fit of a second order response surface can also be tested using LACKFIT
option under model statement in PROC RSREG. The lack of fit is tested using the statistic

r = SStor/ (N-p)
SSpe/(N—N')

(2.15)

where N is the total number of observations, N’ is the number of distinct treatments and p is the
number of terms included in the model. SSpe (sum of squares due to pure error) has been
calculated in the following manner: denote the I" observation at the u™ design point by y;,, where
l=1,..,rn(=1),u=I.., N .Define y, tobe average of r, observations at the ut design point.

Then, the sum of squares for pure error is
N’ 1 )
SSpe= > (iu-Yu) (2.16)
u=1l=1

Then sum of squares due to lack of fit (SS_ oF) = sum of squares due to error - SSpe
The analysis of variance table for a second order response surface design is given below.
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Table 1. Analysis of Variance for second order response surface

Source d.f. S.S.

Due to  regression v N (N (N
2"*() bo D yu+ D bi| D XiuYu |+ D bii| D Xuvu
u=1 u=1 i u=1

coefficients 2
i

N
+Zzbii’(zxiuxi’UYU]_CF
u=1

i’
Error [v] By subtraction = SSE
N—-2v-— -1
2
Total N-1 N )
> y§ -CF
=1
2
In the above table CF = correction factor = (GrandNTotaI) . For testing the lack of fit the sum of

squares is obtained using (2.16) and then sum of squares is obtained by subtracting the sum of
squares due to pure error from sum of squares due to error. The sum of squares due to lack of fit

v
and sum of squares due to pure error are based on N'—ZV—(ZJ—land N — N'degrees of freedom

respectively.

It is suggested that in the experiments conducted to find a optimum combination of levels of
several quantitative input factors, at least one level of each of the factors should be higher than
the expected optimum. It is also suggested that the optimum combination should be determined
from response surface fitting rather than response curve fitting, if the experiment involves two or
more than two factors.

3. Construction of Second Order Rotatable designs
A second order response surface design is at least resolution V fractional factorial design. Here

3.1 Central Composite Rotatable Designs
Let there be v factors in the design. A class of SORD for v factors can be constructed in the

following manner. Construct a factorial v-factors with levels +« containing 2P combinations,

where 2P is the smallest fraction of 2 without confounding any interaction of third order or
less. Next, another 2v  points of the following type are considered:

(££00...0,(0+40...0),(00... £ B). These N=2P+2v points, give rise to a SORD in
v factors with levels £, £ £, 0. For this design,

N
> xg =2Pa? +25°
u=1

N
> xit =2Pat 125
u=1

N

2.2 .p 4
inoxi,O_Z a”.
u=1

On applying the condition of rotatability,
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3.2Pg% =2P g% + 2%
:>[)’4 —a*2P
or g% /a? =22,

This equation gives a relationship between g and «. For determining « and £ uniquely, we
either fix a=1or Ay =1. For a¢=1,= g% =2P/2,

Example. Let v=4. Then the points of the SORD are

- - 4 -
—a - - a
- - (94 -
—a - (04 a
- (94 4 -
—a a - a
4 (94 (94 -
—a a (04 a
(94 - 4 -
(04 - - a
(94 - (94 -
(04 - (04 a
a (94 4 -
(04 a - a
a (94 (94 -
(04 a (04 a
B 0 0 0
y 0 0 0
0o 2B 0 0
0 -p 0 0
0 0o A 0
0 0 -p 0
0 0 0o B
0 0 0 -p
0 0 0 0

There are 25 points — a central point has been added because, all the non-central points are
equidistant from the origin, as f = 2«a, here.

3.2 Construction of SORD using BIB Designs
If there exists a BIB design D with parameters v*, b*, r*, k*, A* such that r*=34%*, then a

SORD with each factor at 3 levels can be constructed.

Let N*be the v*x b* incidence matrix of D. Then N*' is a matrix of order b*xv*, every row

of which contains exactly k* unities and every column contains exactly r *unities, rest positions
being filled up by zeros. In N*', replace the unity by «. Then, we get b*combinations

involving « and zero. Next, each of these combinations are ‘multiplied” with those of a
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2K*factorial with levels +1 where, the term ‘multiplication’ means the multiplication of the
corresponding entries in the two combinations, zero entries remaining unaltered. Thus, if
(e « 0) is multiplied by (-1 —1) we get (~a —a 0). The procedure of multiplication gives

rise to b* 2K* points each of v*-dimension. These points evidently satisfy all the conditions

(A”), (B’), (C’) and (D’); however, since each point in the arrangement is at the same distance
from the origin, we have to take at least one central point to get a SORD in v=v*factors. The
levels of the factors are £«, 0. The value of « can be determined by fixing 4, =1.

SORD’s can be constructed using BIB designs, even when r*=34*. In the case, where

r*<34* the set of b* 2k*points obtained using N* is to be augmented with further
2v* points of the type
(+400...0,(0+40...0),(00...£3)

For the N points (N = b* 2K 4 2v*), we have

> xih =2t 1258

u
ZXﬁjxiz,u = a*2K" oA,
u

Thus 28% + r*2K" g =31 % 2K o
1
or, % /a® =(Bax—r*H22 2

When r*>31*, the points augmented are of type (i pEpP ... + ﬂ) and 2P in number, where

2P is the smallest fraction of 2" factorial with levels + £, such that no interaction of order
three or less is confounded. In this case,

> xih =r=2Kaqt 2P gt

u
> xgxa, =a* 2K ot 1 2P gt
u

Thus, 3% 2K a% +32P g4 =r*2K" ¢4 + 2P g*

or, 2 p+1IB4 — (r *_3) *)Zk*a4 ’
which gives 52/ a? =(r*-34 *)]/Z_g(k*—D—l)/Z_

In both the cases, we get v* -factor SORD with each factor at five levels

4. Practical Exercise
Exercise 1: Consider an experiment that was conducted to investigate the effects of three
fertilizer ingredients on the yield of a crop under fields conditions using a second order rotatable
design. The fertilizer ingredients and actual amount applied were nitrogen (N), from 0.89 to 2.83
kg/plot; phosphoric acid (P,Os) from 0.265 to 1.336 kg/plot; and potash (K,O), from 0.27 to 1.89
kag/plot. The response of interest is the average yield in kg per plot. The levels of nitrogen,
phosphoric acid and potash are coded, and the coded variables are defined as
X1=(N-1.629)/0.716, X,=(P205-0.796)/0.311, X35=(K,0 -1.089)/0.482
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The values 1.629, 0.796 and 1.089 kg/plot represent the centres of the values for nitrogen,
phosphoric acid and potash, respectively. Five levels of each variable are used in the
experimental design. The coded and measured levels for the variables are listed as

Levels of X,
-1.682 -1.000 0.000 +1.000 +1.682
N 0.425 0.913 1.629 2.345 2.833
P,Os 0.266 0.481 0.796 1.111 1.326
K>O 0.278 0.607 1.089 1.571 1.899

Six center point replications were run in order to obtain an estimate of the experimental error
variance. The complete second order model to be fitted to yield values is

3 3 2 3
Y =B+ Bixi + 2 Bixt + 2. D BiirXiXir +e
i=1 i=1 i=1i'=2
The following table list the design settings of xq, Xo and X3 and the observed values at 15 design
points N, P,Os, K,0 and yield are in kg.

Table 2: Central Composite Rotatable Design Settings in the Coded Variables x;, xo and
X3, the original variables N, P,Os, K,O and the Average Yield of a Crop at Each Setting

X1 X9 X3 N P,0s5 K,O  Yield
-1 -1 -1 0.913 0481 0.607 5.076
1 -1 -1 2345 0481 0.607 3.798
-1 1 -1 0.913 1.111 0.607 3.798
1 1 -1 2345 1.111 0.607 3.469
-1 -1 1 0.913 0481 1571 4.023

1 2345 0481 1571 4.905

1 0913 1111 1571 5.287

1 2345 1111 1571 4.963

-1.682 0 0 0425 0.796 1.089 3.541
0 2833 0.796 1.089 3.541

0 1.629 0.266 1.089 5.436

1.682 0 1.629 1326 1.089 4.977
0 -1.682 1629 0.796 0.278 3.591
1682 1629 0.796 1.899 4.693
0 1.629 0.796 1.089 4.563
0 1.629 0.796 1.089 4.599
0 1.629 0.796 1.089 4.599
0 1.629 0.796 1.089 4.275
0 1.629 0.796 1.089 5.188
0 1.629 0.796 1.089 4.959
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The output for the above problem is as follows:

Response Surface for Variable YIELD

Response Mean 4.464050
Root MSE 0.356424
R-Square 0.8440
Coef. of Variation 7.9843
Regression d.f. Sum of Squares R-Square F-Ratio Prob > F
Linear 3 1.914067 0.2350 5.022 0.0223
Quadratic 3 3.293541 0.4044 8.642 0.0040
Crossproduct 3 1.666539 0.2046 4.373 0.0327
Total Regression 9 6.874147 0.8440 6.012 0.0049
Regression d.f. Sum of Squares R-Square F-Ratio Prob > F
Lack of Fit 5 0.745407 0.149081 1.420 0.3549
Pure Error 5 0.524973 0.104995
Total Error 10 1.270380 0.127038
Parameter d.f Estimate Std Error T-ratio Prob > |T|
INTERCEPT 1 6.084180 1.543975 3.941 0.0028
N 1 1.558870 0.854546 1.824 0.0981
P 1 -6.009301 2.001253 -3.003 0.0133
K 1 -0.897830 1.266909 -0.709 0.4947
N*N 1 -0.738716 0.183184 -4.033 0.0024
P*N 1 -0.142436 0.558725 -0.255 0.8039
P*p 1 2.116594 0.945550  2.238 0.0491
K*N 1 0.784166 0.365142  2.148 0.0573
K*p 1 2.411414 0.829973  2.905 0.0157
K*K 1 -0.714584 0.404233 -1.768 0.1075
Factor d.f. Sum of Squares Mean Squares F-Ratio Prob > F
N 4 2.740664 0.685166 5.393 0.0141
P 4 1.799019 0.449755 3.540 0.0477
K 4 3.807069 0.951767 7.492 0.0047
Canonical Analysis of Response Surface
Factor Critical Value
N 1.758160
P 0.656278
K 1.443790
Predicted value at stationary point 4.834526 kg

Eigenvectors
Eigenvalues N P K
2.561918 0.021051 0.937448 0.347487
-0.504592 0.857206  -0.195800 0.476298
-1.394032 -0.514543  -0.287842 0.807708
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Stationary point is a saddle point.

The eigenvalues obtained are 4,4, and Az as 2.561918, -0.504592, -1.394032. As A, and A3

are negative, therefore, take W, =W3 =0. Let

M = {0.021051 0.857206 -0.514543,
0.937448 -0.195800 -0.287842,
0.34787  0.476298 0.807708};

denotes the matrix of eigenvectors. The estimated response at the stationary points be 4.834526
kg/plot. Let the desired response be Yges=5.0 kg/plot. Therefore, let Wy, obtained from the

equation is sqgrt (difference/2.561918)=AX1, say. To obtain various different sets of many values
of Wy, generate a random variable, u, which follows uniform distribution and multiply this value

with 2u—1 such that W; lies within the interval, (-AX1, AX1). Now to get a combination of
X;'s that produces the desired response obtain X =M*W+Xg.

Combinations of N, P, K estimated to produce 5.0 kg/plot of Beans.

Y N P K

5.0 1.760 0.730 1.471
1.762 0.815 1.503
1.754 0.460 1.371

One can select a practically feasible combination of N, P and K.

5. Response Surface Designs for Slope Estimation

The above discussion relates to the response surface designs for response optimization. In many
practical situations, however, the experimenter is interested in estimation of the rate of change of
response for given value of independent variable(s) rather than optimization of response. This
problem is frequently encountered e.g., in estimating rates of reaction in chemical experiments;
rates of growth of biological populations; rates of changes in response of a human being or an
animal to a drug dosage, rate of change of yield per unit of fertilizer dose. Efforts have been
made in the literature for obtaining efficient designs for the estimation of differences in responses
i.e., for estimating the slope of a response surface.

Many researchers with different approaches have taken up the problem of designs for estimating
the slope of a response surface. We confine ourselves to two main approaches, namely

e Slope Rotatability

e Minimax Designs

The designs possessing the property that the estimate of derivative is equal for all points
equidistant from the origin are known as slope rotatable designs. For a second order response

surface, the rate of change of response due to ith independent variable is given by

~ )
_8y(x) =Dy +2bjjx; + zbii'xi’
| i'#i
For second order design satisfying (2.1) we have
Cov(b;, bjj) = Cov(b;, bjj) = Cov(bij, bij)
Thus variance of % is given by
i
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Var(—ags()] =Var(g; )+ p2Var(o;j )+ x¢ [4Var(o;; ) Var(bii )]
|
Thus in order to obtain slope rotatable design, the design must satisfy

e Conditions of symmetry (2.1)

Ay
o Z>v/lctv-1)
2
o 4Varl(h;)=Var(b;j).
It is important to note here that no rotatable design can be slope rotatable.

A minimax design is one that minimizes the variance of the estimated slope maximized over all
points in the design.
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DESIGNS FOR MIXTURE EXPERIMENTS

Mixtures are formed by blending or mixing two or more components. Some common
examples are:

(@) Construction concrete (mixture of sand, water and cement)

(b) Railroad flares (product of blending together Magnesium, Sodium Nitrate, Strontium
Nitrate and binder)

(c) Fruit punch (mixture of juices of watermelon, orange and pineapple)

(d) Fertilizer mixture (mixture of Potash, Rock Phosphate, Super Phosphate and urea)

(e) Cake formulation (blend of baking powder, shortening, flour, sugar, and water)

The manufacturers of such products are interested in one or more properties of the final
product. For example, in construction concrete, the hardness or compression strength of the
mixture is of interest; in railway flares, the illumination and duration of the illumination of the
flares are the interesting properties; in fruit punch the fruitiness flavor of the punch is the
property of interest: in fertilizer mixture, the crop yield is of interest; and in cake formulation,
the property of interest is the fluffiness of the cake or the layered appearance. The property of
the final product depends on the percentage or proportions of the ingredients mixed.

Another reason for mixing two or more ingredients is to see whether the blend has a more
desirable property than the individual ingredients. For example, suppose there are three types
of gasoline, A, B and C, in stock. One may be interested in the antiknock rating of the stocks,
used singly and in combination. That is, one may want to know if there exists some
combination of the three which yields higher antiknock rating than the three used singly. If
that is true, naturally one would go for the combination rather than any for the single stocks!

As the property of the final product depends on the mixture combination, one would be
interested to study the functional relationship between the measured property or measured
response and the mixing proportions of the ingredients. From experimental viewpoint, such a
study is of interest in order (i) to determine some combination of the mixture ingredients that
would be best in some sense, or (ii) to have a better understanding of the effects of the
ingredients on the response.

Consider a mixing blend with g components in the proportions X = (X, Xp,..., Xq) .Clearly, 0<
X;<1,and 1<i<q, and
g

iglxi =1. (1)

Because of the natural constraint (1), a mixture experiment belongs to a class of its own. It has
vast application in different research areas and also industries, such as

Agriculture

Engineering

Pharmaceutical

Biomedical

Horticulture

VVVYY

etc

The experimental region for a mixture experimept is given by
E={(X, X %) 1% 20, 1<i<q, D % =1}
i=1
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—

Geometrically, = is represented by a g-1 dimensional simplex. The vertex points of the
simplex region are of the type (1,0,...,0), (0,1,0,...,0), ..., (0,0,...,0,1).These points are called
pure or single point mixtures. The experimental points lie within or on the boundary of the
simplex region.

For example, consider a mixture of two components with mixing proportions
(%1, %2),0 <%, % <1, X + X, =1. Here the experimental region will be a straight line with the
end point (0, 1) and (1, 0):

1)

(0.0 X {1.0)

1

For a mixture of three components with mixing proportions
(X, %2, %3), 0<%, %0, X3 <1, % + Xo + X3 =1, the experimental region is a triangle with vertex
points (1,0,0), (0,1,0) and (0,0,1):

[(1,0,0)
anize, (12,0172
4 e (173,173,113}
{.ﬂ}l !I"u} {'[L]JI ,11"?..]' {.ﬂ}“!I}

The points (1/2, 1/2,0), (1/2,0, 1/2) and (0, 1/2, 1/2) are called the mid-points of the edges,
and the point (1/3,1/3,1/3) is the overall centroid point.

For a 4-component mixture, the experimental region is a tetrahedron with four extreme points
and six mid-points of edges.

Let Y, denote the response corresponding to the mixture combination x. Scheffé (1958) first

defined models for expressing the response in terms of the mixing proportions of the
ingredients. The models are as follows:

q
Linear (homogeneous): Yy =2 6% +¢
i=1
Quadratic : Yy = Z,B,x + Z ,B,Jxx +&
i=1 i<j=1
: q
Full cubic . Y —Zﬂ,XI—Ir Z ﬂ”Xl J+ z Xin(Xi—Xj)+ > ﬂiijinXk +&
i=1 i<j=1 i<j<k=1
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_ _ q q
Special cubic : Yy=26%+ 2 BxXj+ X BigXiXpX te,
i=1 i<j=l i<j<k=

where ¢is the error term assumed to be distributed with mean zero and variance o°.
The quadratic model is found to be appropriate in most situations.

A mixture experiment is conducted to estimate the parameters of the fitted model or to
estimate some functions of the model parameters, like say the optimum mixture combination
that optimizes the expected response. There are several different types of designs for a
mixture experiment. The most common ones are the simplex lattice and the simplex centroid
designs. Other common designs are the simplex axial and extreme vertex designs. Each
design is used for a different purpose as listed below:

= If there are many components in a mixture, the first choice is to screen out the most
important ones. The simplex axial and simplex centroid designs are used for this purpose.

= If the number of components is not large, but a high order polynomial equation is needed
in order to accurately describe the response, then a simplex lattice design can be used.

= Extreme vertex designs are used for the cases when there are constraints on one or more
components (e.g., if the proportion of watermelon juice in a fruit punch recipe is required
to be less than 30%, and the combined proportion of watermelon and orange juice should
always be between 40% and 70%).

Simplex Lattice Design

The response in a mixture experiment is usually described by a polynomial function. This
function represents how the components affect the response. To get a better idea about the
shape of the response surface, the natural choice for a design would be the one whose points
are spread evenly over the whole simplex. An ordered arrangement consisting of a uniformly
spaced distribution of points on a simplex is known as a lattice.

A {q, m} simplex lattice design for g components consists of points defined by the following
coordinate settings: the proportions assumed by each component take the m+1 equally spaced
values from O to 1,

1 2
r=0— — .., 12=1,2,..4q
m’m

and the design space consists of all the reasonable combinations ( that is summing up to 1) of
values of the components. “m” is usually called the degree of the lattice. Each reasonable
combination of values defines a support point of the design.

For example, for a {3, 2} design, X; :0,%,J,i:12,3, and its design space has 6 support

points. They are:

X1=1

ﬁ\ "

{1/2,1/2,0) '\.\:uz,n, 1/2)
AY
/
/ (0,1/2,1/2)
(0,1,0) L ] (0,0,1)

X2=1 *3=1
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Since the {3, 2} design has 6 support points, it can be used to fit upto a quadratic response
function, which also has 6 coefficients.

For a {3, 3} design, x; = 0,%,%,1, i=1,2,3,, and its design space has 10 support points. They

are:

X1=1
[11 Ol 0)

(2/3,1/3,0) (2/3,0,1/3)

(1/3,2/3,0)

(1/3,1/3,1/3)

(0,1,0) s ® (0,0, 1)

(1/3,0, 2/3)

This design can be used to fit upto a full cubic response function.

In general, for a simplex design with degree m, where each component has m + 1 possible
values, the experiment results can be used to fit a polynomial equation up to an order of m.

g+m-1
m

For a {q, m} design, the total number of support points is ( j To reduce the number

of points and still be able to fit a high order polynomial model, we often use the simplex
centroid design.

Simplex Centroid Design

In a simplex centroid design, the non-zero co-ordinates of a support point have the same
value. For example, the support points of a simplex centroid design for a three component
mixture are as follow:

x1=1

(1/2,1/2,0) (1/2,0, 1/2)

(1/3,1/3,1/3)

(0,1,0) a (0,0, 1)
X2=1 (0,1/2, 1/2) X3=1

In the above simplex plot, the points (2), (4) and (6) are called the second degree centroids.
Each of them has two non-zero components with equal values. Point 0 is a third degree
centroid and all the three components have the same value. For a design with q components,
the highest degree of centroid is q. It is called the overall centroid, or the center point of the
design.
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For a g component simplex centroid design, the total number of support points is 27 — 1. They

are the points correspond to the g permutations of (1, 0, 0,..., 0), (gj permutations of (1/2,

1/2, 0, 0, 0, 0, ...,0), the [SJ permutations of (1/3, 1/3, 1/3, 0, 0, 0, 0,..., 0)...., and the

overall centroid (1/q, 1/q, ..., 1/q). If the degree of centroid is defined as m (< q), then the

total number of support points is (qj + (qj +.+ (q ]
1 2 m

Simplex Axial Design

The simplex lattice and simplex centroid designs have support points on the boundaries of the
simplex (namely, vertices, edges, faces, etc.), except for the overall centroid. Axial designs,
on the other hand, are designs consisting mainly of the points positioned inside the simplex.
Axial designs have been recommended for use when the component effects are to be
measured in a screening experiment, particularly when first degree models are to be fitted.

The axial of a component i is defined as the imaginary line extending from the base
point x; =0,x; =1/(q—1), foralli=], to the vertex where x; =1,x; =0, all forall i = j.

In a simplex axial design, all the points are on the axial. The simplest form of axial design is
one whose points are positioned equidistant from the overall centroid (1/q,1/q,...,.1/Q)..
Traditionally, points located at half the distance from the overall centroid to the vertex are
called axial points/blends. An example is given below for a three component mixture.

(1,0,0)

(1/2,1/2,0) (1/2,0,1/2)

(0.1,0) (0,1/2,1/2) 0.0,1)

The points (4), (5) and (6) are the axial mixtures or blends.

A design D is specified by its support points and the replication of the support points in the
experimentation. Once the design D is decided upon, the experimenter carries out the
experiment say N (pre-determined) times, using the support points of the design. Suppose D
has k (> the number of parameters in the model) support points, and the i-th point is used in n;

k
experiments, such that > n; = N. To estimate the parameters of the response model, the
i=1
method of least squares is used, based on the response observations obtained from the
experimentation.
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We can write the response model as Yy = f'(X)@+ &, where @ denotes the vector of model
parameters. For example, in Scheffé’s linear (homogeneous) model, f'(X) = (X3, X2,..., Xq)

and @ = (B, Ba,-» By)'s in Scheffé’s quadratic model,

F1(X) = (Xq, Xg 00 Xqs X1 X2 50001 X Xy 5001 Xg1Xq) N

0= (B1. Borves s oo oo BB 1 ) -

If X iy » i=12,...,k be the support points and YN be the observed response vector, the least
squares estimator of @is given by

6=(XpXp)IXpY,

where XD = f(X(l)),..., f(X(l)), f(X(z)),..., f(X(Z))""’ f(X(k)),..., f(X(k)) ,

n, times n, times N, times

and Disp.(0) = o2 (XpXp) ™~

To compare two designs D; and D, on a meaningful basis we consider the information matrix
XpXp on a per observation basis, namely :

MD = (XD’XD)/ N.

The optimum design is obtained so as to minimize some real-valued concave function of the
dispersion matrix of . In the class of N- point designs, it is difficult to find such a design,
particularly when N is not small, as standard optimization techniques based on calculus
cannot be applied. To overcome this, Kiefer introduced the concept of:
Approximate/Continuous design.

Continuous Design: A continuous design is characterized by its distinct support points and
their masses or weights:

Xy X2y o Xk
52{() 2) ()},

W Wy o W
where w; >0 is the mass/weight attached to the support point X, i = 1,2,...,k, such that

q
ZWi =1.
i=1

By the mass of a support point we mean the proportion of times the experiment should be
conducted using that support point. For example, if the mass of a support point is 0.25 and the
total number of times the experiment is repeated is 100, then the number of times the mixing
proportion given by the support point is used is 100x0.25 = 4.

A commonly used continuous design, called the weighted centroid design, is defined as
follows:

Weighted Centroid Design: A weighted centroid design has the same support points as a
simplex centroid design, but different masses are attached to groups of points of the same
type. That is, it attaches a non-negative mass w; to each of the support points having one non-
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zero co-ordinate, a non-negative mass w, to each of the support points having two non-zero
components, and so on such that the sum of all masses is equal to 1. For example, in a two-
component mixture experiment conducted using a weighted centroid design, a mass ws is
attached to each of (1,0) and (0,1), and a mass w, to (1/2,1/2) such that w; > 0 for i =1, 2, and
2wy +w; =1. In a three-component mixture experiment, the weighted centroid design attaches
a mass w; to (1,0,0), (0,1,0), (0,0,1), a mass w, to each of (1/2.1/2.0), (0,1/2,1/2), (0,1/2,1/2)
and a mass ws to (1/3,1/3,1/3) such that w; > 0 for i =1, 2, 3 and 3w; + w, + w3 =1.

To get an optimum design among the class of competing designs, two commonly used
concave functions of the dispersion matrix of # are the determinant of Disp.(d) and Trace [

Disp.(é) ]. Accordingly we get the following optimality criteria:
(a) D-optimality criterion: ~ Minimize | Disp.(é) | or maximize | XpXp |
(b) Trace-optimality criterion: Minimize Trace [Disp.(é) 1.

For Scheffé’s linear (homogeneous) model for a g- component mixture, the D-optimality and
Trace-optimality criteria give the same optimum design, which has support points at the
vertices of the simplex with equal mass. The number of support points here is equal to the
number of parameters to be estimated. Such a design is called a saturated design.

For Scheffé’s quadratic model for a g- component mixture, the D-optimal design is a saturated
design with support points at the vertices of the simplex and at the mid-points of the edges,
each having the same mass. The trace optimal design, on the other hand is found to be a

weighted centroid design with masses that minimize Trace [ Disp.(8) ].
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MULTIVARIATE ANALYSIS OF VARIANCE

The meaning of ANOVA and MANOVA is Analysis of Variance and Multivariate Analysis of
Variance, respectively. Here we shall discuss ANOVA and MANOVA in brief with their
applications in agricultural science.

1. ANOVA

Analysis of Variance (ANOVA) is a technique of partitioning the overall variation in the
responses into different assignable sources of variation, some of which are specifiable and others
unknown. Total variance in the sample data is partitioned and is expressed as the sum of its non-
negative components is a measure of the variation due to some specific independent source or
factor or cause. ANOVA consists in estimation of the amount of variation due to each of the
independent factors (causes) separately and then comparing these estimates due to ascribable
factors (causes) with the estimate due to chance factor the latter being known as experimental
error or simply the error.

Total variation present in a set of observable quantities may, under certain circumstances, be
partitioned into a number of components associated with the nature of classification of the data.
The systematic procedure for achieving this is called Analysis of Variance. The initial techniques
of the analysis of variance were developed by the statistician and geneticist R. A. Fisher in the
1920s and 1930s, and is sometimes known as Fisher's analysis of variance, due to the use of
Fisher's F-distribution as part of the test of statistical significance.

Thus, ANOVA is a statistical technique that can be used to evaluate whether there are differences
between the average value, or mean, across several population groups. With this model, the
response variable is continuous in nature, whereas the predictor variables are categorical. For
example, in a clinical trial of hypertensive patients, ANOVA methods could be used to compare
the effectiveness of three different drugs in lowering blood pressure. Alternatively, ANOVA
could be used to determine whether infant birth weight is significantly different among mothers
who smoked during pregnancy relative to those who did not. In a particular case, where two
population means are being compared, ANOVA is equivalent to the independent two-sample t-
test.

There are three conceptual classes of ANOVA models:

a) Fixed-effects models: The fixed-effects model of ANOVA applies to situations in which the
experimenter applies several treatments to the subjects of the experiment to see if the
response variable values change. This allows the experimenter to estimate the ranges of
response variable values that the treatment would generate in the population as a whole. In it
factors are fixed and are attributable to a finite set of levels of factor eg. Sex, year, variety,
fertilizer etc.

Consider for example a clinical trial where three drugs are administered on a group of men
and women some of whom are married and some are unmarried. The three classifications of
sex, drug and marital status that identify the source of each datum are known as factors. The
individual classification of each factor is known as levels of the factors. Thus, in this
example there are 3 levels of factor drug, 2 levels of factor sex and 2 levels of marital status.
Here all the effects are fixed.
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b) Random effects models: Random effects models are used when the treatments are not fixed.
This occurs when the various treatments (also known as factor levels) are sampled from a
larger population. When factors are random, these are generally attributable to infinite set of
levels of a factor of which a random sample are deemed to occur eg. research stations,
clinics in Delhi, sire, etc. Suppose new inject-able insulin is to be tested using 15 different
clinics of Delhi state. It is reasonable to assume that these clinics are random sample from a
population of clinics from Delhi.

c) Mixed-effect models: It describe the situations where both fixed and random effects are
present.

In any ANOVA model, general mean is always taken as fixed effect and error is always taken as
random effect. Thus class of model can be classified on the basis of factors, other than these two
factors. ANOVA can be viewed as a generalization of t-tests: a comparison of differences of
means across more than two groups.

The ANOVA is valid under certain assumptions. These assumptions are:

. Samples have been drawn from the populations that are normally distributed.

« Observations are independent and are distributed normally with mean zero and variance o’
. Effects are additive in nature.

. Populations have equal variance.

- Samples are randomly and dependently distributed ej; ~ N (0, o%).

The ANOVA is performed as One-way, Two-way, three-way, etc. ANOVA when the number of
factors is one, two or three respectively. In general if the number of factors is more than we
perform multi-factor ANOVA.

2. Multivariate Analysis of Variance (MANOVA)

Multivariate analysis of variance (MANOVA) is a generalized form of univariate ANOVA with
several dependent variables. Multivariate analysis of variance is simply an ANOVA with several
dependent variables. When more than one dependent variable is studied simultaneously to see the
effects of the factors (groups) then the technique of analysis used is called MANOVA. Thus
MANOVA is an extension of ANOVA. Also, MANOVA is the multivariate analogue to
Hotelling's T2. The purpose of MANOVA is to test whether the vectors of means for the two or
more groups are sampled from the same sampling distribution. Just as Hotelling's T? will provide
a measure of the likelihood of picking two random vectors of means out of the same hat,
MANOVA gives a measure of the overall likelihood of picking two or more random vectors of
means out of the same hat.

For example in varietal trials the data is collected on several plant characteristics and quality
parameters. In these experimental situations the data is generally analyzed separately for each of
the characters. The best treatment or genotype is identified separately for each of the characters.
In these situations, Multivariate Analysis of Variance (MANOVA) can be helpful. Similarly, a
researcher is interested to examine the effect breed and sex in body weight, body length. Then
MANOVA is applied by taking body weight and body length simultaneously as dependent
variables and breed and sex as two factors.

There are two major situations in which MANOVA is used. The first is when there are several
correlated dependent variables and the researcher desires a single, overall statistical test on this
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set of variables instead of performing multiple individual tests. The second and in some cases, the
more important purpose is to explore how independent variables influence some patterning of
response on the dependent variables.

« The pattern of analysis of a MANOVA is similar to ANOVA

. If there is a significant multivariate effect then examine the univariate effects (i.e. ANOVA for
each dependent variable separately)

. If there is a significant univariate effect then conduct post hoc tests as necessary

Assumptions of MANOVA

« Multivariate Normality

- The sampling distributions of the dependent variables and all linear combinations of them are
normal.

. Homogeneity of VVariance-Covariance Matrices

. Itis assumed that linear relationships between all pairs of DVs exist

« Multicollinearity — the relationship between pairs of variables is high (r>.80)

« Singularity — a variable is redundant; a variable is a combination of two or more of the other
variables.

