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PREFACE 
 

 

Applications of appropriate experimental designs and statistical techniques forms the backbone of 

any research endeavour in agriculture and allied sciences. In order to maintain and improve the 

quality of agricultural research, it is of paramount importance that sound and modern statistical 

methodologies are used in the collection and analysis of data and then in the interpretation of 

results. The use of efficient and cost effective designs and appropriate statistical techniques for 

analyzing the data are very crucial to obtain a meaningful interpretation of the investigation. In 

this endeavor, ICAR-Indian Agricultural Statistics Research Institute, New Delhi has established 

itself in the field of Agricultural Statistics in general and Design of Experiments in particular.  

 

This teaching manual on Statistics: Experimental Designs and Analysis has been prepared for 

students of Afghanistan National Agricultural Sciences and Technology (ANASTU), 

Afghanistan under a course for their M.Sc. programme in collaboration with PG School IARI, 

New Delhi. Total 26 students with 9 from Plant Protection and 17 from Horticulture disciplines 

of ANASTU attended this course scheduled from April 13 to May 8, 2020. Due to the COVID-19 

pandemic during this period, the course was taken through online mode. The manual contains the 

lecture notes on different topics covered during this course starting from the basic statistical 

methods, testing of hypothesis, efficient design of experiments and analytical techniques of 

experimental data to multivariate statistical techniques along with some other useful statistical 

tools like data diagnostics and transformation, probit analysis, logistic regression, non-parametric 

test etc.. Emphasis has been also given on interpretation and presentation of results. Notes on 

MS-Excel and R along with online tools in the field of design of experiments that have been used 

for practical exercises have also been included. We are sure that this manual will be very much 

useful for the students in their current and future research studies.  

 

We take this opportunity to thank all the students who have attended the course through online 

mode with full devotion and energy. Although every editorial care has been taken in compiling 

the teaching manual from available lecture notes of different faculty of ICAR-IASRI, New Delhi, 

errors and omissions are likely to occur. We welcome the constructive suggestions on any 

modifications/ improvements in this manual. We are thankful to ANASTU and Professor 

Anupam Varma for having faith on us for organizing this course. Our acknowledgements to Dr. 

VK Baranwal, Professor (Plant Pathology) and Dr. TK Behera, Professor (Vegetable Science). 

We are also grateful to Director, ICAR-IARI, Dean PG School, IARI and Director, ICAR-IASRI, 

for their full support for undertaking this course. We are also thankful to one and all for their 

efforts and help in preparing this manual. 

            

 

 New Delhi 

 08 May, 2020 

Course Instructors 
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DESCRIPTIVE STATISTICS  
 

 

1. Descriptive Statistics 
Descriptive statistics are used to describe the basic features of the data in a study. They provide 

simple summaries about the sample and the measures. Together with simple graphics analysis, 

they form the basis of virtually every quantitative analysis of data. Descriptive Statistics are used 

to present quantitative descriptions in a manageable form. In a research study, there may be lots 

of measures or we may measure a large number of people on any measure. Descriptive statistics 

help us to simplify large amounts of data in a sensible way. Each descriptive statistic reduces lots 

of data into a simpler summary. There are two basic methods: numerical and graphical. Using the 

numerical approach one might compute statistics such as the mean and standard deviation. These 

statistics convey information about the average degree of shyness and the degree to which people 

differ in shyness. Graphical methods are better suited than numerical methods for identifying 

patterns in the data. Numerical approaches are more precise and objective. Since the numerical 

and graphical approaches compliment each other, it is wise to use both.  

 

The raw data consist of measurements of some attribute on a collection of individuals. The 

measurement would have been made in one of the following scales viz., nominal, ordinal, interval 

or ratio scale.  

 

2. Levels of Measurement 

 Nominal scale refers to measurement at its weakest level when number or other symbols are 

used simply to classify an object, person or characteristic, e.g., state of health (healthy, 

diseased).  

 Ordinal scale is one wherein given a group of equivalence classes, the relation greater than 

holds for all pairs of classes so that a complete rank ordering of classes is possible, e.g., 

socio-economic status.  

 When a scale has all the characteristics of an ordinal scale, and when in addition, the 

distances between any two numbers on the scale are of known size, interval scale is 

achieved, e.g., temperature scales like centigrade or Fahrenheit.  

 An interval scale with a true zero point as its origin forms a ratio scale. In a ratio scale, the 

ratio of any two scale points is independent of the unit of measurement, e.g., height of trees.  
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3. Types of Descriptive Statistics 

 Graphs and Frequency Distribution 

  These represent the data enabling the researcher to see what the distribution of scores look 

like. 

 Measures of Central Tendency 

These measures are the indices that enable to determine the average score of a group of 

scores. 

 Measures of Variability 

  These measures are indices that enable to indicate how spread out a group of scores are. 

 

4. Frequency Distribution 

The frequency distribution is a summary of the frequency of individual values or ranges of values 

for a variable. Preparation of frequency distribution is an often-used technique in statistical works 

when summarizing large masses of raw data, which leads to information on the pattern of 

occurrence of predefined classes of events.  

 

Ungrouped Data: The simplest distribution would list every value of a variable and the number 

of persons who had each value.  

 

Grouped Data: A way to summarize data is to distribute it into classes or categories and to 

determine the number of individuals belonging to each class, called the class frequency. It is 

easier to see patterns in the data, but there is loss of information about individual scores. 

 

A tabular arrangement of data by classes together with the corresponding class frequencies is 

called a frequency distribution or frequency table. Following is the raw data on some 

measurements and its frequency distribution: 

 

86 77 91 60 55 

76 92 47 88 67 

23 59 72 75 83 

77 68 82 97 89 

81 75 74 39 67 

79 83 70 78 91 

68 49 56 94 81 

 

Table 1: Grouped frequency distribution 
 

Class Interval Frequency Proportion Cumulative Frequency 

  20-under 30   1 0.028   1 

  30-under 40   1 0.028   2 

  40-under 50   2 0.057   4 

  50-under 60   3 0.086   7 

  60-under 70   5 0.143 12 

  70-under 80 10 0.287 22 

  80-under 90   8 0.228 30 

90-under 100   5 0.143 35 

 

Following is a frequency distribution of Diameter at Breast Height (DBH) recorded to the nearest 

cm, of 80 teak trees in a sample plot.  
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Table 2: Frequency distribution of DBH of teak trees in a plot 
 

DBH class 

(cm) 

Frequency 

(Number of trees) 

11 - 13 11 

14 - 16 20 

17 - 19 30 

20 - 22 15 

23 - 25   4 

Total 80 
 

 

 

 

5. Graphical Representation of Data 

Frequency distributions are often graphically represented by a histogram or frequency polygon. 

A histogram consists of a set of rectangles having bases on a horizontal axis (the x axis) with 

centres at the class marks and lengths equal to the class interval sizes and areas proportional to 

class frequencies. If the class intervals all have equal size, the heights of the rectangles are 

proportional to the class frequencies and it is then customary to take the heights numerically 

equal to the class frequencies. If class intervals do not have equal size, these heights must be 

adjusted. A frequency polygon is a line graph of class frequency plotted against class mark. It can 

be obtained by connecting midpoints of the tops of the rectangles in the histogram. 

 
 

 

 
Fig. 1: Histogram and frequency curce showing the frequency distribution of DBH 

 

 

The qualitative data is summarized in a frequency, relative frequency, or percent frequency 

distribution using bar chart. On the horizontal axis we specify the labels that are used for each of 

the classes. A frequency, relative frequency, or percent frequency scale is used for the vertical 

axis. Using a bar of fixed width drawn above each class label, the height can be extended 

appropriately. The bars are separated to emphasize the fact that each class is a separate category. 
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Fig. 2: Bar chart of cropping pattern 
 

Pie chart is commonly used graphical device for presenting relative frequency distributions for 

qualitative data. Draw a circle; then use the relative frequencies to subdivide the circle into 

sectors that correspond to the relative frequency for each class. Since there are 360 degrees in a 

circle, a class with a relative frequency of .25 would consume .25(360) = 90 degrees of the circle. 

The above given cropping pattern is displayed in pie chart as follows: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3: Pie chart of cropping pattern 
 

Having prepared a frequency distribution, a number of measures can be generated out of it, which 

leads to further condensation of the data. These are measures of location or central tendency, 

dispersion, skewness and kurtosis.  
 

6. Measures of Central Tendency 

The central tendency of a distribution is an estimate of the "center" of a distribution of values. 

There are three major types of estimates of central tendency: 

 Mean 

 Median 

 Mode 
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The Mean or average is probably the most commonly used method of describing central 

tendency. To compute the mean add up all the values and divide by the number of values. The 

arithmetic mean )x( or the mean of a set of N numbers x1, x2, x3,…, xN is 
   

Mean =
N

x...xx N21 
 

 

If the numbers x1, x2,…, xk occur f1, f2,…,fk times respectively i.e., occur with frequencies f1, f2, 

…, fk, the arithmetic mean is  

Mean =
k21

kk2211

f...ff

xf...xfxf




 

Consider the data given in Table 2, 

DBH class 

(cm) 

Frequency (f) 

(Number of trees) 

x xf 

11 - 13 11 12 132 

14 - 16 20 15 300 

17 - 19 30 18 540 

20 - 22 15 21 315 

23 - 25   4 24   96 

Total 80 80     1383 

  Mean = cm29.17
80

1383
 . 

The Median is the score found at the exact middle of the set of values. One way to compute the 

median is to list all scores in numerical order, and then locate the score in the center of the 

sample. For example, let 8 scores be ordered as 15, 15, 15, 20, 20, 21, 25, 36. Score number 4 

and 5 represent the halfway point. Since both of these scores are 20, the median is 20. If the two 

middle scores had different values, then average of two would determine the median. 

 

For grouped data, the median is obtained using following:  
 

 Median = c
f

)f(
2

N

L
m

1




















 , 

 

where L is lower class limit of the median class (i.e., the class containing the median),  1)f( is 

sum of frequencies of all classes lower than the median class, fm is the frequency of median class 

and c is the class interval. 

 

Geometrically, the median is the value of x (abscissa) corresponding to that vertical line which 

divides a histogram into two parts having equal areas.  
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For Table 2, 

 

DBH class 

(cm) 

x Frequency (f) 

(Number of trees) 

Cumulative 

Frequency 

11 - 13 12 11 11 

14 - 16 15 20 31 

17 - 19 18 30 61 

20 - 22 21 15 76 

23 - 25 24   4 80 

Total 80 80  

 

N / 2 = 40 which falls in the class 17-19 and is thus the median class. 

Median = 3
30

31
2

80

5.16




















  = 17.4 cm. 

The Mode is the most frequently occurring value in the set of scores. To determine the mode, 

order the scores and then count each one. The most frequently occurring value is the mode. In the 

example 15, 15, 15, 20, 20, 21, 25, 36, the value 15 occurs three times and is the mode. In some 

distributions there is more than one modal value. For instance, in a bimodal distribution there are 

two values that occur most frequently. The set 2, 3, 4, 4, 4, 5, 5, 7, 7, 7, 9 has two modes 4 and 7 

and is called bimodal. 

In case of grouped data, the mode will be the value (or values) of x corresponding to the 

maximum point (or points) on the curve. From a frequency distribution or histogram, the mode 

can be obtained from the formula, 

 Mode = c
ff

f
L

21

2











 , 

where L is the lower class limit of modal class (the class containing the mode), f1 is the  

frequency of the class previous to the modal class, f2 is frequency of the class just after the modal 

class and c is the size of modal class. 

From Table 2, the maximum frequency is 30 and hence the modal class is 17-19.  
 

Mode = 3
2015

15
5.16 










  = 17.79 cm. 

 

Notice that for the same set of scores, we may get different values for the mean, median and 

mode. If the distribution is truly normal (i.e., bell-shaped), the mean, median and mode are all 

equal to each other. With three different measures of central tendency, how to know which one to 

use? The answer depends a lot on the data and what is to be communicated.  

 

While the mean is the most frequently used measure of central tendency, it does suffer from one 

major drawback. Unlike other measures of central tendency, the mean can be influenced 
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profoundly by one extreme data point (referred to as an "outlier"). The median and mode clearly 

do not suffer from this problem. There are certainly occasions where the mode or median might 

be appropriate. For qualitative and categorical data, the mode makes sense, but the mean and 

median do not. For example, when we are interested in knowing the typical soil type in a locality 

or the typical cropping pattern in a region we can use mode. On the other hand, if the data is 

quantitative one, we can use any one of the averages. 

 

If the data is quantitative, then one has to consider the nature of the frequency distribution. When 

the frequency distribution is skewed (not symmetrical) the median or mode will be proper 

average. In case of raw data in which extreme values, either small or large, are present, the 

median or mode is the proper average. In case of a symmetrical distribution either mean or 

median or mode can be used. However, as seen already, the mean is preferred over the other two. 

The mean, median, and mode can be related (approximately) to the histogram: the mode is the 

highest bump, the median is where half the area is to the right and half is to the left, and the mean 

is where the histogram would balance. 

 

The Harmonic mean H of the positive real numbers x1, x2, ..., xn is defined to be 
 

n21 x

1
...

x

1

x

1

n
H



  

 

Equivalently, the harmonic mean is the reciprocal of the arithmetic mean of the reciprocals. If a 

set of weights w1,...,wn is associated to the dataset x1,...,xn, the weighted harmonic mean is 

defined by 








n

1i i

i

n

1i

i

x
w

w

H  

 

The geometric mean of a data set x1, ..., xn is given by 
 

n
1

n21 )x...xx(G  

 

When dealing with rates, speed and prices, harmonic mean may be used. If interested in relative 

change, as in the case of bacterial growth, cell division etc., geometric mean is the most 

appropriate average. 

 

7. Measures of Dispersion 

Averages are representatives of a frequency distribution but they fail to give a complete picture of 

the distribution. They do not tell anything about the scatterness of observations within the 

distribution. 

 

Suppose that we have the distribution of the yields (kg per plot) of two paddy varieties from 5 

plots each. The distribution may be as follows: 
 

Variety I 45 42 42 41 40 

Variety II 54 48 42 33 30 
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It can be seen that the mean yield for both varieties is 42 kg. But we can not say that the 

performance of the two varieties are same. There is greater uniformity of yields in the first variety 

whereas there is more variability in the yields of the second variety. The first variety may be 

preferred since it is more consistent in yield performance. From the above example, it is obvious 

that a measure of central tendency alone is not sufficient to describe a frequency distribution. In 

addition to it, a measure of scatterness of observations should be there. The scatterness or 

variation of observations from their average is called the dispersion. There are different 

measures of dispersion like the range, the quartile deviation, the mean deviation and the standard 

deviation. 

 

The Range is simply the highest value minus the lowest value. The Standard Deviation (S.D) is 

a more accurate and detailed estimate of dispersion because an outlier can greatly exaggerate the 

range. The Standard Deviation shows the relation that set of scores has to the mean of the sample. 

The standard deviation is the square root of the sum of the squared deviations from the mean 

divided by the number of scores.  

 

Standard Deviation = 
N

)xx(
N

1i

2
i 

  

 

If x1, x2,…,xk occur with frequencies f1, f2,…,fk respectively, the standard deviation can be 

computed as  

 

Standard Deviation = 
N

)xx(f
k

1i

2
ii 

 ,  = 

2
k

1i
ii

k

1i

2
ii

N

xf

N

xf























 ,  N = 


k

1i
if  

 

Consider the data given in Table 2. 

 

DBH class 

(cm) 

Frequency (f) 

(Number of trees) 

x fx fx
2 

11 - 13 11 12 132 1584 

14 - 16 20 15 300 4500 

17 - 19 30 18 540 9720 

20 - 22 15 21 315 6615 

23 - 25   4 24   96 2304 

Total 80 80     1383    24723 

 

Standard Deviation = 

2

80

1383

80

24723








 = 3.19 cm. 

 

The variance of a set of data is defined as the square of the standard deviation. Mean deviation 

is the mean of the deviations of individual values from their average. The average may be either 

mean or median. For raw data the mean deviation from the median is the least. 
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Measures of Relative Dispersion 
Suppose that the two distributions to be compared are expressed in the same units and their 

means are equal or nearly equal. Then their variability can be compared directly by using their 

standard deviations. However, if their means are widely different or if they are expressed in 

different units of measurement, we can not use the standard deviations as such for comparing 

their variability. We have to use the relative measures of dispersion in such situations. 

 

There are relative dispersions in relation to range, the quartile deviation, the mean deviation, and 

the standard deviation. Of these, the coefficient of variation which is related to the standard 

deviation is important. The ratio of standard deviation (S.D) to mean expressed in percentage is 

called coefficient of variation, 

 

C.V. = (S.D. / Mean) x 100 

 

The C.V. is a unit-free measure. It is always expressed as percentage. The C.V. will be small if 

the variation is small. Of the two groups, the one with less C.V. is said to be more consistent. 

 

The coefficient of variation is unreliable if the mean is near zero. Also it is unstable if the 

measurement scale used is not ratio scale. The C.V. is informative if it is given along with the 

mean and standard deviation. Otherwise, it may be misleading. 

Suppose that the variation in height of seedlings and that of older trees of a species are to be 

compared. Let the mean height of seedlings be 50 cm and standard deviation of height of 

seedlings be 10 cm. Further let the mean height of trees be 500 cm with standard deviation of 

height of seedlings as 100 cm. By the absolute value of the standard deviation, one may tend to 

judge that variation is more in the case of trees but the relative variation, as indicated by the 

coefficient of variation (20%), is the same in both the sets. 

Consider the measurements on yield and plant height of a paddy variety. The mean and standard 

deviation for yield are 50 kg and 10 kg respectively. The mean and standard deviation for plant 

height are 55 cm and 5 cm, respectively. 

 

Here the measurements for yield and plant height are in different units. Hence, the variability can 

be compared only by using coefficient of variation. For yield,  
 

C.V. = (10 / 50) x 100 = 20 % 
 
 

For plant height, 
 

 

C.V. = (5 / 55) x 100 = 9.1 % 

 

The yield is subject to more variation than the plant height. 

 

8. Shape of the Distribution  

An important aspect of the "description" of a variable is the shape of its distribution, which tells 

the frequency of values from different ranges of the variable. A researcher is interested in how 

well the distribution can be approximated by the normal distribution Simple descriptive statistics 

can provide some information relevant to this issue. For example, if the skewness (which 

measures the deviation of the distribution from symmetry) is clearly different from 0, then that 

distribution is asymmetrical, while normal distributions are perfectly symmetrical. If the 

http://www.statsoft.com/textbook/gloss.html#Skewness
http://www.statsoft.com/textbook/glosa.html#Asymmetrical Distribution
http://www.statsoft.com/textbook/gloss.html#Symmetrical Distribution
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kurtosis (which measures "peakedness" of the distribution) is clearly different from 0, then the 

distribution is either flatter or more peaked than normal; the kurtosis of the normal distribution is 

0.  

 

Skewness is the degree of asymmetry, or departure from symmetry, of a distribution. If the 

frequency curve (smoothed frequency polygon) of a distribution has a longer ‘tail’ to the right of 

the central maximum than to the left, the distribution is said to be skewed to the right or to have 

positive skewness. If the reverse is true, it is said to be skewed to the left or to have negative 

skewness. An important measure of skewness expressed in dimensionless form is given by  
 

Cefficient of skewness = 
3
2

2
3

1



 ,  

 

where 2 and 3 are the second and third central moments defined using the formula,  

 
N

)xx(
N

1i

r
i

r

 

  . 

 

For grouped data, the above moments are given by  
 

N

)xx(f
N

1i

r
ii

r

 

  . 

 

For a symmetrical distribution, 1= 0. Skewness is positive or negative depending upon whether 

1 is positive or negative. 

 

Kurtosis is the degree of peakedness of a distribution, usually taken relative to a normal 

distribution. A distribution having a relatively high peak is called leptokurtic, while the curve 

which is flat-topped is called platykurtic. A bell shaped curve which is not very peaked or very 

flat-topped is called mesokurtic. The measure of kurtosis, expressed in dimensionless form, is 

given by  
 

Cefficient of kurtosis = 
2
2

4
2




 ,  

 

where 4 and 2 can be obtained from the formula as given above. The distribution is called 

normal if 2 = 3. When 2 is more than 3, the distribution is said to be leptokurtic. If 2 is less 

than 3, the distribution is said to be platykurtic.  

 

 

http://www.statsoft.com/textbook/glosi.html#Kurtosis


PROBABILITY DISTRIBUTIONS 
 

 

The concept of probability plays an important role in all problems of science and every day life 

that involves an element of uncertainty. Probabilities are defined as relative frequencies, and to 

be more exact as limits of relative frequencies. The relative frequency is nothing but the 

proportion of time an event takes place in the long run. When an experiment is conducted, such 

as tossing coins, rolling a die, sampling for estimating the proportion of defective units, several 

outcomes or events occur with certain probabilities. These events or outcomes may be regarded as 

a variable which takes different values and each value is associated with a probability. The values 

of this variable depend on chance or probability. Such a variable is called a random variable. 

Random variables which take a finite number of values or to be more specific those which do not 

take all values in any particular range are called discrete random variables. For example, when 20 

coins are tossed, the number of heads obtained is a discrete random variable and it takes values 

0,1,...,20. These are finite number of values and in this range, the variable does not take values 

such as 2.8, 5.7 or any number other than a whole number. In contrast to discrete variable, a 

variable is continuous if it can assume all values of a continuous scale. Measurements of time, 

length and temperature are on a continuous scale and these may be regarded as examples of 

continuous variables. A basic difference between these two types of variables is that for a discrete 

variable, the probability of it taking any particular value is defined. For continuous variable, the 

probability is defined only for an interval or range. The frequency distribution of a discrete 

random variable is graphically represented as a histogram, and the areas of the rectangles are 

proportional to the class frequencies. In continuous variable, the frequency distribution is 

represented as a smooth curve. 

 

Frequency distributions are broadly classified under following two heads: 

Observed frequency distributions and  

Theoretical or Expected frequency distributions 

 

Observed frequency distributions are based on observations and experimentation. As 

distinguished from this type of distribution which is based on actual observation, it is possible to 

deduce mathematically what the frequency distributions of certain populations should be. Such 

distributions as are expected from on the basis of previous experience or theoretical 

considerations are known as theoretical distributions or probability distributions.  

 

Probability distributions consist of mutually exclusive and exhaustive compilation of all random 

events that can occur for a particular process and the probability of each event‟s occurring. It is a 

mathematical model that represents the distributions of the universe obtained either from a 

theoretical population or from the actual world, the distribution shows the results that are 

obtained if many probability samples are taken and the statistics is computed for each sample. A 

table listing all possible values that a random variable can take on together with the associated 

probabilities is called a probability distribution. 

 

The probability distribution of X, where X is the number of spots showing when a six-sided 

symmetric die is rolled is given below: 

    X   1   2   3   4   5   6 

  f(X) 1/6 1/6 1/6 1/6 1/6 1/6 
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The probability distribution is the outcome of the different probabilities taken by the function of 

the random variable X. 

 

Knowledge of the expected behaviour of a phenomenon or the expected frequency distribution is 

of great help in a large number of problems in practical life. They serve as benchmarks against 

which to compare observed distributions and act as substitute for actual distributions when the 

latter are costly to obtain or cannot be obtained at all.  

 

We now introduce a few discrete and continuous probability distributions that have proved 

particularly useful as models for real-life phenomena. In every case the distribution will be 

specified by presenting the probability function of the random variable. 

 

DISCRETE PROBABILITY DISTRIBUTIONS 
 

Uniform Distribution 

A uniform distribution is one for which the probability of occurrence is the same for all values of 

X. It is sometimes called a rectangular distribution. For example, if a fair die is thrown, the 

probability of obtaining any one of the six possible outcomes is 1/6. Since all outcomes are 

equally probable, the distribution is uniform. 

 

Definition: If the random variable X assumes the values x1,x2,...,xk with equal probabilities, then 

the discrete uniform distribution is given by 

  P(X = xi) = 
k

1
  for  i = 1,2,...,k 

 

Example: Suppose that a plant is selected at random from a plot of 10 plants to record the height. 