Consider a two-way MANOVA with factors as Factor A and Factor B for experiment conducted
to compare v levels of Factor A and r levels of Factor B and the data is collected on p-variables.
Let yjj denote the observed value of the k™ response variable for the i" level of Factor A in the j™

level of Factor B, 1=1,2,...,v; j=12,....,r;k=12,...,p . The data is rearranged as follows:
<« FactorB —

dFactorA |1 2 i r Factor A
Mean 4
Y11 Y12 ... Yij . Yir Y1
Y2 Y22 - Y2j - Yor yo.
i Vi1 Yi2 Yij Yir Yi.
\" Yvi Yvi . Yvi cee v yV.
Factor B V1 Yo Y] Yr y.
Mean—

Here Vi = (Vin Vi +Yijk - Yijp) 1S @ p-variate vector of observations.
= 1Zf: -1 i dv 1 izf:
Yi=—2VYi: Yj=_2Yjjandy =— Yij -
i rj:l ij yJ Vi:1y|1 r 55 ij
The observations can be represented by a two-way classified multivariate model Q

p=(m H2... tk... Hp)’ is the px1 vector of general means, ti = (tiz tio ... tik ... tip)” are the effects
of i level of Factor A on p-characters, and bj=(bj bj ... bj ... bjp)’ are the effects of j™ level of
Factor B on p-characters. ej; = (€ij1 €jj2 ... €ijk --- €ijp)’ is a p-variate random vector associated with
yij and assumed to be distributed independently as p variate normal distribution N (0,X). The
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equality of treatment effects is to be tested i.e. Ho: (tix tia...tik...tip)" = (t1 t2...tk...tp)" (say)
Vi=12, ---,p against the alternative H, : at least two of the Factor A effects are unequal. Under

the null hypothesis, the model (1) reduces to

where o= (uy +1; po +1,. 1, +1p)"

An outline of MANOVA Table for testing the equality of treatment effects and replication effects
is

MANOVA Table

Source DF SSCPM (Sum of Squares and Cross Product Matrix)
Factor A -1=h Ve oV
' H= b3, (v -y Xy -Y.)
Factor B r-1=t _ oY oY
B=vY3,(y;-9.Jv;-y.)

R= Zivle?zl(yij —=Yi. =Y, +7..XYij -Yi—-Y;ty. )'

Residual (v-1)(r-1)
=S

Total vr-1 T= ZY=1Z?=1(YU _y__xyij _y__)' =H+B+R

Here H, B, R and T are the sum of squares and sum of cross product matrices of Factor A, Factor
B, errors (residuals) and totals respectively. The residual sum of squares and cross products
matrix for the reduced model €2, is denoted by R, and is given by Rg =R+H.

The null hypothesis of equality of treatment mean vectors is rejected if the ratio of generalized
R
IH+R]|

Rao (1973) showed that under null hypothesis A is distributed as the product of independent beta
variables. A better but more complicated approximation of the distribution of Ais

variance (Wilk's lambda statistic) A = is too small. Assuming the normal distribution,

1-AY® (ab—c)

A7 oh ~ F (ph, ab-c)

where az(s—p_gﬂj, b=\/{(p2h2—4)/(p2+h2—5)}, c=ph—2_2

For some particular values of h and p, it reduces to exact F-distribution. The special cases are
given below:
@-A)(s-p+l)
p
(L-VA)(s—p+1) _
VA p

For h =1 and any p, this reduces to ~F(p,s-p+1)

For h=2 and any p, it reduces to

F(2p, 2(s—p+1))
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For p=2 and any h:

%)(1_1) ~F (2h, 2(s — 1)).

JA

For p =1, the statistic reduces to the usual variance ratio statistics.

The hypothesis regarding the equality of Factor B effects can be tested by replacing A by
R

B+R|

and h by t in the above.

Several other criteria viz. Pillai's Trace, Hotelling-Lawley Trace or Roy's Greatest Root are
available in literature for testing the null hypothesis in MANOVA. Wilks' Lamda is, however, the
commonly used criterion. Here, we shall restrict to the use of Wilks' Lamda criterion. For further
details on MANOVA, a reference may be made to Seber (1983) and Johnson and Wichern
(1988).

Remark 1: One complication of multivariate analysis that does not arise in the univariate case is
the ranks of the matrices. The rank of R should not be smaller than p or in other words error
degrees of freedom s should be greater than or equal to p (s > p).

Advantages of MANOVA

In comparison to ANOVA, MANOVA has the following advantages:

. The researcher improves their chances of finding what changes as a result of the experimental
treatment

. Since only ‘one’ DV is tested the researcher is protected against inflating the type 1 error due
to multiple comparisons

. It can show differences that individual ANOVAs do not — it is sometimes more powerful

2.1 Multivariate Treatment Contrast Analysis

If the treatments are found to be significantly different through MANOVA, then the next
question is “which treatments are significantly different?” This question can be answered through
multivariate treatment contrast analysis. In the literature, the multivariate treatment contrast

analysis is generally carried out using the gz-statistic. The zz-statistic is based on the

assumption that the error variance-covariance matrix is known. The error variance-covariance
matrix is, however, generally unknown. Therefore, the estimated value of error variance-
covariance matrix is used. The error variance-covariance matrix is estimated by sum of squares
and cross products (SSCP) matrix for error divided by the error degrees of freedom. As a

consequence, test based on Zz-statistic IS an approximate solution. The procedure using the
Wilk’s Lambda criterion is also described in the sequel.

Suppose the hypothesis to be tested is Ho: t; =t; against Hi:t; = t.. This hypothesis can be

rewritten as
Ho: = (t; —t.) =0 against Hy: = (t; —t,) =0, (3)

where (t;—t.) = (tu—tiy to—tip . ty—ty .. tp—ty). Here tdenote the effect of

treatment i for the dependent variable k. The best linear unbiased estimate of (t; —t;) is
(Vi.—yi;) :(yil_yi’l Yio=VYi2 - Yik—VYik - yip_yi’p)

where Yy, is the mean of treatment i for variable k.
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i) y%—Test
The statistic based on »?2, requires covariance matrix of the contrast of interest. The covariance

matrix, in case of a RCB design for elementary treatment contrast is obtained by dividing the
SSCP matrix for errors obtained in MANOVA by half of the product of error degrees of freedom

and the number of replications. Let this variance-covariance matrix is denoted by X . Under null

hypothesis, x=y; -, follows p- variate normal distribution with mean vector 0 and variance-

covariance matrix Z.. Applying the Aitken's transformation, it can be shown that z =X *?x

follows a p-variate normal distribution with mean vector 0 and variance-covariance matrix g,
where Ig, denotes the identity matrix of order g. Then using the results of quadratic forms, it can

easily be seen that z'z = x'ZIx follows a ;(2 distribution with p-degrees of freedom.

i)  Wilk’s Lambda Criterion
For testing the null hypothesis (3), we obtain a sum of squares and products matrix for the above
elementary treatment contrast. Let the SSCP matrix for above elementary treatment contrast be

G- The diagonal elements of G are then obtained by

O Z(%j(yik Vo PV k=12..p; i #i'=12,..V (4)
and the off diagonal elements are obtained by
Ouw = %(yik ~Yix Vi —Yire) ®)
|R]

The null hypothesis is rejected if the value of Wilk's Lambda A* = is small, where R is

|G+R
the SSCP matrix due to residuals as obtained through MANOVA. The hypothesis is then tested
using the following F-test statistics based on Wilk's Lambda for h =1
—A* —
1-A*edf —p+1 F(p, s-p+1).
A* p

Exercise 1: An experiment was conducted at IGFRI, Jhansi to investigate the effect of four types
of trees (treatments) on different parameters viz. height, collar diameter, DBH, crown diameter.
The data are as follows:

TREE-TYPE | HEIGHT COLLAR DIAMETER | DBH CROWNDIA
1 4 10.5 6.9 15.13
1 3.6 9.3 6.3 10.21
1 1.5 2.5 1.2 0.17
1 3.8 7 4.3 2.63
2 3 9.1 5.8 5.24
2 3.7 8.1 5.1 5.89
2 3.8 7.5 5.5 4.47
2 3.8 9.8 6.4 7.57
3 5.3 11.1 6.9 13.09
3 4.9 12.1 8 12.93
3 5.6 13.7 9.2 15.26
3 4.5 10.3 6.5 10.55
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4 4.7 13.7 9.1 20.66
4 4.8 14.9 10 25.62
4 4.6 11.7 9.7 16.21
4 5.5 12.7 8.7 17.79

Analyze the data given to examine the effect of tree-type on the four measurements of tree by
using MANOVA and interpret the results.
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CLUSTER ANALYSIS

1. Introduction

Cluster analysis is usually done in an attempt to combine cases into groups when the group
membership is not known prior to the analysis. Cluster analysis is a technique for grouping
individual or objects into unknown groups. It differs from other methods of classification such as
Discriminant analysis, in that in cluster analysis the number and characteristics of the groups are
to be derived from the data and are not usually known prior to the analysis.

In biology, cluster analysis has been used for decades in the area of taxonomy, where living
things are classified into arbitrary groups on the basis of their characteristics group. The
classification proceeds from the most general to the most specific in steps. The most general
classification is kingdom followed by phylum, subphylum, and class etc. Cluster analysis has
been used in medicine to assign patient to specific diagnostic categories on the basis of their
presenting symptoms and signs. Cluster analysis is also an important tool for investigation in data
mining. For example consumers can be clustered on the basis of their purchases in marketing
research. Here the emphasis may be on the methods that can be used for large data sets. In short it
is possible to find application of cluster analysis in virtually any field of research. It is also
possible to cluster the variables rather than the cases. Clustering of variables is sometimes used in
analyzing the items in a scale to determine which items tends to be close together in terms of
individual response to them.

2. Clustering Methods (Johnson and Wichern, 2006)

The commonly used methods of clustering fall into two general categories.
(1) Hierarchical and
(i) Non hierarchical.

Hierarchical clustering techniques proceed by either a series of mergers or a series of successive
divisions. Agglomerative hierarchical method starts with the individual objects, thus there are as
many clusters as objects. The most similar objects are first grouped and these initial groups are
merged according to their similarities. Eventually, as the similarity decreases, all subgroups are
fused into a single cluster.

Divisive hierarchical methods work in the opposite direction. An initial single group of objects is
divided into two sub groups such that the objects in one sub group are far from the objects in the
others. These subgroups are then further divided into dissimilar subgroups. The process continues
until there are as many subgroups as objects i.e., until each object form a group. The results of
both agglomerative and divisive method may be displayed in the form of a two dimensional
diagram known as Dendrogram. It can be seen that the Dendrogram illustrate the mergers or
divisions that have been made at successive levels.

Linkage methods are suitable for clustering items, as well as variables. This is not true for all
hierarchical agglomerative procedure. The following types of linkage are now discussed:

(i) Single linkage (minimum distance or nearest neighbour),

(it) Complete linkage (maximum distance or farthest neighbour) and

(iii) Average linkage (average distances).
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The merging of cluster under the three linkage criteria is illustrated schematically in the figure
given below.
cluster distance

daa

dis

From the above figure, we see that Single linkage results when groups are fused according to the
distance between their nearest members. Complete linkage occurs when groups are fused
according to the distance between there farthest members. For Average linkage, groups are fused
according to the average distance between pair of members in the respective sets.

The following are the steps in the agglomerative hierarchical clustering algorithm for groups of N
objects (items or variables).
i. Start with N clusters, each containing a single entity and an NxN symmetric matrix of

distance (or similarities) D = {di }.

ii. Search the distance matrix for the nearest (most similar) pair of clusters. Let the distance
between most similar clusters U and V be d,y.

iii. Merge clusters U and V. Label the newly formed cluster (UV). Update the entries in the
distance matrix by (a) deleting the rows and columns corresponding to clusters U and V and
(b) adding a row and column giving the distances between cluster (UV) and the remaining
clusters.

iv. Repeat steps (ii) and (iii) a total of N-1 times (All objects will be in a single cluster after the
algorithm terminates). Record the identity of clusters that are merged and the levels (distances
or similarities) at which the mergers take place.

The basic ideas behind the cluster analysis are now shown Dby presenting the algorithm
components of linkage methods.
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2.1 Single Linkage

The inputs to a single linkage algorithm can be distances or similarities between pair of objects.
Groups are formed from the individual entities by merging nearest neighbors, i.e. smallest
distance or largest similarities.

Initially, we must find the smallest distance in D = {dix} and merge the corresponding objects,
say, U and V, to get cluster (UV). For step 3 of general algorithm the distance between (UV) and
any other cluster W are computed by dg,v)w = min {duw, dvww}

The results of single linkage clustering can be graphically displayed in the form of Dendrogram
or tree diagram. The branches in the tree represent clusters. The branches come together (merge)
at nodes whose positions along a distance (or similarity) axis indicate the level at which the
fusion occurs.

2.2 Complete Linkage

Here at each stage, the distance (similarity) between clusters is determined by the distance
(similarity) between the two elements. One from each cluster that is most distant. Thus complete
linkage ensures that all items in a cluster are with in some maximum distance (or minimum
similarity) of each other.

The general agglomerative algorithm again starts by finding the minimum entry in D=
{di} and merging the corresponding objects, such as U and V, to get cluster (UV). For step (iii)
of general algorithm, the distance between (UV) and any other cluster W is

D(uv)w = max {duw , dvw}

Here d,w and d,,, are the distances between the most distant members of clusters U and W and
clusters V and W.

2.3 Average Linkage
Average linkage treats the distances between two clusters as the average distance between all
pairs of items where one member of pair belongs to each cluster.

Again the input to average linkage algorithm may be distances or similarities and the method can
be used to group objects or variables. The average linkage algorithm proceeds in the manner of
the general algorithm, we begin by searching the distance matrix D = {di} to find the nearest
(most similar) objects for example U and V. These objects are merged to form the cluster (UV).
For step 3 of general agglomerative algorithm the distance between (UV) and other cluster W are
determined by

duyw = (X 2 di ) / (N * Nw),
ik
where dix is the distance between object i in the cluster (UV) and object k in the cluster W, and
Ny and N, are the member of items in clusters (UV) and W respectively.

2.4 Centroid
This method assigns each item to the cluster having nearest centroid (means). The process has
three steps,

i. Partition the items into k initial clusters.

165



Cluster Analysis

ii. Proceed through the list of items assigning an item to the cluster whose centroid (mean) is
nearest. Recalculate the centroid (mean) for the cluster receiving the new item and the cluster
losing the item.

iii. Repeat step (ii) until no more assignments take place.

2.5 Ward’s Hierarchical Clustering Methods

Ward considered hierarchical clustering procedure based on minimizing the loss of information
from joining two groups. This method is usually implemented with loss of information taken to
be an increase in an error sum of squares criterion, ESS. First for a given cluster k, let ESSk be
the sum of the square deviation of every item of the cluster from the cluster mean (centroid). If
there are currently K clusters, define ESS as the sum of the ESSx or ESS = ESS;+ESS,+ ...
+ESSy. At each step in the analysis the union of every possible pair of cluster is considered and
the two clusters whose combination results in the smallest increase in ESS (minimum loss of
information) are joined. Initially each cluster consist of a single item, and if there are N items,
ESSk=0,k=1,2,..., Nso ESS =0 at the other extreme, when all the clusters are combined in a
single group of N items, the value of ESS is

ESS = i(xj—i)'(xj—i),

where X; is the multivariate measurement associated with the j"" item and X is the mean of all
the items. The results of Ward’s method can be displayed by a Dendrogram. The vertical axis
gives the value of ESS at which the mergers occur.

2.6 Non Hierarchical Clustering Method

Non hierarchical clustering techniques are designed to group items, rather than variables, into a
collection of K clusters. The number of clusters, K, may either be specified in advance or
determined as part of the clustering procedure. Because a matrix of distance does not have to be
determined and the basic data do not have to be stored during the computer run. Non hierarchical
methods can be applied to much larger data sets than can hierarchical techniques. Non
hierarchical methods start from either (1) an initial partition of items into groups or (2) an initial
set of seed points which will form nuclei of the cluster.

2.7 K means Clustering ( Afifi, Clark and Marg, 2004)
The K means clustering is a popular non hierarchical clustering technique. For a specified
number of clusters K the basic algorithm proceeds in the following steps.

i. Divide the data into K initial cluster. The number of these clusters may be specified by the
user or may be selected by the program according to an arbitrary procedure.

ii. Calculate the means or centroid of the K clusters.

iii. For a given case, calculate its distance to each centroid. If the case is closest to the centroid of
its own cluster, leave it in that cluster; otherwise, reassign it to the cluster whose centroid is
closest to it.

Iv. Repeat step (iii) for each case.

V. Repeat steps (ii), (iii), and (iv) until no cases are reassigned.
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The first step considers all the data as one cluster. For the hypothetical data set this step is
illustrated as in the figure below. The algorithm then searches for the variable, with the highest
variance in this case X;. The original cluster is now split into two clusters using the mid range of
X as the dividing point as shown in plot (b) of figure drawn below. If the data are standardized,
then each variable has a variance of one. In that case the variable with the smallest range is
selected to make the split. The algorithm in general proceeds in this manner by further splitting
the clusters until the specified member K is achieved. That is, it successively finds that particular
variable and the cluster producing the largest variance and splits that cluster accordingly until K
clusters are obtained. At this stage, step (i) of the basic algorithm is completed and it proceeds
with the other steps.

(a) Starts with all points in one cluster.

(b) Cluster is split into 2 clusters at mid range of Xy (variable with largest var.)
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o 1 2 3 4 5 & 7 8
(c) Point 3 is closure to centroid of cluster (1, 2, 3) and stays assigned to (1, 2, 3)

(d) Every point is now closest to centroid of its own cluster.

3. Dendrogram

Dendrogram is also called hierarchical tree diagram or plot, and shows the relative size of the
proximity coefficients at which cases are combined. The bigger the distance coefficient or the
smaller the similarity coefficient, the more clustering involved combining unlike entities, which
may be undesirable. Trees are usually depicted horizontally, not vertically, with each row
representing a case on the Y axis, while the X axis is a rescaled version of the proximity
coefficients. Cases with low distance/high similarity are close together. Cases showing low
distance are close, with a line linking them a short distance from the left of the Dendrogram,
indicating that they are agglomerated into a cluster at a low distance coefficient, indicating
alikeness. When, on the other hand, the linking line is to the right of the Dendrogram the linkage
occurs at a high distance coefficient, indicating the cases/clusters were agglomerated even though
much less alike. If a similarity measure is used rather than a distance measure, the rescaling of the
X axis still produces a diagram with linkages involving high alikeness to the left and low
alikeness to the right.

4. Proximity Measures (Timm, 2002)

Proximity measures are used to represent the nearest of two objects. If a proximity measure
represents similarity, the value of the measure increases as two objects become more similar.
Alternatively if the proximity measure represents dissimilarities the value of the measure
decreases in value as two objects become more alike. Let X and Y represents two objects in a p-
variate space then an example of dissimilarity measures is the Euclidian distance between X and
Y. For measure of similarity, we may use the proportion of the elements in the two vectors that
match.

4.1 Dissimilarity Measures
Given two objects X and Y in a ‘p’ dimensional space, a dissimilarity measure satisfies the
following conditions:

1. d(X)Y)>0 forall objects X and Y.

2. d(X,Y)=0iff X =Y.
3. d(XY)=d(Y,X).
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Condition (3) implies that the measure is symmetric so that the dissimilarity measure that
compares X and Y is same as the comparison for object Y verses X. Condition (2) requires the
measures to be zero, when ever object X equals to object Y. The objects are identical if d(X, Y) =
0. Finally, Condition (1) implies that the measure is never negative.

Some dissimilarity measures are as follows.

4.1.1 Euclidian Distance

This is probably the most commonly chosen type of distance. It simply is the geometric distance
in the multidimensional space. It is computed as,

dXY)= €32 (X, —Y,)7¥2 or

in matrix form

d (X,Y)= J(X-Y)(X-Y)

where X'= (X, X, ..., Xp)
Y'=(Yy, Yo, ..., Yp)

The statistical distance between the same two observations is of the form

d (X,Y) = J(X=Y)'AX -Y),
where A = S and S contains the sample variances and covariances.

Euclidian and square Euclidian distances are usually computed from raw data and not from
standardized data.

4.1.2 Square Euclidean Distance
Square the standard Euclidean distance in order to place progressively greater weight on objects
that are further apart. This distance is computed as:

BKY) = 3 (X, -V,

i=1
or in matrix form

d2(X,Y)=(X-Y) (X-Y)
4.1.3 Minkowski Metric

When there is no idea about prior knowledge of the distance group then one goes for minkowski
metric. This can be computed as given below:

dXY) = {30]%, Y3

Form =1, d(X,Y) measures the city block distance between two points in p dimensions. For m =
2, d(X,Y) becomes the Euclidean distance. In general, varying m changes the weight given to
larger and smaller differences.
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4.1.4 City-Block (Manhattan) Distance
This distance is simply the average difference across dimensions. In most cases, this distance
measure yields result similar to the simple Euclidean distance. This can be computed as :

ax) = D)X, -,

4.1.5 Chebychev Distance

This distance measure may be appropriate in case when we want to define the objects as different

if they are different on any one of the dimensions. The chebychev distance is computed as:
d(X,Y) =maximum|X; —-Y;|

Two additional popular measures of distance or dissimilarity are given by the Canberra metric

and the Czekanowski coefficient. Both of these measures are defined for non negative variables
only. We have

Canberra Metric: d(X, Y) :{:‘M
' ’ i (X; +Y;)

2> min(X;)Y,
Czekanowski Coefficient = 1- Z‘ (X ¥0)

Z(xi _Yi)

4.2 Similarity Measure
Given two objects X and Y in a p-dimensional space, a similarity measure satisfies the following
conditions:

1. 0 < S(X,Y) <1 for all objects X and Y
2.5(X,Y)=1iff X=Y

3. S(X,Y) =S(Y, X)

Here S(X,Y) =1 -d(X,Y)

S(X,Y) = similarity measure

D(X,Y) = dissimilarity measure

Let the frequency of matches and mix matches for objects X and Y be arranged in the form of a
contigency table as follows:

Object (X)
1 0 Totals
Object(Y) 1l |a b a+b
0lc d c+d
Totals a+c b+d P=a+b+c+d

a represents the frequency of 1-1 matches
b represents the frequency of 1-0 matches
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c represents the frequency of 0-1 matches
d represents the frequency of 0-0 matches

Following is the list of common similarity coefficients defined in terms of the frequency in the
table.

Coefficient Rationale
1. | (atd)/lp Equal weights for 1-1 matches and 0-0 matches.
2. | 2(a+d)/(2(a+d)+b+c) Double weight for 1-1 matches and 0-0 matches.
3. | (a+d)/(a+d+2(b+c)) Double weight for unmatched pairs.
4. |alp No 0-0 matches in numerator.
5. | a/(atb+c) No 0-0 matches in numerator or denominator.
6. | 2a/(2a+b+c) No 0-0 matches in numerator and denominator.

Double weight for 1-1 matches

7. | al(a+2(b+c)) No 0-0 matches in numerator or denominator.
Double weight for unmatched pairs

8. | a/(b+c) Ratio of matches to mismatches with 0-0
Matches excluded.

Coefficient of 1, 2, and 3 in the table are monotonically related. Suppose coefficient-1 is
calculated for two contingency table. If [(a;+d1)/p] >[(a11+d11)/p], then we also have
[2(a;+d1)/(2(a;+d1)+bi+c1)]> [2(ar1+d11)/(2(a11+d11)+b11+C11)] and coefficient 3 will be at least as
large for table 1 as it is for table 2.

Here a;, by, ¢y, d; are from table 1 and a;1, bi; ,C11, d1g are from table 2.
5. Hlustration (Chatfield and Collins, 1990)

Given below is food nutrient data on calories, protein, fat, calcium and iron. The objective of the
study is to identify suitable clusters of food nutrient data based on the five variables.

Food Items Calories  Protein Fat Calcium Iron
1 340 20 28 9 2.6
2 245 21 17 9 2.7
3 420 15 39 7 2
4 375 19 32 9 2.6
5 180 22 10 17 3.7
6 115 20 3 8 1.4
7 170 25 7 12 15
8 160 26 5 14 5.9
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9 265 20 20 9 2.6
10 300 18 25 9 2.3
11 340 20 28 9 2.5
12 340 19 29 9 2.5
13 355 19 30 9 2.4
14 205 18 14 7 2.5
15 185 23 9 9 2.7
16 135 22 4 25 0.6
17 70 11 1 82 6
18 45 7 1 74 5.4
19 90 14 2 38 0.8
20 135 16 5 15 0.5
21 200 19 13 5 1
22 155 16 9 157 1.8
23 195 16 11 14 1.3
24 120 17 5 159 0.7
25 180 22 9 367 2.5
26 170 25 7 7 1.2
27 170 23 1 98 2.6

R-Code for Performing Cluster Analysis Based on the Above data
Following R code is useful for the above problem. Here, k=3 has been mentioned for getting
three clusters. For getting more clusters, accordingly number need to be changed.

rw<-read.csv(file.choose(),header = TRUE) #data entry from CSV
rw

rwl<-as.matrix(rw)

rwil

row.names(rwl)<-seq(1:27) # name of the row for which grouping need to be done
rwil

rw2<-as.data.frame(scale(rw1l)) #for standarization

rw2

install.packages(c("cluster”, "factoextra™)) #required package
library (cluster)

library(factoextra)

summary(rw2)

dist_mat<-dist(rw2, method = 'euclidian’) #for distance matrix
dist_mat

#dendogram

hclust_avg <- hclust(dist_mat, method = 'average’)
plot(hclust_avg)

plot(hclust_avg)

rect.hclust(hclust_avg , k = 3, border = 2:6)

abline(h = 2, col = 'red")

Dendrogram for above data
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Interpretation

The main objective of our analysis is to grouping the food items on the basis of their nutrient
content based on the five variables such that food items with in the groups are homogeneous and
between the groups are heterogeneous.

Number of groups Food items

Two groups Group-1 (1,11,12,...,27)
Group-2 (25)

Three groups Group-1 (1,11,...,10)

Group-2 (5,15,...,27)
Group-3 (27)

Four groups Group-1 (1,11,...,10)
Group-2 (5,15,...,19)
Group-3 (17,18,...,27)
Group-4 (25)

Five groups Group-1 (1,11,...,10)
Group-2 (5,15,...,19)
Group-3 (17,18)

Five groups Group-4 (22,24,27)
Group-5 (25)
Six groups Group-1 (1,11,...,3)

Group-2 (2,9,10)
Group-3 (5,15,...,19)
Group-4 (17,18)
Group-5 (22,24,27)
Group-6 (25)

6. Examples of Clustering Application
» Marketing: Help marketers discover distinct groups in their customer bases, and then use
this knowledge to develop targeted marketing programs.
» Land Use: Identification of areas of similar land use in earth observation database.
» Insurance: ldentifies groups motor insurance policy holders with a high average claim cost.
» City Planning: Identification of group of houses according to their house type, value and
geographical location.
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» Earthquake Studies: Observed earthquake epicenters should be clustered along continent
faults.

» Field of medicine: Clustering of diseases, cure for disease of symptoms of disease can lead
to very useful taxonomies.

» Field of psychiatry: The correct diagnosis of clusters of symptoms such as Paranoia,
Schizophrenia etc. is essential for successful therapy.

» In Archeology: Researches have attempt to establish taxonomies of stone tools, funerals
object etc by applying cluster analytic techniques.

» Field of plant and animal ecology: Clustering is used to describe and to make spatial and
temporal comparison of communities of organism in heterogeneous environment.

» Field of Bioinformatics: In transcriptomics, clustering is used to build groups of genes
with related represents patterns and also in sequence analysis, it is used to group
homologous sequence into gene families.

» Social network analysis: In the study of social network, clustering may be used to
recognize community with large group of people. In general, when ever we need to classify
a mountain of information into manageable meaningful piles, cluster analysis is of great
utility. It is also used in data mining.

7. Conclusions

In this presentation, different issues related to cluster analysis have been discussed. Unlike other
methods of classification, cluster analysis however, has not yet gained a standard methodology.
Nonetheless a number of techniques are developed for dividing multivariate sample on a
composition which is not known in advance into several groups.

Cluster analysis is a heuristic technique for classifying cases into groups when knowledge of the
actual group membership is unknown. There are numerous method for performing the analysis,
with out good guidelines for choosing among them. Unless there is considerable separation
among the inherent group, it is not realistic to expect very clear results with cluster analysis. In
particular if the observations are distributed in a nonlinear manner, it may be difficult to achieve
distinct groups. Cluster analysis is quite sensitive to outliers. In fact it is sometimes used to find
outlier. The data should be carefully screened before running cluster programs. Many statistical
package programs are also being used for the purpose of cluster analysis.
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Introduction

Discriminant function analysis is a statistical analysis to predict a categorical dependent
variable (called a grouping variable) by one or more continuous or binary independent
variables (called predictor variables). The original dichotomous discriminant analysis was
developed by Sir Ronald Fisher in 1936. It is different from an ANOVA or MANOVA, which
is used to predict one (ANOVA) or multiple (MANOVA) continuous dependent variables by
one or more independent categorical variables. Discriminant function analysis is useful in
determining whether a set of variables is effective in predicting category membership.
Discriminant analysis is used when groups are known a priori (unlike in cluster analysis).
Each case must have a score on one or more quantitative predictor measures, and a score on a
group measure. In simple terms, discriminant function analysis is classification - the act of
distributing things into groups, classes or categories of the same type.

Moreover, it is a useful follow-up procedure to a MANOVA instead of doing a series of one-
way ANOVAs, for ascertaining how the groups differ on the composite of dependent
variables. In this case, a significant F test allows classification based on a linear combination
of predictor variables. Terminology can get confusing here, as in MANOVA, the dependent
variables are the predictor variables, and the independent variables are the grouping variables.

Assumptions
The assumptions of discriminant analysis are the same as those for MANOVA. The analysis
IS quite sensitive to outliers and the size of the smallest group must be larger than the number
of predictor variables. The major assumptions are:

* Multivariate normality: Independent variables are normal for each level of the
grouping variable.
Homogeneity of variance/covariance (homoscedasticity): Variances among group
variables are the same across levels of predictors. Can be tested with Box's M statistic.
It has been suggested, however, that linear discriminant analysis be used when
covariances are equal, and that quadratic discriminant analysis may be used when
covariances are not equal.
Multicollinearity: Predictive power can decrease with an increased correlation
between predictor variables.
Independence: Participants are assumed to be randomly sampled, and a participant’s
score on one variable is assumed to be independent of scores on that variable for all
other participants.
It has been suggested that discriminant analysis is relatively robust to slight violations
of these assumptions, and it has also been shown that discriminant analysis may still
be reliable when using dichotomous variables (where multivariate normality is often
violated).

Discriminant analysis works by creating one or more linear combinations of predictors,
creating a new variable for each function. These functions are called discriminant functions.
The number of functions possible is either Ng-1 where Ng = number of groups, or p (the
number of predictors), whichever is smaller. The first function created maximizes the
differences between groups on that function. The second function maximizes differences on
that function, but also must not be correlated with the previous function. This continues with
subsequent functions with the requirement that the new function not be correlated with any of
the previous functions.
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http://en.wikipedia.org/wiki/Multicollinearity
http://en.wikipedia.org/wiki/Statistical_independence

Discriminant Function Analysis

Given group J with Ei sets of sample space, there is a discriminant rule such that

if ¥ € RJ', then T € J. Discriminant analysis then, finds “good” regions ofEi to minimize

classification error, therefore leading to a high percent correct classified in the classification

table. Each function is given a discriminant score to determine how well it predicts group
placement.

Structure Correlation Coefficients: The correlation between each predictor and the

discriminant score of each function. This is a whole correlation.

o Standardized Coefficients: Each predictor’s unique contribution to each function,
therefore this is a partial correlation. Indicates the relative importance of each predictor in
predicting group assignment from each function.

o Functions at Group Centroids: Mean discriminant scores for each grouping variable are
given for each function. The farther apart the means are, the less error there will be in
classification.

Discrimination rules
o Maximum likelihood: Assigns X to the group that maximizes population (group) density.

o Bayes Discriminant Rule: Assigns x to the group that maximizes Wﬂ'fi(I),

where fa{I) represents the prior probability of that classification, and z; represents the
population density.

e Fisher’s linear discriminant rule: Maximizes the ratio between SSpetween aNd SSyithin , and
finds a linear combination of the predictors to predict group.

Eigen values

An eigen value in discriminant analysis is the characteristic root of each function. It is an
indication of how well that function differentiates the groups, where the larger the eigenvalue,
the better the function differentiates. This however, should be interpreted with caution, as
eigenvalues have no upper limit. The eigenvalue can be viewed as a ratio
Of SSpetweenaNd SSywithin @ i ANOVA when the dependent variable is the discriminant
function, and the groups are the levels of the IV. This means that the largest eigenvalue is
associated with the first function, the second largest with the second, etc.