Each plant has the same probability 1/10 of being selected.  If we assume that the plants have 

been numbered in some way from 1 to 10, the distribution is uniform with f(x; 10) = 1/10 for x = 

1,...,10. 

 

Binomial Distribution 

Binomial distribution is a probability distribution expressing the probability of one set of 

dichotomous alternatives i.e. success or failure. More precisely, the binomial distribution refers to 

a sequence of events which posses the following properties: 

1.   An experiment is performed under same conditions for a fixed number of trials say, n. 

2.  In each trial, there are only two possible outcomes of the experiment „success‟ or „failure‟. 

3.  The probability of a success denoted by p remains constant from trial to trial. 

4.  The trials are independent i.e. the outcomes of any trial or sequence of trials do not affect the 

outcomes of subsequent trials. 

 

Consider a sequence of n independent trials. The interest is in the probability of x successes from 

n trials, a binomial distribution is obtained where x takes the values from 0,1,…,n. 

 

Definition: A random variable X is said to follow a binomial distribution with parameters n and 

p if its probability function is given by 

  P[X = x] = 
n

x
 p  q  ,   x = 0,1,...,nx n-x






 , 0 < p < 1. 
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The probability of success are the successive terms of the binomial expansion (q+p)
n
.  The 

probable frequencies of the various outcomes in N sets of n trials are N(q+p)
n
. The frequencies 

obtained by this expression are known as expected or theoretical frequencies. The frequencies 

actually obtained by making experiments are called observed frequencies. Generally, there is 

some difference between the observed and expected frequencies but the difference becomes 

smaller and smaller as N increases. 

 

The various constants of the binomial distribution are as follows: 

 Mean = np  

Variance = npq (mean > variance) 

 First moment 1 = 0   

Second moment 2 = npq 

 Third moment 3 = npq(q-p)  

Fourth moment 4 = 3n
2
p

2
q

2
 + npq(1-6pq) 

  1 
(q p)

npq
 ,    =  

q - p

npq

2

1  

  2 =  3 +  
1- 6pq

npq
 ,    =  

1- 6pq

npq
2  

 

Properties of the binomial distribution 

1.   The shape and location of the distribution changes as p changes for a given n or as n changes 

for a given p. As p increases for a fixed n, the binomial distribution shifts to the right. 

2.  The mode of the binomial distribution is equal to the value of x which has the largest 

probability. The mean and mode are equal if np is an integer.   

3.   As n increase for a fixed p, the binomial distribution moves to right, flattens and spreads out. 

When p and q are equal, the distribution is symmetrical, for p and q may be interchanged 

without altering the value of any term, and consequently terms equidistant from the two ends 

of the series are equal.  If p and q are unequal, the distribution is skewed. If p < 1/2, the 

distribution is positively skewed and when p > 1/2, the distribution is negatively skewed. 

4.    If n is large and if neither p nor q is too close to zero, the binomial distribution can be closely 

approximated by a normal distribution with standardized variable given by   

 

Z=
X np

npq


.   

 

The binomial probability distribution is a discrete probability distribution that is useful in 

describing an enormous variety of real life events. For example, an experimenter wants to know 

the probability of obtaining diseased trees in a ra 4ndom sample of 10 trees if 10 percent of the 

trees are diseased. The answer can be obtained from the binomial probability distribution. The 

binomial distribution can be used to know the distribution of the number of seeds germinated out 

of a lot of seeds sown. 

 

Illustration: The incidence of disease in a forest is such that 20% of the trees in the forest have 

the chance of being infected. What is the probability that out of six trees selected, 4 or more will 

have the symptoms of the disease?   
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Solution:  The probability of a tree having being infected is  

  p = 
20

100
 =  

1

5
 

and the probability of not being infected = 1- 
1

5
 = 

4

5
 

Hence the probability of 4 or more trees being infected out of 6 will be  

     P(X ≥ 4) = 
6

4

1

5

4

5

6

5

1

5

4

5

6

6

1

5

4

5

4 1 6 0












































































   +    +    

2 5

 

         =  
53

3125
. 

 

Fitting a binomial distribution: When a binomial distribution is to be fitted to the observed 

data, the following procedure is adopted: 

1.   Evaluate mean of the given distribution and then determine the values of p and q.  If one of 

these values is known, the other can be found out. 

2.   Expand the binomial (q+p)
n
.  The power n is equal to one less than the number of terms in the 

expanded binomial.   

3.   Multiply each term of the expanded binomial by N (the total frequency) in order to obtain the 

expected frequency in each category. 

 

Exercise: The following data shows the number of seeds germinating out of 10 on damp filter for 

80 sets of seeds.  Fit a binomial distribution to this data. 

X: 0 1 2 3 4 5 6 7 8 9      10 

f: 6        20        28        12 8 6 0 0 0 0        0 

 

Step 1:  Calculate  X =  
fX

f




 

Step 2:  Find p and q using mean = np. 

Step 3:  Expand the binomial 80(q+p)
10

 and find expected frequencies. 

 

The generalization of the binomial distribution is the multinomial distribution.  Whereas in case 

of binomial distribution, there are only two possible outcomes on each experimental trial, in the 

multinomial distribution there are more than two possible outcomes on each trial. The 

assumptions underlying the multinomial distribution are analogous to the binomial distribution.  

These are: 

1.   An experiment is performed under the same conditions for a fixed number of trials, say, n. 

2.   There are k outcomes of the experiment which may be referred to e1, e2, e3,...,ek.    Thus the 

sample space of possible outcomes on each trial shall be: 

  S = {e1, e2, e3,...,ek} 

3.   The respective probabilities of the various outcomes i.e., e1, e2, e3,...,ek denoted by p1,p2, 

p3,...,pk respectively remain constant from trial to trial. (p1+p2+p3+...+pk=1) 

4.    The trials are independent. 

 

Poisson Distribution 

Poisson distribution is a discrete probability distribution and is very widely used in statistical 

work. This distribution is the limiting form of the binomial distribution as n becomes infinitely 
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large and p approaches to zero in such a way that np =  remains constant. A Poisson distribution 

may be expected in cases where the change of any individual event being a success is small. The 

distribution is used to describe the behaviour of rare events.   

 

Definition: A random variable X is said to follow a Poisson distribution with parameter  if the 

probability function is given by 

  P[X = x] = 
x!

 e x- 

,  x = 0,1,...        where  e = 2.7183 

 

The various constants of the Poisson distribution are 

 Mean =   

Variance =    (mean = variance) 

 First moment 1 = 0  

Second moment 2 =  

 Third moment 3 =  

Fourth moment 4 =  + 3
2
 

 1 = 
1


,    1 = 

1


  

2 = 3 + 
1


 ,  2 = 

1


 

 

Properties of the Poisson distribution 

1.   As  increases, the distribution shifts to the right, i.e. the distribution is always a skewed 

distribution.   

2.   Mode: When  is not an integer then unique mode i.e. m = []. When  is an integer then 

bimodal i.e. m =  and m = -1. 

3.    Poisson distribution tends to normal distribution as  becomes large. 

 

In general, the Poisson distribution explains the behaviour of discrete variates where the 

probability of occurrence of the event is small and total number of possible cases is sufficiently 

large. For example, it is used in quality control statistics to count the number of defects of an 

item, or in biology to count the number of bacteria, or in physics to count the number of particles 

emitted from a radioactive substance, or in insurance problems to count the number of casualties 

etc. The Poisson distribution is also used in problems dealing with the inspection of manufactured 

products with the probability that any piece is defective is very small and the lots are very large. 

Also used to know the probability of mutations in a DNA segment.  

 

Note also that the only variable needed to generate these distributions is , the average 

occurrence/interval. Moreover, in biology situations often occur where knowing the probability of 

no events P(0) in an interval is useful. When x = 0, equation simplifies to P(0) =e
-

. For example, 

we might want to know the fraction of uninfected cells for a known average () multiplicity of 

virus infection (MOI). Other times, we need to know the average mutation rate/base pair, but our 

sequencing determines nearly all wild type sequence, P(0). In each case, if we can determine 

either  or P(0), we can solve for the other. 

 



Probability Distributions 

 16 

Fitting a Poisson distribution: The process of fitting a Poisson distribution involves obtaining 

the value of , i.e., the average occurrence, and to calculate the frequency of 0 success. The other 

frequencies can be very easily calculated as follows: 

  N(P0) = Ne
- 

  
N(P1) = N(P0)  



1
 

  N(P2) = N(P1)  


2
 

  N(P3) = N(P2)  


3
, etc. 

 

A „goodness-of fit‟ test will confirm whether or not the fit is close enough to justify the belief that 

the distribution is of the Poisson type. 

 

Exercise: The following mutated DNA segments were observed in 325 individuals: 

Mutated DNA segments 0  1  2 3 4 

Number of individuals          211 90 19 5 0 

 

Fit a Poisson distribution to the data. 

Step 1:  Calculate the mean 

Step 2:  Find the different terms N(P0), N(P1),...  i.e. the expected frequencies. 

  

Negative Binomial Distribution 

The negative binomial distribution is very much similar to the binomial probability model. It is 

applicable when the following conditions hold good: 

1.  An experiment is performed under the same conditions till a fixed number of successes, say c, 

are achieved. 

2.   In each trial, there are only two possible outcomes of the experiment „success‟ or „failure‟ 

3.    The probability of a success denoted by p remains constant from trial to trial. 

4.   The trials are independent i.e. the outcome of any trial or sequence of trials do not affect the 

outcomes of subsequent trials. 

 

The only difference between the binomial model and the negative binomial model is about the 

first condition. 

 

Consider a sequence of Bernoulli trials with p as the probability of success. In the sequence, 

success and failure will occur randomly and in each trial the probability of success will be p. Let 

us investigate how much time will be taken to reach the r
th

 success. Here r is fixed, let the number 

of failures preceding the r
th 

success be x (=0,1,...). The total number of trials to be performed to 

reach the r
th

 success will be x+r. Then the probability that r
th

 success occurs at (x+r)
th

 trial is 

  P(X = x) = 
x + r -1

r -1
p qr x







  ;     x = 0,1,2,.... 

 

Illustration: Suppose that 30% of the items taken from the end of a production line are defective. 

If the items taken from the line are checked until 6 defective items are found, what is the 

probability that 12 items are examined? 



Probability Distributions 

 17 

Solution: Suppose the occurrence of a defective item is a success. Then the probability that there 

will be 6 failures preceding the 6
th

 success will be given by: 

  
6 6 1

6 1

 











  (.30)

6
 (.70)

6
 = 0.0396. 

 

If r = 1, i.e. the first success, then P[X = x] = pq
x
, x=0,1,2,...  which is the probability distribution 

of X, the number of failures preceding the first success. This distribution is called as Geometric 

distribution. 

 

Hypergeometric Distribution 

The hypergeometric distribution occupies a place of great significance in statistical theory. It 

applies to sampling without replacement from a finite population whose elements can be 

classified into two categories - one which possess a certain characteristic and another which does 

not possess that characteristic. The categories could be male-female, employed-unemployed etc.  

 

When n random selections are made without replacement from the population, each subsequent 

draw is dependent and the probability of success changes on each draw. The following conditions 

characterise the hypergeometric distribution: 

1.   The result of each draw can be classified into one of the two categories. 

2.   The probability of a success changes on each draw. 

3.   Successive draws are dependent. 

4.   The drawing is repeated a fixed number of times. 

 

Definition: The probability of r successes in a random sample of n elements drawn without 

replacement is; 

  P(r) = 

N - X

n - r

X

r
  

N

n






























 for r=0,1,2...,[n,X] 

The symbol [n, X] means the smaller of n or X.  

 

This distribution may be used to estimate the number of wild animals in forests or to estimate the 

number of fish in a lake.  

 

The hypergeometric distribution bears a very interesting relationship to the binomial distribution. 

When N increases without limit, the hypergeometric distribution approaches the binomial 

distribution. Hence, the binomial probabilities may be used as approximation to hypergeometric 

probabilities when n/N is small. 

 

 

CONTINUOUS PROBABILITY DISTRIBUTION 
 

Normal Distribution 

The normal distribution is “probably” the most important distribution in Statistics. It is a 

probability distribution of a continuous random variable and is often used to model the 

distribution of discrete random variable as well as the distribution of other continuous random 

variables. The basic form of normal distribution is that of a bell, it has single mode and is 
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symmetric about its central values. The flexibility of using normal distribution is due to the fact 

that the curve may be centered over any number on the real line and it may be made flat or peaked 

to correspond to the amount of dispersion in the values of random variable.   

 

Many quantitative characteristics have distribution similar in form to the normal distribution‟s 

bell shape. For example height and weight of people, the IQ of people, height of trees, length of 

leaves etc. are typically the type of measurements that produces a random variable that can be 

successfully approximated by normal random variable. The values of random variables are 

produced by a measuring process and measurements tend to cluster symmetrically about a central 

value. 

 

Definition: A normal distribution in a variate X with mean  and variance 
2
 is a statistic 

distribution with probability function  

2

2

2

)x(

e
2

 1
)x(f 





  

on the domain .  and 
2
 are parameters of the distribution. 

 

If X is a normal random variable with mean  and standard deviation , then 
σ

μX 
 is a standard 

normal variate with zero mean and standard deviation 1. The probability density function of 

standard normal variable Z is  

  f (z)  =   /2z2

e
2π

1   

Area under the normal curve: For normal variable X, 

P(a <  X  < b) = Area under f(x) from X = a to X = b 
 

 
 

The probability that X is between a and b (b > a) can be determined by computing the probability 

that Z is between (a - ) /  and  (b - ) / . It is possible to determine the area in Fig. ii by using 

tables (for areas under normal curve) rather then by performing any mathematical computations. 

 

Probability associated with a normal random variable X can be determined from Table 1 given at 

the end. As indicated in Fig. iii for any normal distribution, 68.27% of the Z values lie within one 

standard deviation of mean, 95.45% of values lie within 2 standard deviations of mean and 

99.73% of values lie within three standard deviations of mean.   

http://mathworld.wolfram.com/Variate.html
http://mathworld.wolfram.com/Mean.html
http://mathworld.wolfram.com/Variance.html
http://mathworld.wolfram.com/ProbabilityFunction.html
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Fig. iii 
 

The normal distribution is symmetric about its mean (zero in this case) and the total area under 

curve is 1 (half to the left of zero and half to right), Percentage points (right tail area) of normal 

distribution for various values of z are provided in Table 1 in the end. 

 

Properties of normal distribution 

1. The normal curve is symmetrical about the mean x = . 

2. The height of normal curve is at its maximum at the mean. Hence the mean and mode of 

normal distribution coincides. Also the number of observations below the mean in a normal 

distribution is equal to the number of observations above the mean. Hence mean and median 

of normal distribution coincides. Thus for normal distribution mean = median = mode.  

3. The normal curve is unimodal at x =.. 

4. The point of inflexion occurs at   .  

5. The first and third quartiles are equidistant from the median. 

6. The area under normal curve is distributed as follows 

   (a)      covers 68.27% of area 

   (b)     2 covers 95.45% of area 

   (c)     3 covers 99.73% of area 
 

Importance of normal distribution 

1. Of all the theoretical distributions, the normal distribution is the most important and is 

widely used in statistical theory and work. The most important use of normal distribution is 

in connection with generalization from a limited number of individuals observed on to 

individuals that have not been observed. It is because of this reason that the normal 

distribution is the core heart of sampling theory. The distribution of statistical measures such 

as mean or standard deviation tends to be normal when the sample size is large. Therefore, 

inferences are made about the nature of population from sample studies.  

2. The normal distribution may be used to approximate many kinds of natural phenomenon 

such as length of leaves, length of bones in mammals, height of adult males, intelligence 

quotient or tree diameters. For example, in a large group of adult males belonging to the 

same race and living under same conditions, the distribution of heights closely resembles the 

normal distribution. 

3. For certain variables the nature of the distribution is not known. For the study of such 

variables, it is easy to scale the variables in such a way as to produce a normal distribution.  
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Table 1: Percentage points (right tail area) of normal distribution for 

various values of z 
 
 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.500 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 

0.4 0.3446 0.3409 0.2272 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 

0.7 0.2420 0.2389 0.2358 0.2327 0.2297 0.2266 0.2231 0.2206 0.2177 0.2148 

0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1984 0.1867 

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 

1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 

1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 

1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 

1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 

1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 

1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 

1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 

2.2 0.0139  0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 

2.3 0.0107  0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 

2.4 0.0082  0.0080 0.0078 0.0075 0.0073 0.0017 0.0069 0.0068 0.0066 0.0064 

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 

2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 

2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 

2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 

2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 

 



CORRELATION AND REGRESSION 
 

 

1.   Introduction 

In order to study the relationship between two or more variables through correlation and or 

regression, it is important to visualize the relation between them graphically. Scatter Plot is the 

simplest way of the diagrammatic representation of a bivariate data.  It gives the idea of the 

distribution of the data like well defined positive or negative linear relationships, non-linear 

relationships or no apparent relationship.  

 
2.   Scatter Plots 

It is the simplest way of the diagrammatic representation of a bivariate data.  It gives the idea of 

the distribution of the data like well defined positive or negative linear relationships, non-linear 

relationships or no apparent relationship. The chart can be created using the Graph menu. To 

Obtain Scatterplots:  from the menus, choose: Graphs Scatter.  SPSS 10.0 gives three types of 

scatter plots viz. simple, overlay, matrix, or 3-D. For getting the desired scatter plot click the icon 

and then Select Define  Select variables and options for the chart. 

 

To Obtain Simple Scatterplots: From the menus, choose: Graphs  Legacy dialogs  

Scatter/dot  Select the icon for Simple  Select Define  select a variable for the Y-axis and 

a variable for the X-axis. (Caution: These variables must be numeric, but should not be in date 

format).  if desired, select a variable and move it into the Set Markers by box. Each value of 

this variable is marked by a different symbol on the scatterplot. This variable may be numeric or 

string.  If desied, one can select a numeric or a string variable and move it into the Label Cases 

by box. You can label points on the plot with this variable. 

 

 If selected, the value labels (or values if no labels are defined) of this variable are used as 

point labels. 

 If we do not select a variable to label Cases by, case numbers can be used to label outliers and 

extremes. 

 Select Options to specify the treatment of missing values in the data and control whether 

labels are to be displayed for points on the plot. 

 Select Titles to define lines of text to be placed at the top or bottom of the plot. 

 

To Obtain Overlay Scatterplots: This option is used to obtain plots for two or more variable 

pairs.  

Select Graphs  Legacy dialogs   Scatter Select the icon for Overlay Select Define  

Select at least two pairs of variables, Select each variable separately. The first variable will 

appear in the Current Selections list box as Variable 1, and the second variable will appear as 

Variable 2. To deselect a variable, select it again in the source variable list. Once a pair of 

variables is selected, move the pair into the Y-X box (Caution: Variables should be numeric, but 

should not be in date format.). As in case of simple scatter plots, select a numeric or a string 

variable and move it into the Label Cases by box. Points on the plot are labeled with the selected 

variable. 

  

To reverse the order of the Y and X variables within a selected pair, select Swap Pair. For the 

specification of the treatment of the missing values and case labels display and for titles, follow 

the steps as in simple scatter plot.  
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To Obtain a Scatterplot Matrix: This option plots all possible combinations of two or more 

numeric variables against one another. For obtaining a Scatterplot matrix, select the icon for 

Matrix  Select Define  Select at least two Matrix numeric Variables.  Rest options are similar 

to the earlier ones. 

 

To Obtain 3-D Scatterplots: This option plots three numeric variables in three dimensions. 

Select the icon for 3-D Select Define  Select one variable for the Y-axis, one for the X-axis 

and one for the Z-axis. These variables must be numeric, but should not be in date format. 

 

3.   Bivariate and Partial Correlation 

A correlation coefficient measures the strength of a linear association between two quantitative 

variables. The most commonly used measure of linear correlation between two variables is called 

the Pearson-product- moment correlation coefficient or simply the sample correlation coefficient 

and is denoted by r. The values of the correlation coefficient is not expressed in units of the data, 

but range from –1 to +1. While scatterplot provide a picture of the relation, the value of the 

correlation is the same if you switch the Y (vertical) and X (horizontal) measures. The sample 

correlation coefficient r is estimated by the formula 
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For a sample of size n, the above expression can be written as 
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where xs  and ys  are the sample standard deviations of the two variables. The formula can be 

simplified to 
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Test of significance of correlation coefficient 

Case I: Let the population correlation coefficient of X  and Y  is denoted by  , then it is often of 

interest to test whether   is zero or different from zero, on the basis of observed correlation 

coefficient, r . Thus, if r  is the sample correlation coefficient based on a sample of n  

observations, then the appropriate test procedure for testing the null hypothesis 0:0 H  

against the alternative 0:1 H  is: 

1. Compute the quantity 
21

2

r

nr
t




 . 

2. Compare the computed value of t , with the table value of t-distribution with )2( n degrees 

of freedom, and at a given level of significance, say 5 % . 
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3. If the computed value of t  exceeds the table value (as in (ii) above), then 0:0 H  is 

rejected against the alternative 0:1 H . 

 

Case II: One may be interested in testing 00 :  H  against the alternative 01 :  H . This 

sample correlation coefficient based on n pairs of observations is based on the following quantity 
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which is a value of a random variable that follows approximately the normal distribution with 

mean 
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e  and variance )3/(1 n . Thus the test procedure is to compute 
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and compare to the critical points of the standard normal distribution. For example, if the 

absolute value of Z , 96.1Z , then the null hypothesis 00 :  H  against the alternative 

01 :  H  is rejected at 5% level of significance. The alternative hypotheses 0   or 

0   can also be tested using one tailed critical points. 

 

Rank Correlation 

In some cases, it is not possible to measure the data and only ranking is done. In such situations, 

the rank correlation is worked out which is nothing but the Pearson’s Product moment correlation 

coefficient and is defined as the correlation between ranks of individuals with respect to two 

characters. This is also known as Spearman’s Rank correlation coefficient and lies between –1 

and +1. If id  denotes the difference between the ranks of  thi  individual and n denotes the 

number of individuals, then the Spearman’s Rank Correlation Coefficient is given by 
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If there is a tie in the ranks, then the ranks assigned is the average of the ranks assigned to these 

individuals had there been no tie. In case of ties, the rank correlation coefficient is given by 
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, where m is the number of individuals having the same rank.  

 

If in a group the data on more than two variables is collected and one is interested in obtaining 

the measure of linear association between all pairs of variables, then one can obtain the sample 
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correlation coefficient for all possible pairs of variables. The probability of significance of each 

of these correlation coefficients can be obtained using any standard statistical software. However, 

if one scans the results for more than one pair of variables, the probabilities of significance are 

pseudo probabilities because they are designed to test one and only one correlation for 

significance and do not reflect the number of correlations tested.  As a result some of the 

correlations may appear significant when they are not. The Bonferroni method may be used to 

adjust the stated significance levels.  In this method, we divide the desired level of significance 

by m the number of correlation coefficients and if the probability is less than or equal to this 

ratio, then the correlation coefficient is significant at that level of significance. Alternatively, we 

multiply the probabilities of significance by m the number of correlation coefficients and if the 

probability is less than or equal to the desired level of significance, then the correlation 

coefficient is significant at that level of significance. 

 

In the situations, when the number of observations or each pair of variables is not constant, one 

has to be cautious in scanning these m values to get a sense of the size of one correlation relative 

to another. 

 

Partial Correlation 

Sometimes the correlation between two variables Y and 1X  may be partly due to the correlation 

of a third variable, 2X  with both Y and 1X . The true correlation between Y  and 1X  can only be 

observed once the effect of 2X  has been eliminated.  We accomplish this by means of the sample 

partial correlation coefficient. Thus, partial correlation measures the linear association between 

two variables after the effects of one or more variables are removed. Partial correlation can reveal 

variables that enhance or suppress the relation between two particular variables. For example, if 

each Sunday for a year, one counts the number of ants in the kitchen at a beach cabin and the 

number of cars passing the house in a five-minute interval, the correlation may be close to 1. Are 

the cars bringing the ants? Does this sound silly? A third variable, temperature is ignored. When 

the weather is hot, the ants flourish and lots of people flock to the beach; when it is cool, the 

numbers of both the cars and ants diminish. If the linear effect of temperature is controlled, the 

relationship between ants and cars disappears. 