Effect size

Some suggest the use of eigenvalues as effect size measures, however, this is generally not
supported. Instead, the canonical correlation is the preferred measure of effect size. It is
similar to the eigenvalue, but is the square root of the ratio of SSpetween @and SSiorar. It IS the
correlation between groups and the function. Another popular measure of effect size is the
percent of variance for each function. This is calculated by: (1,/24;)) X 100 where Ay is the
eigenvalue for the function and X4; is the sum of all eigenvalues. This tells us how strong the
prediction is for that particular function compared to the others. Percent correctly classified
can also be analyzed as an effect size. The kappa value can describe this while correcting for
chance agreement.

Variations
e Multiple discriminant analysis (MDA): related to MANOVA. Has more than two
groups, and uses multiple dummy variables.
e Sequential discriminant analysis: assesses the importance of a set of IVs over and
above a set of controls. In this case, the controls are entered first, and then the 1Vs.
e Stepwise discriminant analysis: Selects the most correlated predictor first, removes
that variance in the grouping variable then adds the next most correlated and continues
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until the change in canonical correlation is not significant. Of course, both forward
and backward stepwise procedures may be performed.

In DFA one wishes to predict group membership from a set of (usually continuous) predictor
variables. In the most simple case one has two groups and p predictor variables. A linear
discriminant equation, D, =a+b,X;+b,X, +...4+b, X, is constructed such that the two

groups differ as much as possible on D. That is, the weights are chosen so that were you to
compute a discriminant score ( D; ) for each subject and then do an ANOVA on D, the ratio of
the between groups sum of squares to the within groups sum of squares is as large as possible.
The value of this ratio is the eigenvalue. “Eigen” can be translated from the German as

“own,” “peculiar,” “original,” “singular,” etc.

29 ¢

SS
The eigenvalue = —__2eWeenoroups oy [y (the quantity maximized by the discriminant

SS

within_groups

SS
function coefficients obtained). The canonical correlation :\/ beéwsee”—g“’”ps on D

(equivalent to eta in an ANOVA and equal to the point biserial r between Group and D),

total

Wilks lambda is used to test the null hypothesis that the populations have identical means on

) H SSwi in_groups
D. Wilks lambda is A :$, so the smaller the A the more doubt cast upon that
total
null hypothesis. SPSS uses a 4 approximation to obtain a significance level. We can
determine how much of the variance in the grouping variable is explained by our predictor
variables by subtracting the A from one.

DFA is mathematically equivalent to a MANOVA. Looking at A from the perspective of a
MANOVA, when we combine the rating scales with weights that maximize group differences
on the resulting linear combination, the groups do differ significantly from one another. Such
a MANOVA is sometimes done prior to doing univariate analyses to provide a bit of
protection against inflation of alpha. Recall that the grouping variable is predictor variable in
MANOVA (is it what is being predicted in DFA) and the rating scales are the MANOVA
outcome variables (and our DFA predictor variables). If the MANOVA is not significant, we
stop. If it is significant, we may go on to do an ANOVA on each dependent variable. SPSS
gave us those ANOVA:s.

We have created (or discovered) a dimension (like a component in PCA) on which the two
groups differ. The univariate ANOVAs may help us explain the nature of the relationship
between this discriminant dimension and the grouping variable. For example, some of the
variates may have a significant relationship with the grouping variable and others might not,
but the univariate ANOVAs totally ignore the correlations among the variates. It is possible
for the groups to differ significantly on D but not on any one predictor by itself.

The standardized discriminant function coefficients may help. These may be treated as Beta
weights in a multiple regression predicting D from z-scores on the X’s,
D =82 +pB,2Z,+...+ B,Z,. Of course, one must realize that these coefficients reflect
the contribution of one variate in the context of the other variates in the model. A low
standardized coefficient might mean that the groups do not differ much on that variate or it

might just mean that that variate’s correlation with the grouping variable is redundant with
that of another variate in the model. Suppressor effects can also occur.

177



Discriminant Function Analysis

Correlations between variates and D may also be helpful. These are available in the loading
or structure matrix. Generally, any variate with a loading of .30 or more is considered to be
important in defining the discriminant dimension. These correlations may help us understand
the discriminant function we have created.

If your primary purpose is to predict group membership from the variates (rather than to
examine group differences on the variates), you need to do classification. SPSS classifies

Y pG)xpO1G)

subjects into predicted groups using Bayes’ rule:

Each subject’s discriminant score is used to determine the posterior probabilities of being in
each of the two groups. The subject is then classified (predicted) to be in the group with the
higher posterior probability.

By default, SPSS assumes that all groups have equal prior probabilities. For two groups, each
prior = %, for three, 1/3, etc. | asked SPSS to use the group relative frequencies as priors,
which should result in better classification.

Another way to classify subjects is to use Fisher’s classification function coefficients. For
each subject a D is computed for each group and the subject classified into the group for
which e’s D is highest. To compute a subjects D; you would multiply e’s scores on the 22
rating scales by the indicated coefficients and sum them and the constant. For e’s D, Yyou
would do the same with the coefficients for Group 2. If D; > D, then you classify the
subject into Group 1, if D, > D1, the you classify em into Group 2.

For validity of significance tests, one generally does not worry about this if sample sizes are
equal, and with unequal sample sizes one need not worry unless the p < .001. The DFA is
thought to be very robust and Box’s M is very sensitive. Non-normality also tends to lower
the p for Box’s M. The classification procedures are not, however, so robust as the
significance tests are. One may need to transform variables or do a quadratic DFA (SPSS
won’t do this) or ask that separate rather than pooled variance-covariance matrices be used.
Pillai’s criterion (rather than Wilk’s A) may provide additional robustness for significance
testing -- although not available with SPSS discriminant, this criterion is available with SPSS
MANOVA.

ANOVA on D. Conduct an ANOVA comparing the verdict groups on the discriminant
function. Then you can demonstrate that the DFA eigenvalue is equal to the ratio of the
SShetween 10 SSwithin from that ANOVA and that the ratio of SSpeween 10 SStotal IS the squared
canonical correlation coefficient from the DFA.

Comparison and validation of models

R? (Coefficient of Determination)
It is in general used for checking the adequacy of the model. R? is given by the following
formula

R2 —1_ SSres
SSt

where ssres and ss; are the residual sum of square and the total sum of square respectively.
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R? never decreases when a regressor is added to the model, regardless of the value of the
contribution of the variable to the model. Therefore, it is difficult to judge whether an increase
in R? is really telling anything important. So it is preferable to use Adjusted R> when models
to be compared are based on different number of regressors. Adjusted R is given by the
following formula

R..2 = SSyes /(N—p)

adj =+ " A

ss; /(n—-1)

where ssres /(n-p) is the residual mean square and ss;/(n-1) is the total mean square. The total
mean square is constant regardless of how many variables are in the model. On adding a
regressor in the model Adjusted R? increases only if the addition of the regressor reduces the
residual mean square. It also penalizes for adding terms that are not helpful, so it is very
important in evaluating and comparing the candidate regression models.

Percent Deviation
This measures the deviation (in percentage) of forecast from the actual yield data. The
formula for calculating the percent deviation of forecast is given below

(actual yield — forecasted yield)
actual yield

percentage deviation = %100

Root Mean Square Error (RMSE)
It is also a measure of comparing two models. The formula of RMSE is given bellow
" 1
1 e
RMSE =[{~ >(0j - Ej)*}]2
1

O; and the E; are the observed and forecasted value of the crop yield respectively and n is the
number of years for which forecasting has been done.
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Multivariate data consist of observations on several different variables for a number of
individuals or subjects. Data of this type arise in all the branches of science, ranging from
psychology to biology, and methods of analyzing multivariate data constitute an increasingly
important area of statistics. Indeed, the vast majority of data in forestry is multivariate and
proper handling of such data is highly essential. Principal components analysis (PCA) and Factor
analysis (FA) are multivariate techniques applied to a single set of variables to discover which
sets of variables in the set form coherent subsets that are relatively independent of one another.
The details of PCA and FA are discussed as below.

Principal Components Analysis

Most of the times the variables under study are highly correlated and as such they are effectively
“saying the same thing”. To examine the relationships among a set of p correlated variables, it
may be useful to transform the original set of variables to a new set of uncorrelated variables
called principal components. These new variables are linear combinations of original variables
and are derived in decreasing order of importance so that, for example, the first principal
component accounts for as much as possible of the variation in the original data.

Let X1, X2, X3, . . ., Xp are variables under study, then first principal component may be defined as
Zi=ay Xy +ap X+ ... + a1p Xp

such that variance of z; is as large as possible subject to the condition that
an’+ap’+ ... tagp’ = 1

This constraint is introduced because if this is not done, then Var(z;) can be increased simply by
multiplying any aj;s by a constant factor

The second principal component is defined as
Z, =ay Xy +apXyt ... + agp Xp

such that Var(z,) is as large as possible next to Var( z; )subject to the constraint that
A’ +ag’ ., +ag° = 1 and cov(zy, z;) = 0and so on.

It is quite likely that first few principal components account for most of the variability in the
original data. If so, these few principal components can then replace the initial p variables in
subsequent analysis, thus, reducing the effective dimensionality of the problem. An analysis of
principal components often reveals relationships that were not previously suspected and thereby
allows interpretation that would not ordinarily result. However, Principal Component Analysis
is more of a means to an end rather than an end in itself because this frequently serves as
intermediate steps in much larger investigations by reducing the dimensionality of the problem
and providing easier interpretation. It is a mathematical technique which does not require user to
specify the statistical model or assumption about distribution of original variates. It may also be
mentioned that principal components are artificial variables and often it is not possible to assign
physical meaning to them. Further, since Principal Component Analysis transforms original set of
variables to new set of uncorrelated variables, it is worth stressing that if original variables are
uncorrelated, then there is no point in carrying out principal component analysis.

Computation of principal components :


http://www.pfc.forestry.ca/profiles/wulder/mvstats/orthog_e.html

Principal Components Analysis

Let us consider the following data on average minimum temperature (X;), average relative
humidity at 8 hrs. (x;), average relative humidity at 14 hrs. (x3) and total rainfall in cm. (x4)
pertaining to Raipur district from 1970 to 1986 for kharif season from 21st May to 7th Oct.

X1 X2 X3 X4
25.0 86 66 186.49
24.9 84 66 124.34
25.4 7 55 98.79
24.4 82 62 118.88
22.9 79 53 71.88

1.7 86 60 111.96
25.1 82 58 99.74
24.9 83 63 115.20
24.9 82 63 100.16
24.9 78 56 62.38
24.3 85 67 154.40
24.6 79 61 112.71
24.3 81 58 79.63
24.6 81 61 125.59
24.1 85 64 99.87
24.5 84 63 143.56
24.0 81 61 114.97

Mean 2356 82.06 61.00 112.97
SD. 413 275 3.97 30.06

with the variance co-variance matrix.

1702 -412 154 514
756 850 5482

1575 9295

90387

Find the eigen values and eigen vectors of the above matrix. Arrange the eigen values in
decreasing order. Let the eigen values in decreasing order and corresponding eigen vectors are

A = 916.902 a; = (0.006, 0.061, 0.103, 0.993)
A» = 18375 a = (0.955, -0.296, 0.011, 0.012)
A3 787 a3 = (0.141, 0.485, 0.855 -0.119)
a 1.056 a, = (0.260, 0.820, -0.509, 0.001)

The principal components for this data will be

z; = 0.006 x; + 0.061 x, + 0.103 x3 + 0.993 x4
Z; = 0.955x; - 0.296 x, + 0.011 x3+ 0.012 x4
Z3 = 0.141x;+ 0.485x, + 0.855 %3 - 0.119 x4
zs = 026 x3+ 0.82 x, - 0.509 x3+ 0.001 x4
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The variance of principal components will be eigen values i.e.

Var(zy)= 916.902, Var(z,) = 18.375, Var(z3) =7.87, Var(z,) =1.056
The total variation explained by original variables is

= Var(xy) + Var(xp) + Var(xs) + Var(xs)
=17.02 +7.56 + 15.75 + 903.87 = 944.20
The total variation explained by principal components is
M+ Ao+ A3+ As=916.902 + 18.375 + 7.87 + 1.056 = 944.20

As such, it can be seen that the total variation explained by principal components is same as that
explained by original variables. It could also be proved mathematically as well as empirically
that the principal components are uncorrelated. The proportion of total variation accounted for by
the first principal component is

M 916.902
MFA+hs + Ay 944.203

Continuing, the first two components account for a proportion

Mt A 935.277
M+ A +Ahs + Ay 944.203

of the total variance.

Hence, in further analysis, the first or first two principal components z; and z, could replace four
variables by sacrificing negligible information about the total variation in the system. The scores
of principal components can be obtained by substituting the values of X; s in equations of z; s.
For above data, the first two principal components for first observation i.e. for year 1970 can be
worked out as

z1 =0.006 x 25.0 + 0.061 x 86 + 0.103 x 66 + 0.993 x 186.49 = 197.380
2, =0.955x25.0 -0.296 x 86 + 0.011 x 66 + 0.012 x 186.49 = 1.383

Similarly for the year 1971

z1 =0.006 x 24.9 + 0.061 x 84 + 0.103 x 66 + 0.993 x 124.34 = 135.54
z; =0.955x24.9-0.296 x84 + 0.011 x 66 + 0.012 x 124.34 = 1.134

Thus the whole data with four variables can be converted to a new data set with two principal
components.

Note: The principal components depend on the scale of measurement, for example, if in the
above example X; is measured in °F instead of °C and X, in mm in place of cm, the data gives
different principal components when transformed to original x’s. In very specific situations
results are same. The conventional way of getting around this problem is to use standardized
variables with unit variances, i.e., correlation matrix in place of dispersion matrix. But the
principal components obtained from original variables as such and from correlation matrix will
not be same and they may not explain the same proportion of variance in the system. Further
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more, one set of principal components is not simple function of the other. When the variables are
standardized, the resulting variables contribute almost equally to the principal components
determined from correlation matrix. Variables should probably be standardized if they are
measured on scales with widely differing ranges or if measured units are not commensurate.
Often population dispersion matrix or correlation matrix are not available. In such situations
sample dispersion matrix or correlation matrix can be used.

Applications of principal components:

The most important use of principal component analysis is reduction of data. It provides the
effective dimensionality of the data. If first few components account for most of the variation
in the original data, then first few components’ scores can be utilized in subsequent analysis
in place of original variables.

Plotting of data becomes difficult with more than three variables. Through principal
component analysis, it is often possible to account for most of the variability in the data by
first two components, and it is possible to plot the values of first two components scores for
each individual. Thus, principal component analysis enables us to plot the data in two
dimensions. Particularly detection of outliers or clustering of individuals will be easier
through this technique. Often, use of principal component analysis reveals grouping of
variables which would not be found by other means.

Reduction in dimensionality can also help in analysis where no. of variables is more than the
number of observations, for example, in discriminant analysis and regression analysis. In
such cases, principal component analysis is helpful by reducing the dimensionality of data.

Multiple regression can be dangerous if independent variables are highly correlated.
Principal component analysis is the most practical technique to solve the problem.
Regression analysis can be carried out using principal components as regressors in place of
original variables. This is known as principal component regression.
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FACTOR ANALYSIS

Factor analysis has originated in the field of psychology to define the concepts like intelligence,
attitude, etc. The essential purpose of factor analysis is to describe, if possible, the covariance
relationships among many variables in terms of a few underlying, but unobservable, random
quantities called factors. Under the factor model assuming linearity, each response variate is
represented as a linear function of a small number of unobservable common factors and a single
latent specific factor. The common factors generate the covariances among the observable
responses while the specific terms contribute only to the variances of their particular response.
Basically the factor model is motivated by the following argument - Suppose variables can be
grouped by their correlations, i.e., all variables within a particular group are highly correlated
among themselves but have relatively small correlations with variables in a different group. It is
conceivable that each group of variables represents a single underlying construct, or factor, that is
responsible for the observed correlations. For example, for an individual, marks in different
subjects may be governed by aptitudes (common factors) and individual variations (specific
factors) and interest may lie in obtaining scores on unobservable aptitudes (common factors)
from observable data on marks in different subjects.

The Factor Model

Suppose observations are made on p variables for n individuals (X, i=1,2,...p; j=1,2,...n). The
factor analysis model assumes that there are m underlying factors (m<p) and each observed
variable is a linear function of these factors and specific factor, so that

Xjj= aipn flj+ai2 fzj+ ............ +aim fmj+ aio Yij j= 1,2,.....p

where a1, @iz, ....... , & im are factor loadings given to i-th variable corresponding to m common
hypothetical factors of j-th respondent (fy;, fy, ....., fmj) and ajo is the loading given to factor
specific to i-th variable pertaining to j-th respondent (yij).

The proportion of the variance of the j-th variable contributed by the m common factors is called
the j-th communality and the proportion due to the specific factors is called the uniqueness, or
specific variance.

Factor analysis involves :
e Deciding number of common factors (m)
e Estimating factor loadings (aix)
o Calculating factor scores (fi;)

Methods of Estimation

Factor analysis is done in two parts, first solution is obtained by placing some restrictions and
then final solution is obtained by rotating this solution. There are two most popular methods
available in literature for parameter estimation, the principal component (and the related
principal factor) method and the maximum likelihood method. The solution from either method
can be rotated in order to simplify the interpretation of factors i.e. either factor loadings are close
to unity or close to zero. The most popular method for orthogonal rotation is Varimax Rotation
method. In some specific situations, oblique rotations are also used. It is always prudent to try
more than one method of solution. If the factor model is appropriate for the problem at hand, the
solutions should be consistent with one another. The estimation and rotation methods require
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iterative calculations that must be done on a computer. If variables are uncorrelated factor
analysis will not be useful. In these circumstances, the specific factors play the dominant role,
whereas the major aim of the factor analysis is to determine a few important common factors.

Number of factors is theoretically given by rank of population variance covariance matrix.
However, in practice, number of common factors retained in the model is increased until a
suitable proportion of total variance is explained. Another convention, frequently encountered in
packaged computer programs is to set m equal to the number of eigenvalues greater than one (for
example, in SAS and SPSS).

As in principal component analysis, principal factor method for factor analysis depends upon
unit of measurements. If units are changed, the solution will change. However, in this approach
estimated factor loadings for a given factor do not change as the number of factors is increased.
In contrast to this, in maximum likelihood method, the solution does not change if units of
measurements are changed. However, in this method the solution changes if number of common
factors is changed.

Example: In a consumer - preference study, a random sample of customers were asked to rate
several attributes of a new product. The response on a 5-point semantic differential scale were
tabulated and the attribute correlation matrix constructed which is given below:

Attribute Correlation matrix

1 2 3 4 5
Taste 1 [ 1 02 9 42 01|
Good buy for money 2 02 1 A3 71 .85
Flavor 3 .96 13 1 5 A1
Suitable for snack 4 42 71 .50 1 .79
Provides energy 5 01 8 11 79 1

It is clear from the correlation matrix that variables 1 and 3 and variables 2 and 5 form groups.
Variable 4 is “closer” to the (2,5) group than (1,3) group. Observing the results, one can expect
that the apparent linear relationships between the variables can be explained in terms of, at most,
two or three common factors.

Initial Factor Method: Principal Components

Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total =5 Average =1

1 2 3 4 5
Eigenvalue 2.8531 1.8063 0.2045 0.1024 0.0337
Difference 1.0468 1.6018 0.1021 0.0687
Proportion 0.5706 0.3613 0.0409 0.0205 0.0067
Cumulative  0.5706 0.9319 0.9728 0.9933 1.0000
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FACTOR1 FACTOR2
TASTE 0.55986 0.81610
MONEY 0.77726 -0.52420
FLAVOR  0.64534 0.74795
SNACK 0.93911 -0.10492
ENERGY  0.79821 -0.54323

Variance explained by each factor
FACTOR1 FACTOR?2
2.853090 1.806332
Final Communality Estimates: Total = 4.659423

TASTE MONEY FLAVOR SNACK ENERGY
0.979461 0.878920 0.975883 0.892928 0.932231

Residual Correlations with Uniqueness on the Diagonal

TASTE MONEY FLAVOR SNACK  ENERGY
TASTE  0.02054 0.01264 -0.01170 -0.02015 0.00644
MONEY 0.01264 0.12108 0.02048 -0.07493  -0.05518
FLAVOR -0.01170 0.02048 0.02412 -0.02757 0.00119
SNACK  -0.02015 -0.07493 -0.02757 0.10707 -.01660
ENERGY 0.00644 -0.05518 0.00119 -0.01660 0.06777

Rotation Method: Varimax

Rotated Factor Pattern

FACTOR1 FACTOR2
TASTE 0.01970 0.98948
MONEY 0.93744 -0.01123
FLAVOR  0.12856 0.97947
SNACK 0.84244 0.42805
ENERGY  0.96539 -0.01563

Variance explained by each factor

FACTOR1 FACTOR2
2.537396 2.122027

Final Communality Estimates: Total = 4.659423
TASTE MONEY FLAVOR SNACK ENERGY
0.979461 0.878920 0.975883 0.892928 0.932231
Initial Factor Method: Maximum Likelihood

Eigenvalues of the Weighted Reduced Correlation Matrix:
Total = 84.5563187
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Average = 16.9112637
1 2 3 4 5
Eigenvalue 59.7487 24.8076 0.1532 -0.0025 -0.1507
Difference 34.9411 24.6544 0.1557 0.1482
Proportion 0.7066 0.2934 0.0018 -0.0000 -0.0018
Cumulative 0.7066 1.0000 1.0018 1.0018 1.0000

Factor Pattern

FACTOR1 FACTOR2
TASTE 0.97601 -0.13867
MONEY 0.14984 0.86043
FLAVOR  0.97908 -0.03180
SNACK 0.53501 0.73855
ENERGY  0.14567 0.96257

Variance explained by each factor
FACTOR1 FACTOR2
Weighted 59.748704  24.807616
Unweighted 2.241100 2.232582

TASTE MONEY FLAVOR SNACK ENERGY
Communality 0.971832 0.762795 0.959603 0.831686 0.947767

Rotation Method: VVarimax
Rotated Factor Pattern

FACTOR1 FACTOR2
TASTE  0.02698 0.98545
MONEY 0.87337 0.00342
FLAVOR 0.13285 0.97054
SNACK 0.81781 0.40357
ENERGY 0.97337 -0.01782

Variance explained by each factor
FACTOR1 FACTOR2
Weighted 25.790361  58.765959
Unweighted 2.397426 2.076256

TASTE MONEY FLAVOR SNACK ENERGY
Communality 0.971832 0.762795 0.959603 0.831686 0.947767

It can be seen that two factor model with factor loadings shown above is providing a good fit to
the data as the first two factors explains 93.2% of the total standardized sample variance,

i.e.,(%jxloo , Where p is the number of variables. It can also be seen from the results that

there is no clear-cut distinction between factor loadings for the two factors before rotation but
after rotation the same is clear.
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The raw data consist of measurements of some attribute on a collection of individuals. The
measurement would have been made in one of the following scales viz., nominal, ordinal, interval
or ratio scale.

Levels of Measurement

e Nominal scale refers to measurement at its weakest level when number or other symbols are
used simply to classify an object, person or characteristic, e.g., state of health (healthy,
diseased).

e Ordinal scale is one wherein given a group of equivalence classes, the relation greater than
holds for all pairs of classes so that a complete rank ordering of classes is possible, e.g.,
socio-economic status.

e When a scale has all the characteristics of an ordinal scale, and when in addition, the
distances between any two numbers on the scale are of known size, interval scale is
achieved, e.g., temperature scales like centigrade or Fahrenheit.

e An interval scale with a true zero point as its origin forms a ratio scale. In a ratio scale, the
ratio of any two scale points is independent of the unit of measurement, e.g., height of trees.

The data can be classified as qualitative/quantitative depending on the levels based on which the
observations are collected. There are several statistical procedures available in literature for the
analysis of data which are broadly classified in to two categories viz., parametric tests and non-
parametric tests. A parametric test specifies certain conditions about the distribution of responses
in the population from which the research sample was drawn. The meaningfulness of the results
of a parametric test depends on the validity of these assumptions. A nonparametric test is based
on a model that specifies very general conditions and none regarding the specific form of the
distribution from which the sample was drawn. Hence nonparametric tests are also known as
distribution free tests. Certain assumptions are associated with most nonparametric statistical
tests, but these are fewer and weaker than those of parametric tests.

Nonparametric test statistics utilize some simple aspects of sample data such as the signs of
measurements, order relationships or category frequencies. Therefore, stretching or compressing
the scale does not alter them. As a consequence, the null distribution of the nonparametric test
statistic can be determined without regard to the shape of the parent population distribution.
These tests have the obvious advantage of not requiring the assumption of normality or the
assumption of homogeneity of variance. They compare medians rather than means and, as a
result, if the data have one or two outliers, their influence is negated.

Besides, the interpretation of data based on analysis of variance (ANOVA) is valid only when the
following assumptions are satisfied:

1. Additive Effects: Treatment effects and block (environmental) effects are additive.

2. Independence of errors: Experimental errors are independent.

3. Homogeneity of VVariances: Errors have common variance.

4. Normal Distribution: Errors follow a normal distribution.

Also the statistical tests t, F, z, etc. are valid under the assumption of independence of errors and
normality of errors. The departures from these assumptions make the interpretation based on
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these statistical techniques invalid. Therefore, it is necessary to detect the deviations and apply

the appropriate remedial measures.

e The assumption of independence of errors, i.e., error of an observation is not related to or
depends upon that of another. This assumption is usually assured with the use of proper
randomization procedure. However, if there is any systematic pattern in the arrangement of
treatments from one replication to another, errors may be non-independent. This may be
handled by using nearest neighbour methods in the analysis of experimental data.

e The assumption of additive effects can be defined and detected in the following manner:

Additive Effects

The effects of two factors, say, treatment and replication, are said to be additive if the effect of
one-factor remains constant over all the levels of other factors. A hypothetical set of data from a
randomized complete block (RCB) design, with 2 treatments and 2 replications, with additive
effects is given in Table 1.

Table 1
Treatment Replication Replication Effect
| 11 1 -11
A 190 125 65
B 170 105 65
Treatment Effect (A-B) 20 20

Here, the treatment effect is equal to 20 for both replications and replication effect is 65 for both
treatments.

When the effect of one factor is not constant at all the levels of other factor, the effects are said to
be non-additive. A common departure from the assumption of additivity in biological
experiments is one where the effects are multiplicative. Two factors are said to have
multiplicative effects if their effects are additive only when expressed in terms of percentages.
Table 2 illustrates a hypothetical set of data with multiplicative effects.

Table 2
Treatment Replication Replication Effect
[ I I-11 100(1 - 1D)/11
A 200 125 75 60
(2.30103) (2.09691) (0.20412)
B 160 100 60 60
(2.20412) (2.0000) (0.20412)
Treatment Effect (A-B) 40 25
(0.09691) (0.09691)
100 (A - B)/B 25 25

In this case, the treatment effect is not constant over replications and the replication effect is not
constant over treatments. However, when both treatment effect and replication effect are
expressed in terms of percentages, an entirely different pattern emerges. For such violations of
assumptions, Logarithmic transformation is quite suitable. For illustration, the Logarithmic
transformation of data in Table 2 is given in brackets.

This is, however a crude method for testing the additivity. Tukey (1949) gave a statistical test for

testing the additivity in a RCB design. This test is known as one degree of freedom test for non-
additivity. In this test, one degree of freedom is isolated from error and this degree of freedom is
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called as the degree of freedom for non-additivity. In the sequel, we describe the procedure in
brief.

Suppose that an experiment has been conducted to compare v treatments using RCB design with
r replications. Let yjj denote the observed value of the response variable for it treatment in jth
replication; i=1,2, ...,v; j=1,2, ..., r. Arrange the data in a v x r table as given below:

Treatme |1 2 e ] . r Treatment | Treatment | Deviations | Sum of

nt Total Mean from Grand | Cross
Mean Product

1 Yiu Y2 ot Y15 o Y | To %8 d, Cy

2 yar Y22 vt Y2j 0 Yo | T2 y2. dy, C,

' Yo Yi2 o o Vi o VYie | T Yi. dj, Ci

v Yo Y2 o ot Wi o Yur | T Yv. dy, Cy

Replicati | R 1 Ry e R: - R, |G (Grand

on Total ' ' ] ' total)

Replicati | y v V. .- v G

on Mearn Y1 Yo Y. Yr GM = =

Deviatio | ( d ... d d

n from A 2 N .r

Grand

Mean

r V
where Ti =D yii; Vi =Ti./r; Rj=>vij; Vj=Rj/v; di =y; —-GM
=it i—1

r
d.j :yj -GM; C; :Zyij xd.j
j=1

Vv Vv r
Obtain L=)Cidi; Dy=).d?; D= d3
i=1 i=1 j=1
12
Sum of squares due to non-additivity (SSNA)= ——
Dl X D2

The sum of squares due to treatments, replications and total sum of squares are given by

Sum of squares due to treatments (SST) = > ——— v
i=1
. r RS G2
Sum of squares due to replications (SSR) = ZT_W
j=1
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Vor 2
Total sum of squares (TSS) = ZZ Yi% —G—

Sum of squares due to Error (SSE) = TSS — SST-SSR-SSNA

Then the outline of ANOVA table is

Source df SS MS
Treatments v-1 SST MST
Replications r-1 SSR MSR
Non-additivity | 1 SSNA MSNA
Error (v-1)(r-1)-1 | SSE MSE
Total vr-1 TSS

The mean squares (MS) are obtained by dividing sum of squares (SS) by corresponding degrees
of freedom (df). The non-additivity is tested by F-statistic with 1 and (v-1)(r-1)-1 degree of

freedom calculated value of F = MSNA )

MSE

Normality of Errors

The assumptions of homogeneity of variances and normality are generally violated together. To
test the validity of normality of errors for the character under study, one can take help of Normal
Probability Plot, Anderson-Darling Test, D'Augstino's Test, Shapiro - Wilk's Test, Ryan-Joiner
test, Kolmogrov-Smirnov test, etc. In general moderate departures from normality are of little
concern in the fixed effects ANOVA as F - test is slightly affected but in case of random effects,
it is more severely impacted by non-normality. The significant deviations of errors from
normality, makes the inferences invalid. So before analyzing the data, it is necessary to convert
the data to a scale that it follows a normal distribution. In the data from designed field
experiments, we do not directly use the original data for testing of normality or homogeneity of
observations because this is embedded with the treatment effects and some of other effects like
block, row, column, etc. So there is need to eliminate these effects from the data before testing
the assumptions of normality and homogeneity of variances. For eliminating the treatment effects
and other effects we fit the model corresponding to the design adopted and estimate the residuals.
These residuals are then used for testing the normality of the observations. In other words, we
want to test the null hypothesis Hy: errors are normally distributed against alternative hypothesis
Hi: errors are not normally distributed. For details on these tests one may refer to D’ Agostino and
Stephens (1986). Most of the standard statistical packages available in the market are capable of
testing the normality of the data. In SAS and SPSS commonly used tests are Shapiro-Wilk test
and Kolmogrov-Smirnov test. MINITAB uses three tests viz. Anderson-Darling, Ryan-Joiner,
Kolmogrov-Smirnov for testing the normality of data.

Homogeneity of Error Variances
A crude method for detecting the heterogeneity of variances is based on scatter plots of means
and variance or range of observations or errors, residual vs fitted values, etc. To be clearer, let Yj;

be the observation pertaining to i treatment (i=1(1)v) in the ™ replication (j=1()r;).

Compute the mean and variance for each treatment across the replications (the range can be used
in place of variance) as
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13 _ i _
Mean = Y; == > Yjj ; Variance = S =—— (Yij —Yi_)2
j=1 J
Draw the scatter plot of mean vs variance (or range). If S7's (i =1(1)v) are equal (constant) or
nearly equal, then the variances are homogeneous. Based on these scatter plots, the heterogeneity
of variances can be classified into two types:

1. Where the variance is functionally related to mean.
2. Where there is no functional relationship between the variance and the mean.

For illustration some scatter - diagrams of mean and variances (or range) are given as:

* * * o
* * * * . *
§ * * * * ® * e
g § .
S K ® e e
‘0
Mean Mean
(a) Homogeneous variance (b) Heterogeneous variance where variance is
proportional to mean
.
.