 

The partial correlation of variables Y and 1X  after removing the effect of variable 2X  (or 

“controlling” for variable 2X ) is estimated as follows: 

 Regress variable Y on 2X . 

 Regress variable 1X  on 2X . 

 For each case, compute the residuals for each of the regression equations. 

 Compute the usual Pearson correlation between the two sets of residuals. 

 

The residuals represent variables Y and 1X  with the effect of variable 2X  removed. The partial 

correlation coefficient between Y and 1X  after eliminating the effect of variable 2X  is denoted 

by the symbol 2.1Yr .  If we write the ordinary correlation coefficients for Y  and 1X , Y  and 2X , 

and 1X  and 2X  as ,, 21 YY rr  and 12r , respectively, the sample partial correlation coefficient for 

Y  and 1X  with 2X , held fixed is given by the following definition. 
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Partial Correlation Coefficient: The measure of linear relationship between the variable Y  and 

1X  after making allowance for their association with 2X , is estimated by the sample partial 

correlation coefficient ,2.1yr  where 
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A similar definition applies to 1.2Yr  which measures the correlation between Y  and 2X  after 

eliminating the linear effect of 1X .  

 

The partial correlation coefficients obtained after removing the effect of one variable as discussed 

above are called partial correlation coefficients of order one. In some situations, however, we 

may have to obtain the partial correlation coefficients after eliminating the effects of two or more 

variables. The number of variables that are used for eliminating the effects is known as the order 

of the sample partial correlation coefficient. 

 

Test of Significance of Partial Correlation Coefficient 

To test 0: ...12.0 ijH   against 0: ...12.1 ijH   compute 

 2

1 2
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r
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where   is the order of the coefficient. This statistic follows t -distribution with 2n  

degrees of freedom. Reject 0H  if 2,2/   ntt . 

 

Steps to obtain correlation coefficient using MS-EXCEL: One can compute correlation 

coefficient by using Correl function in MS-EXCEL as CORREL(array1,array2), where  Array1   

is a cell range of values and Array2 is a second cell range of values.  

 

One can also obtain bivariate correlations by using Tools  Data Analysis Correlation and 

then choosing the input and output range. For testing of significance or working out the exact 

probability level of significance one may use the following: 

 

Probability level of significance can be obtained by TDIST(x,degrees_freedom,tails), x  is the 

numeric value at which to evaluate the distribution, Degrees_freedom   is an integer indicating 

the number of degrees of freedom and Tails   specifies the number of distribution tails to return. 

If tails = 1, TDIST returns the one-tailed distribution. If tails = 2, TDIST returns the two-tailed 

distribution. 

 

Alternatively, we can get the t-value of the Student's t-distribution as a function of the probability 

and the degrees of freedom by using TINV (probability, degrees_freedom). Here, probability is 

the probability associated with the two-tailed Student's t-distribution. 

 

3.   Regression 

In many statistical studies, the goal is to establish a relationship, expressed via an equation, for 

predicting typical values of one variable given the value of another variable(s). In such situations, 

regression analysis can be of help to us. The term regression is derived from the original heredity 
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studies made by Sir Francis Galton (1822-1911) in which he compared the heights of sons to the 

heights of fathers. Galton showed that the heights of the sons of tall fathers over successive 

generations regressed towards the mean height of the population. In other words, sons of usually 

tall fathers tend to be shorter than their fathers and sons of usually short fathers tend to be taller 

than their fathers. Now-a-days, the term regression is most of the prediction problems and does 

not necessarily imply a regression towards the population mean. In this section, we deal with the 

problem of estimating or predicting the value of a dependent variable given a set of independent 

variables. We begin with the case of single independent variable. 

 

Simple Linear Regression 

Let the variation in response variable ( y ) is explained by independent variable ( x ) called 

regressor.  Simple regression of y  on x  or equation of a straight line as a statistical model, add a 

term for random error () because the points do not fall on the line: 

  xy 10  

 

The slope ( 1 ) is the ratio between the vertical change and the horizontal change along the line. 

A test 01   is same as that of a test that correlation coefficient (r) is zero as yx ssr /ˆ
1 . 

 

The intercept ( 0  or constant as it is often called) is where the line intercepts the vertical axis at 

x = 0. 
 

To represent the errors () in the model, draw a short vertical line from each point to the line. The 

lengths of these line segments between the line and the plot points are called residuals and are 

estimates for the true errors.  
 

In the above equation, y  is the dependent or outcome or predicted variable, the one you are 

trying to predict; x is the independent or predictor variable; and the intercept ( 0 ) and slope 

( 1 ) are coefficients. If the model is a good descriptor of the relation between the variables, one 

can use the estimates of the coefficients to predict the value of the dependent variable for new 

cases. 
 

Fitting of Simple Regression 

Suppose n observations are made on y  and x . Then, for each observation we have unobserved 

error term i .    We make the following assumptions regarding the si ' , which are random 

variables (i) errors are independent (ii) errors have zero mean and constant variance  2 .  These 

assumptions can also be written as  

    2,0   ii VarE   for all .,,2,1 ni   

  0, iiCov               for all nii ,,2,1   

 

Estimation of Parameters  

The method of least squares for estimating the parameters 0 , 1  as also 2 , requires the 

minimization of the error sum of squares, i.e., the sum of the squares of the vertical line 

segments, given by  
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Differentiating S w.r.t. 0  and 1 ,  and equating the derivatives to zero, we get a set of two 

equations as 
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These equations are called normal equations.  The solution of these equations gives us the  

least squares estimates of 0  and  1  as 0b  and 1b  
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)1/(  nSs xxxx . 

 

It should be noted that these estimates do minimize the error sum of squares, S.  The fitted 

regression equation is thus 

 xbby 10ˆ   

or  )(ˆ 1 xxbyy   

 

The 'hat' over y  indicates that if were substitute for x  a value that is within the observed range 

of the predictor x , but has not necessarily been observed, then the regression equation gives us 

the predicated y  for that given value of x . Note that if we set xx   in the fitted regression 

equation, then yy  , meaning thereby that the point  yx,  lies on the regression line.  

 

Estimation of 
2  

In addition to estimating 0  and 1 , an estimate of 2  is required to test hypotheses and 

construct interval estimates pertinent to the regression model. Ideally, we would like this estimate 

not to depend on the adequacy of the fitted model.  This is only possible when there are several 

observations on y for at least one value of x , or when prior information concerning 2  is 

available. When this approach cannot be used, the estimate of 2  is obtained from the residual 

or error sum of squares. 
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A convenient computing formula for SSE  may be found by substituting 110ˆ xbby   and 

simplifying, yielding 
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The residual sum of square has  2n  degrees of freedom, two degrees are associated with the 

estimates 0b  and 1b , involved in obtaining iŷ .  Now the expected value of SSE  is 

    22 nSSEE  so an unbiased estimator of 2  is  

 

 MSE
n

SSE
s 


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2
ˆ 22  

 

The quantity MSE  is called the error mean square or the residual mean square.  The square root 

of 2s  is sometimes called the standard error of regression, and it has the same units as the 

response variable y .  Because 2  depends on the residual sum of squares, any violation of the 

assumption on the model errors or any misspecification of the model form may seriously damage 

the usefulness of 2s  as an estimate of 2 . 

 

The above splitting of the total sum of squares due to sy'  into two components can be formally 

put in an Analysis of variance table, as below: 

 

Analysis of Variance: Simple Linear Regression 

Source of Variation  d.f. S.S. M.S. 

Regression 1 xySb1  MSR 

Deviation form Regression 

(Residual) 
2n  SSE    MSEnSSEs  2/2  

Total (corrected mean) 1n  yyS   

 

The total variation in y is partitioned in two parts as variations due to regression and deviation 

from regression.  The test statistic is  

 
MSE

MSR
F 0  

0F  follows 21, nF  distribution of  0H : 01   if 2,1,0  nFF  . 

 

We have seen above that xyyyxy

n

i
i SbSSbynySSE 11
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. It can further be simplified 

to  

))(1( 1 xyyy sbsnSSE   
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Now dividing both sides by yysn )1(  , we obtain  
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From the above, it can be concluded that 2r  measures the proportion of the total variation in the 

values of Y that can be accounted for or explained by the linear relationship with the values of X.  

Thus a correlation of 6.0r  means that 0.36 or 36% of the total variation of the values of Y in 

our sample is accounted for by a linear relationship with the values of X.  2r (Square of the 

correlation coefficient) is also known the coefficient of determination.  

 

Remark 1: On the similar lines as above, the square of the sample partial correlation coefficient 

is called as sample coefficient of partial determination, which represents the ratio of the 

unexplained variation to the previously unexplained variation. That is 2
2.1Y

r  gives us the 

proportion of the variation in the values of Y that was unexplained by a regression line involving 

only 2X  that can now be explained by including 1X  in the model along with 2X . 

 

Precision of estimates 

We derive the variances of 01,bb  and iŷ  for obtaining precision of estimates. 
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Test of Significance of s'  

We are often interested in testing hypothesis about model parameters.  The tests are valid, if the 

assumption of normality of error terms is satisfied.  One may be interested in testing the 

hypotheses aH 00 :  against aH 01 :  . The appropriate test statistic for testing this is  
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Which follows, a t-distribution with  2n  d.f.   If 0H  is true.  Reject 0H  if 2,2/  ntt  .  

 

We may be further interested in knowing, whether x  is contributing significantly towards 

variability in y .  This can be known by testing 0: 10 H  against 0: 11 H .  We use the 

statistic 
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Which is distributed as t  with  2n  d.f.  If 0H  is true.  Reject 0H if 
2,2/ 

 ntt  . 

Alternatively, the analysis of variance can also be used for testing 0: 10 H  against 

0: 11 H . 

 

Variance of estimated mean and variance of prediction 

The variance of iŷ  will be derived for the two situations where iŷ  is used as an estimate of the 

mean and where it is used as a prediction.  Variance when iŷ  is used as the estimate of true mean 

of y  at the specific value of x .  
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The variance of the fitted value attains its minimum of n/2  when the regression equation is 

evaluated at xxi   and increases as the value of x moves away from x . 

 

When iŷ  is used as a predictor for some future observation, the variance for prediction must take 

into account the fact that the quantity being predicated is itself a random variable.  Therefore, 

variance for prediction,   prediyVar  is the variance of the difference between iŷ  and the future 

observation fy  
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Note that the variance for prediction is the variance for estimation plus the variance of the 

quantity being predicted.   
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Example 3.1:  

 

     Data of illustration  

Observation 

No. 

y x 

1 78.5 7 

2 74.3 1 

3 104.3 11 

4 87.6 11 

5 95.9 7 

6 109.2 11 

7 102.7 3 

8 72.5 1 

9 93.1 2 

10 15.9 21 

11 83.8 1 

12 113.3 11 

13 119.4 10 

 

Model to be fitted is   xy 10  

Normal equations for estimation of parameters are 

 5.12509713 10  bb  

0.10132113997 10  bb  

 

These can also be written as  



























0.10132

5.1250

113997

9713

1

0

b

b
 

 

Parameter estimates are 

 ,792.810 b   ,930.10 b   01.1402 s  

         (5.437)                       (0.581) 

 

The figures in the parenthesis denote the SE of the estimated parameter. 

 

Fitted model is   501.0930.1792.81 2  rxy  

 

Test of significance of s'  

(a) ,0: 00 H   ,0: 01 H  

  201.2043.15
437.5

792.81
11'05.  tt  

 

(b) ,0: 00 H   ,0: 01 H  

322.3
581.

93.1
t  
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Estimated mean response at 4x  

512.89)4(930.1792.81ˆ0 y  

  829.14ˆˆ
0 yV    Table value of 201.211,2/ t  

 

95% confidence interval for mean response 0y  is 

829.14201.2512.89829.14201.2512.89 0  y  

 

988.95512.89 0  y  

 

If 0ŷ  is used for prediction of future observation, then  

  930.154829.14101.140ˆˆ
0 yV   

 

95% confidence interval of prediction 0ŷ  is  

930.154201.2512.89    i.e. 62.116 to 116.108. 