[]

o

o

8

8

>

. o o
*e o o ® o
Mean

(c) Heterogeneous variance without any functional
relationship between variance and mean

The first kind of variance heterogeneity (figure b) is usually associated with the data whose
distribution is non-normal viz., negative binomial, Poisson, binomial, etc. The second kind of
variance heterogeneity usually occurs in experiments, where, due to the nature of treatments
tested, some treatments have errors that are substantially higher (lower) than others. For example,
in varietal trials, where various types of breeding material are being compared, the size of
variance between plots of a particular variety will depend on the degree of genetic homogeneity
of material being tested. The variance of F, generation, for example, can be expected to be higher
than that of F; generation because genetic variability in F, is much higher than that in F;. The
variances of varieties that are highly tolerant of or highly susceptible to, the stress being tested
are expected to be smaller than those of having moderate degree of tolerance. Also in testing
yield response to a chemical treatment, such as, fertilizer, insecticide or herbicide, the non-
uniform application of chemical treatments may result in a higher variability in the treated plots
than that in the untreated plots.
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The scatter-diagram of means and variances of observations for each treatment across the
replications gives only a preliminary idea about homogeneity of error variances. Statistically the
homogeneity of error variances is tested using Bartlett's test for normally distributed errors and
Levene test for non-normal errors. These tests are described in the sequel.

Bartlett's Test for Homogeneity of VVariances
Let there are v- independent samples drawn from same population and i sample is of size r; and

(r1+r2 +...+rv)=N. In the present case, the independent samples are the residuals of the

observations pertaining to v treatments and i™ sample size is the number of replications of the
treatment i. One wants to test the null hypothesis H :012 =0'§ =.. :a\‘?' against the alternative

hypothesis Hj : at least two of the o 'sare not equal, where aiz is the error variance for

treatment i.

Let ej; denotes the residual pertaining to the observation of treatment i from replication j, then it
can easily be shown that the sum of residuals pertaining to a given treatment is zero. In this test

1 J _ 1 & . : :

Si2 = Z(eij —ei_)2 = Zeﬁ is taken as unbiased estimate of aiz. The procedure
i~ 4= i Tj=1

involves computing a statistic whose sampling distribution is closely approximated by the ;(2

distribution with v - 1 degrees of freedom. The test statistic is

2 g
=2.3026—"
X0 c

and null hypothesis is rejected when ;(g > ;(02“/_1, where ;(02“,_1 is the upper « percentage

point of ;(2 distribution with v - 1 degrees of freedom.

To compute ;(g, follow the steps:

Step 1: Compute mean and variance of all v-samples.

Step 2: Obtain pooled variance S3 :MT
\
Step 3: Compute q=(N —v)log S5 —>"(r; ~1)logyo S

i=1

1 N -1 -1
4: m =1 p— —(N =
Step 4: Compute ¢ +3(V_1)(i§:1(r, )~ —(N-v) J

Step 5: Compute ;(g.

Bartlett's ;(2 test for homogeneity of variances is a modification of the normal-theory likelihood
ratio test. While Bartlett's test has accurate Type | error rates and optimal power when the
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underlying distribution of the data is normal, it can be very inaccurate if that distribution is even
slightly non-normal (Box 1953). Therefore, Bartlett's test is not recommended for routine use.

An approach that leads to tests that are much more robust to the underlying distribution is to
transform the original values of the dependent variable to derive a dispersion variable and then to
perform analysis of variance on this variable. The significance level for the test of homogeneity
of variance is the p-value for the ANOVA F-test on the dispersion variable. Commonly used test
for testing the homogeneity of variance using a dispersion variable is Levene Test given by
Levene (1960). The procedure is described in the sequel.

Levene Test for homogeneity of VVariances

The test is based on the variability of the residuals. The larger the error variance, the larger the
variability of the residuals will tend to be. To conduct the Levene test, we divide the data into
different groups based on the number of treatments if the error variance is either increasing or
decreasing with the treatments, the residuals in the one treatment will tend to be more variable
than those in others treatments. The Levene test than consists simply F — statistic based on one
way ANOVA used to determine whether the mean of absolute/ Square root deviation from mean
are significantly different or not. The residuals are obtained from the usual analysis of variance.
The test statistic is given as

< F(O-D. 305 1)
=1

v-1 v _ iz
DD (djj ~d;)?
i-1 j=1
fi v &
LA 2
where dii =|ei —&[; @ =32 d =1 and e;: s the j* residual for the i plot, & is
ij ij —Ci i, r . " ij i
| rl
2

the mean of the residuals of the i'" treatment.

This test was modified by Brown and Forsythe (1974). In the modified test, the absolute
deviation is taken from the median instead of mean in order to make the test more robust.

In the present investigation, the Bartlett's zz-test has been used for testing the homogeneity of
error variances when the distribution of errors is normal and Levene test for non-normal errors.

Remark 1: In a block design, it can easily be shown that the sum of residuals within a given
block is zero. Therefore, the residuals in a block of size 2 will be same with their sign reverse in
order. As a consequence, q in Bartlett’s test and numerator in Levene test statistic becomes zero
for the data generated from experiments conducted to compare only two treatments in a RCB
design. Hence, the tests for homogeneity of error variances cannot be used for the experiments
conducted to compare only two treatments in a RCB design. Inferences from such experiments
may be drawn using Fisher-Behren t-test. Further, Bartlett’s test cannot be used for the
experimental situations where some of the treatments are singly replicated.
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Remark 2: In a RCB design, it can easily be shown that the sum of residuals from a particular
treatment is zero. As a consequence, the denominator of Levene test statistic is zero for the data
generated from RCB designs with two replications. Therefore, Levene test cannot be used for
testing the homogeneity of error variances for the data generated from RCB designs with two
replications.

Data Transformation
In this section, we shall discuss the remedial measures for non-normal and/or heterogeneous data
in greater details.

Data transformation is the most appropriate remedial measure, in the situation where the
variances are heterogeneous and are some functions of means. With this technique, the original
data are converted to a new scale resulting into a new data set that is expected to satisfy the
homogeneity of variances. Because a common transformation scale is applied to all observations,
the comparative values between treatments are not altered and comparison between them remains
valid.

Error partitioning is the remedial measure of heterogeneity that usually occurs in experiments,
where, due to the nature of treatments tested some treatments have errors that are substantially
higher (lower) than others.

Here, we shall concentrate on those situations where character under study is non-normal and

variances are heterogeneous. Depending upon the functional relationship between variances and

means, suitable transformation is adopted. The transformed variate should satisfy the following:

1. The variances of the transformed variate should be unaffected by changes in the means. This
Is also called the variance stabilizing transformation.

2. It should be normally distributed.

3. It should be one for which effects are linear and additive.

4. The transformed scale should be such for which an arithmetic average from the sample is an
efficient estimate of true mean.

The following are the three transformations, which are being used most commonly, in biological
research.

a) Logarithmic Transformation

b) Square root Transformation

C) Arc Sine or Angular Transformation

a) Logarithmic Transformation

This transformation is suitable for the data where the variance is proportional to square of the
mean or the coefficient of variation (S.D./mean) is constant or where effects are multiplicative.
These conditions are generally found in the data that are whole numbers and cover a wide range
of values. This is usually the case when analyzing growth measurements such as trunk girth,
length of extension growth, weight of tree or number of insects per plot, number of eggmass per
plant or per unit area etc.

For such situations, it is appropriate to analyze log X instead of actual data, X. When data set

involves small values or zeros, log (X+1), log(2X +1) or Iog(X +§j should be used instead of
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log X. This transformation would make errors normal, when observations follow negative
binomial distribution like in the case of insect counts.

b) Square-Root Transformation

This transformation is appropriate for the data sets where the variance is proportional to the
mean. Here, the data consists of small whole numbers, for example, data obtained in counting
rare events, such as the number of infested plants in a plot, the number of insects caught in traps,
number of weeds per plot, parthenocarpy in some varieties of mango. This data set generally
follows the Poisson distribution and square root transformation approximates Poisson to normal
distribution.

For these situations, it is better to analyze VX than that of X, the actual data. If X is confirmed to

small whole numbers then, \/X +% or \/X +§ should be used instead of VX .

This transformation is also appropriate for the percentage data, where, the range is between 0 to
30% or between 70 and 100%.

c) Arc Sine Transformation

This transformation is appropriate for the data on proportions, i.e., data obtained from a count and
the data expressed as decimal fractions and percentages. The distribution of percentages is
binomial and this transformation makes the distribution normal. Since the role of this
transformation is not properly understood, there is a tendency to transform any percentage using
arc sine transformation. But only that percentage data that are derived from count data, such as %
barren tillers (which is derived from the ratio of the number of non-bearing tillers to the total
number of tillers) should be transformed and not the percentage data such as % protein or %
carbohydrates, %nitrogen, etc. which are not derived from count data. For these situations, it is

better to analyze sin_l(\/Y)than that of X, the actual data. If the value of X is 0%, it should be
substituted by (4_1nj and the value of 100% by (100_4_1nj , Where n is the number of units upon

which the percentage data is based.

It is interesting to note here that not all percentage data need to be transformed and even if they

do, arc sine transformation is not the only transformation possible. The following rules may be

useful in choosing the proper transformation scale for percentage data derived from count data.

Rule 1: The percentage data lying within the range 30 to 70% is homogeneous and no
transformation is needed.

Rule 2: For percentage data lying within the range of either 0 to 30% or 70 to 100%, but not both,
the square root transformation should be used.

Rule 3: For percentage that do not follow the ranges specified in Rule 1 or Rule 2, the Arc Sine
transformation should be used.

. . 1 . , .
The other transformations used are reciprocal square root [W, when variance is proportional to

. 1 : : :
cube of mean], reciprocal [ X when variance is proportional to fourth power of mean] and

tangent hyperbolic transformation.
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The transformation discussed above are a particular case of the general family of
transformations known as Box-Cox transformation.

d) Box-Cox Transformation

By now we know that if the relation between the variance of observations and the mean is known
then this information can be utilized in selecting the form of the transformation. We now
elaborate on this point and show how it is possible to estimate the form of the required
transformation from the data. The transformation suggested by Box and Cox (1964) is a power
transformation of the original data. Let y,; be the observation pertaining to the u™ plot; then the
power transformation implies that we use yy: s as

* A
Yut = Yut
The transformation parameter A in yat = y(}t may be estimated simultaneously with the other

model parameters (overall mean and treatment effects) using the method of maximum likelihood.
The procedure consists of performing, for the various values of A, a standard analysis of variance
. on
A1

Yu 72 1#0 A)
N A-1
A Yut
Yut® = 9

Yut I Yyt A=0

N nu
where Y —In{(l/n)zzm yut} .

u=lt=1

Yyt IS the geometric mean of the observations. The maximum likelihood estimate of A is the
value for which the error sum of squares, say SSE (), is minimum. Notice that we cannot select

the value of A by directly comparing the error sum of squares from analysis of variance on y}“

because for each value of A the error sum of squares is measured on a different scale. Equation
(A) rescales the responses so that the error sums of squares are directly comparable. This is a
very general transformation and the commonly used transformations follow as particular cases.
The particular cases for different values of A are given below.

A Transformation
1 No Transformation
Y Square Root
0 Log
-1/2 Reciprocal Square Root
-1 Reciprocal

Remark 3: If any one of the observations is zero then the geometric mean is undefined. In the
expression (A), geometric mean is in denominator so it is not possible to compute that
expression. For solving this problem, we add a small quantity to each of the observations.
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Note: It should be emphasized that transformation, if needed, must take place right at the
beginning of the analysis, all fitting of missing plot values, all adjustments by covariance etc.
being done with the transformed variate and not with the original data. At the end, when the
conclusions have been reached, it is permissible to 're-transform' the results so as to present them
in the original units of measurement, but this is done only to render them more intelligible.

As a result of this transformation followed by back transformation, the means will rather be
different from those that would have been obtained from the original data. A simple example is
that without transformation, the mean of the numbers 1, 4, 9, 16 and 25 is 11. Suppose a square
root transformation is used to give 1, 2, 3, 4 and 5, the mean is now 3, which after back-
transformation gives 9. Usually the difference will not be so great because data do not usually
vary as much as those given, but logarithmic and square root transformation always lead to a
reduction of the mean, just as angles of equal formation usually lead to its moving away from the
central value of 50%.

However, in practice, computing treatment means from original data is more frequently used
because of its simplicity, but this may change the order of ranking of converted means for
comparison. Although transformations make possible a valid analysis, they can be very awkward.
For example, although a significant difference can be worked out in the usual way for means of
the transformed data, none can be worked out for the treatment means after back transformation.

Non-parametric tests in the Analysis of Experimental Data

When the data remains non-normal and/or heterogeneous even after transformation, a recourse is
made to non-parametric test procedures. A lot of attention is being paid to develop non-
parametric tests for analysis of experimental data. Most of these non-parametric test procedures
are based on rank statistic. The rank statistic has been used in development of these tests as the
statistic based on ranks is

1. distribution free
2. easy to calculate and
3. simple to explain and understand.

Another reason for use of rank statistic is due to the well known result that the average rank
approaches normality quickly as n (number of observations) increases, under the rather general
conditions, while the same might not be true for the original data {see e.g. Conover and Iman
(1976, 1981)}. The non-parametric test procedures available in literature cover completely
randomized designs, randomized complete block designs, balanced incomplete block designs,
design for bioassays, split plot designs, cross-over designs and so on. For an excellent and
elaborate discussions on non-parametric tests in the analysis of experimental data, one may refer
to Siegel and Castellan Jr. (1988), Deshpande, Gore and Shanubhogue (1995), Sen (1996), and
Hollander and Wolfe (1999).

Kruskal-Wallis Test can be used for the analysis of data from completely randomized designs.
Skillings and Mack Test helps in analyzing the data from a general block design. Friedman Test
and Durbin Test are particular cases of this test. Friedman Test is used for the analysis of data
from randomized complete block designs and Durbin test for the analysis of data from balanced
incomplete block designs.

Some examples of testing the assumptions of normality and homogeneity of errors and remedial
measures are discussed in the Appendix.
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Appendix

Example 1: Suppose an entomologist is interested in determining whether four different kinds of
traps caught equivalent insects when applied to same field. Each of the traps is used six times on
the field and resulting data (number of insects per hour) are as shown below alongwith mean,
variance and range.

Treatment Replication Mean | Variance Range
I I i v vV | VI Y; g2
1
A 3 1| 12 7 17 2 7 40.4 16
B 9 29| 21 24 28| 45| 31 138.4 36
C 63 84| 97 61 98| 71| 79 270.8 37
D 172 | 118 | 109 | 172 | 143 | 168 | 147 798.4 63

A scatter plot of mean and variance and mean versus range are given as follows:

80

60 1 g

Range

W1 o .
20 +

0

0 50 100 150 200
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1000
800 1 *
600
400 4
2001 o

Variance

+ + +
T T T

0 50 499, 150 200

Both plots indicate that variances are heterogeneous and variance is proportional to mean.

Obtain the residuals for testing the normality and homogeneity of error terms. The
residuals obtained are given below:

Treatment Replication Mean | Variance
I I i v \% VI g2
|
A -1.00 0.75| 10.00| -1.25 3.25 | -11.75 0 50.35
B -14.00 9.75 0.00| -325| -475| 12.25 0 94.85
C -13.00 | 11.75| 23.00 | -19.25 | 12.25 | -14.75 0 314.85
D 28.00 | -22.25 | -33.00 | 23.75 | -10.75 | 14.25 0 650.20

Test for Normality of error terms
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Shapiro-Wilk Test Kolmogrov-Smirnov Test
Statistic p-value Statistic p-value

(SW) (KS)

0.980 0.882 0.110 0.200

The errors were found to be normally distributed. Therefore, homogeneity of error variances was
tested using Bartlett's test. It is described in the sequel.

0.35+94.85+314.85+650.20)
20

Pooled Variance (S%): 5(5 =2775625

q= 20|Oglo 277.5625- 5['0910 50.35+ |Oglo 64.85+ I0910 31485+ |Oglo 65020]
=3.916278
1/4 1

c=1+=-|~-— |=1.08333
9(5 20)

28 =8324.

Since ;(&05,3 =17.81, therefore, we reject the null hypothesis and conclude that the variances are
unequal.

2
The %‘ are 5.77, 5.32, 3.43 and 5.43, indicating that
i.
Therefore, square root transformation should be used.
transformation, the residuals are

variance is proportional to mean.

After application of square root

Treatment Replication Variance
I ] i v \% VI g2
|
A -0.03614 | -0.92542 | 1.05800 | 0.20614 | 0.98287 | -1.28544 0.928
B -1.34939 | 0.87854 | -0.40473 | -0.12183 | -0.42993 | 1.42735 0.999
C -0.28226 | 0.78841 | 0.99143 | -1.08068 | 0.30794 | -0.72483 0.694
D 1.66779 | -0.74153 | -1.64469 | 0.99637 | -0.86087 | 0.58293 1.622

The errors remain normally distributed after transformation. The results of homogeneity of error

Normality of error terms on the transformed data:

Shapiro-Wilk Test Kolmogrov-Smirnov Test
Statistic p-value Statistic p-value

(SW) (KS)

0.956 0.414 0.127 0.200

variances using Bartlett's test are

Bartlett's Test (normal distribution): Test statistic = 0.89, p-value = 0.828
Hence, we conclude that the errors are normally distributed and have a constant variance after

transformation.

The results of analysis of variance with original and transformed data are given in the sequel.
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ANOVA: Original Data

Source DF SeqSS Adj.SS Mean Square F (F-calc) p(Pr>F)
Replication 5 689.0 689.0 137.8 0.37 0.86
Treatment 3 70828.5 70828.5 23609.5 63.80 0.00
Error 15 5551.0 5551.0 370.1
Total 23 77068.5
R-Square Root MSE
92.80% 19.2371
Tukey Simultaneous Tests for All Pairwise Treatment Comparisons
1 2 3 4

1 :

2 0.3525 .

3 0.0001 0.0013 :

4 0.0000 0.0000 0.0001

ANOVA: Transformed Data
Source DF SeqSS Adj.SS Mean Square F (F-calc) p(Pr>F)
Replication 5 5.055 5.055 1.011 0.71 0.622
Treatment 3 326.603 326.603 108.868 76.98 0.000
Error 15 21214  21.214 1.414
Total 23 352.872
R-Square Root MSE
93.99% 1.18922

Tukey Simultaneous Tests for All Pairwise Treatment Comparisons

1 2 3 4
1 .
2 0.0091
3 0.0000 0.0003
4 0.0000 0.0000 0.0015

With transformed data treatments 1 and 2 are significantly different whereas with original data,
they were not.

Example 2: A varietal trial on Rapeseed-Mustard was conducted at Faizabad with 11 varieties
using a randomized complete block design with 3 replications. The experimental data (Yield in
kg/ha ) obtained from the above experiment is

Replications—
Treatments { =1 = =3
MCN-157 952.380 1058.200 1079.364
MCN-158 846.560 634.920 687.830
MCN-159 529.100 687.830 687.830
MCN-160 1058.200 1005.290 952.380
MCN-161 1111.110 888.888 846.560

201



Data Diagnostics and Transformation

MCN-162 899.470 634.920 1005.290
MCN-163 1058.200 1164.020 952.380
MCN-164 687.830 740.740 529.100
MCN-165 952.380 952.380 867.724
MCN-166 1058.200 1058.200 529.100
MCN-167 1269.840 1164.020 1216.930
The analysis of variance of the original data is given as
ANOVA: Original Data
Sources DF SS MS F Prob. >F
Replication 2 52534.9880 26267.4940 1.46 0.2563
Treatment 10 967055.0471 96705.5047 5.37 0.0007
Error 20 360218.589 18010.929
Total 32 1379808.624
R-Square CVv RMSE Yld Mean
0.738936 14.878 134.2048 902.035

Normality of error terms was tested, the results are given as

Shapiro-Wilk Test Kolmogrov-Smirnov Test
Statistic p-value Statistic p-value
(SW) (KS)
0.9679 0.4249 0.1018 >0.1500

Since the data is normal, therefore, Bartlett’s test is used for testing the homogeneity of error
variances. The results are given as

Bartlett’s Test

Test Statistic : 20.177

P-Value :0.0276
The errors were found to be heterogeneous.

Therefore, we can conclude that the data is heterogeneous and normal.

Therefore, Box-Cox transformation was used as a remedial measure. In the sequel we describe
the results of the Box-Cox transformation.

For this we transform the data by varying A from -10 to +10 with an increment of 0.01. The error
sum of squares are computed for each value of A. The value of A with minimum error sum of
squares is used for transformation given in (A). The minimum value SSE is obtained for A =
2.38. Therefore, reciprocal transformation was used.

The assumptions of normality and homogeneity of errors are again tested using the transformed
data.

Normality of error terms was tested, the results are given as

Shapiro-Wilk Test Kolmogrov-Smirnov Test
Statistic p-value Statistic p-value

(SW) (KS)

0.984 0.8885 0.0867 >0.1500
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Since the data is normal, therefore, Bartlett’s Test is used for testing the homogeneity of error
variances. The results are given as

Bartlett's Test (normal distribution)
Test Statistic :15.725
P-Value : 0.107757

The transformed observations were found to be normal and homogeneous Therefore, ANOVA
was performed on the transformed data. The results obtained are:

ANOVA: Transformed Data

Sources DF SS MS F Prob. >F
Replication 2 3.865471E13 | 1.93273335E13 | 1.62 0.2238
Treatment 10 | 7.8841391E14 7.8841391E13 | 6.59 0.0002
Error 20 | 2.3934391E14 1.1967195E13
Total 32 | 1.0664125E15

R-Square CV RMSE Transformed Yld Mean
0.7756 29.563 3459363 11701777

We can see that there is no change in the results of significance of treatment and replication
effects. However, the transformed data satisfied the assumptions of ANOVA.
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1. Introduction

A parametric test specifies certain conditions about the distribution of responses in the population
from which the research sample was drawn. The meaningfulness of the results of a parametric
test depends on the validity of these assumptions. A nonparametric test is based on a model that
specifies very general conditions and none regarding the specific form of the distribution from
which the sample was drawn. Hence nonparametric tests are also known as distribution free tests.
Certain assumptions are associated with most nonparametric statistical tests, but these are fewer
and weaker than those of parametric tests.

Nonparametric test statistics utilize some simple aspects of sample data such as the signs of
measurements, order relationships or category frequencies. Therefore, stretching or compressing
the scale does not alter them. As a consequence, the null distribution of the nonparametric test
statistic can be determined without regard to the shape of the parent population distribution.
These tests have the obvious advantage of not requiring the assumption of normality or the
assumption of homogeneity of variance. They compare medians rather than means and, as a
result, if the data have one or two outliers, their influence is negated.

Advantages of nonparametric tests

= Non-parametric methods are used with all scales

= When sample size is very small, there may be no alternative to use a nonparametric test
unless the population distribution is known exactly

» They are easier to learn and compute

= Fewer assumptions are made

= Due to the reliance on fewer assumptions, non-parametric methods are more robust

= Need not involve population parameters

= Results may be as exact as parametric procedures

Disadvantages of nonparametric tests

= There may be wastage of information

= Parametric models are more efficient if data permit.

= |tis difficult to compute by hand for large samples

= Tables are not widely available

= In cases where a parametric test would be appropriate, non-parametric tests have less power.
In other words, a larger sample size can be required to draw conclusions with the same degree
of confidence.

The inferences drawn from tests based on the parametric tests such as t, F and x* may be
seriously affected when the parent population’s distribution is not normal. The adverse effect
could be more when sample size is small. Thus when there is doubt about the distribution of the
parent population, a nonparametric method should be used. In many situations, particularly in
social and behavioral sciences, observations are difficult or impossible to take on numerical
scales and a suitable nonparametric test is an alternative under such situations. Some commonly
used nonparametric tests are discussed in the sequel.
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2. Run Test for Randomness

Run test is used for examining whether or not a set of observations constitutes a random sample
from an infinite population. Test for randomness is of major importance because the assumption
of randomness underlies statistical inference. In addition, tests for randomness are important for
time series analysis. Departure from randomness can take many forms.

Ho: Sample values come from a random sequence
H;: Sample values come from a non-random sequence

Test Statistic: Let r be the number of runs (a run is a sequence of signs of same kind bounded by
signs of other kind). For finding the number of runs, the observations are listed in their order of
occurrence. Each observation is denoted by a ‘“+’ sign if it is more than the previous observation
and by a ‘-° sign if it is less than the previous observation. Total number of runs up (+) and down
(-) is counted. Too few runs indicate that the sequence is not random (has persistency) and too
many runs also indicate that the sequence is not random (is zigzag).

Critical Value: Critical value for the test is obtained from the table for a given value of n and at
desired level of significance (o). Let this value be r..

Decision Rule: If rc (lower) < r < r. (upper), accept Ho. Otherwise reject Ho.

Tied Values: If an observation is equal to its preceding observation denote it by zero. While
counting the number of runs ignore it and reduce the value of n accordingly.

Large Sample Sizes: When sample size is greater than 25 the critical value r; can be obtained
using a normal distribution approximation.
The critical values for two-sided test at 5% level of significance are
rc (lower) =u-196c
ro (upper) =u+1.96c
For one-sided tests, these are

rc (left tailed) =p-1.650,ifr <r¢, reject Hy
rc (right tailed) = pu+ 1.65 o, if r > r, reject Hy,

2n-1 16n—-29
where M:T and ¢ = T

Example 2.1: Data on value of imports of selected agricultural production inputs from U.K. by a
county (in million dollars) during recent 12 years is given below: Is the sequence random?

| 52 [ 55 [ 38 [ 25 [ 83 | 21 | 17 [ 100 | 100 | 69 | 75 | 10.6 |

Ho: Sequence is random.
H;: Sequence is not random.

5.2 5.5 3.8 2.5 8.3 2.1 1.7 | 10.0 | 100 | 6.9 75 | 10.6
+ - - + - - + 0 - + +
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Here n = 11, the number of runs r = 7. Critical n values for a. = 5% (two sided test) from the table
are rc (lower) =4 and r. (upper) = 10. Since r; (lower) < r < rc (upper), i.e., observed r lies
between 4 and 10, Hy is accepted. The sequence is random.

3. Wald-Wolfowitz Two-Sample Run Test

Wald-Wolfowitz run test is used to examine whether two random samples come from
populations having same distribution. This test can detect differences in averages or spread or any
other important aspect between the two populations. This test is efficient when each sample size
is moderately large (greater than or equal to 10).

Ho: Two sample come from populations having same distribution
H;: Two sample come from populations having different distributions

Test Statistic: Let r denote the number of runs. To obtain r, list the n;+ n, observations from two
samples in order of magnitude. Denote observations from one sample by x’s and other by y’s.
Count the number of runs.

Critical Value: Difference in location results in few runs and difference in spread also result in
few number of runs. Consequently, critical region for this test is always one-sided. The critical
value to decide whether or not the number of runs are few, is obtained from the table. The table
gives critical value r. for n; (size of sample 1) and n, (size of sample 2) at 5% level of
significance.

Decision Rule: If r < r, reject Ho.

Tie: In case x and y observations have same value, place the observation x(y) first if run of x(y)
observation is continuing.

Large Sample Sizes: For sample sizes larger than 20 critical value r is given below.

re=un-1.96 o at 5% level of significance

2n,n, 2nn (2nn; —ng—ny)
———=and o= >
Ny +Ny (N +n3)"(ny+n; -1)

where p=1+

Example 3.1: To determine if a new hybrid seeding produces a bushier flowering plant,
following data was collected. Examine if the data indicate that new hybrid produces larger shrubs
than the current variety?

Shrubs Girth (in inches)
Hybrid | X 31.8 | 32.8 39.2 36.0 30.0 34.5 37.4
Current | vy 355 | 27.6 21.3 24.8 36.7 30.0
Variety

Ho: x and y populations are identical
Hi: There is some difference in girth of x and y shrubs.

Consider the combined ordered data.

2131248 |27.6|30.0(30.0|31.8|32.8|34.5|355|36.0|36.7|37.4]|39.2
y y y y X X X X y X y X X
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Test statistic r = 6 (total number of runs). For n; = 7 and n, = 6, critical value r. at 5% level of
significance is 3. Since r > r, we accept Hy and conclude that x and y have identical distribution.

4. Median Test for Two Samples

To test whether or not two samples come from same population, median test is used. It is more
efficient than the run test but each sample should be of size 10 at least. In this case, the
hypothesis to be tested is

Ho : Two samples come from populations having same distribution.
H; : Two samples come from populations having different distribution.

Test Statistic: y° (Chi-square). To test the value of test statistics two samples of sizes ny and n; are
combined. Median M of the combined sample of size n = n; + ny is obtained. Number of
observations below and above the median M for each sample is determined. This is then analyzed
as a2 x 2 contingency table in the manner given below.

Number of Observations
Sample 1 Sample 2 Total
Above Median a b a+b
Below Median Cc d c+d
atc=n; b+d =n, n =a+b+c+d

,_ (ad—bc)’*(@+b+c+d)
~ (a+c)(b+d)(a+b)(c+d)

Decision Rule: if y*> Xg reject Hp otherwise accept it.

Tie: Ties are ignored and n is adjusted accordingly.

Remark: This test can be extended to k samples with number of observations below and above
the combined median M from a 2 x k contingency table.

Example 4.1: Perform a median test on the problem of Example 3.1 for testing that the two
samples come from same population.

Ho : x and y populations are identical.

H; : There is some difference in girth of x and y shrubs.

Seventh value 32.8 is the median of combined ordered sequence.

Number of Observations
X y Total
Above M 4 2 6
Below M 2 4 6
6 6 12
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YA
p= OYT 4455
6666 3

Since ¥* =1.33 < x.? =3.84, Ho is accepted. It is concluded that two samples come from the same
population. There is no significant difference in the girth of hybrid and current variety of shrub.

Remark: This example is for demonstrating the test procedure. In real situation n should be at
least 20 and each cell frequency at least 5.

5. Sign Test for Matched Pairs
In many situations, comparison of effect of two treatments is of interest but observations occur in
pairs. Thus the two samples are not truly random. Because of such pair-wise dependence ordinary
two sample tests are not appropriate. In such situations when one member of the pair is
associated with the treatment A and the other with treatment B, nonparametric sign test has wide
applicability. It can be applied even when qualitative data are available. As the name suggests it
is based on the signs of the response differences D;. If i pair of observation is denoted by (xi, Yi)
where X is the effect of treatment A and y to B then D; = X; — yi. The hypothesis to be tested is

Ho : No difference in the effect of treatments A and B.

H; : Ais better than B.

Test Statistic: Let S be the number of ‘-’ signs.

Critical Value: Critical value S. corresponding to n, the number of pairs, is given in Table 3.
Significance level is given by a; as critical region is one sided (left tailed).

Decision Rule: If S < S reject Ho, otherwise accept Ho.

Tie: In case two values of a pair are equal, reject that pair and reduce the number of observations
accordingly.

Remark: In case, if the alternative Hj is that there is some difference in effect of A and B, S
represents either the number of negative signs or the number of positive signs whichever turn out
to be smaller. Critical region is two sided and significance level is given by a, for finding S..

Example 5.1: In a market study, two brands of lemonade were compared. Each of 50 judges
tasted two samples, one of brand A and one of brand B with the following results: 35 preferred
brand A, 10 preferred B, and 5 could not tell the difference. Thus, n = 45 and S = 10. Assuming
ay = 5%, critical value S; = 16 from Table 3. Since S < S, we reject Hp of no difference in favour
of the alternative H; that the brand A is preferred.

6. Wilcoxon Signed Rank Test for Matched Pairs
In situations where there is some kind of pairing between observations in the two samples,
ordinary two sample tests are not appropriate. Signed rank tests are useful in such situations.
When observations are measured data, signed rank test is more efficient than sign test as it takes
account of the magnitude of the observed differences, if the difference between the response of
the two treatments A and B is to be tested the test hypothesis is

Ho : No difference in the effect of treatments A and B.

H; : Treatment A is better than B.
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Test Statistic: T represents the sum of ranks with negative signs. For calculating T, obtain the
differences D; = x; — yi where X;’s are response of treatment A and y;’s of treatment B. Rank the
absolute values of differences. Smallest give rank 1. Ties are assigned average ranks. Assign to
each rank sign of observed difference. Obtain the sum of negative ranks.

Critical Value: T is given in Table 4 for n number of pairs. Significance level is given by a4 as
critical region is one sided.

Decision Rule: T < T, reject Ho, other wise accept it.

Tie: Discard the pair for which difference = 0 and reduce n accordingly. Equal differences are
assigned average ranks.

Example 6.1: Blood pressure reading of ten patients before and after medication for reducing the
blood pressure are as follows:

Patient 1 2 3 4 5 6 7 8 9 10
Before X 86 84 78 90 92 77 89 90 90 |86
treatment

After y 80 80 92 79 92 82 88 89 92 |83
treatment

Differences 6 4 -14 11 0 -5 1 1 -2
Rank 7 5 9 8 | Discard 6 15 15 3
Sign + + - + | Discard - + + - +

Test the null hypothesis of no effect against the alternative that medication is effective.

Rank sum of negative differences = 3+6+9 = 18. Therefore value of test statistic T = 18. For n =
9 and a3 = 5%, T, = 8 from Table 4. Since T > T, null hypothesis of no effect of medication is
accepted.

7. Kolmogorov-Smirnov Test
In situations where there is unequal number of observations in two samples, Kolmogorov-
Smirnov test is appropriate. This test is used to test whether there is any significant difference
between two treatments A and B (say). The test hypothesis is

Ho : No difference in the effect of treatments A and B.

H; : There is some difference in the effect of treatments A and B.

Test Statistic: The test statistic is Dyn = sup|Fm (x)—Gn(x)|, F and G are the sample empirical

distributions of sample observations of two samples respectively with respective sample sizes m
and n. F(x;) is calculated as the average number of sample observations of the first sample that
are less than x;. Similarly G(x;) is calculated. Dy, is largest value of the absolute difference
between F(x) and G(x).

Critical Value: Tabulated value of D, is available for different values of m, n and for different

levels of significance and is given in Table 4 for n number of pairs. Significance level is given by
ay as critical region is one-sided.
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Decision Rule: If the calculated value of D, is greater than the tabulated value of Dy, Ho IS
rejected otherwise it is accepted.

Example 7.1: The following data represent the lifetimes (hours) of batteries for different brands:

Brand A

40

30

40

45

55

30

Brand B

50

50

45

55

60

40

Avre these brands different with respect to average life?

We first calculate the sample empirical distributions of two samples as follows:

X Fs (X) Gg(X) |F6 (X)—Gg (X)|
30 2/6 0 2/6
40 4/6 1/6 3/6
45 5/6 2/6 3/6
50 5/6 4/6 1/6
55 1 5/6 1/6
60 1 1 0

Dess = Sup|Fs(X) —Gg(x)| = 3/6. From table, the critical value for m = n = 6 at level a = .05 is

4/6. Since the calculated value of Dy, is not greater than the tabulated value, Ho is not rejected
and it is concluded that the average length of life for two brands is the same.

8. Kruskal-Wallis Test

This test is appropriate for use under the following circumstances: (a) If somebody wants to
compare three or more conditions; (b) each condition is performed by a different group of
participants; i.e. you have an independent-measures design with three or more conditions. (c) data
do not meet the requirements for a parametric test. (i.e. use it if the data are not normally
distributed,; if the variances for the different conditions are markedly

different; or if the data are measurements on an ordinal scale).

If the data meet the requirements for a parametric test, it is better to use a one-way independent-
measures Analysis of Variance (ANOVA) because it is more powerful than the Kruskal-Wallis
test.

Example: Does physical exercise alleviate depression? Here, some individuals are randomly
allocated to one of three groups: no exercise; 20 minutes of jogging per day; or 60 minutes of
jogging per day. At the end of a month, ach individual is asked to rate how depressed they now
feel, on a Likert scale that runs from 1 ("totally miserable™) through to 100 (ecstatically happy").

Rating on depression scale

No Jogging for | Jogging for 60
exercise | 20 minutes minutes

23 22 59

26 27 66

51 39 38
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49 29 49
58 46 56
37 48 60
29 49 56
44 65 62

Out Put

Test Statistics®®

Depression
Chi-Square 7.290
df 2
Asymp. Sig. .026

a. Kruskal Wallis Test
b. Grouping Variable: Depression

A Kruskal-Wallis test revealed that there is a significant effect of exercise on depression.

9. Friedman’s Test

It is a non-parametric statistical test for testing whether samples originate from the same
distribution. It is used for comparing more than two samples that are related. When the
Friedman’s test leads to significant results, then at least one of the samples is different from the
other samples.

Example: A researcher wants to examine whether music has an effect on the perceived
psychological effort required to perform an exercise session. The dependent variable is
"perceived effort to perform exercise” and the independent variable is "music type", which
consists of three categories: "no music”, "classical music" and "dance music"”. To test whether
music has an effect on the perceived psychological effort required to perform an exercise session,
the researcher recruited 12 runners who each ran three times on a treadmill for 30 minutes. For
consistency, the treadmill speed was the same for all three runs. In a random order, each subject
ran: (a) listening to no music at all; (b) listening to classical music; and (c) listening to dance
music. At the end of each run, subjects were asked to record how hard the running session felt on
a scale of 1 to 10, with 1 being easy and 10 extremely hard. A Friedman test was then carried out
to see if there were differences in perceived effort based on music type.

No Music | Classical Music Dance Music
8 8

|~ |o|o||o |~
~N |~ |~ || ||
NN (NN oo~
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8 6 8
7 6 6
7 8 6
9 9 6
Test Statistics®

M 12

Chi-sguare 7600

of 2

Asyimp. Sin. 022

a. Friedman Test

It shows that an overall statistically significant difference between the mean ranks of the related
groups.
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Table 1: Critical values for runs up and down test

(11:5% (11:2.50/0 (11:1% (11:0.5%

(12:10% (12:5% (12:2% (12:1%
n | Lower | Upper | Lower | Upper | Lower | Upper | Lower | Upper
3 |- - - - - - - -
4 |- - - - - - - -
5 |1 - 1 - - - - -
6 |1 - 1 - 1 - 1 -
7 |2 - 2 - 1 - 1 -
8 |2 - 2 - 2 - 1 -
9 |3 8 3 - 3 - 2 -
10 | 3 9 3 - 3 - 2 -
11 | 4 10 4 10 3 - 3 -
12 | 4 11 4 11 4 - 3 -
13 |5 12 5 12 4 12 4 -
14 | 6 12 5 13 5 13 4 13
15 |6 13 6 14 5 14 4 14
16 |7 14 6 14 6 15 5 15
17 |7 15 7 15 6 16 6 16
18 | 8 15 7 16 7 16 6 17
19 | 8 16 8 17 7 17 7 18
209 17 8 17 8 18 7 18
21 | 10 18 9 18 8 19 8 19
22 | 10 18 10 19 9 20 8 20
23 |1 19 10 20 10 20 9 21
24 |1 20 11 20 10 21 10 22
25| 12 21 11 21 11 22 10 22

ay : Significance level for one sided test
ay : Significance level for two sided test

Source: Distribution Free Tests by H.R. Neave and P.L. Worthington. London, Unwin Hyman.
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Table 2: Critical values for the two sample run test.

n(2(3/4(5(6|7(8(9(10(11|12 13|14 |15|16|17|18|19]|20
Ny
2 2 12 |2 (2 |2 |2 |2 |2 |2
3 212222 |2 |2 |2 |2 |2 |3 |3 |3 |3 |3
4 2121213133 |3 (3 |3 |3 (3 |4 (4 (4 |4 |4
5 212(3[3|313(3 |4 |4 |4 |4 |4 |4 |4 |5 |5 |5
6 212|1313|3(3/4(4 |4 (4 |5 |5 |5 |5 |5 |5 |6 |6
7 212(3|3|3/4(4/5 (5 |5 |5 |5 |6 |6 |6 |6 |6 |6
8 213(3|3|4/4|5|/5 (5 |6 |6 |6 |6 |6 |7 |7 |7 |7
9 213|3|4/4|5/5|/5 |6 (6 |6 |7 (7 |7 |7 |8 |8 |8
10 213(3|4|5|/5|5/6 (6 (7 (7 (7 |7 |8 |8 |8 |8 |9
11 213|4|4|/5|/5/6(6 |7 (7 |7 |8 (8 {8 |9 (9 |9 |9
12 2123|4|4|5|/6(6|7 |7 |7 (8 |8 |8 |9 |9 |9 |10]10
13 212|3|4|5|5/6|6|7 |7 |8 |8 |9 |9 |9 |10|10(10]10
14 212|3|4|5|5/6(7|7 (8 |8 |9 |9 |9 |10/10|10|11 |11
15 212|3|4|5/6(6(7|7 |8 [8 |9 (9 (10101111 |11]12
16 213(4(4|/5/6/6(7|8 (8 |9 |9 |10|10|11 1111|1212
17 213|4|4|5/6(7(7|8 |9 |9 [10(10(11 |11 11 |12|12]|13
18 213|4|5/5/6/7(8|8 |9 |9 (1010|1111 12|12|13]|13
19 2/3/4|5|/6/6(7(8/8 |9 [10(10 (1111|1212 |13|13|13
20 213|4|5/6|6|7(8|9 |9 |10(/10(11|12(12|13|13(13|14

Significance level 5%

Source: Statistics in Research by Borten Ostle. Ames. lowa USA. lowa State University Press.
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Table 3: Critical values for the Sign test (matched pairs)

a |[5% [25% 1% |[0.5% o 5% [25% 1% |05%

n o2 [10% 5% |2% 1% n a2 |10%[5% [2% 1%
1 - - - - 26 8 7 6 6
2 - - - - 27 8 7 7 6
3 - - - - 28 9 8 / 6
4 - - - - 29 9 8 7 7
5 0 - - - 30 10 9 8 7
6 0 0 - - 31 10 9 8 7
7 0 0 0 - 32 10 9 8 8
8 1 0 0 0 33 11 10 9 8
9 1 1 0 0 34 11 10 9 9
10 1 1 0 0 35 12 11 10 |9
11 2 1 1 0 36 12 11 10 |9
12 2 2 1 1 37 13 12 10 |10
13 3 2 1 1 38 13 12 11 |10
14 3 2 2 1 39 13 12 11 |11
15 3 3 2 2 40 14 13 12 |11
16 4 3 2 2 41 14 13 12 |11
17 4 4 3 2 42 15 14 13 |12
18 5 4 3 3 43 15 14 13 |12
19 5 4 4 3 44 16 15 13 |13
20 5 5 4 3 45 16 15 14 113
21 6 5 4 4 46 16 15 14 |13
22 6 5 5 4 47 17 16 15 |14
23 7 6 5 4 48 17 16 15 |14
24 7 6 5 5 49 18 17 15 |15
25 7 7 6 5 50 18 17 16 |15

ay : Significance level for one sided test
ay : Significance level for two sided test

Source: Distribution Free Tests by H.R. Neave and P.L. Worthington. London, Unwin Hyman.
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Table 4: Critical values for the Wilcoxon signed rank test

a |[5% [25% 1% [0.5% o [5% [25% 1% |[0.5%

n o2 [10% 5% |2% 1% n |o/10% 5% 2% 1%
1 - - - - 26 110 |98 84 |75

2 - - - - 27 119 |107 |92 |83

3 - - - - 28 130 [116 101 |91

4 - - - - 29 140 |[126 | 110 | 100
5 0 - - - 30 151 |[137 120 | 109
6 2 0 - - 31 163 | 147 130 | 118
7 3 2 0 - 32 175 [ 159 | 140|128
8 5 3 1 0 33 187 | 170 | 151 | 138
9 8 5 3 1 34 200 182 |162 | 148
10 10 8 5 3 35 213 195 | 173|159
11 13 10 7 5 36 227 | 208 |185 171
12 17 13 9 7 37 241 | 221 |198 | 182
13 21 17 12 |9 38 256 | 235 | 211|194
14 25 21 15 |12 39 271 | 239 | 224 | 207
15 30 25 19 |15 40 286 | 264 | 238 | 220
16 35 29 23 |19 41 302 | 279 | 252 | 233
17 41 34 27 | 23 42 319 294 | 266 | 244
18 47 40 32 |27 43 336 | 310 | 281 | 261
19 53 46 37 |32 44 353 | 327 | 296 | 276
20 60 52 43 | 37 45 371 343 312 | 291
21 67 58 49 |42 46 389 |361 |328 | 307
22 75 65 55 |48 47 407 | 278 | 345|322
23 83 73 62 |54 48 426 | 296 | 362 | 339
24 91 81 69 |61 49 446 | 415 | 379 | 355
25 100 |89 76 |68 50 466 | 434 | 397 | 373

ay : Significance level for one sided test
ay : Significance level for two sided test

Source: Distribution Free Tests by H.R. Neave and P.L. Worthington. London, Unwin Hyman.
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SAMPLING IN FIELD EXPERIMENTS

In agricultural field experiments, the size of the plot is selected in order to achieve a prescribed
degree of precision for measurement of the character of primary interest. We then measure the
character under study on the whole of the experimental unit i.e. plot. Because of the nature of the
character of primary interest like yield, the plot size required is often larger than that needed to
measure other characters. In order to save expense and time the measurements of additional
characters of interest can be made by sampling a fraction of the whole plot. For example, for
plant height, the measurements can be made only from say 10 of the 200 plants in the plot, for
tiller number, count only 1 m? of the 15 m? plot, for leaf area, measure from only 20 of the
approximately 2000 leaves in the plot. For such cases like plant height, leaf area etc. it may not
be always feasible or desirable to get the plot wise measurements. Here we resort to sampling in
each plot and obtain the measurements on a certain number of sampling units in each plot and
subject the data for statistical analysis.

An appropriate sample is one that provides an estimate, or a sample value, that is as close as
possible to the value that would have been obtained had all plants in the plot been measured - the
plot value. The difference between the sample value and the plot value constitutes the sampling
error. Thus a good sampling technique is one that gives small sampling error.

The sampling unit is the unit on which actual measurement is made. The important features of
an appropriate sampling unit are:

Ease of Identifications
Ease of Measurement
High Precision

Low Cost

The number of sampling units taken from the population is sample size. In a replicated field trial
where each plot is a population, sample size could be the number of plants per plot used for
measuring plant height, the number of leaves per plot used for measuring leaf area, or the number
of hills per plot used for counting tillers. The required sample size for a particular experiment is
governed by:

(i) The size of the variability among sampling units within the same plot (sampling
variance)
(i)  The degree of precision desired for the character of interest.

In practice, the size of the sampling variance for most plant characters is generally not known.
The desired level of precision can, however, be prescribed by the researcher based on
experimental objective and previous experience, in terms of the margin of error, either of the plot
mean or of the treatment mean.
The sample size for a simple random sampling design that can satisfy a prescribed margin of
error of the plot mean is computed as:

(Z8)(vs)

n= 3257

(d?)(X?)
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where n is the required sample size, Z, is the value of the standardized normal variate

corresponding to the level of significance « , vs is the sampling variance, X is the mean value,
and d is the margin of error expressed as a fraction of the plot mean.

The information of primary interest to the researcher is usually the treatment means (the average
over all plots receiving the same treatment) or actually the difference of means, rather than the
plot mean (the value from a single plot). Thus, the desired degree of precision is usually
specified in terms of the margin of error of the treatment mean rather than of the plot mean. In
such a case, sample size is computed as:

o (Z&)(vs)
2\(v2 2
r(D?)(X%) - (22)(vp)

where n is the required sample size, r is the number of replications, Z ,and vs are as defined

earlier, v, is the variance between plots of the same treatment (i.e. experimental error), and D is
the prescribed margin of error expressed as a fraction of the treatment mean. In this case,
additional information on the size of the experimental error (vp) is needed to compute sample
size.

A sampling design specifies the manner in which the n sampling units are to be selected from
the whole plot. There are five commonly used sampling designs in replicated field trials: simple
random sampling, multistage random sampling, stratified random sampling, stratified multistage
random sampling, and sub-sampling with an auxiliary variable.

In a simple random sampling design, there is only one type of sampling unit and, hence, the
sample size (n) refers to the total number of sampling units to be selected from each plot
consisting of N units. The selection of the n sampling units is done in such a way that each of the
N units in the plot is given the same chance of being selected in plot sampling, two of the most
commonly used random procedures for selecting n sampling units per plot are the random-
number technique and the random - pair technique.

In contrast to the simple random sampling design, where only one type of sampling unit is
involved, the multistage random sampling design is characterized by a series of sampling
stages. Each stage has its own unique sampling unit. This design is suited for cases where the
sampling unit is not the same as the measurement unit. For example, in a rice field experiment,
the unit of measurement for panicle length is a panicle and that for leaf area is a leaf. The use of
either the panicle or the leaf as the sampling unit, however, would require the counting and listing
of all panicles or all leaves in the plot which is time-consuming task that would definitely not be
practical.

The stratified random sampling design is useful where there is large variation between
sampling units and where important sources of variability follow a consistent pattern. In such
cases, the precision of the sample estimate can be improved by grouping the sampling units into
different strata in such a way that variability between sampling units within a stratum is smaller
than that between sampling units from different strata. Some examples of stratification criterion
used in agricultural experiments are as follows:

e Soil Fertility Pattern. In an insecticide trial where block is based primarily on the direction
of insect migration, known patterns of soil fertility cause substantial variability among plants
in the same plot. In such a case, a stratified random sampling design may be used so that
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each plot is first divided into several strata based on the known fertility patterns and sample
plants are then randomly selected from each stratum.

e Stress Level. In a variety screening trial for tolerance for soil salinity, areas within the same
plot may be stratified according to the salinity level before sample plants are randomly
selected from each stratum.

e Within-Plant VVariance. In arice hill, panicles from the taller tillers are generally larger than
those from the shorter ones. Hence, in measuring such yield components as panicle length or
number of grains per panicles, panicles within a hill are stratified according to the relative
height of the tillers before sample panicles are randomly selected from each position (or
stratum).

Stratified multistage random sampling: Consider the case where a rice researcher wishes to
measure the average number of grains per panicle through the use of a two-stage sampling design
with individual hills in the plot as the primary sampling unit and individual panicles in a hill as
the secondary sampling unit. It is realized that the number of grains per panicle varies greatly
between the different panicles of the same hill. A logical alternative is to apply the stratification
technique by dividing the panicles in each selected hill (i.e., primary sampling unit) into k strata,
based on their relative position in the hill, before a simple random sample of m panicles from
each stratum is taken separately and independently for the k strata. In this case, the sampling
technique is based on a two-stage sampling design with stratification applied on the secondary
unit. Of course, instead of the secondary unit (panicles) the researcher could have stratified the
primary unit (i.e., single-hill) based on any source of variation pertinent to his experiment. In
that case, the sampling technique would have been a two-stage sampling design with
stratification of the primary unit. Or, the researcher could have applied both stratification criteria
-one on the hills and another on the panicles-and the resulting sampling design would have been a
two-stage sampling with stratification of both the primary and secondary units.

Sub-sampling with an auxiliary variable. The main features of a design for subsampling with
an auxiliary variable are:

e In addition to the character of interest, say X, another character, say Z, which is closely
associated with and is easier to measure than X, is chosen.

e Character Z is measured both on the main sampling unit and on the subunit, whereas variable
X is measured only on the subunit. The subunit is smaller than the main sampling unit and is
embedded in the main sampling unit.

This design is usually used when the character of interest, say X, is so variable that the large size
of sampling unit or the large sample size required to achieve a reasonable degree of precision
or both, would be impractical. To improve the precision in the measurement of X , without
unduly increasing either the sample size or the size of sampling unit, the subsampling with an
auxiliary variable design can be used.

Supplementary Techniques

So, far, we have discussed sampling techniques for individual plots, each of which is treated
independently and without reference to other plots in the same experiment. However, in a
replicated field trial where the sampling technique is to be applied to each and all plots in the
trial, a question usually raised is whether the same set of random sample can be repeated in all
plots or whether different random processes are needed for different plots. And, when data of a
plant character are measured more than once over time, the question is whether the measurements
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should be made on the same samples at all stages of observation or should randomization be
applied.

The two techniques aimed at answering these questions are block sampling and sampling for
repeated measurements.

Block Sampling is a technique in which all plots of the same block (i.e. replication ) are
subjected to the same randomization scheme (i.e. using the same sample location in the plot)
and different sampling schemes are applied separately and independently for different blocks.
The block sampling technique has the following desirable features:

e Randomization is minimized. With  block sampling randomization is done only r times
instead of rt times as it is when randomization is done separately for each and all plots.

e Data collection is facilitated. With block sampling, all plots in the same block have the
pattern of sample locations so that an observer (data collector) can easily move from plot to
plot within a block without the need to reorient himself to a new pattern of sample
location.

e Uniformity between plots of the same block is enhanced because there is no added variation
due to changes in sample location from plot to plot.

Data collection by block is encouraged. For example, if data collection is to be done by several
persons, each can be conveniently assigned to a particular block which facilitates the speed and
uniformity of data collection. Even if there is only one observer for the whole experiment, he can
complete the task one block at a time, taking advantage of the similar sample locations of plots
in the same block and minimizing one source of variation among plots, namely, the time span in
data collection.

Sampling for Repeated Measurements: Plant characters are commonly measured at different
growth stages of the crop. For example, tiller number in rice may be measured at 30, 60, 90 and
120 days after transplanting or at the tillering, flowering, and harvesting stages. If such
measurements are made on the same plants at all stages of observation, the resulting data may
be biased because plants that are subjected to frequent handling may behave differently from
others. In irrigated wetland rice, for example, frequent trampling around plants, or frequent
handling of plants not only affect the plant characters being measured but also affect the
plants’ final yields. On the other hand, the use of an entirely different set of sample plants at
different growth stages could introduce variation due to differences between sample plants. The
partial replacement procedure provides for a satisfactory compromise between the two conflicting
situations. With partial replacement, only a portion p of the sample plants used in one growth
stage is retained for measurement in the succeeding stage. The other portion of (1-p) sample
plants is randomly obtained from the remaining plants in the plot. The size of p depends on the
size of the estimated undesirable effect of repeated measurements of the sample plants in a
particular experiment. The smaller this effect, the larger p should be. For example, in the
measurement of plant height and tiller number in transplanted rice, p is usually about 0.75. That
is, about 75% of the sample plants measured at given growth stage is retained for measurement in
the succeeding stage and the remaining 25% is obtained at random from the other plants in the
plot.

Analysis

The various steps involved in the analysis of sampled data is described here considering a block
design setting. Suppose an experiment is conducted with ‘t” treatments replicated ‘r’ times and let
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there be ‘n’ observations made in each plot. We assume the following linear additive model for
the block design.

Yij = p+ 1 + By + ejj + ik

where Yij is the observation on the k™ sample for the i"" treatment in the j" replicate (i = 1,2,...,t ;
j=1,2,..,r;k=12..n), u is the general mean effect, t; is the effect of i™ treatment, Bj is the

effect of j" replication, ejj 1s the plot error distributed as N(O , ci ), Miijk is the sampling error
distributed as N(0, 6 %).

The analysis of variance will be of the form given below:

ANOVA
Source D.F. S.S M.S. E(M.S))
Replication (r-1) SST
2 2 m 2
Treatments (t-1) SSR o *ho, +tT12(Ti -T.)
J
Treatment x Replication (t-1) (r-1) | SSRT Sf Gg +n Gg
(Plot error)
Sampling Error rt(n-1) SSE si o’
(Samples within plots)
Total rtn-1
The sampling error is estimated as 62 = Si.
o _St-55

The plot error is estimated as 6& = .
n

When G2 is negative, it is taken as zero.

The variance of the i treatment mean (Y, ) based on r-replications and s-samples per plot =

G5 +No3

rn
(6% +né63)
n

Taking the number of sampling units in a plot to be large (infinite), the estimated variance of a
~2

treatment mean when there is complete recording (i.e. the entire plot is harvested) = Oe
r

The estimated variance of (\_(i__) =

The efficiency of sampling as compared to complete recording
A2
celr

(62 +n63)/m

The standard error of a treatment mean ('Y, ) with ‘n’ samples per plot and with ‘r’ replications is
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The percentage standard error or coefficient of variation is

o A\ VY2
p= ("Sﬁ‘f] (%) jx100

m
Thus
&1
r|pi(y,)? &
(100)* r

For any given r and p, there will be t values for s corresponding to the t treatment means. The
maximum s will ensure the estimation of any treatment mean with a standard error not exceeding
p percent.

The sum of squares due to different components of ANOVA can be obtained as follows:

Form a two way table between replications and treatments, each cell figure being the total over
all samples from a plot.

2
Grand Total (G.T.) = > > >y, , Correction factor (C.F.)= %
T ]k
2
Total S.S. :ZZ[ZyUkJ n-C.F.
7 VK
Ti=i" treatment total = > D"y,
7K
R; =" replication total = > >y,
i k
Treatment S.S.= » - —C.F., Replication S.S.= Zt—:l—C.F
|

J
Replication x Treatment S.S. = Total S.S. - Replication S.S -Treatment S.S.

Total S.S. of the entire data= »_ > > vy —C.F.
i j kK

S.S. due to sampling error = Total S.S. of the entire data - Replication S.S. -
Treatment S.S. - Replication x Treatment S.S.

Exercise: To study the effect of differences in the number of plants per hill on the growth of
Maize crop, a randomized block design was laid out at the Agricultural College Farm, Poona.
The treatments tried were A - one plant per hill, B - two plants per hill, C - three plants per hill, D
- four plants per hill.
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The net plot size used in the layout was 26’ x 20’ and the spacing between hills was 2’ x 2°. The
table below gives the data on the length (in inches) of 5 cobs randomly selected from each plot:

Length of cobs (in inches)

Replication Cob Treatments
number
A B C D

I 1 9.3 9.0 8.6 6.4
2 8.8 9.0 7.0 7.2

3 9.0 10.5 8.4 6.8

4 8.8 8.9 9.1 7.7

5 8.6 9.2 8.2 6.0

I 1 10.2 9.7 9.0 6.4
2 9.0 10.0 8.0 7.4

3 9.4 9.2 8.1 6.8

4 9.6 10.5 8.2 6.8

5 9.8 10.3 7.0 6.6

Replication Cob Treatments
number

A B C D

i 1 9.9 8.4 7.5 6.3
2 10.4 9.4 7.5 6.7

3 11.0 8.2 8.5 6.0

4 10.8 9.1 8.0 7.0

5 10.0 9.8 8.6 7.3

v 1 10.6 8.8 7.0 8.4
2 9.2 9.3 7.3 7.8

3 9.9 9.9 7.6 8.0

4 10.4 9.0 6.7 8.4

5 9.9 8.0 6.5 7.5

Vv 1 10.4 11.0 9.9 1.7
2 9.0 10.4 9.0 7.0

3 9.7 9.0 8.9 7.0

4 9.3 10.2 8.9 6.7

5 9.6 9.6 9.4 7.2

(@) Analyze the data and find the standard error of treatment means.

(b) Estimate the plot and sampling components of error variance and use these estimates to find
out the relative efficiency of sampling.

(c) Prepare a table giving the minimum number of sampling units per plot necessary to estimate
the treatment means with 4 and 5 percent standard error when the number of replications are
5and 6.
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Calculations
Step 1: Form the following two way table between replications and treatments, each cell figure
being the total of cob lengths in five samples from a plot.

Replication Treatments Total
A B C D
I 44.5 46.6 41.3 343.1 166.5
I 48.0 49.7 40.3 340 1720
" 52.1 44.9 40.1 33.3 1704
v 50.0 45.0 35.1 40.1 170.2
\% 48.0 50.2 46.1 356 179.9
Total 242.6 236.4 202.9 177.1  859.0

Step 2: Calculation of sum of squares and Analysis of variance.

The various sum of squares can be obtained using the formulae given above and the Analysis of
Variance table can be obtained.

ANOVA
Source D.F. S.S. M.S. F
Replication 4 491 1.23 0.59
Treatment 3 112.09 37.36 | 18.05**
Replication x Treatment 12 24.88 2.07 6.68*
(plot error)
Samples within plots | 80 24.91 0.31
(Sampling error)
Total 99 166.79

** denotes significant at 1 percent level and * significant at 5 percent level.

The mean square (sf) is first tested against si if - (i) sf is significant, then treatments are
tested against sf and if -(ii) sf is not significant , the treatments are tested against the pooled
mean square of s; and s} .

In the present case sf is significant, so we test the treatments against sf :

Step 3: Standard Error

Standard Error of the difference between two treatment means

/s /2x207
SEg= =0.4069 inches.
5x5

Step 4: Efficiency
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2 2 _

65(29 _ S1 . S5 _ 2.07 031: 0.3520

62 =s3=031
The estimated variance of

a2 a2

Y _0s_ %e _2070 _,ngog

Toormoor 25
~2

Estimated variance in case of complete recording :%: &552 =0.0704.

Efficiency of sampling as compared to complete recording

~2
celr ~0 85

(62 +n63)/m
Step 5: Estimation of sampling units per plot

= I T
r |p°(Y)° o

(100  r

Thus the number of sampling units required to measure the treatment means with 4 and 5 per
cent standard error when the number of replication are 5 and 6 is worked out and is presented
below.

Sampling units per plot (s)

Treatments Treatment p=4 p=5
means r=>5 r==6 r=>5 r==6
1 9.704 1 1 1 1
2 9.456 1 1 1 1
3 8.116 2 2 1 1
4 7.084 5 3 2 1

Step 6: Conclusion
(@) The treatments are found to be highly significant.
(b) Efficiency of sampling as compared to complete recording is 85 per cent.
(c) The number of sampling units necessary to estimate treatment means with
(i) 4 per cent standard error
when number of replications is 5 is 5,
when number of replications is 6 is 3.
(ii) 5 per cent standard error
when number of replications is 5 is 2,
when number of replications is 6 is 1.

225



PROBIT ANALYSIS OF DOSE-RESPONSE DATA

1. Introduction

Probit analysis is widely used in various fields where the response variable is qualitative. The
main application of probit analysis is observed in the field of toxicological studies, where it
transforms the sigmoid dose-response curve to a straight line that can then be easily analyzed by
regression either through least squares or maximum likelihood. In other words, probit analysis is
a methodology which transforms the complex percentage affected vs. dose response into a linear
relation of probit vs. dose response. The probit can then be translated into percentages. The
method is appropriate because of the typical shape found in the dose response curve. The method
is approximate but allows quantification of consequence due to exposure.

“Probit” is an abbreviation of the term “probability unit” (the term is attributed to Bliss) and was
the first such model developed and studied to treat data such as the percentage of pest killed by a
pesticide. Bliss(1934) proposed transforming the percentage killed into “probit” (he defined it
arbitrarily as equal to 0 for 0.0001 and 10 for 0.9999) and included a table to aid other
researchers to convert kill-percentage to probit, which then could be plotted against the logarithm
of the dose i.e. dosage. The table introduced by Bliss was carried forward in an important text on
toxicological application by Finney (1952). Values tabulated by Bliss can be derived from probit
as defined here by adding a value of 5. Using Bliss’s idea, Leslie et al. (1945) were able to
discuss the distribution of body—weight at which female rats in the wild reach maturity through
probit analysis.

Mainly Probit analysis is used to analyze data from bioassays [most commonly refers to
assessment of vitamins, hormones, toxicants and drugs of all kinds by means of response
produced when doses are given to experimental animals (Finney 1952)] experiments, such as
proportion of insect killed by several concentrations of an insecticide or at several time intervals
at one or more concentration of an insecticide (Throne et al., 1995). One type of assay which has
been found valuable in many different fields, but especially in toxicological studies, is that
dependent upon quantal or all-or-nothing response. Though quantitative measurement of a
response is almost always to be preferred when practicable, there are certain responses which
permit no graduation and which can only be expressed as ‘occurring’ or ‘not-occurring’. The
most common example is mortality such as in many insecticidal studies the interest lies in
whether or not a test insect is dead, or whether the insect has reached a certain degree of
inactivation. In fungicidal investigations, failure of a spore to germinate is a quantal response of
similar importance.

2. Probit Model

In probability theory and statistics, the probit function is the inverse cumulative distribution
function (CDF), associated with the standard normal distribution. An alternative distribution
could be the logistic distribution, which leads to the logit or logistic model. Both logistic and
probit curves are so similar that they yield almost identical results. In practice they give estimated
probabilities that differs very little (Aldrich and Nelson, 1984). The choice between logistic and
probit is a matter of practical preference and experience.