 

Test for Linearity of Regression 

For any given problem we assume the regression is linear and proceed with the estimation of 

parameters as discussed above. This assumption is made to avoid laborious calculations. A linear 

regression equation is always preferred over a nonlinear regression curve if the assumption of 

linearity can be justified. Therefore, the linearity of regression must be tested using the following 

test. 
 

Let us select a random sample of n  observations using k  distinct values of x , says kxxx ,,2,1  , 

such that the sample contains 1n  observed values of the random variable 1y  corresponding to 

21, nx  observed values of 2y  corresponding to knx ,,2   observed value of ky corresponding 

to kx , .
1




n

i
inn   We define 

 ijy  = jth  value of the random variable iy ,  

 .iy  = sum of the  value of  iy  in our  sample. 

 

Hence, if 34 n  measurements of y  are made corresponding of 4xx  , we could indicate these 

observations by ,, 4241 yy  and 43y .  Then 434241.4 yyyy  .  Now the computed value 

  
 

 
,

/

2/
2
2

2
1

kn

k
f








 

 

where  
 

  22
22

.2
1

1 x
ij

i

i snb
n

y

n

y



  

   
i

i
ij

n

y
y

2
.22

2  
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is a value of the random variable F ,  having an F distribution  with 2k  and kn  degree of 

freedom under the null hypothesis that the relationship is linear and therefore may be used to test 

the hypothesis 0H  for linearity of regression. 

 

When 0H  is true,  2/2
1 k  and  kn/2

2  are independent estimates of 2 .  However, if 

0H  is false,  2/2
1 k  overestimates 2 .  Hence, we reject the hypothesis of linearity of 

regression at the   level of significance when our f  value falls in a critical region of size   

located in the upper tail of the F  distribution. 
 

Multiple Regression 

For the situations with more than one independent variables, pXXX ,,, 21  , say that are the 

causes of variation in Y, we fit multiple regression of y  on sx'  to account for this variation.  

Multiple regression of y  on sx'  is denoted as 

  pp xxxy 22110  

 

where 0  denotes intercept and  pisi ,,2,1'   are called partial regression coefficients.  

  is random error. i  gives average change in y  per unit change in ix  keeping other sx'  

constant. 

 

Fitting of Multiple Regression Model 

Suppose n  observation are made on y  and sx' .  Then for each observation we have our 

unobserved error term i .  We make the following assumptions regarding the random variables 

si '  same as those in simple linear regression case. 

 

In order to estimate the unknown parameters 0 , 1 , p ,,2 , we use the method of least 

squares which requires minimization of the error sum of squares, given by  

  



n

i
pipiii

n

i
i xxxyeS

1

2
22110

1

2    

 

Differentiating S w.r.t. 0 , 1 , p ,,2  and equating the derivatives to zero, we get a set of 

1p   equations in 1p    unknown as  
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These normal equations can be solved simultaneously to get 1p  unknowns.  However, it is 

better to solve these equations by inverting the matrix of coefficients of right hand side as this 

enables us to test significance of s'  in a straightforward manner.  The above equations can be 

written as 
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Let the inverse of the matrix be denoted by  
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Then ,   picbVar iii ,2,1,0,2    and   2, ijji cbbCov  . 

 

Estimation of 2  

In addition to estimating s'  an estimate of 2  is required to test hypotheses and construct 

interval estimates pertinent to the regression model.  Ideally, we would like this estimate not to 

depend on the adequacy of the fitted model.  This is only possible when there are several 

observations on y for at least one value of x , or when prior information concerning 2  is 
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available. When this approach cannot be used, the estimate of 2  is obtained from the residual 

or error sum of squares. 

   



n

i
ii

n

i
i yySSE

1

2

1

2 ˆ̂  

 

The residual sum of square has  1 pn  degrees of freedom, because 1p  degrees are 

associated with the estimates s'   involved in obtaining iŷ .  Now the expected value of SSE  is 

    21 pnSSEE  so an unbiased estimator of 2  is  

 MSE
pn

SSE
s 




1
ˆ 22 . 

 

The quantity MSE  is called the error mean square or the residual mean square.  The square root 

of 2s  is sometimes called the standard error of regression, and it has the same units as the 

response variable y . 

 

The above splitting of the total sum of squares due to  sy'  into two components can be formally 

put in an Analysis of variance table, as below: 

 

Analysis of Variance for Multiple Linear Regression 

Source of Variation  d.f. S.S. M.S. 

 

Regression 

 
 p   xiyiSb  

 

MSR  

Deviation form 

Regression (Residual) 
1 pn  SSE    MSEpnSSEs  1/2  

Total (corrected mean) 1n  yyS   

 

Estimate of 2  is this case works out to be 

 
1

1
1

2
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ySxbS
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n
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iyy

 

 

Test of Significance of s'  

One may be interested in testing the hypotheses 0:0 iH   against 0:1 iH    for some i .  

The appropriate test statistic for testing this is  

 

  21 sc

b

bSE

b
t

ii

ii
  as   2scbVar iii   

 

Which follows, under the hypothesis a t-distribution with  1 pn  d.f, if 0H  is true.  Reject 

0H  if 1,2/  pntt  .  
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Multiple correlation coefficient  R  

The correlation coefficient between the observed values iy  and predicted values iŷ  is termed as 

multiple correlation coefficient  R .  Note that 10  R . R is obtained as 

 

yofsquaresofsumcorrectedTotal

regressiontodueSquaresofSum
R 0/
  
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Test of Significance of R  

The test of the null hypothesis that multiple correlation coefficient in the population is zero is 

identical to the F -test of the null hypothesis that 021  p  . The relation is  

2

2

1 R

R
F


  

p

pn 1
.  

This F  follows F -distribution with p  and  1 pn  d.f.  Reject 0H  if 1,,  pnpFF  . 

 

Coefficient of Determination  2R  

The sample coefficient of multiple determination, denoted by ,2
12. pY

R   is given by  

 

  '2

2
12.

1
1

y
Y

sn

SSE
R


  

 

where ySxbySxbySxbSSSE ppyy  2211  

 

One can easily see that the coefficient of multiple determination is the square of multiple 

correlation coefficient and is denoted by  2R .  This concept is very important as 1002 R  gives 

percentage of variation in y  explained by regressors. Obviously 2R  must lie between 0 and 1.  

Thus 2R  is an indicator of fitness of the fitted model.  However, a large value of 2R  should not 

alone be taken as a measure of goodness of fitted regression model.  
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4. Discussion  

In addition to predicting the outcome variable for a new sample of data, regression analysis 

serves other purposes: 

 To assess how well the dependent variable can be explained by knowing the value of the 

independent variable (or a set of independent variables). 

 To identify which subset from many measures is most effective for estimating the dependent 

variable. 

 

For this, one should first explore the variables graphically in scatterplots to ascertain if a linear 

model is appropriate for describing the relationship and to identify any possible rogue values 

(outliers) that might distort results. Ideally, in an observational study, the configuration of plot 

points should form the shape of an American football, for there are fewer points at the low and 

high ends of the independent variable than in the middle. In an experimental study, the values of 

x are fixed or set at specified levels, so the configuration may not exhibit such a clear pattern. 

 

In assessing the suitability of the data for a regression, it helps to think of the fixed x situation. 

Visually scan the distribution of y values for each x (or each small range of x’s) – that is, look at 

vertical strips or bands of points extending up from the x axis. Do the y values within each strip 

look like a sample from a normal distribution? Is the spread (variance) within each strip roughly 

the same across the strips? Or is it considerably greater at one side of the plot than at the other? If 

you guess an average value of y for each strip, do these averages fall along a straight line? 

 

More formally, normality is not required for the estimates of the coefficients. To make tests and 

estimate confidence intervals, however, these assumptions are required: 

 The errors are normally distributed with mean 0. 

 The errors have constant variance. 

 The errors are independent of each other. 

 

These assumptions are checked by studying the residuals from the model. The Durbin-Watson 

statistic can be used to test for the serial correlation of adjacent error terms. 

 

To identify problems, always look at plots of y versus x before the regression and plots of 

residuals and diagnostics after the analysis. Non-linearity, Outliers and the presence of sub-

populations can distort the results of regression analysis. Relationships among the dependent and 

independent variables may be masked or falsely enhanced if your sample contains subpopulations 

(that is, the sample is not homogeneous). 

 

In summary, to help identify problems, always look at plots of y versus x before the regression 

and plots of residuals and diagnostics after the analysis. 

 

Steps for fitting a regression equation using MS-EXCEL: Prepare your data in a Worksheet. 

Now choose Tools  Data Analysis  Regression. Then give the range for dependent variable, 

independent variables and output range. If a regression equation without intercept is required then 

check on Intercept zero. 

 

5.   Exercises 

Exercise 5.1: The following data are taken from Berenson and Levine (1992).  Fifteen similar 

homes built by one developer in various locations around the United States were evaluated in the 
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study.  The builders recorded the amount of oil consumed in January, the average outside 

temperature (in degree Fahrenheit), and the number of inches of attic insulation in each home.  

 

Case Avg.Temp. Insulation(Inches) Oil Consumed in January 

1 40 3 275.3 

2 27 3 363.8 

3 40 10 164.3 

4 73 6   40.8 

5 64 6   94.3 

6 34 6 230.9 

7 9 6 366.7 

8 8 10 300.6 

9 23 10 237.8 

10 63 3 121.4 

11 65 10   31.4 

12 41 6 203.5 

13 21 3 441.1 

14 38 3 323.0 

15 58 10   52.5 

 

1. Draw all possible scatter plots matrix by taking two variables at a time. 

2. Fit a multiple linear regression equation using oil consumed as dependent variable and 

insulation and average temperature as independent variable 

 
Exercise 5.2:  The following data was collected through a pilot sample survey on Hybrid Jowar 

crop on yield and biometrical characters. The biometrical characters were average Plant 

Population (PP), average Plant Height (PH), average Number of Green Leaves (NGL) and Yield 

(Kg./plot).  

1. Plot a simple scatter diagram between (i) yield and PP (ii) yield and PH  (iii) yield and NGL. 

2. Compute bivariate and partial correlations among yield, PP, PH and NGL. 

3. Fit a multiple linear regression by taking yield as dependent variable. 

 

 No. PP PH NGL Yield 

1 142.00 0.5250 8.20 2.470 

2 143.00 0.6400 9.50 4.760 

3 107.00 0.6600 9.30 3.310 

4 78.00 0.6600 7.50 1.970 

5 100.00 0.4600 5.90 1.340 

6 86.50 0.3450 6.40 1.140 

7 103.50 0.8600 6.40 1.500 

8 155.99 0.3300 7.50 2.030 

9 80.88 0.2850 8.40 2.540 

10 109.77 0.5900 10.60 4.900 

11 61.77 0.2650 8.30 2.910 

12 79.11 0.6600 11.60 2.760 

13 155.99 0.4200 8.10 0.590 

14 61.81 0.3400 9.40 0.840 

15 74.50 0.6300 8.40 3.870 
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16 97.00 0.7050 7.20 4.470 

17 93.14 0.6800 6.40 3.310 

18 37.43 0.6650 8.40 1.570 

19 36.44 0.2750 7.40 0.530 

20 51.00 0.2800 7.40 1.150 

21 104.00 0.2800 9.80 1.080 

22 49.00 0.4900 4.80 1.830 

23 54.66 0.3850 5.50 0.760 

24 55.55 0.2650 5.00 0.430 

25 88.44 0.9800 5.00 4.080 

26 99.55 0.6450 9.60 2.830 

27 63.99 0.6350 5.60 2.570 

28 101.77 0.2900 8.20 7.420 

29 138.66 0.7200 9.90 2.620 

30 90.22 0.6300 8.40 2.000 

31 76.92 1.2500 7.30 1.990 

32 126.22 0.5800 6.90 1.360 

33 80.36 0.6050 6.80 0.680 

34 150.23 1.1900 8.80 5.360 

35 56.50 0.3550 9.70 2.120 

36 136.00 0.5900 10.20 4.160 

37 144.50 0.6100 9.80 3.120 

38 157.33 0.6050 8.80 2.070 

39 91.99 0.3800 7.70 1.170 

40 121.50 0.5500 7.70 3.620 

41 64.50 0.3200 5.70 0.670 

42 116.00 0.4550 6.80 3.050 

43 77.50 0.7200 11.80 1.700 

44 70.43 0.6250 10.00 1.550 

45 133.77 0.5350 9.30 3.280 

46 89.99 0.4900 9.80 2.690 

 



SAMPLING DISTRIBUTIONS 
 

 

1.    Introduction 

The term population is referred to any collection of individuals or of their attributes or of results 

of operations which can be numerically specified. Thus, there may be population of weights of 

individuals, heights of trees, prices of wheat, number of plants in a field, number of students in a 

university etc. A population with finite number of individuals or members is called a finite 

population. For instance, the population of ages of twenty boys in a class is an example of finite 

population. A population with infinite number of members is known as infinite population. The 

population of pressures at various points in the atmosphere is an example of infinite population. 

For any statistical investigation with large population size, complete enumeration (or census) of 

the population is impracticable, for example, estimation of average monthly income of the 

individuals in the entire country. Further, in some cases, if the population is infinite, then the 

complete enumeration is impossible. As an illustration, to know the total amount of timber 

available in the forest, the entire forest cannot be cut to know how much timber is available there.  

 

To overcome the difficulties of complete enumeration, a part or fraction is selected from the 

population which is called a sample and the process of such selection is called sampling. For 

example, only 20 students are selected from a university or 10 plants are selected from a field. For 

determining the population characteristic, instead of enumerating all the units in the population, 

the units in the sample only are observed and the parameters of the population are estimated 

accordingly. Sampling is therefore resorted to when either it is impossible to enumerate all the 

units in the whole population or when it is too costly to enumerate in terms of time and money or 

when the uncertainty inherent in sampling is more than compensated by the possibilities of errors 

in complete enumeration. The theory of sampling is based on the logic of particular (i.e. sample) 

to general (i.e. population) and hence all results will have to be expressed in terms of probability. 

To serve a useful purpose, sampling should be unbiased and representative. 

 

The aim of the theory of sampling is to get as much information as possible, ideally the whole of 

the information about the population from which the sample has been drawn. In particular, given 

the form of the parent population, one would like to estimate the parameters of the population or 

specify the limits within which the population parameters are expected to lie with a specified 

degree of confidence.  

 

The fundamental assumption underlying most of the theory of sampling is random sampling 

which consists in selecting the individuals from the population in such a way that each individual 

of the population has the same chance of being selected. Suppose a sample of size n is taken from 

a finite population of size N. Then there would be 
N

n

 
 
 

=
!

!( )!

N

n N n
, where n! = n(n-1)…1, 

possible samples. A sampling technique in which each of the 
N

n

 
 
 

 samples has an equal chance 

of being selected is known as simple random sampling. Some of the other commonly used 

sampling procedures are: Purposive sampling, stratified sampling, systematic sampling and 

cluster sampling. The type of sampling to be adopted depends on the objective of the study and 

the variability in the population. It may be pointed out that throughout the term random sampling 

would always refer to simple random sampling.  
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1.1   Definitions of Some Important Concepts 
 

Parameter: A parameter is a function of population values.  

 

Example 1.1: Suppose X
1
, X

2
,…, X

N
 are N population values. Then population mean () is a 

parameter defined as  
 

        =  
1

1 N

i

i

X
N 

 . 

 

Further, population standard deviation () is another parameter defined as  
 

   = 2

1

1
( )

N

i

i

X
N




  

 

Statistic: A statistic is a function of sample values.  

 

Example 1.2: Two of the most commonly used statistics based on a sample of size n are sample 

mean ( x ) and sample standard deviation (s) defined as 
 

 x  =  
1

1 n

i

i

X
n 

 , 

 

  s = 2

1

1
( )

-1

n

i

i

x x
n 

  

 

In practice, parameter values are not known and their estimates based on the sample values are 

used. A statistic is since based on sample values, there can be many choices of the samples that 

can be drawn from the population. The distribution of the statistic computed for all possible 

values of the sample is called sampling distribution. From the given set of observations, 

different statistics are constructed to estimate the parameters. The sampling distributions of these 

statistics will, in general, depend on the form and the parameters of the parent population. The 

probability of the observed value of the statistics then allows the making of statements about the 

parameters and hence conclusions can be drawn about the population. The sampling distributions 

are thus fundamental to the entire subject of inference and are described below. 

 

2. Sampling Distribution Based on Other Statistics 
 

Distribution based on some statistics when random sample has been drawn from a normal 

population are now described. 

  

2.1   Sampling Distribution of Sample Mean 
 

If x
1
, x

2
,…, x

n
 is a random sample from a normal distribution with mean  and variance 2

, then 

x as defined in Example 1.2 follows normal distribution with mean  and standard deviation
n


. 

Further, 
/

x
Z

n






  follows a normal distribution with mean 0 and variance 1, i.e. N(0,1).  
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Let Z have a standard normal
 
distribution, the probability that Z will exceed a given value z is , 

i.e. 
  

 P[Z > z ] = ,    0    1 
 

In other words, as shown by shaded portion in the figure below,  is “Area to the right of the 

point z”. The probabilities for negative values of z can be obtained by symmetry   

 

 
 

Table 1 gives the normal probability (right tail area) for various values of  z. 

 

Example 2.1: Let x  be the mean of a random sample of size 5 from a normal distribution with 

mean  =0 and variance 2 
= 125, then 

 

 P{ x  > 10} = P{
0

125 / 5

x 
 > 

5

010
} = P{Z > 2} = 0.0228. 

 

2.2   Chi-Square Distribution 
 

This distribution was initially proposed by F.R. Helmert but later on also given independently by 

Karl Pearson. It is defined as the distribution of sum of squares of n independent standard normal 

variates i.e. if Z1, Z2, ...Zn are n independent standard normal variates, then 2

1

n

i

i

Z


 follows 2
 

distribution with n degrees of freedom and symbolically it can be written as 2

n .  

 

It is to be noted here that, square of a standard normal variate will follow a 2
 distribution with 1 

degrees of freedom. 

 

Thus, If X follows 2
 distribution with n degrees of freedom, then the probability density function 

(pdf) is  
 

 f(x) = /2 ( /2) 1

/2

1

2 ( / 2)

x n

n
e x

n

 


,           0 ≤ x <  

 

The parameter n is also called degrees of freedom, which is a measure of the number of 

independent variables. 

 

Properties 

 Mean = n  

 Variance = 2n  

 Mode = n-2, if n >2   

Shaded area =    
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 M.G.F.:   21 2
n

t


 , 2 1t   

 Thus the distribution is positively skewed and leptokurtic 

 Sum of independent 
2
-variates is a 

2
-variate (additive property) 

 

Graph  

Given below is the graph of chi-square distribution for degrees of freedom n = 1, 3 and 6. In case 

of n = 1, the mode does not exist. It is seen that the graphs are to the right of 0 and flattens out 

towards the right (positively skewed). Also there is no symmetry in the graph.  
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20

x

f(
x
)

n=1

n=3

n=6

 
Table 

Let X have a 
2 

distribution with n degrees of freedom. Then )(2
n  is defined as that value which 

satisfies  
 

 P[X > )(2
n  ] = ,    0    1 

 

 

In other words, as shown by shaded portion in the figure below,  is “Area to the right of the 

point 2( )n  ”. 

 

   2( )n   

 

Table 2 gives values of )(2
n   for various values of  and n.  

 

Example 2.2: Let X have a chi-square distribution with 7 degrees of freedom. Then from Table 2,  

(i) )05.0(2
7 =14.067 

(ii) )95.0(2
7 = 2.167. 

 

Shaded area =    
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Application 

 To test hypothetical value of population variance 

 Goodness-of-fit Test 

 Independence of  Attributes Test 

 To test homogeneity of independent estimates of population  variance (Bartlett’s Test) 

 To test homogeneity of independent estimates of population  correlation coefficient 

 

2.3   Sampling Distribution of Sample Variance 
 

Suppose random samples of size n are drawn repeatedly from a normal population with variance 


2
, then  

 X = 
2

2

( 1)n s




,    

follows a 2
1n distribution. Thus, sample variance s

2
 follows

2
2

1
( 1)

n
n


 


. Mean of s

2
 is 

2
 and 

variance is 
42

( 1)n




. 

 

2.4   t - Distribution 
 

This distribution was proposed by Sir R.A. Fisher, who is known as the Father of Statistics. It is 

defined as the distribution of the ratio of a standard normal variate to the square root of an 

independent chi-square variate divided by its degrees of freedom.  

 

In other words, let Z be a standard normal variate, X a 2
n  variate and if Z and X are independent, 

then  
 

  t = 
/

Z

X n
 

 

has a t - distribution with n degrees of freedom and its pdf is  
  

f(t) = 
2

( 1)/2

1 1

1
 ( , ) [1 ]

2 2
n

n t
n B

n



,           - < t <  

where B(l, m) is beta function defined as B(l, m) = x
(l-1)

(1-x)
m-1

, (l, m) > 0. 
 

 

If x
1
, x

2
,…, x

n
 is a random sample from a normal distribution with mean  and variance 

2
, then 

the random variable t = 
/

x

s n


 is distributed as Student's t-distribution with n-1 degrees of 

freedom 

 

Properties 

 Mean = 0, if n > 1   

 Variance  = 
2

n

n
, n > 2 
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 Mode = 0 

 As, t-distribution is symmetric, all odd order  moments about zero as well as all odd order 

central moments are zero. 

 t- distribution leptokurtic 

 M.G.F. does not exist for t-distribution 

 t-distribution tends to normal distribution as n tends to infinity 

 

 

Graph 

The graph below shows the probability density function of t-distribution with 3 degrees of 

freedom along with that of standard normal distribution N(0,1). The graph of t-distribution is 

symmetrical with respect to vertical axis x = 0. It is a bell shaped curve and the spread increases 

as n decreases.  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-5 -3 -1 1 3 5

x

N (0,1)

n=3

 

Table 

Let tn() denote the point for which  
 

  P [X > tn()] = , 
 

In other words, as shown by shaded portion in the figure below,  is “Area to the right of the 

point tn()”. 

 
                     tn() 

Table 3 gives values of tn() for various values of  and n.  

 

Example 2.3: Let X have a t-distribution with 7 degrees of freedom, then from Table 3, 
 

(i) P(X>3.499) = 0.005 or t7(0.005) = 3.499 

  

 

 

 

(ii) P(X  -2.998) = P(X > 2.998) = 0.01 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

Shaded area =    
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Applications 

 t-test for single Mean 

 t-test for equality of means for two independent sample 

 t-test for equality of means for paired observation i.e. paired t-test 

 t-test for significance of an observed sample correlation coefficient 

 t-test for significance of an observed sample regression coefficient 

 t-test for significance of an observed partial regression coefficient 

 

2.5   F-Distribution 
 

The F distribution was discovered by George Snedecor, but in honour of Sir R.A. Fisher, he 

called it F-distribution. The distribution is defined as the distribution of the ratio of two 

independent chi-square variates, divided by their respective degrees of freedom, i.e. if X 

follows 2
n1

 , Y follows 2
n2

 and X and Y are independent, 

F = 1

2

/

/

X n

Y n
, 

 

follows F-distribution with (n1, n2) degrees of freedom and its pdf is 

 

 f(x) = 
1 1

1 2

/2 ( /2) 1

1 2

( )/21 2 1

2

( / )
  

( , ) (1 )
2 2

n n

n n

n n x

n n n
B x

n





,           0 ≤ x <  

 

If 
11 2, x ,..., nx x  is a random sample of size n1 from a normal distribution with mean x and 

variance 2

x  and 
21 2,  y ,..., ny y is a random sample of size n2 from an independent normal 

distribution with mean y and 
2

y , then random variable 
2 2

2 2

/

/
x x

y y

s
F

s




  has a Snedecor’s F-

distribution with n1-1 and n2-1degrees of freedom.  

 

Properties 

 Mean = 2

2 2

n

n 
, n2 > 2 

 Variance = 
2

2 1 2

2

1 2 2

2 ( 2)

( - 2) ( 4)

n n n

n n n

 


, n2 > 4 

 Mode = 2 1

1 2

( 2)

( 2)

n n

n n




, n1 > 2  

Thus mode of 
1 2,n nF distribution, whenever existent, is less than unity. 