For the standard normal distribution N (0, 1), the CDF is commonly denoted by ® (2)
(continuous, monotone increasing sigmoid function) given by,
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2

z 1 z _U
CD(z):P(ZSZ):_L (p(U)dUzE_{O e 2du .. (2.1)

As an example, considering the familiar fact that the N (0, 1) distribution places 95% of
probability between -1.96 and 1.96, and is symmetric about zero, it follows that

D(-1.96) =0.025=1-D(1.96) ... (2.2)
The probit function gives the 'inverse' computation, generating a value of an N (0, 1) random

variable, associated with specified cumulative probability. Formally, the probit function is the
inverse of @ (z), denoted by @ ~'(p). Continuing the example,

@ 1(0.025) = -1.96 = —®1(0.975) ... (2.3)
In general,

@ (probit(p))=p and probit (P(z))=z ... (24
In statistics, a probit model is a popular specification of a generalized linear model. If Y be a
binary response variable, and let X be the single predictor variable, then the probit model

assumes that,

P(Y;=1X;=X) = O(a-+Px;)

oFPx; —122 ...(25
=% I e 2 dz 25)
N2x

where ® is the CDF of the standard normal distribution. The parameters £ are estimated by
maximum likelihood.

3. Quantal Response

3.1 Frequency Distribution of Tolerance

Two major components in any dose-response situation are the stimulus (e.g. a vitamin, a drug, a
mental test or a physical force) and the subject (e.g. an animal, a plant, a human volunteer etc.). A
stimulus is applied to the subject at a specified dose, intensity specified in units of concentration,
weight, time or other appropriate measure, under controlled environmental condition. As a result
subject manifests a response.

The response is quantal, occurrence or non-occurrence will depend upon the intensity of the
stimulus. For any subject under controlled conditions, response occurs above a certain level of
intensity, such a value is generally known as threshold or limen, but tolerance is now widely
accepted. The tolerance value will vary from one subject to another in the population used. For
quantal response data it is therefore necessary to consider distribution of tolerance over the
population studied. If the dose or intensity of stimulus is measured by z, the distribution of
tolerance may be expressed by:
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dP =f(z)dz ...(31)

This equation states the proportion, dP, of the whole population of subject whose tolerance lie
between z and z+dz at the time of testing, where dz represents a small interval on dose scale;
the factor relating dP to the length of this interval is the frequency function, f(z), uniquely

determined for each possible value of z.

If a dose z, were given to the whole population, every individual whose tolerance was less than

z, would respond. The proportion of these isP,
where

P= jo f(2)dz - (3.2)
0

The measure of dose is here assumed to be a quantity that can conceivably range from zero
to +oo, response being certain for very high doses so that

Ojof(z)dz =1 ... (3.33)
0

3.2 The Dose Metameter

The frequency distribution of tolerances, as measured on the natural scale, is usually markedly
skewed, but often a simple transformation of the scale of measurement will convert it to a
distribution approximately of normal form. The transformed scale of dose on which tolerances
are normally distributed is known as metametric scale, and the measure of dose is the dose
metameter.

The transformation

x=logypz ... (3.4)

generally brings normality in the response variable, however for some fungicide a better
transformation may be

x=z', where usuallyi<1.

3.3 The Median Effective Dose The
effectiveness of a stimulus in relation to a quantal response is referred to as the minimal effective
dose, or, for a more restricted class of stimuli as the minimal lethal dose. However it does not
take into account the variation in tolerance within a population. The logical weakness of such
concepts is the assumption that there is a dose for any given chemical, which is only just
sufficient to kill all or most of the animals of a given species, and that doses a bit lesser would
not kill any animal of that species. However, in toxicological studies such assumptions do not
always hold good.

It might be thought that the minimal lethal dose of a poison could instead be defined as the dose
just sufficient to kill a member of the species with the least possible tolerance, and also a
maximal non-lethal dose as the dose, which will just fail to kill the most resistant member. Some
doses will be so low that no test subject will succumb to them and others so high as to prove fatal
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at all and difficulties arise in determination of the end-points of these ranges. The problem is that
of determining the dose at which the dose response curve for the whole population needs the 0%
or 100% levels of kill and even a very large experiment could scarcely estimate these points with
any accuracy.

Alternatively, a median lethal dose, or, as a more general term to include response other than
mortality, a median effective dose is preferred. This is the dose that will produce a response in
half the population. The median effective dose is commonly referred to as the EDsp, the more
restricted concept of median lethal dose as the LDso. With a fixed total number of subjects,
effective doses in the neighborhood of EDsg can usually be estimated more precisely than those
for more extreme percentage levels and this is, therefore, particularly favoured in expressing the
effectiveness of the stimulus. The EDsp can be regarded as the median of the tolerance
distribution and thus it is the level of tolerance such that exactly half the subject lies on either
side of it.

For any distribution of tolerance, the EDsy is the value of z,, such that
29
j f(2)dz =05 ... (3.5)
0

When a simple normalizing transformation for the doses is available, so that x, the normalizing

measure of dose (commonly known as dosage), has a normally distributed tolerance, equation
(3.1) is transformable to

1 - L (x-)?
dP= e 20° dx . ...(36
o~ 2I1 (36)

where p is the center of the distribution and o2, its variance. The w is the population value of the
mean dosage tolerance, or median effective dosage, and efforts must be directed at estimating it
from the observational data. The logioEDsy is the value of X, for which

) ix 2

[

(xn)
e 20°  dx=05 .. (37)

o271

The solution of equation (3.7) is p, so that the EDsq is10".

Any two insecticides may require the same rate of application in order to be effective to half the
population, but, if the distribution of tolerances has a lesser 'spread’ for one than for the other, any
increase or decrease from this rate will produce a greater change in mortality for the first than for

the second. This spread is measured by the variance o2 . This measure along with the EDsq fully

describes the effectiveness of the stimulus. The smaller the value of 02, the greater is the effect
on mortality of any change in dose.

4. Estimation of the Median Effective Dose

4.1 The N.E.D. and Probit Transformation
Initially the measure of the probability of response was proposed on a transformed scale i.e. the
normal equivalent deviate (or N.E.D.). This response metameter is Y, defined by:

229



Probit Analysis of Dose-Response Data

P= — j e 2 du - (4.1)

Thus the N.E.D. of any value of P between 0 and 1 is defined as the abscissa corresponding to a
probability P in a normal distribution with mean 0 and variance 1.

Equation (4.1) determines either of P and Y uniquely from the other. From integration of

equation (3.6), if P is the probability of response at a dosage whose metameter is a particular
value X, then

1 2
X 1 —272()(—#)

P=| —e 40 dx .. (4.2
. oN2rx (42
which by writing X = ptou
X
o] 12
becomes P= j Le 2 du (4.3)
Comparison
of equation (4.3) with equation (4.1) shows that
y= K- (44

(¢
Thus, the relation between the dose metameter (x) and the N.E.D. of the probability of response
at that dosage is a straight line.

Bliss (1934) suggested a slightly different response metameter. Bliss defined the probit of the
proportion P as Y, where

P=—— J. e-2 du ... (4.5)

For any P, the probit is simply the N.E.D. increased by 5. All subsequent theory is essentially
same for the two metameters. The N.E.D, however, is negative if P is less than 50%, whereas the
probit is generally positive unless P is exceedingly small.

Comparison with equation (4.1) shows that the probit of the expected proportion responded is
related by the linear equation

v=5+1 (x-p) ... (4.8)
(@)

In particular, the median effective dosage is estimated as that value of x which gives Y = 5.
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4.2 The Probit Regression Line When
experimental data on the relationship between dosage and response have been obtained, either a
graphical or an arithmetical approach can be used to estimate the parameters. Both approaches
depend on the probit transformation. The graphical approach is much more rapid and is
sufficiently good for many purposes, but for some, more complex problems, or when an accurate
assessment of the precision of estimates is wanted, the more detailed arithmetical analysis is
necessary. Here graphical approach is discussed.

To start with, the percentage response observed for each dose are calculated and converted to
probits by means of the following table (Finney, 1971):

Table 4.1: Transformation of percentages to probits

e L1 1 2 4 4 7] L] T 8 1]

0 — 267 295 3.12 3.26 3.30 345 3.62 3.69 3.00
10 3,72 377 3.82 32.B7 3.02 3.00 4.01 405 4.08 4.12
20 4.16 4.19% 4.23 4.20 4.20 4.33 4.30 4.38 4.42 4.40
30 4.48 450 4.53 4.50 4.60 4.01 "4.04 4.07 4.00 4.72
40 4.76 4.77 4.80 4.82 4. 85 4.B7 4.00 402 4.95 4.97
50 GO0 503 6058 508 6.10 513 5.156 5.18 520 5.23
o0 G626 ©6.28 06,31 6.33 630 0,30 0541 OG4d 047 B5.060
70 5,52 5.55 G6.08B 601 6.G4 6.07 571 674 677 G6.81
80 5.4 O5.88 502 L6956 509 €04 6.08 6.13 0.18 0.23
90 0.28 0.34 041 0O.48 O.60 ©C.04 G756 G688 T7.08 7T.33

—_ 0.0+ 0.1 0.2 0.3 04 05 06 09 0.8 0.8
90 T.33 T.37 T.41 T40 T.01 T.68 T.060 T.70 T.88 B.00

For example for a 17% response, the corresponding probit would be 4.05. Additionally,
for a 50% response (LC50), the corresponding probit would be 5.00.

The probits are then plotted against the dose metameter i.e. the logarithm (base 10) of the dose.
Very extreme probits, say outside the range 2.5-7.5, carry little weight and should be disregarded.
A straight line is drawn to fit the points as satisfactorily as possible. The line is nothing but the
weighted regression line of the mortality probit on x. By visual inspection, the logioEDsg is
estimated from the line as m, the dosage at which Y = 5. This can be taken as estimate of p.The
estimated slope of the line (b) is an estimate of 1/o, can be obtained as the increase in Y for a unit
increase in X. These two estimates are then substituted for the parameters in equation (4.6) to give
the estimated relation between dosage and response. To test the hypothesis that the line is an

adequate representation of the data, a thest of the form
r-n
Z( p)° ~ 2o 4
np(l-p)

may be used. Here n is the number of subjects exposed to a specific concentration, r is the
r . .
observed number of units respond out of n number of unit, p = o is the estimated proportion of

response for that particular concentration. Here k level of concentration is applied over the test
subject and summation is taken over all the level of concentration tested. A value of Xz within
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the limits of random variation indicates satisfactory agreement theory (the line) and observation
(the data).

Example 4.1: Table 4.2 contains the data on effect of a series of concentrations of the pesticide
Rotenone when spraying on Macrosiphoniella sanborni, the chrysanthemum aphis, in batches of
about fifty (Finney, 1971).

Table 4.2: Toxicity of Rotenone to Macrosiphoniella sanborni

Concentration No. of No. of % kill Log Empirical
(mg. /1)) insects affected concentration probit
(n) (r) () (x)
10.2 50 44 88 1.01 6.18
7.7 49 42 86 0.89 6.08
51 46 24 52 0.71 5.05
3.8 48 16 33 0.58 4.56
2.6 50 6 12 0.41 3.82
0 49 0 0 - -

Table 4.2 summarizes the dose metameter, percentage kill, and empirical probit values for the
experiment. Over the range of concentrations tested, the relation between percentage kills and log
concentration is apparently sigmoid. The percentages are plotted against the logarithm of doses
and fitted with the normal sigmoid curve in Fig. 4.1.

100

T

80 -

Percentage kill

40

0.4 0.6 0.8 1.0

Log concentration (mg/l)

Fig.4.1: Relation between percentage kill of Macrosiphoniella sanborni and logarithm of dose
of Rotenone.

In order to fit a straight line, percentages of kill have been converted into probits using Table 4.1
and are given in the last column of Table 4.3. When probits are plotted against dosages
(logarithm to the base 10 of doses); they lie nearly on a straight line. Fig 4.2 gives the plot of
probits vs. dosages. From this line, probits corresponding to many different values of x can be
found out and converted back to percentages by using Table 4.1 inversely.
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6.0 -

Probit of kill

4.0 -

3.0 1 1 1 1 1 H 1
0.4 0.6 0.8 1.0

Log concentration (mg/l)

Fig. 4.2: Relation between probit of kill of Macrosiphoniella sanborni and logarithm of dose of
Rotenone.

In Fig. 4.2 of the present example, a probit value of 5 is given by a dosage of m = 0.687; this
therefore is the estimate of logi;oEDsp, and the EDs is estimated as a concentration of 4.86mg/I.
Similarly the logi1oEDgy corresponds to a probit of 6.28 and is therefore 1.006; the EDy is thus
estimated as 10.14 mg/I.

Thus Fig. 5.2 can also be used to give the slope of the line: an increase of 0.319 in x corresponds
with an increase of 1.28 in probit. Hence the estimated regression coefficient of probit on dosage,
or the rate of increase of probit value per unit increase in X, is

b=4.01 ... (4.8)

Thus equation (4.6) becomes

Y =5+4.01 (x - 0.687), or Y = 2.25 + 4.01x ... (4.9)

Equation (4.9) may be used to calculate expected numbers of insects killed at each concentration.
By substitution of the values of x used in the experiment, the equation gives the values of Y
which are given in column 2 of Table 4.3 as expected probits. Thus a probit of 6.30 corresponds
to a percentage of between 90 and 91, or, more accurately, 90 + 2/6%. If the expected proportion
for any concentration is multiplied by n, the number of insects tested at that concentration, the
result is the expected number of responded insects, or the average number which would be
affected in a batch of size n if equation (4.9) represents the true relationship between dosage and
response. These numbers, np, may then be compared with the actual numbers affected, r, in order
to judge the adequacy of the equation.

233



Probit Analysis of Dose-Response Data

Table 4.3: Comparison of Observed and Expected Mortality

Log Expect | % No. No. affected Discrepancy | (r-np)?
concentrat | ed kill | of 51 cerved Expected np(1-p)

ion probit insect

s
(r-np)

(x) (Y) P | () (n) (np)

1.01 6.30 90.3 50 44 45.2 -1.2 0.33

0.89 5.83 79.7 40 42 39.1 2.9 1.06

0.71 5.10 54.0 46 24 24.8 -0.8 0.06

0.58 4.58 33.7 48 16 16.2 -0.2 0.00

0.41 3.90 13.6 50 6 6.8 -0.8 0.11

Xé]=1.56

Since proportion of response has been estimated from the data, the degree of freedom of x2(23)
is two less than the number of concentrations tested. From Fisher and Yates Table (1964, Table

IV), the tabulated value of X[23] at 5% level of significance is 7.815. Thus the calculated value of

;([23] (1.56) is much smaller than the tabulated value of x[zs] at 5% level of significance. Hence,

the probit regression line is very satisfactory representation of the results of the experiment.

5. Conclusions

Probit analysis has been widely used in diverse fields wherein the response variable is qualitative.
Probit analysis for dose-response studies under regression framework is commonly done. In such
studies, the estimation of the median effective dose (EDsp) i.e. the dose that will produce a
response in half the population along with its variance can be chiefly done. This can be easily be

achieved by using any standard statistical software.
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LOGISTIC REGRESSION

1. Introduction

Regression analysis is a widely used method for obtaining a functional relationship between the
response or dependent variable and one or more explanatory or predictor variables. In all the
regression models, we implicitly assumed that the response variable is quantitative in nature
whereas the explanatory variables are either quantitative, qualitative or a mixture thereof. In case
of qualitative or non-metric response variable usual assumptions of regression models are
violated, hence, it is better to look for alternative models. In practice, situations involving
categorical outcomes are quite common. Suppose we want to study the labour force participation
(LFP) decision of adult males. Since an adult is either in the labour force or not, LFP is a yes or
no decision. Similarly, in the setting of evaluating an extension program, for example, predictions
may be made for the dichotomous outcome of success/failure or improved/not-improved. An
economist may be interested in determining the probability that an agro-based industry will fail
given a number of financial ratios and the size of the firm (i.e. large or small) etc.

Usually discriminant analysis could be used for addressing each of the above problems.
However, because the independent variables are mixture of categorical and continuous variables,
the multivariate normality assumption may not hold. In these cases the most preferable technique
is the logistic regression analysis as it does not make any assumptions about the distribution of
the independent variables.

2. Violation of Assumptions of Linear Regression Model when Response is Qualitative
Linear regression is considered in order to explain the constraints in using such model when the
response variable is qualitative. Consider the following simple linear regression model with
single predictor variable and a binary response variable:

Yi:ﬁO+B1Xi +g ,1=1,2,..,n

where the outcome Y; is binary (taking values 0,1), ¢ i~N(O,c§) , and are independent and n

is the number of observations.
Let m; denote the probability that Y; =1 when X = x, i.e.

TEi=P(Yi =1|Xi= X) ZPWi =1)
thus P(Y;=0)=1-r;
Under the assumption E(gj) =0, the expected value of the response variable is
E(Y;)=1.(mj)+0.(1-mj)=m;
If the response is binary, then the error terms can take on two values, namely,
gg=1-m  whenY;=1
g =-T, when Y; =0

Because the error is dichotomous (discrete), so normality assumption is violated. Moreover, the
error variance is given by:

V(ei) = mj (1-7)? +(1-m )(-m;)
= mj(1-mj)



It can be seen that variance is a function of ;s and it is not constant. Therefore the assumption
of homoscadasticity (equal variance) does not hold.

3. Logistic Regression

Logistic regression is normally recommended when the independent variables do not satisfy the
multivariate normality assumption and at the same time the response variable is qualitative.
Situations where the response variable is qualitative and independent variables are mixture of
categorical and continuous variables, are quite common and occur extensively in statistical
applications in agriculture, medical science etc. The statistical model preferred for the analysis of
such binary (dichotomous) responses is the binary logistic regression model, developed primarily
by a researcher named Cox during the late 1950s. Processes producing sigmoidal or elongated
S-shaped curves are quite common in agricultural data. Logistic regression models are more
appropriate when response variable is qualitative and a non-linear relationship can be established
between the response variable and the qualitative and quantitative factors affecting it. It
addresses the same questions that discriminant function analysis and multiple regression do but
with no distributional assumptions on the predictors. In logistic regression model, the predictors
need not have to be normally distributed, the relationship between response and predictors need
not be linear or the observations need not have equal variance in each group etc. A good account
on logistic regression can be found in Fox (1984) and Kleinbaum (1994).

The problem of non-normality and heteroscadasticity leads to the non applicability of least square
estimation for the linear probability model. Weighted least square estimation, when used as an
alternative, can cause the fitted values not constrained to the interval (0, 1) and therefore cannot
be interpreted as probabilities. Moreover, some of the error variance may come out to be
negative. One solution to this problem is simply to constrain the probability of outcome to the
unit interval while retaining the linear relation between probability of outcome and regressor
within the interval. However, this constrained linear probability model has certain unattractive
features such as abrupt changes in slope at the extremes 0 and 1 making it hard for fitting the
same on data. A smoother relation between the probability of outcome and regressor is generally
more sensible. To correct this problem, a positive monotone (i.e. non-decreasing) function is
required to transform linear combination of regressor to unit interval. Any cumulative probability
distribution function (CDF) meets this requirement. That is, re-specify the model as w; =P (Bo +
B1Xi). where, m; is the probability of outcome and P is the cumulative distribution function.
Moreover, it is advantageous if P is strictly increasing, for then, the transformation is one-to-one,
so that model can be rewritten as P™(m;) = (Bo + Buxi), where P is the inverse of the CDF P. Thus
the non-linear model for itself will become both smooth and symmetric, approaching = = 0 and
=1 as asymptotes. Thereafter maximum likelihood method of estimation can be employed for
model fitting.

3.1 Properties of Logistic Regression Model

The Logistic response function resembles an S-shape curve, a sketch of which is given in the
following figure. Here the probability & initially increases slowly with increase in X, and then the
increase accelerates, finally stabilizes, but does not increase beyond 1.
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The shape of the S-curve can be reproduced if the probabilities can be modeled with only one
predictor variable as follows:

n=P(Y=1|X=x)=1/(1+¢?)
where z = By + B1X, and e is the base of the natural logarithm. Thus for more than one (say r)

explanatory variables, the probability m is modeled as
n=P(Y=1|X1=x1..X;=X;)
=1/(1+e7%)
where 2= Bo+Bixq+.. Xy
This equation is called the logistic regression equation. It is nonlinear in the parameters Bo, Pi...
Br. Modeling the response probabilities by the logistic distribution and estimating the parameters
of the model constitutes fitting a logistic regression. The method of estimation generally used is
the maximum likelihood estimation method.
To explain the popularity of logistic regression, let us consider the mathematical form on which
the logistic model is based. This function, called f (z), is given by
f(2) =1/ (1+e?),-0<z <o
Now when z = -0, f (z) =0 and when z = oo, f (z) =1. Thus the range of f (z) is 0 tol. So the
logistic model is popular because the logistic function, on which the model is based, provides
. Estimates that lie in the range between zero and one.
. An appealing S-shaped description of the combined effect of several explanatory
variables on the probability of an event.

3.2. Maximum Likelihood Method of Estimation of Logistic Regression

Generally, the maximum likelihood method is used for estimating the parameters of the logistic
regression model. The maximum likelihood estimates o and B; in the simple logistic regression
model are those values of Bg and B; that maximize the log-likelihood function. No closed-form
solution exists for the values of Bo and B, that maximize the log-likelihood function. Computer
intensive numerical search procedures are therefore required to find the maximum likelihood

estimates Po and P1. Standard statistical software such as SPSS (Analyze- Regression-Binary
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Logistic) provide maximum likelihood estimates for logistic regression. Once these estimates Po

and Py are found, by substituting these values into the response function the fitted response

function, say, ™, can be obtained. The fitted response function is as follows:

~ 1
=

1+ e-(fio +BiX; )

When log of the odds of occurrence of any event is considered using a logistic regression model, it
becomes a case of logit analysis. Thus formed logit model will have its right hand side as a linear
regression equation.

4. Practical Constraint

Sometimes quantitative information on adoption of a technology is not available but is available
in qualitative form such as adopted / non-adopted, low / high adoption etc. The statistical model
preferred for the analysis of such binary (dichotomous) responses is the binary logistic regression
model. It can be used to describe the relationship of several independent variables to the binary
(say, named 0 & 1) dependent variable. The logistic regression is used for obtaining probabilities
of occurrence, say E, of the different categories when the model is of the form: P(E =1) =

————— where z is a function of associated variables, if P(E =1) > 0.5 then there is more
1+exp(-2)
chance of occurrence of an event and if P(E =1) < 0.5 then probability of occurrence of the
event is minimum. If the experimenter wants to be more stringent, then the cutoff value of 0.5
could be increased to, say, 0.7.
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Microsoft (MS) Excel (%) is a powerful spreadsheet that is easy to use and allows you to store,
manipulate, analyze, and visualize data. It also supports databases, graphic and presentation
features. It is a powerful research tool and needs a minimum of teaching. Spreadsheets offer the
potential to bring the real numerical work alive and make statistics enjoyable. But the main
disadvantage is that some advanced statistical functions are not available and it takes a longer
computing time as compared to other specialized software.
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Data Entry in Spreadsheets

e Data entry should be started soon after data collection in the field

e The raw data collected should be entered directly into computer. Calculations (e.g. % dry
matter) or conversions (e.g. kg/ha to t/ha) by hand will very likely result in errors and
therefore require more data checking once the data are in MS-Excel. Calculations can be
written in MS-Excel using formulae (e.g. sum of wood biomass and leaf biomass to give total
biomass).

Data Checking

One can use calculations and conversions for data checking. For example, if the collected data is
grain yield per plot it may be difficult to see whether the values are reasonable. However, if these
are converted to yield per hectare then one can compare the numbers with our scientific
knowledge of grain yields. Simple formulae can be written to check for consistency in the data.
For example, if tree height is measured 3 times in the year, a simple formula that subtracts ‘tree
height 1' from 'tree height 2'can be used to check the correctness of the data. The numbers in the
resulting column should all be positive. We cannot have a shrinking tree! For new columns of
calculated or converted data suitable header information (what the new column is, units and short
name) at the top of the data should be included.

Missing Values

In MS-Excel the missing values are BLANK cells. It is useful to know this when calculating
formulae and summaries of the data. For example, when calculating the average of a number of
cells, if one cell is blank MS-Excel ignores this as an observation (i.e., the average is the
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sum/number of non-blank cells). But if the cell contains a ‘0" then this is included in the
calculation (i.e., the average is the sum/no. of cells). In a column of 'number of fruit per plot', a
missing value could signify zero (tree is there but no fruit), dead (tree was there but died so no
fruit), lost (measurement was lost, illegible.) or not representative (tree had been browsed
severely by goats). In this example, depending on the objectives of the trial, the scientist might
choose to put a '0" in the cells of trees with no fruit and leave blank (but add comments) for the
other 'missing values'.

Pivot Tables (to check consistency between replicates)

Variation between replicates is expected, but some level of consistency is also usual. We can use
pivot tables to look at the data. A pivot table is an interactive worksheet table that quickly
summarizes large amount of data using a format and calculation methods you choose. It is called
pivot table because you can rotate its row and column heading around the core data area to give
you different views of the source data. A pivot table provides an easy way for you to display and
analyze summary information about data already created in MS-Excel or other application.

e Keep the cursor anywhere within the data range

e Choose “Insert” “Pivot Table” then “OK”

e From the “Pivot table Field List” drag and drop the respective fields under “Column
Labels” , “Row Labels” and “~ Values”

e Select “Value Field Settings” by clicking on the down arrow in “X Values” and choose
the appropriate option and then click “OK”
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Scatter Plots (to check consistency between variates)

We can often expect two measured variables to have a fairly consistent relationship with each
other. For example, 'number of fruits' with 'weight of fruits' or Stover yield plotted against grain
yield. To look for odd values we could plot one against the other in a scatter plot. Scatter plots
are useful tools for helping to spot outliers. This option is available under “Insert” menu.

Line Plots (to examine changes over time)

Where measurements on a 'unit' are taken on several occasions over a period of time it may be
possible to check that the changes are realistic. A check back at the problematic data which is not
in the usual trend can be made. . This option is available under “Insert” menu.
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Double Data Entry

One effective, although not always practical, way of checking for errors caused by data entry
mistakes is double entry. The data are entered by two individuals onto separate sheets that have
the same design structure. The sheets are then compared and any inconsistencies are checked
with the original data. It is assumed that the two data entry operators will not make the same
errors. There is no 'built-in" system for double entry in MS-Excel. However, there are some
functions that can be used to compare the two copies. An example is the DELTA function that
compares two values and returns a 1 if they are the same and a 0 otherwise. To use this function
we would set up a third worksheet and input a formula into each cell that compares the two
identical cells in the other two worksheets. The 0's on the third worksheet will therefore identify
the contradictions between the two sets of data. This method can also be used to check survey
data but for the process to work the records must be entered in exactly the same order in both
sheets. If a section at the bottom of the third worksheet contains mostly 0's, this could indicate
that you have omitted a record in one of the other sheets.

Preparing Data for Export to a Statistical Package

Statistical analysis of research data usually involves exporting the data into a statistical package
such as GENSTAT, SAS or SPSS. These packages require you to give the MS-Excel cell range
from which data are to be taken. In the latest editions of MS-Excel we can mark these ranges
within MS-Excel and then transfer them directly into the statistical packages.

e Highlight the data you require including the column titles (the codes which have been used
to label the factors and variables).

e Go to the Name Box, an empty white box at the top left of the spreadsheet. Click in this box
and type a name for the highlighted range (e.g., Data). Press Enter.

e  From now on, when you want to select your data to export go to the Name Box and select
that name (e.g. Data). The relevant data will then be highlighted.

MS-Excel Help

If you get stuck on any aspect of MS-Excel then use the Help facility by clicking “F1” key. It
contains extensive topics and by typing in a question you can extract the required information.
See the snapshot below for an example:
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Features of MS-Excel

Analytic Features
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e The windows interface includes windows, pull down menus, dialog boxes and mouse
support

e Repetitive tasks can be automated with MS-Excel. Easy to use macros and user defined
functions

o Full featured graphing and charting facilities
e Supports on screen databases with querying, extracting and sorting functions
e Permits the user to add, edit, delete and find database records

Presentation Features
e Individual cells and chart text can be formatted to any font and font size
e Variations in font size, style and alignment control can be determined
e The user can add legends, text, pattern, scaling and symbols to charts.

Charts and Graphs

A chart is a graphic representation of worksheet data. The dimension of a chart depends upon the
range of the data selected. Charts are created on a worksheet or as a separate document that is
saved with an extension xlsx. MS-Excel automatically scales the axes, creates columns categories
and labels the columns. Values from worksheet cells or data points are displayed as bars, lines,
columns, pie slices, or other shapes in the chart. Showing a data in a chart can make it clearer,
interesting and easier to understand. Charts can also help the user to evaluate his/her data and
make comparisons between different worksheet values.

Creating Line Chart

e Select relevant part of data

e Choose “Insert” “line”

e Select an appropriate option of line chart and click

Necessary changes in the chart can be done by clicking the right button of the mouse and
choosing appropriate options.
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Sorting and Filtering
MS-Excel makes it easy to organize, find and create report from data stored in a list.

Sort: To organize data in a list alphabetically, numerically or chronologically.

(i) To sort entire list
e Select asingle cell in the list
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e Choose “data” “sort”

(i) Sorting column from left to right
e Choose the “option” button in the sort dialog box
¢ In the sort option dialog box, select “sort left to right”
e Choose “OK”
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Filter: To quickly find and work with a subset of your data without moving or sorting it.

e Choose “Data” and click on “Filter”

e MS-Excel place a drop down arrow directly on the column labels of the list

e Choose the column based on which the data has to be filtered. Clicking on the arrow displays
a list of all the unique items in the column. Choose “Number Filter” option and define the
required conditions.

R P S—— P00l - M Crosoft Excel S

1 30 -
I 2 Custom AutoFilter m
= Show rows where;
= = 8
4] 30 is greater than E 5000 E|
= = Jad @ or
2 ) is less than E 4000 |Z|
] 30|
3 30 o | Use? to represent any single character
ki 1 40 30 3444 Beturden... Use * to represent any seriec of characters
ad 2 .l 38 i P A Top 10 (T,
' 3 10 30 k3502 = oy | Cancel
0 e Average £
] i0 il e )
. — <l ok | [ caneet [ER— L =

Statistical Functions

Excel’s statistical functions are quite powerful. In general, statistical functions take lists as
arguments rather than single numerical values or text. A list could be a group of numbers
separated by commas, such as (3,5,1,12,15,16), or a specified range of cells, such as (A1:A6),
which is the equivalent of typing out the list (A1,A2,A3,A4,A5,A6). The function COUNT(list)
counts the number of values in a list, ignoring empty or nonnumeric cells, whereas
COUNTA(list) counts the number of values in the list that have any entry at all. MIN(list) returns
a list’s smallest value, whereas MAX(list) returns a list’s largest value. The functions
AVERAGE(list), MEDIAN(list), MODE(list), STDEV(list) all carry out the statistical operations
you would expect (STDEV stands for standard deviation), when you pass a list of values as an
argument.
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Create a Formula

Formulas are equations that perform calculations on values in your worksheet. A formula starts
with an equal sign (=). For example, the following formula multiplies 2 by 3 and then adds 5 to
the result: =5+2*3. The following formulas contain operators and constants:

Example formula What it does
=128+345 Adds 128 and 345
=572 Squares 5

e Click the cell in which you want to enter the formula.

e Type = (an equal sign).

e Enter the formula.
e Press ENTER.

Create a Formula that Contains References or Names: A1+23

The following formulas contain relative references and names of other cells. The cell that
contains the formula is known as a dependent cell when its value depends on the values in other
cells. For example, cell B2 is a dependent cell if it contains the formula =C2.

Example formula What it does
=C2 Uses the value in the cell C2
=Sheet2!B2 Uses the value in cell B2 on Sheet2

=Asset-Liability ~ Subtracts a cell named Liability from a cell named Asset

e  Click the cell in which the formula enter has to be entered.

e Inthe formula bar, type = (equal sign).

e To create a reference, select a cell, a range of cells, a location in another worksheet, or a
location in another workbook. One can drag the border of the cell selection to move the
selection, or drag the corner of the border to expand the selection.

e Press ENTER.

Create a Formula that Contains a Function: = AVERAGE(A1:B4)
The following formulas contain functions:

Example formula What it does

=SUM(A:A) Adds all numbers in column A
=AVERAGE(AL1:B4) Averages all numbers in the range

Click the cell in which the formula enter has to be entered.

To start the formula with the function, click “insert function” on the formula bar.
Select the function.

Enter the arguments. When the formula is completed, press ENTER.
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Create a Formula with Nested Functions: =IF(AVERAGE(F2:F5)>50, SUM(G2:G5),0)

Nested functions use a function as one of the arguments of another function. The following
formula sums a set of numbers (G2:G5) only if the average of another set of numbers (F2:F5) is
greater than 50. Otherwise it returns 0.

Statistical Analysis Tools

Microsoft Excel provides a set of data analysis tools — called the Analysis ToolPak — that one
can use to save steps when you develop complex statistical or engineering analyses. Provide the
data and parameters for each analysis; the tool uses the appropriate statistical or engineering
macro functions and then displays the results in an output table. Some tools generate charts in
addition to output tables.

Accessing the Data Analysis Tools: To access various tools included in the Analysis ToolPak
click on “Data” menu, then click “Data Analysis” and select the appropriate analysis option. If
the “Data Analysis” command is not available, we need to load the Analysis ToolPak “select and
run the “Analysis ToolPack” from the “Add-Ins”.

Correlation

The “Correlation” analysis tool measures the relationship between two data sets that are scaled to
be independent of the unit of measurement. It can be used to determine whether two ranges of
data move together — that is, whether large values of one set are associated with large values of
the other (positive correlation), whether small values of one set are associated with large values
of the other (negative correlation), or whether values in both sets are unrelated (correlation near
Zero).

If the experimenter had measured two variables in a group of individuals, such as foot-length and
height, he/she can calculate how closely the variables are correlated with each other. Select
“Data”, “Data Analysis”. Scroll down the list, select “Correlation” and click OK. A new window
will appear where the following information needs to be entered:

Input range. Highlight the two columns of data that are the paired values for the two variables.
The cell range will automatically appear in the box. If column headings are included in this
range, tick the Labels box.

Output range. Click in this box then select a region on the worksheet where the user want the
data table displayed. It can be done by clicking on a single cell, which will become the top left
cell of the table.

Click OK and a table will be displayed showing the correlation coefficient (r) for the data.
CORREL(arrayl, array?2) also returns the correlation coefficient between two data sets.

Covariance

Covariance is a measure of the relationship between two ranges of data. The “covariance” tool
can be used to determine whether two ranges of data move together, i.e., whether large values of
one set are associated with large values of the other (positive covariance), whether small values
of one set are associated with large values of the other (negative covariance), or whether values in
both sets are unrelated (covariance near zero).

To return the covariance for individual data point pairs, use the COVAR worksheet function.
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Regression

The “Regression” analysis tool performs linear regression analysis by using the "least squares"
method to fit a line through a set of observations. You can analyze how a single dependent
variable is affected by the values of one or more independent variables. For example, one can
analyze how grain yield of barley is affected by factors like ears per plant, ear length (in cms),
100 grain weight (in gms) and number of grains per ear.

Descriptive Statistics

The “Descriptive Statistics” analysis tool generates a report of univariate statistics for data in the
input range, which includes information about the central tendency and variability of the entered
data.

Sampling

The “Sampling” analysis tool creates a sample from a population by treating the input range as a
population. When the population is too large to process or chart, a representative sample can be
used. One can also create a sample that contains only values from a particular part of a cycle if
you believe that the input data is periodic. For example, if the input range contains quarterly sales
figures, sampling with a periodic rate of four places values from the same quarter in the output
range.

Random Number Generation

The “Random Number Generation” analysis tool fills a range with independent random numbers
drawn from one of several distributions. We can characterize subjects in a population with a
probability distribution. For example, you might use a normal distribution to characterize the
population of individuals' heights.

ANOVA: Single Factor

“ANOVA: Single Factor” option can be used for analysis of one-way classified data or data
obtained from a completely randomized design. In this option, the data is given either in rows or
columns such that observations in a row or column belong to one treatment only. Accordingly,
define the input data range. Then specify whether, treatments are in rows or columns. Give the
identification of upper most left corner cell in output range and click OK. In output, we get
replication number of treatments, treatment totals, treatment means and treatment variances. In
the ANOVA table besides usual sum of squares, Mean Square, F-calculated and P-value, it also
gives the F-value at the pre-defined level of significance.

ANOVA: Two Factors with Replication

This option can be used for analysis of two-way classified data with m-observations per cell or
for analysis of data obtained from a factorial CRD with two factors with same or different levels
with same replications.

ANOVA: Two Factors without Replication

This option can be utilized for the analysis of two-way classified data with single observation per
cell or the data obtained from a randomized complete block design. Suppose that there are ‘v’
treatments and ‘r’ replications and then prepare a v x r data sheet. Define it in input range, define
alpha and output range.
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t-Test: Two-Sample Assuming Equal VVariances:

This analysis tool performs a two-sample student's t-test. This t-test form assumes that the means
of both data sets are equal; it is referred to as a homoscedastic t-test. You can use t-tests to
determine whether two sample means are equal. TTEST(arrayl,array2,tails,type) returns the
probability associated with a student’s t test.

t-Test: Two-Sample Assuming Unequal Variances:
This t-test form assumes that the variances of both ranges of data are unequal; it is referred to as a
heteroscedastic t-test. Use this test when the groups under study are distinct.

t-Test: Paired Two Sample For Means:

This analysis tool performs a paired two-sample student's t-test to determine whether a sample's
means are distinct. This t-test form does not assume that the variances of both populations are
equal. One can use this test when there is a natural pairing of observations in the samples, like a
sample group is tested twice - before and after an experiment.

F-Test Two-Sample for Variances

The F-Test Two-Sample for Variances analysis tool performs a two-sample F-test to compare
two population variances. For example, you can use an F-test to determine whether the time
scores in a swimming meet have a difference in variance for samples from two teams.
FTEST (arrayl, array2) returns the result of an F-test, the one tailed probability that the variances
of Arrayl and array 2 are not significantly different.

Transformation of Data

The validity of analysis of variance depends on certain important assumptions like normality of
errors and random effects, independence of errors, homoscedasticity of errors and effects are
additive. The analysis is likely to lead to faulty conclusions when some of these assumptions are
violated. A very common case of violation is the assumption regarding the constancy of variance
of errors. One of the alternatives in such cases is to go for a weighted analysis of variance
wherein each observation is weighted by the inverse of its variance. For this, an estimate of the
variance of each observation is to be obtained which may not be feasible always. Quite often, the
data are subjected to certain scale transformations such that in the transformed scale, the constant
variance assumption is realized. Some of such transformations can also correct for departures of
observations from normality because unequal variance is many times related to the distribution of
the variable also. Major aims of applying transformations are to bring data closer to normal
distribution, to reduce relationship between mean and variance, to reduce the influence of
outliers, to improve linearity in regression, to reduce interaction effects, to reduce skewness and
kurtosis. Certain methods are available for identifying the transformation needed for any
particular data set but one may also resort to certain standard forms of transformations depending
on the nature of the data. Most commonly used transformations in the analysis of experimental
data are Arcsine, Logarithmic and Square root. These transformations of data can be carried out
using the following options.

Arcsine (ASIN): In the case of proportions, derived from frequency data, the observed
proportion p can be changed to a new form 6 = sin*&p). This type of transformation is known as
angular or arcsine transformation. However, when nearly all values in the data lie between 0.3
and 0.7, there is no need for such transformation. It may be noted that the angular transformation
is not applicable to proportion or percentage data which are not derived from counts. For
example, percentage of marks, percentage of profit, percentage of protein in grains, oil content in
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seeds, etc., can not be subjected to angular transformation. The angular transformation is not
good when the data contain 0 or 1 values for p. The transformation in such cases is improved by
replacing 0 with (1/4n) and 1 with [1-(1/4n)], before taking angular values, where n is the number
of observations based on which p is estimated for each group.

ASIN gives the arcsine of a number. The arcsine is the angle whose sine is number and this
number must be from -1 to 1. The returned angle is given in radians in the range — /2 to /2.
To express the arcsine in degrees, multiply the result by 180/ «t. For this go to the CELL where
the transformation is required and write =ASIN (Give Cell identification for which
transformation to be done)* 180*7/22 and press ENTER. Then copy it for all observations.

Example: ASIN (0.5) equals 0.5236 (/6 radians) and ASIN (0.5)* 180/P1 equals 30 (degrees).

Logarithmic (LN): When the data are in whole numbers representing counts with a wide range,
the variances of observations within each group are usually proportional to the squares of the
group means. For data of this nature, logarithmic transformation is recommended. It squeezes the
bigger values and stretches smaller values. A simple plot of group means against the group
standard deviation will show linearity in such cases. A good example is data from an experiment
involving various types of insecticides. For the effective insecticide, insect counts on the treated
experimental unit may be small while for the ineffective ones, the counts may range from 100 to
several thousands. When zeros are present in the data, it is advisable to add 1 to each observation
before making the transformation. The log transformation is particularly effective in normalizing
positively skewed distributions. It is also used to achieve additivity of effects in certain cases.

LN gives the natural logarithm of a positive number. Natural logarithms are based on the
constant e (2.718281828845904). For this go the CELL where the transformation is required and
write = LN(Give Cell Number for which transformation to be done) and press ENTER. Then
copy it for all observations.

Example: LN(86) equals 4.454347, LN(2.7182818) equals 1, LN(EXP(3)) Equals 3 and
EXP(LN(4)) equals 4. Further, EXP returns e raised to the power of a given number, LOG
returns the logarithm of a number to a specified base and LOG 10 returns the base-10 logarithm
of a number.

Square Root (SQRT): If the original observations are brought to square root scale by taking the
square root of each observation, it is known as square root transformation. This is appropriate
when the variance is proportional to the mean as discernible from a graph of group variances
against group means. Linear relationship between mean and variance is commonly observed
when the data are in the form of small whole numbers (e.g., counts of wildlings per quadrat,
weeds per plot, earthworms per square metre of soil, insects caught in traps, etc.). When the
observed values fall within the range of 1 to 10 and especially when zeros are present, the
transformation should be, \(y + 0.5).

SQRT gives square root of a positive number. For this go to the CELL where the transformation
is required and write = SQRT (Give Cell No. for which transformation to be done = 0.5) and
press ENTER. Then copy it for all observations. However, if number is negative, SQRT return
the #NUM ! error value.

Example: SQRT(16) equals 4, SQRT(-16) equals #NUM! and SQRT(ABS(-16)) equals 4.
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Once the transformation has been made, the analysis is carried out with the transformed data and
all the conclusions are drawn in the transformed scale. However, while presenting the results, the
means and their standard errors are transformed back into original units. While transforming back
into the original units, certain corrections have to be made for the means. In the case of log
transformed data, if the mean value isy, the mean value of the original units will be antilog (y +

1.15y ) instead of antilog (Y ). If the square root transformation had been used, then the mean in
the original scale would be antilog (Y + V(¥ ))? instead of (y)? where V(Y ) represents the
variance of y. No such correction is generally made in the case of angular transformation. The
inverse transformation for angular transformation would be p = (sin g)>.

Sum(SUM): It gives the sum of all the numbers in the list of arguments. For this go to the CELL
where the sum of observations is required and write = SUM (define data range for which the sum
is required) and press ENTER. Instead of defining the data range, the exact numerical values to
be added can also be given in the argument viz. SUM (Numberl, number2,...), numberl,
number2,... are 1 to 30 arguments for which you want the sum.

Example: If cells A2:E2 contain 5, 15,30,40 and 50; SUM(A2:C2) equals 50, SUM(B2:E2,15)
equals 150 and SUM(5,15) equals 20.

Some other related functions with this option are:

AVERAGE returns the average of its arguments, PRODUCT multiplies its arguments and
SUMPRODUCT returns the sum of the products of corresponding array components.

Sum of Squares (SUMSQ): This gives the sum of the squares of the list of arguments. For this
go to the CELL where the sum of squares of observations is required and write = SUMSQ (define
data range for which the sum of squares is required) and press ENTER.

Example: If cells A2:E2 contain 5, 15, 30, 40 and 50; SUMSQ(A2:C2) equals 1150 and
SUMSQ(3,4) equals 25.

Matrix Multiplication (MMULT): It gives the matrix product of two arrays, say array 1 and
array 2. The result is an array with the same number of rows as arrayl, say a and the same
number of columns as array2, say b. For getting this mark the a x b cells on the spread sheet.
Write =MMULT (array 1, array 2) and press Control +Shift+ Enter. The number of columns in
arrayl must be the same as the number of rows in array2, and both arrays must contain only
numbers. Arrayl and array2 can be given as cell ranges, array constants, or references. If any
cells are empty or contain text, or if the number of columns in arrayl is different from the number
of rows in array2, MMULT returns the #VVALUE! error value.

Determinant of a Matrix (MDETERM): It gives the value of the determinant associated with
the matrix. Write = MDETERM(array) and press Control + Shift + Enter.

Matrix Inverse (MINVERSE): It gives the inverse matrix for the non-singular matrix stored in
a square array, say of order p. i.e., an array with equal number of rows and columns. For getting
this mark the p x p cells on the spread sheet where the inverse of the array is required and write =
MINVERSE array) and press Control + Shift + Enter. Array can be given as a cell range, such as
A1:C3; as an array constant, such as {1,2,3;4,5,6;7,8,8}; or as a name for either of these. If any
cells in array are empty or contain text, MINVERSE returns the #VALUE! error value.
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Example: MINVERSE ({4,-1;2,0}) equals {0,0.5;-1,2}and MINVERSE ({1,2,1;3,4,-1;0,2,0})
equals {0.25, 0.25,-0.75;0,0,0.5;0.75,-0.25,-0.25}.

Transpose (TRANSPOSE): For getting the transpose of an array mark the array and then select
copy from the EDIT menu. Go to the left corner of the array where the transpose is required.
Select the EDIT menu and then paste special and under paste special select the TRANSPOSE
option.

Exercises on MS-Excel
1. Table below contains values of pH and organic carbon content observed in soil samples

collected from natural forest. Compute mean, median, standard deviation, range and
skewness of the data.

Soil pH Organic Soil pit pH Organic
pit (x) carbon (%) (x) carbon (%)
() (v)
1 5.7 2.10 9 5.4 2.09
2 6.1 2.17 10 5.9 1.01
3 5.2 1.97 11 5.3 0.89
4 5.7 1.39 12 5.4 1.60
5 5.6 2.26 13 51 0.90
6 5.1 1.29 14 5.1 1.01
7 5.8 1.17 15 5.2 1.21
8 5.5 1.14
2. Consider the following data on various characteristics of a crop:
pp ph ngl yield
142 0525 8.2 2.47

143 0.64 9.5 4.76
107 0.66 9.3 3.31
78 0.66 7.5 1.97
100 0.46 5.9 1.34
86.5 0345 6.4 1.14
1035 0.86 6.4 1.5

155.99 0.33 7.5 2.03
80.88 0285 8.4 2.54
109.77 0.59 10.6 4.9

61.77 0.265 8.3 291
79.11  0.66 11.6 2.76
155.99 0.42 8.1 0.59
61.81 0.34 9.4 0.84
74.5 0.63 8.4 3.87
97 0705 7.2 4.47
93.14 0.68 6.4 3.31
3743 0665 84 1.57
36.44 0275 74 0.53
51 0.28 7.4 1.15
104 0.28 9.8 1.08
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49 0.49 4.8 1.83
5466 0385 5.5 0.76
5555 0.265 5 0.43
88.44  0.98 5 4.08

9955 0645 96 2.83
63.99 0635 5.6 2.57
101.77 0.29 8.2 7.42
138.66 0.72 9.9 2.62
90.22 0.63 8.4 2

(i) Sort yield in ascending order and filter the data ph less than 0.3 or greater than 0.6 from
the data.

(if) Find the correlation coefficient and fit the multiple regression equation by taking yield as
dependent variable.

3. Let A, B and C be three matrices as follows

24619 5 3 RERE
3567 2
A= B=|2 4| C=|2 3 55 7
8 3915 19 2366 1
31113
8 1 12855
Find (i) AB (i) Cc* (iii) |A| (iv) AT,

4. Draw line graph for the following data on a tree species:

Year | Height (cm) | Diameter
1981 21 5.0
1982 34 8.0
1983 11 9.0
1984 13 3.0
1985 15 2.4
1986 55 5.5
1987 30 6.9
1988 50 9.1
1989 23 10.0
1990 22 2.5
1991 37 3.4
1992 38 6.2
1993 37 7.0
1994 11 8.1
1995 20 9.0
1996 16 3.7
1997 54 9.0
1998 33 4.0
1999 12 6.7
2000 19 7.7

Also draw a bar diagram using the above data.
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5. The table below lists plant height in cm of seedlings of rice belonging to the two varieties.
Examine whether the two samples are coming from populations having equal variance, using
F-test. Further, test whether the average height of the two groups are the same, using
appropriate t-test.

Plot | Group | Group Il
[
1 23.0 8.5
2 17.4 9.6
3 17.0 7.7
4 20.5 10.1
5 22.7 9.7
6 24.0 13.2
7 22.5 10.3
8 22.7 9.1
9 19.4 10.5
10 |18.8 7.4

6. Examine whether the average organic carbon content measured from two layers of a set of
soil pits from a pasture are same using paired t-test from the data given below:

Organic carbon (%)

Soil | Layer1l Layer 2
pit (x) (v)
1 1.59 1.21
2 1.39 0.92
3 1.64 1.31
4 1.17 1.52
5 1.27 1.62
6 1.58 0.91
7 1.64 1.23
8 1.53 1.21
9 1.21 1.58
10 1.48 1.18

7. Muycelial growth in terms of diameter of the colony (mm) of R. solani isolates on PDA
medium after 14 hours of incubation is given in the table below. Carry out the CRD analysis
for the data. And draw your inferences.

R. solani isolates Mycelial growth
Repl. 1 | Repl. 2 | Repl. 3

RS 1 29.0 28.0 29.0

RS 2 33.5 31.5 29.0

RS 3 26.5 30.0

RS 4 48.5 46.5 49.0

RS 5 34.5 31.0
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8. Following is the data on mean yield in kg per plot of an experiment conducted to compare
the performance of 8 treatments using a Randomized Complete Block design with 3
replications. Perform the analysis of variance.

Treatment Replication
(Provenance)

| 1 il

30.85 | 38.01 | 35.10
30.24 | 28.43 | 35.93
30.94 | 31.64 | 34.95
29.89 | 29.12 | 36.75
21.52 | 24.07 | 20.76
25.38 | 32.14 | 32.19
22.89 | 19.66 | 26.92
29.44 | 24.95 | 37.99

O NO|OTD|WIN|F-

9. From the following data make a summary table for finding out the average of Xg for various
years and various levels of Xg using pivot table and pivot chart report option of MS-Excel.

YR Xy | Xo| Xa| Xa| X5 | Xg | X7 Xs Xo| Xpo| Xu
1995 1 1| 40| 30 0| 60| 40 | 4861 | 5208 | 5556 | 5694
1995 1 2| 40| 30 0| 60| 40 | 4167 | 4444 | 4861 | 5035
1995 2 3| 40| 30 0| 60| 40 | 4618 | 4653 | 4653 | 5174
1995 2 4| 40| 30 0| 60| 40 | 4028 | 4167 | 4514 | 4722
1995 2 5| 40| 30 0| 60| 40 | 4306 | 4514 | 4653 | 4861
1996 2 1] 40| 30 0| 60| 40| 6000 | 5750 | 5499 | 6250
1996 2 2| 40| 30 0| 60| 40 | 5646 | 5000 | 5250 | 5444
1996 2 3| 40| 30 0| 60| 40 (4799 | 5097 | 4896 | 5299
1996 2 41 40| 30 0| 60| 40 | 5250 | 5299 | 4194 | 4847
1996 3 1| 40| 30 0| 60| 40 | 5139 | 5417 | 5764 | 5903
1996 | 3 2| 40| 30 0| 60| 40 (5417 | 5694 | 6007 | 6111
1996 4 1| 40| 30 0| 60| 40 | 6300 | 7450 | 7750 | 8000
1996 4 2| 40| 30 0| 60| 40 | 6350 | 7850 | 7988 | 8200
1996 | 4 3| 40| 30 0| 60| 40| 5750 | 6400 | 6600 | 6700
1996 4 4| 40| 30 0| 60| 40 | 6000 | 7250 | 7450 | 7681
1996 5 1] 40| 30 0| 60| 40| 3396 | 4090 | 5056 | 5403
1996 5 2| 40| 30 0| 60| 40 | 5194 | 5000 | 6000 | 6500
1996 5 3| 40| 30 0| 60| 40| 4299 | 4250 | 4750 | 5250
1996 6 1| 40| 30 0| 60| 40 | 4944 | 5194 | 5000 | 5097
1996 6 2| 40| 30 0| 60| 40 | 5395 | 5499 | 5499 | 5597
1996 6 3| 40| 30 0| 60| 40| 3444 | 5646 | 5000 | 5000
1996 6 4| 40| 30 0| 60| 40 | 6250 | 6500 | 6646 | 6750
1997 1 11120| 30| 301|120 | 60| 5839 | 6248 | 6199 | 6335
1997 1 21120 | 30| 30| 120 | 60 | 5590 | 5652 | 5702 | 5851
1997 2 1120 | 30| 30| 120 | 60 | 4497 | 4794 | 4894 | 5205
1997 2 21120 30| 30| 120 | 60 | 4696 | 5006 | 5304 | 5702
1997 2 31120 30| 30| 120 | 60 | 4398 | 4596 | 4894 | 5304
1997 2 41120 | 30| 30| 120 | 60 | 4497 | 5503 | 5702 | 6099
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1997 3| 1]120| 30| 30| 120 | 60 | 4199 | 5602 | 5801 | 6000
1997 3| 2]120] 30| 30| 120 | 60 | 3404 | 3901 | 4199 | 4497
1997 | 3| 3]120| 30| 30| 120 | 60 | 3602 | 5404 | 5503 | 5801
1997 3| 4[120] 30| 30| 120 | 60 | 3602 | 4297 | 4497 | 4696
1997 | 4| 1]120| 30| 30 |120| 60 | 3205 | 3801 | 4199 | 4894
1997 4| 2]120] 30| 30| 120 | 60 | 3801 | 4794 | 6099 | 6298
1997 4| 3[120] 30| 30| 120 | 60 | 3503 | 5205 | 6298 | 6795
1997 | 4| 41120| 30| 30| 120 | 60 | 3205 | 4894 | 5503 | 6199
1997 5| 1]120] 30| 30| 120 | 60 | 4199 | 4099 | 4199 | 4297
1997 | 5| 2]120| 30| 30| 120 | 60 | 3304 | 3702 | 3602 | 3801
1997 5| 3[120] 30| 30| 120 | 60 | 2596 | 2894 | 3106 | 3205
1998 1| 1| 40| 30| O| 60| 40| 3727 | 3106 | 3404 | 3503
1998 | 1| 2| 40| 30| O] 60| 40| 4894 | 4348 | 4447 | 4534
1998 1| 3| 40| 30| O] 60| 40| 2696 | 2795 | 3056 | 3205
1998 | 2| 2| 40| 30| O| 60| 40 | 5503 | 4298 | 4497 | 4795
1998 2| 3| 40| 30| O] 60| 405006 | 3702 | 3702 | 3901

10. From the data given in problem 10, sort Xy, in ascending order. Also, filter the data for X;; <
4200 or X1 > 5000.
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R is a free software environment for statistical computing and graphics. It compiles and runs on a
wide variety of UNIX platforms, Windows and MacOS. R is a vehicle for newly developing
methods of interactive data analysis. It has developed rapidly, and has been extended by a large
collection of packages.

R environment
The R environment provides an integrated suite of software facilities for data manipulation,
calculation and graphical display. It has

e adata handling and storage facility,

e asuite of operators for calculations on arrays and matrices,

e alarge, integrated collection of intermediate tools for data analysis,

e graphical facilities for data analysis and display, and

e awell developed, simple and effective programming language (called ‘S’) which includes
conditionals, loops, user defined functions and input and output facilities.

Origin

R can be regarded as an implementation of the S language which was developed at Bell
Laboratories by Rick Becker, John Chambers and Allan Wilks, and also forms the basis of the S-
Plus systems. Robert Gentleman and Ross lhaka of the Statistics Department of the University of
Auckland started the project on R in 1995 and hence the name software has been named as ‘R’.

R was introduced as an environment within which many classical and modern statistical
techniques can be implemented. A few of these are built into the base R environment, but many
are supplied as packages. There are a number of packages supplied with R (called “standard” and
“recommended” packages) and many more are available through the CRAN family of Internet
sites (via http://cran.r-project.org) and elsewhere.

Availability

Since R is an open source project, it can be obtained freely from the website https://www.r-
project.org/. One can download R from any CRAN mirror out of several CRAN (Comprehensive
R Archive Network) mirrors. Latest available version of R is R version 3.6.0 and it has been
released on 26.04.2019.

Installation
To install R in windows operating system, simply double click on the setup file. It will
automatically install the software in the system.

Usage
R can work under Windows, UNIX and Mac OS. In this note, we consider usage of R in
Windows set up only.

Difference with other packages
There is an important difference between R and the other statistical packages. In R, a statistical
analysis is normally done as a series of steps, with intermediate results being stored in objects.



Thus whereas SAS and SPSS will give large amount of output from a given analysis, R will give
minimal output and store the results in an object for subsequent interrogation by further R

functions.

Invoking R

If properly installed, usually R has a shortcut icon on the desktop screen and/or you can find it

R Software: An Overview

under Start|All Programs|R menu.

To quit R, type q() at the R prompt (>) and press Enter key. A dialog box will ask whether to save
the objects you have created during the session so that they will become available next time when
R will be invoked.

Windows of R

( Question lﬂx‘ 1

'6' Save workspace image?

[ ez ’| | Mo | | Cancel

R has only one window and when R is started it looks like

R commands

i. R commands are case sensitive, so X and x are different symbols and would refer to

R R Console

R wergion 3.6.0 (2019-04-26) -- "Planting of a Tree"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R i3 free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R i= a collaborative project with many contributors.
Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.
Iype 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.

Type 'a()' to quit R.

[Breviously saved workspace restored]

> |

= B )

different variables.
ii. Elementary commands consist of either expressions or assignments.

iii. If an expression is given as a command, it is evaluated, printed and the value is lost.

256




R Software: An Overview

iv. An assignment also evaluates an expression and passes the value to a variable but the
result is not automatically printed.
v. Commands are separated either by a semi-colon (*;”), or by a newline.
vi. Elementary commands can be grouped together into one compound expression by braces
“{“and ‘}’.
vii. Comments can be put almost anywhere, starting with a hashmark (‘#”). Anything written
after # marks to the end of the line is considered as a comment.
viii. Window can be cleared of lines by pressing Ctrl + L keys.

Executing commands from or diverting output to a file
If commands are stored in an external file, say ‘D:/commands.txt’ they may be executed at any
time in an R session with the command

> source ("d:/commands.txt")

For Windows Source is also available on the File menu.
The function sink(),

> sink("d:/record.txt")

will divert all subsequent output from the console to an external file, ‘record.txt’ in D drive. The
command

> sink ()
restores it to the console once again.

Simple manipulations of numbers and vectors

R operates on named data structures. The simplest such structure is the numeric vector, which is a
single entity consisting of an ordered collection of numbers. To set up a vector named x, say,
consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R command

> x <- ¢(10.4, 5.6, 3.1, 6.4, 21.7)

The function c() assigns the five numbers to the vector x. The assignment operator (<-) ‘points’
to the object receiving the value of the expression. Once can use the ‘=" operator as an
alternative.

A single number is taken as a vector of length one.

Assignments can also be made in the other direction, using the obvious change in the assignment
operator. So the same assignment could be made using

> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x

If an expression is used as a complete command, the value is printed. So now if we were to use
the command

> 1/x
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the reciprocals of the five values would be printed at the terminal.

The elementary arithmetic operators
+ addition

— Subtraction

* multiplication

/ division

A exponentiation

Arithmetic functions
log, exp, sin, cos, tan, sqrt,

Other basic functions

max(x) — maximum element of vector X,

min(x)- minimum element of vector X,

range (x) — range of the values of vector x ,

length(x) - the number of elements in X,

sum(x) - the total of the elements in X,

prod(x) — product of the elements in x

mean(X) — average of the elements of x

var(x) — sample variance of the elements of (x)

sort(x) — returns a vector with elements sorted in increasing order.

Logical operators

< - less than

<= less than or equal to

> greater than

>= greater than or equal to
==equal to

I= not equal to.

Other objects in R

Matrices or arrays - multi-dimensional generalizations of vectors.

Lists - a general form of vector in which the various elements need not be of the same type, and
are often themselves vectors or lists.

Functions - objects in R which can be stored in the project’s workspace. This provides a simple
and convenient way to extend R.

Matrix facilities

A matrix is just an array with two subscripts. R provides many operators and functions those are
available only for matrices. Some of the important R functions for matrices are

t(A) — transpose of the matrix A

nrow(A) — number of rows in the matrix A

ncol(A) — number of columns in the matrix A

A%*% B- Cross product of two matrices A and B

A*B — element by element product of two matrices A and B

diag (A) — gives a vector of diagonal elements of the square matrix A

diag(a) — gives a matrix with diagonal elements as the elements of vector a
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eigen(A) — gives eigen values and eigen vectors of a symmetric matrix A

rbind (A,B) — concatenates two matrix A and B by appending B matrix below A matrix (They
should have same number of columns)

chind(A, B) - concatenates two matrix A and B by appending B matrix in the right of A matrix
(They should have same number of rows)

Data frame

Data frame is an array consisting of columns of various mode (numeric, character, etc). Small to
moderate size data frame can be constructed by data.frame() function. For example, following is
an illustration how to construct a data frame from the car data*:

\Make \Model \Cylinder \Weight \Mileage \Type
Honda Civic V4 2170 33 Sporty
Chevrolet Beretta V4 2655 26 ‘Compact
Ford Escort V4 2345 33 Small
[Eagle Summit V4 12560 33 Small
'Volkswagen Jetta V4 2330 26 Small
Buick Le Sabre V6 3325 23 Large
Mitsubishi Galant V4 2745 25 ‘Compact
'Dodge Grand Caravan V6 3735 18 Van
Chrysler INew Yorker V6 13450 22 Medium
/Acura Legend V6 13265 20 Medium
> Make<-c ("Honda", "Chevrolet","Ford","Eagle", "Volkswagen", "Buick", "Mitsbusihi",

+ "Dodge", "Chrysler", "Acura")

> Model=c ("Civic", "Beretta", "Escort", "Summit","Jetta", "Le Sabre","Galant",

+ "Grand Caravan","New Yorker","Legend")

Note that the plus sign (+) in the above commands are automatically inserted when the carriage
return is pressed without completing the list. Save some typing by using rep() command. For
example, rep('V4",5) instructs R to repeat V4 five times.

> Cylinder<-c(rep("V4",5),"Ve","V4",rep("V6",3))

> Cylinder

[1] "v4m™ my4n ny4r o my4n o nmy4r o "ye" "v4n" "ye" "ve" "ve"

> Weight<-c(2170,2655,2345,2560,2330,3325,2745,3735,3450,3265)

> Mileage<-c(33,26,33,33,26,23,25,18,22,20)

> Type<-c ("Sporty", "Compact",rep("Small",3),"Large", "Compact", "Van", rep ("Medium", 2))

Now data.frame() function combines the six vectors into a single data frame.

> Car<-data.frame (Make,Model,Cylinder,Weight,Mileage, Type)
> Car

Make Model Cylinder Weight Mileage Type
1 Honda Civic V4 2170 33 Sporty
2 Chevrolet Beretta V4 2655 26 Compact
3 Ford Escort V4 2345 33 Small
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4 Eagle Summit V4 2560 33 Small
5 Volkswagen Jetta V4 2330 26 Small
6 Buick Le Sabre V6 3325 23 Large
7 Mitsbusihi Galant V4 2745 25 Compact
8 Dodge Grand Caravan V6 3735 18 Van
9 Chrysler New Yorker V6 3450 22 Medium
10 Acura Legend V6 3265 20 Medium

> names (Car)
[1] "Make" "Model" "Cylinder" "Weight" "Mileage" "Type"

Just as in matrix objects, partial information can be easily extracted from the data frame:
> Car[1,]
Make Model Cylinder Weight Mileage Type
1 Honda Civic V4 2170 33 Sporty
In addition, individual columns can be referenced by their labels:

> Car$Mileage
[1] 33 26 33 33 26 23 25 18 22 20

> Car[, 5] #equivalent expression

> mean (Cars$Mileage) #average mileage of the 10 vehicles
[1] 25.9

> min (Car$Weight)

[1] 2170

table() command gives a frequency table:
> table (CarS$Type)

Compact Large Medium Small Sporty Van
2 1 2 3 1 1

If the proportion is desired, type the following command instead:
> table (Car$Type) /10

Compact Large Medium Small Sporty Van
0.2 0.1 0.2 0.3 0.1 0.1

Note that the values were divided by 10 because there are that many vehicles in total. If you don't
want to count them each time, the following does the trick:

> table (Car$Type) /length (Car$Type)
Cross tabulation is very easy, too:

> table (Car$Make, Car$Type)
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Compact Large Medium Small Sporty Van

Acura 0 0 1 0 0 0
Buick 0 1 0 0 0 0
Chevrolet 1 0 0 0 0 0
Chrysler 0 0 1 0 0 0
Dodge 0 0 0 0 0 1
Eagle 0 0 0 1 0 0
Ford 0 0 0 1 0 0
Honda 0 0 0 0 1 0
Mitsbusihi 1 0 0 0 0 0
Volkswagen O 0 0 1 0 0

What if you want to arrange the data set by vehicle weight? order() gets the job done.

> i<-order (Car$Weight) ;i
[1]1 15342710609 8

> Carl[i,]

Make Model Cylinder Weight Mileage Type
1 Honda Civic V4 2170 33 Sporty
5 Volkswagen Jetta V4 2330 26 Small
3 Ford Escort V4 2345 33 Small
4 Eagle Summit V4 2560 33 Small
2 Chevrolet Beretta V4 2655 26 Compact
7 Mitsbusihi Galant V4 2745 25 Compact
10 Acura Legend V6 3265 20 Medium
6 Buick Le Sabre Vo6 3325 23 Large
9 Chrysler New Yorker Vo6 3450 22  Medium
8 Dodge Grand Caravan V6 3735 18 Van

Creating/editing data objects

> y<-c(1,2,3,4,5);y
[1]12345

If you want to modify the data object, use edit() function and assign it to an object. For example,
the following command opens R Editor for editing.

> y<-edit (y)

If you prefer entering the data.frame in a spreadsheet style data editor, the following command
invokes the built-in editor with an empty spreadsheet.

> datal<-edit (data.frame())

After entering a few data points, it looks like this:

261



R Software: An Overview

T RGui (64-bit) - [Data Editor] | " ———
IR File Windows Edit Help

wvarl varz var3d wvard vars vareé

aa 100 0.234

bb 200 0.539

co 300 0.825
]

dd 400 0.719

[T N

W o =3[ |n || a)ha]

You can also change the variable name by clicking once on the cell containing it. Doing so opens
a dialog box:

( R Variable editor @1

variable name |~.far3| |

type @ numeric () character

When finished, click X1 in the upper right corner of the dialog box to return to the Data Editor
window. Close the Data Editor to return to the R command window (R Console). Check the
result by typing:

> datal

Reading data from files

When data files are large, it is better to read data from external files rather than entering data
through the keyboard. To read data from an external file directly, the external file should be
arranged properly.

The first line of the file should have a name for each variable. Each additional line of the file has
the values for each variable.

Input file form with names and row labels:

Price Floor Area Rooms Age isNew

52.00 111.0 830 5 6.2 no

262



R Software: An Overview

54.75 128.0 710 5 7.5 no
57.50 101.0 1000 5 42  yes
57.50 131.0 690 6 88 no
59.75 93.0 900 5 1.9  yes

By default numeric items (except row labels) are read as numeric variables and non-numeric
variables, such as isNew in the example, as factors. This can be changed if necessary.

The function read.table() can then be used to read the data frame directly

> HousePrice <- read.table("d:/houses.data", header = TRUE)

Reading comma delimited data
The following commands can be used for reading comma delimited data into R.

read.csv(filename) This command reads a .CSV file into R. You need to specify the
exact filename with path.

read.csv(file.choose()) This command reads a .CSV file but the file.choose() part opens up
an explorer type window that allows you to select a file from your
computer. By default, R will take the first row as the variable
names.

read.csv(file.choose(), header=T)

This reads a .CSV file, allowing you to select the file, the header is
set explicitly. If you change to header=F then the first row will be
treated like the rest of the data and not as a label.

Storing variable names

Through read.csv() or read.table() functions, data along with variable labels is read into R
memory. However, to read the variables’ names directly into R, one should use attach(dataset)
function. For example,

>attach (HousePrice)

causes R to directly read all the variables’ names eg. Price, Floor, Area etc. it is a good practice to
use the attach(datafile) function immediately after reading the datafile into R.

Packages

All R functions and datasets are stored in packages. The contents of a package are available only
when the package is loaded. This is done to run the codes efficiently without much memory
usage. To see which packages are installed at your machine, use the command

> library ()
To load a particular package, use a command like

> library (forecast)
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Users connected to the Internet can use the install.packages() and update.packages() functions to
install and update packages. Use search() to display the list of packages that are loaded.

Standard packages

The standard (or base) packages are considered part of the R source code. They contain the basic
functions those allow R to work with the datasets and standard statistical and graphical functions.
They should be automatically available in any R installation.

Contributed packages and CRAN

There are a number of contributed packages for R, written by many authors. Various packages
deal with various analyses. Most of the packages are available for download from CRAN
(https://cran.r-project.org/web/packages/), and other repositories such as Bioconductor
(http://www.bioconductor.org/). The collection of available packages changes frequently. As on
June 07, 2019, the CRAN package repository contains 14346 available packages.

Getting Help

Complete help files in HTML and PDF forms are available in R. To get help on a particular
command/function etc., type help (command name). For example, to get help on function ‘mean’,
type help(mean) as shown below

> help (mean)

This will open the help file with the page containing the description of the function mean.
Another way to get help is to use “?” followed by function name. For example,

>?mean
will open the same window again.

In this lecture note, all R commands and corresponding outputs are given in Courier New font
to differentiate from the normal texts. Since R is case-sensitive, i.e. typing Help(mean), would
generate an error message,

> Help (mean)

Error in Help(mean) : could not find function "Help"

Further Readings

Various documents are available in https://cran.r-project.org/manuals.html from beginners’ level
to most advanced level. The following manuals are available in pdf form:

An Introduction to R

R Data Import/Export

R Installation and Administration

Writing R Extensions

The R language definition

R Internals

The R Reference Index

NoakowhE
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DESIGN RESOURCES SERVER

1. Introduction

Design Resources Server is developed to popularize and disseminate the research in Design of
Experiments among the scientists of National Agricultural Research System (NARS) in particular
and researchers all over the globe in general and is hosted at www.iasri.res.in/design. The home
page of the server is

“D b/ fiasri resin/ detigny - ::&| R l-f] Google B 'v|
File Edit View Favorites Teols Help
x u_’ - G 7 |Web Search <+ T = EAMail = i My Yahoo! = | EJ Answers = U]} Anti Spy~[35 Bookmarks = (=) Messenger= 35
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Friday: 03/ 1212010
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‘. Design Resources Server

~ Design Rescurces Server is i fact a Design of Experiments Server created with an objective to disseminate research
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| §1 tion-T ; % s B . p I -
:_4ﬂ::|: ﬁﬁ:.‘:::u The server ams to spread the advances i theoretical, computational, and statistical aspects of Design of Experonents among the

& Analysic mathemaricians and statisticians in academia and among the practicing statisticians mvolved in advisory and consultancy services.

One of the goals of the server is to belp the experimenters in agriculberal sciences, biological sciences. social sciences and industry
m planming and designng thewr experments. The site makes avalable desipn theory and the actual lavout of the desions trough
web. .

One important feature of the server is the Dhscussion Forum that amms ot providing online advisory and consultancy to the
expermenters. The ultimate objective of tus server is to provide e-adwvisory semvices. Presently, this is bemg achis=ved through the
Imic "Ack a Question”.

Electronic books on design of cxperiments and advances in data analytical techniques arc also available on the server. Exposition
o software packages useful in the statistical analysis of data followed by stafistical principles on various topics and their real ke
applbeations are also available. -

Tt is expected that the material prosided at this server womld help the experimenters in general and agncultural scientists in
particular in improving the quality of research in their respective sciences and making their rescarch globally competitive.

ntact e

The zerver is matter-of factly a mobde ibrary on Desien of Experinents. The server is dynamic m nanre and new addivons would
be posted on this site from time to time.
Wisits since 20.11.2007
ool as64 It is designed and developed by the National Fellow Dt Rajender Parsad (rajender @ iasri r=s m} and the National Professor Or. =
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Design Resources Server is matter-of-factly a virtual, mobile library on design of experiments
created with an objective to advise and help the experimenters in agricultural sciences, biological
sciences, animal sciences, social sciences and industry in planning and designing their
experiments for making precise and valid inferences on the problems of their interest. This also
provides support for analysis of data generated so as to meet the objectives of the study. The
server also aims at providing a platform to the researchers in design of experiments for
disseminating research and also strengthening research in newer emerging areas so as to meet the
challenges of agricultural research. The purpose of this server is to spread advances in
theoretical, computational, and statistical aspects of Design of Experiments among the
mathematicians and statisticians in academia and among the practicing statisticians involved in
advisory and consultancy services.

This server works as an e-advisory resource for the experimenters. The actual layout of the
designs is available to the experimenters online and the experimenter can use these designs for
their experimentation. It is expected that the material provided at this server would help the
experimenters in general and agricultural scientists in particular in improving the quality of
research in their respective sciences and making their research globally competitive.

Design Server is open to everyone from all over the globe. Anyone can join this and add
information to the site to strengthen it further with the permission of the developers. The Server
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contains a lot of useful information for scientists of NARS. The material available on the server

has been partitioned into 4 components:
Useful for Experimenters: Electronic Books, online generation of randomized layout of
designs, online analysis of data, analysis of data using various softwares, statistical genomics.

— Useful for Statisticians: Literature and catalogues of BBB designs, designs for making test
treatments-control treatment comparisons, designs for bioassays, designs for factorial
experiments (supersaturated designs, block designs with factorial treatment structure),
experiments with mixtures, Online generation of Hadamard matrices, MOLS and orthogonal
arrays.

— Other Useful Links: Discussion Board, Ask a Question, Who-is-where, important links.

- Site Information: Feedback, How to Quote Design Resources Server, Copyright, disclaimer,
contact us and site map.

The major components are Useful for Experimenters and Research Statisticians. The scientists,
however, can use either of the parts or parts of their choice. A brief description of all the above
four components is given in the sequel.

2. Useful for Experimenters

This link has been designed essentially to meet the requirements of the experimenters whose
prime interest is in designing the experiment and then subsequently analyzing the data generated
so as to draw statistically valid inferences. To meet this end, the link contains the following sub-
links:

2.1 E-Learning

This is an important link that provides useful and important reading material on use of some
statistical software packages, designing experiments, statistical analysis of data and other useful
topics in statistics in the form of two electronic books viz.

1. Design and Analysis of Agricultural Experiments
www.iasri.res.in/design/Electronic-Book/index.htm

2. Advances in Data Analytical Techniques
www.iasri.res.in/design/ebook/EBADAT/index.htm

The screen shots of cover pages of these books are shown below:
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The coverage of topics in these electronic books is very wide and almost all the aspects of
designing an experiment and analysis of data are covered. The chapters are decorated with
solved examples giving the steps of analysis. The users can have online access to these electronic
books. This provides good theoretical support and also reading material to the users.
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2.2 Online Design Generation-I
This link is very useful for experimenters because it helps in generation of randomized layout of
the following designs:

Basic Designs: Generates of randomized layout of completely randomized design and
randomized complete block design both for single factor and multifactor experiments and Latin
square designs for single factor experiments. The field book can be created as a .csv file or a text
file. This is available at

www.iasri.res.in/design/Basic Designs/generate_designs.htm.

Augmented Designs: A large number of germplasm evaluation trials are conducted using
augmented designs. The experimenters generally compromise with the randomization of
treatments in the design. Further, experimenters also need to know the optimum replication
number of controls in each block so as to maximize the efficiency per observation. Online
software for generation of randomized layout of an augmented randomized complete block
design for given number of test treatments, control treatments and number of blocks with given
block sizes, not necessarily equal, is developed and is available at
www.iasri.res.in/design/Augmented Designs/home.htm.

The design can be generated with optimum replication of control treatments in each block so as
to maximize efficiency per observation.

Resolvable Block Designs: Resolvable block designs are an important class of incomplete block
designs wherein the blocks can be formed together into sets with the blocks within each set
constituting a complete replication. In the class of resolvable block designs, square lattice designs
are very popular among experimenters. One can generate square lattice designs with three
replications using

www.iasri.res.in/WebHadamard/square lattice.htm.

Another important class of resolvable block designs is the alpha designs. These designs are
available when the number of treatments is a composite number. Literature on alpha designs is
available at

wwwe.iasri.res.in/design/Alpha/Home.htm.

This link also provides randomized layout of alpha designs for 6 < v (=sk, the number of
treatments) < 150, 2 < r (number of replications) < 5, 3< k (block size) <10 and 2 <'s < 15 along

with the lower bounds to A- and D- efficiencies of the designs.

The screen shots for generation of randomized layout of basic designs, augmented designs,
square lattice designs and alpha designs are
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2.3 Online Analysis of Data
This link together with Analysis of Data forms the backbone of the Design Resources Server.

This particular link targets at providing online analysis of data generated to the experimenter. At
present an experimenter can perform online analysis of data generated from augmented

randomized block deS|gns hIS is available at www |asr| res. m/spadweb/lnde .htm.

ented Design - Windows intemet Explan
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2.4 Analysis of Data

This is the most important link of the server because it targets at providing steps of analysis of
data generated from designed experiments using several statistical packages like SAS, SPSS,
GenStat, MINITAB, SYSTAT, SPAD, SPFE, SPAR 2.0, MS-Excel, etc. Some real life examples
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of experiments are given and the questions to be answered are listed. Steps for preparation of data
files, the commands and macros to be used for analysis of data and the treatment contrasts to be
used for answering specific questions, etc. are given, which the user can use without any
difficulty. The data files and result files can also be downloaded. This is available at
www.iasri.res.in/design/Analysis of data/Analysis of Data.html.

The following analysis can be performed using this link:

- Analysis of data generated from completely randomized designs, randomized complete block
design; incomplete block design; resolvable incomplete block design; Latin square design;
factorial experiments both without and with confounding; factorial experiments with extra
treatments; split and strip plot designs; cross over designs using SAS and SPSS; steps of
analysis of augmented design using SAS, SPSS and SPAD

- Response surface design using SAS and SPSS

- SAS code for analysis of groups of experiments conducted in different environments
(locations or season / year), each experiment conducted as a complete block or an incomplete
block design. Using this code, one can analyze the data for each of the environments
separately, test the homogeneity of error variances using Bartlett’s y*-test, perform combined
analysis of data considering both environment effects as fixed and environment effects as
random (both through PROC GLM and PROC MIXED) and prepare site regression or GGE
biplots

- SAS Macro for performing diagnostics (normality and homogeneity of errors) in
experimental data generated through randomized complete block designs and then applying
remedial measures such as Box-Cox transformation and applying the non-parametric tests if
the errors remain non-normal and / or heterogeneous even after transformation

- SAS codes are also available for obtaining descriptive statistics, generating discrete frequency
distribution, grouped frequency distribution, histogram, testing the normality of a given
variable (overall groups or for each of the groups separately)

- correlation and regression using SAS and SPSS

- Tests of significance based on Student’s t-distribution using SAS, SPSS and MS-EXCEL

- SAS and SPSS codes for performing principal component analysis, cluster analysis and
analysis of covariance

- SAS and SPSS codes for fitting non-linear models

The screens shots for analysis of data appear like

2.6 Statistical Genomics

A link on Statistical Genomics has been initiated essentially as an e-learning platform which can
be useful to the researchers particularly the geneticists, the biologists, the statisticians and the
computational biology experts. It contains the information on some public domain softwares that
can be downloaded free of cost. A bibliography on design and analysis of microarray experiments
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is also given. These are hosted at http://iasri.res.in/design/Statistical_Genomics/default.ntm. A
screen shot of this link is
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3. Useful for Research Statisticians

This link is useful for researchers engaged in conducting research in design of experiments and
can be used for class room teaching also. The material on this link is divided into the following
sub-links:

3.1 Block Designs

This link provides some theoretical considerations of balanced incomplete block (BIB) designs,

binary variance balanced block (BBB) designs with 2 and 3 distinct block sizes, partially

balanced incomplete block (PBIB) designs, designs for test treatments-control treatment(s)

comparisons, etc. for research statisticians. The link also gives a catalogue of designs and a

bibliography on the subject for use of researchers. At present the following material is available

on this link:

- General method of construction of BBB designs; general methods of construction of block
designs for making test treatments - control treatment(s) comparisons; bibliography

- Catalogue of BIB designs for number of replications r < 30 for symmetric BIB designs and r
< 20 for asymmetric BIB designs

- Catalogue of BBB designs with 2 and 3 distinct block sizes for number of replications r < 30.
The catalogue also gives the resolvability status of the designs along with the efficiency
factor of the designs

- 6574 block designs for making all possible pair wise treatment comparisons for v < 35
(number of treatments), b < 64 (number of blocks), k < 34 (block size)

Some screen shots on block designs are given below:
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3.2 Designs for Bioassays

Designs for biological assays help in estimation of relative potency of the test preparation with

respect to the standard one. The material uploaded includes contrasts of interest in parallel line

assays and slope ratio assays. This link provides some theoretical considerations of designs for

bioassays along with a catalogue of designs and a bibliography on the subject for use of

researchers. Literature on bioassays is available at
www.iasri.res.in/design/BioAssays/bioassay.html.

Some screen shots of this link are displayed below:
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3.3 Designs for Factorial Experiments

Factorial experiments are most popular among agricultural scientists. To begin with, material on
block designs with factorial treatment structure and supersaturated designs is available on this
link.

» Supersaturated Designs

Supersaturated designs are fractional factorial designs in which the degrees of freedom for all its
main effects and the intercept term exceed the total number of distinct factor level combinations
of the design. These designs are useful when the experimenter is interested in identifying the
active factors through the experiment and experimental resources are scarce. Definition of
supersaturated designs, experimental situations in which supersaturated designs are useful,
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efficiency criteria for evaluation of supersaturated designs, catalogue of supersaturated designs
for 2-level factorial experiments and asymmetrical factorial experiments and bibliography on
supersaturated designs has been uploaded on the Server. The complete details of the runs can be
obtained by clicking on the required design in the catalogue.
www.iasri.res.in/design/Supersaturated_Design/Supersaturated.html.

Some screen shots of supersaturated designs are
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» Block Designs with Factorial Treatment Structure
Block designs with factorial treatment structure have useful applications in designs for crop
sequence experiments. Th link on block designs with factorial Treatment Structure provides a
bibliography with 232 references on the subject. Catalogues of block designs with factorial
treatment structure in 3-replications for number of levels for any factor at most 12 permitting
estimation of main effects with full efficiency and controlling efficiency for interaction effects
are also given at this link. URL for this link is www.iasri.res.in/design/factorial/factorial.htm.
Some screen shots for block designs with factorial treatment structure are
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» Mixed Orthogonal arrays

Definitions of Orthogonal arrays(OAs), mixed OA, Resolvable OA, a-resolvable OA, resolvable
MOA, construction of OAs, blocking in OAs, generation of orthogonal arrays of strength two,
resolvable orthogonal arrays of strength two and the orthogonal blocking of the resolvable
orthogonal array for 4 < n(# Runs) < 144, and bibliography on OAs.
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3.4 Experiments with Mixtures

Experiments with mixtures are quite useful for the experiments where a fixed quantity of inputs
(may be same dose of fertilizer, same quantity of irrigation water or same dose of insecticide or
pesticide etc.) are applied as a combination of two or more ingredients. In these experiments the
response is a function of the proportion of the ingredients in the mixture rather than the actual
amount of the mixture. A bibliography of experiments with mixtures and online generation of
simplex centroid designs are available on this page http://www.iasri.res.in/mixture/mixtures.aspx.
Some screen shots of experiments with mixtures are:
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3.5 Online Design Generation- 11
This link is helpful in generation of the following:

Hadamard Matrix

Hadamard matrices have a tremendous potential for applications in many fields particularly in
fractional factorial plans, supersaturated designs, variance estimation from large scale complex
survey data, generation of incomplete block designs, coding theory, etc. One can generate
Hadamard matrices for all permissible orders up to 1000 except 668, 716, 876 and 892 using the
URL www.iasri.res.infWebHadamard/WebHadamard.htm. Methods implemented produce
Hadamard matrices in semi-normalized or normalized form. “None” option is also available.
Hadamard matrix can be generated in (0,1); (+1,-1); or (+,-) form. The method of generation of
Hadamard matrix is also given. The screen shots for generation of Hadamard matrices are

273


http://www.iasri.res.in/mixture/mixtures.aspx

Design Resources Server

~ hitp:diwww. iasri res. infWebHadamard/WebHadamard, htm - Windows Internet Explorer | £ http: fweww.Jasri.res.inlwebhadamardi¥alidate, diTMCSAPIComm and =Had am ard&0rder=128Norm.... [ |5 5
B A a3 pard e oo x P (] = ¢t AL AP ] S S0Cw ot = i 3 ||| 3
[ * it =
LI . £t o A - g o & e it~ 1 e tPam = DiTeok= T
Hadamard Matrix (Beta) Hadamard Matrix of order 12
H Method wsed: Pu. Method |
ke &3 implemented, by ded ¢ adamand satrices which are etber i scm Norabeed s Novaleed | |~ 7 T 7 LLIREEAL
Desis Resess fostm. Eor sach methods, fhe "s00e” eption in Nermalisation kas we effot ol e Gemedeiy 4 1edd
[Onder 1
Hoew 1e nae [Order uf the Hadamard Marrsi- <1009 ° 1-11 3i-1'1-1-1-1'113
Nermitiation £ 302321 fe10-1 13
ea
Serm-Nowmalived Normaliond Niwe 13
Relvrwaces et 1111111 1-1
u youey 4 111311113 1
Addsoubigrments R I | e i
thes R
T progeam et o divebigumsas s, Koop vhliag o i oo spthansromsh b Your sogpeeibinn srs wiltvane
- He
Wowme 1
e @ Fiort 100
oL 9 rmat L3004 -

Mutually Orthogonal Latin Squares and Orthogonal arrays

Using this link one can generate complete set of mutually orthogonal Latin squares of order s, s
being a prime or prime power less than 1000. One can also generate an orthogonal array with
parameters (s°*!, s?, s, 2) by choosing the output option as orthogonal arrays. The URL of this
link is www.iasri.res.in/\WebHadamard/mols.htm. Some screen shots of mutually orthogonal

Latin squares and orthogonal arrays are
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3.6 Workshop Proceedings

Proceedings of 3 dissemination workshops are available for the stakeholders
1. Design and Analysis of On-Station and On-Farm Agricultural Experiments
2. Design and Analysis of Bioassays
3. Outliers in Designed Experiments

4. Other Useful Links
The purpose of this component is to develop a network of scientists in general and a network of

statisticians in particular around the globe so that interesting and useful information can be shared
among the peers. It also attempts to provide a sort of advisory to the scientists. Some other useful
and important links available on world wide web are also provided.

4.1 Discussion Board
The purpose of discussion board is to create a network of scientists and also to provide a platform

for sharing any useful piece of research or idea with scientists over the globe. The user can use
this board for learning and disseminating information after registering on the discussion board.
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The information can be viewed by anybody over the globe. In case there are some queries or
some researchable issues, then other peers can also respond to these queries. This helps in
creating a network of scientists. Number of registered participants so far is 78 (23: Agricultural
Research Statisticians; 37: Experimenters; One Vice-Chancellor and 17 ISS Officers).
(www.iasri.res.in/design/MessageBoard/MessageBoard.asp).
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4.2 Ask a Question

The ultimate objective of this server is to provide e-learning and e-advisory services. At present
this is being achieved through the link “Ask a Question”. Once a user submits a question, a mail
is automatically generated for Dr. Rajender Parsad, Dr. V.K. Gupta and Mrs. Alka Arora, who
answer the question on receiving the mail.

DES - Design of Experiments Server / Design Resource Server - Windows internet Explorer CEK

[ « PR Y- o i 3

From
(Tinser E.omad Id)
Subject

Body

| Sund Eman

iSae viuted smce November

20,2007: 7330 times

& et Aow -

4.3 Who-is-where

Addresses of important contributors in Design of Experiments including their E-mail addresses
have been linked to Design Resources Server. The list includes experts from USA, Canada,
Australia, UK, China, Japan, Mexico, New Zealand, Oman, Syria, Taiwan, Vietnam and India.
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This information is useful for all the researchers in Design of Experiments in establishing
linkages with their counterparts over the globe.
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4.4 Important Links
This gives links to other important sites that provide useful material on statistical learning in
general and Design of Experiments in particular. Some links are as given below:

S No. Important Links
1. Design Resources: www.designtheory.org
2. Statistics Glossary http://www.cas.lancs.ac.uk/glossary v1.1/main.html
3. Free Encyclopedia on Design of Experiments:
http://en.wikipedia.org/wiki/Design_of experiments
4. Important Contributors to Statistics:
http://en.wikipedia.org/wiki/Statistics#Important _contributors_to_statistics
5. Electronic Statistics Text Book: http://www.statsoft.com/textbook/stathome.html
6. On-line construction of Designs:
http://biometrics.hri.ac.uk/experimentaldesigns/website/hri.htm
7. GENDEX: http://www.designcomputing.net/gendex/
8. Hadamard Matrices
1. http://www.research.att.com/~njas/hadamard
2. http://www.uow.edu.au/~jennie/WILLIAMSON/williamson.html
9. Biplots :http://www.ggebiplot.com
10. Free Statistical Softwares: http://freestatistics.altervista.org/en/stat.php
11. Learning Statistics: http://freestatistics.altervista.org/en/learning.php
12. Statistical Calculators: http://www.graphpad.com/quickcalcs/index.cfm
13. SAS Online Doc 9.1.3: http://support.sas.com/onlinedoc/913/docMainpage.jsp
14. University of South California: Courses in Statistics:
http://www.stat.sc.edu/curricula/courses/
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15. Course on Introduction to Experimental Design:
http://www.stat.sc.edu/~grego/courses/stat506
16. Course on Experimental design: http://www.stat.sc.edu/~grego/courses/stat706

5. Site Information

This link provides information about the site on the following aspects (i) Feedback from
stakeholders, (ii) How to Quote Design Resources Server, (iii) Copyright, (iv) Disclaimer, (v)
Contact us, and (vi) Sitemap.

5.1 Feedback/ Comments

The feedback / comments received from the users visiting the site have been put on the server so
that every user can benefit from the experience of other users. More importantly, the feedback
helps in improving the contents of the site and their presentation too. We have received feedback
from 19 researchers (6: Design Experts from India; 7: Experts from abroad; 4. Experimenters and
2: Agricultural Research Statisticians). The first feedback was received from Dr K Rameash,
Entomologist working at ICAR Research Complex for NEH Region, Sikkim Centre, Tadong,
Gangtok.

5.2 How to quote Design Resources Server
To Quote Design Resources Server, use:

Design Resources Server. Indian Agricultural Statistics Research Institute (ICAR), New Delhi
110 012, India. www.iasri.res.in/design (accessed last on <date>).

If referring to a particular page, then the site may be quoted as

Authors' name in 'Contact Us' list on that page. Title of page: Design Resources Server. Indian
Agricultural Statistics Research Institute (ICAR), New Delhi 110 012, India.
www.iasri.res.in/design (accessed last on <date>).

For example, page on alpha designs may be cited as

Parsad, R., Gupta, V.K. and Dhandapani, A. Alpha Designs: Design Resources Server. Indian
Agricultural Statistics Research Institute (ICAR), New Delhi 110 012, India.
www.iasri.res.in/design (accessed last on 21.03.2009).

5.3 Copyright
This website and its contents are copyright of "IASRI (ICAR)" - © "ICAR" 2008. All rights
reserved. Any redistribution or reproduction of part or all of the contents in any form, other than
the following, is prohibited:
e print or download to a local hard disk extracts for personal and non-commercial use only.
e transmit it or store it in any other website or other form of electronic retrieval system.
e except with express written permission of the authors, distribution or commercial
exploitation of the contents.

5.4 Disclaimer

The information contained in this website is for general information purposes only. The
information is provided by “IASRI” and whilst “IASRI” endeavours to keep the information up-
to-date and correct, no representations or warranties of any kind, express or implied, about the
completeness, accuracy, reliability, suitability or availability with respect to the website or the

277


http://www.stat.sc.edu/~grego/courses/stat506
http://www.stat.sc.edu/~grego/courses/stat706/

Design Resources Server

information, products, services, or related graphics contained on the website are made for any
purpose. Any reliance placed on such information is, therefore, strictly at user’s own risk.

In no event will “IASRI” be liable for any loss or damage including without limitation, indirect
or consequential loss or damage, or any loss or damage whatsoever arising from loss of data or
profits arising out of or in connection with the use of this website.

Through this website users are able to link to other websites which are not under the control of
“IASRI”. The inclusion of any links does not necessarily imply a recommendation or
endorsement the views expressed within them.

Every effort is made to keep the website running smoothly. However, “IASRI” takes no
responsibility for and will not be liable for the website being temporarily unavailable due to
technical issues beyond our control.

5.5 Site Map
This link gives a map of the various links available on the server. A user can access any of the
links through this map also. A snap shot of the site map is given below:
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. Some Information on the Usage of the Server
e Design Resources Server is a copyright of IASRI (ICAR). The Server was registered under
Google Analytics on May 26, 2008. For the period May 26- October 31, 2011, it has been
used through 1102 cities in 113 countries spread over 6 continents. The average time on the
page is 2.59 minutes.
e External links of the server are also available at:
- http://en.wikipedia.org/wiki/Design_of experiments
- http://en.wikipedia.org/wiki/Hadamard_matrix
e The server has been cited at:

- https://dspace.ist.utl.pt/bitstream/2295/145675/1/licao_21.pdf
for lecture presentation on Unitary operators.

- Chiarandini, Marco (2008). DM811-Heuristics for Combinatorial Optimization.
Laboratory Assignment, Fall 2008. Department of Mathematics and Computer Science,
University of Southern Denmark, Odense.

- http://support.sas.com/techsup/technote/ts723.html
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- Warren F. Kuhfeld. Orthogonal Arrays. Analytics Division SAS, Document No. 273
(http:// support.sas.com/techsup/technote/ts723.html).

- Electronic text material in “New and Restructured Post-Graduate Curricula & Syllabi
on Statistical Sciences (Statistics/Agricultural Statistics; Bio-Statistics, Computer
Application) of Education Division, Indian Council of Agricultural Research, New
Delhi, 2008.

- Jingbo Gao, Xu Zhu, Nandi, A.K. (2009). Nonredundant precoding and PARR
reduction in MIMO OFDM systems with ICA based blind equalization. IEEE
transactions on Wireless Communications, 8(6), 3038-3049.

e Server is also linked at

- ICARDA Intranet: Biometric Services

- CG Online learning resources- http://learning.cgiar.org/moodle/Experimental Designs
and Data Analysis

7. Future Directions
The Design Resources Server created and being strengthened at IASRI aims to culminate into an
expert system on design of experiments. To achieve this end, the materials available on various
links need to be strengthened dynamically. Besides this, the following additions need to be made
to the server in the near future:

- Online generation of

balanced incomplete block designs, binary balanced block designs and
partially balanced incomplete block designs

block designs with nested factors

designs for crop sequence experiments

efficient designs for correlated error structures

online generation of row-column designs

designs for factorial experiments; fractional factorial plans

- designs for microarray experiments

- designs for computer experiments

- designs for fitting response surfaces; designs for experiments with mixtures
- split and strip plot designs

- field book of all the designs generated

- labels generation for preparing seed packets

- online analysis of data

The success of the server lies in the hands of users. It is requested that the scientists in NARS use
this server rigorously and send their comments for further improvements to Dr. Rajender Parsad
(Rajender.Parsad@icar.gov.in). The comments/ suggestions would be helpful in making this

server more meaningful and useful.
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