 There exists a reciprocal relation, i.e. 
1 2

2 1

,

,

1
( )

(1 )
n n

n n

F
F







 

 
1 2,n nF  distribution tends to normal distribution when n1 and n2 tend to infinity 

 

javascript:openBiography('Snedecor')
javascript:openBiography('Fisher')
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Graph 

The curve of F distribution depends not only on the two parameters n1 and n2 but also on the 

order in which these occur. It is positively skewed. 
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Table 

Let )(F
21 n,n   denote the point for which  

 P[X > 
1 2, ( )n nF  ] = , 

In other words, as shown by shaded portion in the figure below,  is “Area to the right of the 

point 
1 2, ( )n nF  ”. 

 

 
   )(F

21 n,n   
 

Table 4 and Table 5 give the values of 
1 2, ( )n nF  for  = 0.01 and 0.05 respectively for various 

combinations of the degrees of freedom n1 and n2.  

 

Example 2.4: The value of F with 6 and 10 degrees of freedom, leaving an area of 0.05 to the 

right, is 22.3)05.0(F 10,6  .  
 

 
 

Example 2.5: Given 19.5)05.0(F 5,4  , then F5,4 (0.95) =
19.5

1
= 0.19. 

 

Example 4.5.3: Given 91.2)05.0(F 10,12  and 74.2)05.0(F 10,24  , then 80.2)05.0(F 10,20  . 

Shaded area =    
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Example 4.5.4: Given 42.2)05.0(F 30,6   and 34.2)05.0(F 40,6  , then 38.2)05.0(F 35,6  .  

 

2.6   Relation Between t, 
2 

and F distributions 

(i)   If a random variable X follows t-distribution with n degrees of freedom, then X
2
 follows F-

distribution with n1 =1 and n2 = n degrees of freedom. In other words, )(F)
2

(t n,1
2
n 


. 

 

(ii)  If a random variable X follows F-distribution with n1 and n2 degrees of freedom, then as n2 

tends to infinity, n1X follows Chi-square with n1 degrees of freedom. 
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Table 1: Percentage points (right tail area) of normal distribution for various values of  z 

 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.500 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 

0.4 0.3446 0.3409 0.2272 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 

0.7 0.2420 0.2389 0.2358 0.2327 0.2297 0.2266 0.2231 0.2206 0.2177 0.2148 

0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1984 0.1867 

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 

1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 

1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 

1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 

1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 

1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 

1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 

1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 

2.2 0.0139  0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 

2.3 0.0107  0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 

2.4 0.0082  0.0080 0.0078 0.0075 0.0073 0.0017 0.0069 0.0068 0.0066 0.0064 

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 

2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 

2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 

2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 

2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 
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Table 2: Percentage points (right tail area) of chi-square distribution for various values of  and 

n 
 

         0.99 0.975 0.95 0.50 0.10 0.05 0.025 0.01 

n  

 

1 0.000       0.001 0.004 0.455 2.706 3.841 5.024 6.635 

2 0.020 0.051 0.103 1.386 4.605 5.991 7.378 9.210 

3 0.115 0.216 0.352 2.366 6.251 7.815 9.348 11.341  

4 0.297 0.484 0.711 3.357 7.779 9.488 11.143 13.277  

5 0.554 0.831 1.145 4.351 9.236 11.070 12.832 15.086  

6 0.872 1.237 1.635 5.348 10.645 12.592 14.449 16.812  

7 1.239 1.690 2.167 6.346 12.017 14.067 16.013 18.475  

8 1.646 2.180 2.733 7.344 13.362 15.507 17.535 20.090  

9 2.088 2.700 3.325 8.343 14.684 16.919 19.023 21.666  

10 2.558 3.247 3.940 9.342 15.987 18.307 20.483 23.209  

11 3.053 3.816 4.575 10.341 17.275 19.675 21.920 24.725  

12 3.571 4.404 5.226 11.340 18.549 21.026 23.337 26.217  

13 4.107 5.009 5.892 12.340 19.812 22.362 24.736 27.688  

14 4.660 5.629 6.571 13.339 21.064 23.635 26.119 29.141  

15 5.229 6.262 7.261 14.339 22.307 24.996 27.488 30.578  

16 5.812 6.908 7.962 15.338 23.542 26.296 28.845 32.000  

17 6.408 7.564 8.672 16.338 24.769 27.587 30.191 33.409  

18 7.015 8.231 9.390 17.338 25.989 28.869 31.526 34.802  

19 7.633 8.907 10.117 18.338 27.204 30.144 32.852 36.191  

20 8.260 9.591 10.851 19.337 28.412 31.410 34.170 37.566  

21 8.897 10.283 11.591 20.337 29.615 32.671 35.479 38.932  

22 9.542 10.982 12.338 21.337 30.813 33.924 36.781 40.289  

23 10.196 11.688 13.091 22.337 32.007 35.172 38.076 41.638  

24 10.856 12.401 13.848 23.337 33.196 36.415 39.364 42.980  

25 11.524 13.120 14.611 24.337 34.382 37.652 40.646 44.314  

26 12.198 13.844 15.379 25.336 35.563 38.885 41.923 45.642  

27 12.879 14.573 16.151 26.336 36.741 40.113 43.194 46.963  

28 13.565 15.308 16.928 27.336 37.916 41.337 44.461 48.278  

29 14.256 16.047 17.708 28.336 39.087 42.557 45.722 49.588  

30 14.953 16.791 18.493 29.336 40.256 43.773 46.979 50.892  

 

 

 

 

 

 

 

 



Sampling Distributions 

51 

 

Table 3: Percentage points (Two tail areas) of t-distribution for various values of  and n 

 

           

                n                     0.50         0.20        0.10          0.05          0.02         0.01 

             

  1 1.000       3.078       6.314      12.706       31.821     63.657  

    2 0.816       1.886       2.920        4.303         6.965       9.925  

    3 0.765       1.638       2.353        3.182         4.541       5.841  

    4 0.741       1.533       2.132        2.776         3.747       4.604  

    5 0.727       1.476       2.015        2.571         3.365       4.032  

    6 0.718       1.440       1.943        2.447         3.143       3.707  

    7 0.711       1.415       1.895        2.365         2.998       3.499  

    8 0.706       1.397       1.860        2.306         2.896       3.355  

    9 0.703       1.383       1.833        2.262         2.821       3.250  

    10 0.700       1.372       1.812        2.228         2.764       3.169  

  11 0.697       1.363       1.796        2.201         2.718       3.106  

  12 0.695       1.356       1.782        2.179         2.681       3.055  

  13 0.694       1.350       1.771        2.160         2.650       3.012  

  14 0.692       1.345       1.761        2.145         2.624       2.977  

  15 0.691       1.341       1.753        2.131         2.602       2.947  

  16 0.690       1.337       1.746        2.120         2.583       2.921  

  17 0.689       1.333       1.740        2.110         2.567       2.898  

  18 0.688       1.330       1.734        2.101         2.552       2.878  

  19 0.688       1.328       1.729        2.093         2.539       2.861  

  20 0.687       1.325       1.725        2.086         2.528       2.845  

  21 0.686       1.323       1.721        2.080         2.518       2.831  

  22 0.686       1.321       1.717        2.074         2.508       2.819  

  23 0.685       1.319       1.714        2.069         2.500       2.807  

  24 0.685       1.318       1.711        2.064         2.492       2.797  

  25 0.684       1.316       1.708        2.060         2.485       2.787  

  26 0.684       1.315       1.706        2.056         2.479       2.779  

  27 0.684       1.314       1.703        2.052         2.473       2.771  

  28 0.683       1.313       1.701        2.048         2.467       2.763  

  29 0.683       1.311       1.699        2.045         2.462       2.756  

  30 0.683       1.310       1.697        2.042         2.457       2.750  

  35 0.682       1.307       1.690        2.029         2.440       2.720  

  40 0.681       1.303       1.684        2.021         2.423       2.704  

  45 0.680       1.302       1.683        2.020         2.410       2.690  

  50 0.679       1.298       1.674        2.010         2.400       2.680  

  60 0.679       1.296       1.671        2.000         2.390       2.660  

   0.674       1.282       1.645        1.960         2.326       2.576  
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Table 4: Percentage points (right tail area) of F-distribution for various values  

of n1 and n2 for  = 0.01 
 

n1 

 n2 

1 2 3 4 5 6 8 12 24  

1 4052.00 4999.50 5403.00 5625.00 5764.00 5859.00 5982.00 6106.00 6234.00 6366.00 

2 98.50 99.00 99.17 99.25 99.30 99.33 99.37 99.42 99.46 99.50 

3 34.12 30.82 29.46 28.71 28.24 27.91 27.49 27.05 26.60 26.11 

4 21.20 18.00 16.69 15.98 15.52 15.21 14.80 14.37 13.93 13.46 

5 16.26 13.27 12.06 11.39 10.97 10.67 10.29 9.89 9.47 9.01 

6 13.74 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.31 6.88 

7 12.25 9.95 8.45 7.85 7.46 7.19 6.84 6.47 6.07 5.65 

8 11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.28 4.86 

9 10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.73 4.31 

10 10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.33 3.91 

11 9.65 7.21 6.22 5.67 5.32 5.07 4.24 4.40 4.02 3.60 

12 9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.16 3.78 3.36 

13 9.07 6.70 5.74 5.20 4.86 4.62 4.30 3.96 3.59 3.16 

14 8.86 6.51 5.56 5.03 4.69 4.46 4.14 3.80 3.43 3.00 

15 8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.29 2.87 

16 8.53 6.23 5.29 4.77 4.44 4.10 3.89 3.55 3.18 2.75 

17 8.40 6.11 5.18 4.67 4.34 4.10 3.79 3.45 3.08 2.65 

18 8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.00 2.57 

19 8.18 5.93 5.01 4.50 4.17 3.94 3.63 3.30 2.91 2.49 

20 8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23 2.86 2.42 

21 8.02 5.78 4.87 4.37 4.04 3.81 3.51 3.17 2.80 2.36 

22 7.94 5.72 4.82 4.31 3.99 3.76 3.45 3.12 2.75 2.31 

23 7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.70 2.26 

24 7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.66 2.21 

25 7.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.62 2.17 

26 7.72 5.53 4.64 4.11 3.82 3.59 3.29 2.96 2.58 2.13 

27 7.68 5.49 4.60 4.11 3.78 3.56 3.26 2.93 2.55 2.10 

28 7.64 5.45 4.57 4.07 3.75 3.53 3.23 2.90 2.52 2.06 

29 7.60 5.42 4.54 4.00 3.73 3.50 3.20 2.87 2.49 2.03 

30 7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.47 2.01 

40 7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.29 1.80 

60 7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.30 2.12 1.60 

 6.64 4.61 3.78 3.32 3.02 2.80 2.51 2.18 1.79 1.00 
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Table 5: Percentage points (right tail area) of F-distribution for various values  

of n1 and n2 for  = 0.05 
 

n1 

n2 

1 2 3 4 5 6 8 12 24  

1 161.40 199.50 215.70 224.60 230.20 234.00 238.90 243.90 249.00 254.30 

2 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.41 19.45 19.50 

3 10.13 9.55 9.28 9.12 9.01 8.94 8.84 8.74 8.64 8.53 

4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.77 5.63 

5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.36 

6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67 

7 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.41 3.23 

8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93 

9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.74 2.54 

11 4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.61 2.40 

12 4.75 3.88 3.49 3.26 3.11 3.00 2.85 2.69 2.50 2.30 

13 4.67 3.80 3.41 3.18 3.02 2.92 2.77 2.60 2.42 2.21 

14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13 

15 4.54 3.68 3.29 3.06 2.96 2.79 2.64 2.48 2.29 2.07 

16 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.24 2.01 

17 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.19 1.96 

18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92 

19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.11 1.88 

20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28. 2.08 1.84 

21 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.05 1.81 

22 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.03 1.78 

23 4.28 3.42 3.03 2.80 2.64 2.53 2.38 2.20 2.00 1.76 

24 4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.18 1.98 1.73 

25 4.24 3.38 2.99 2.76 2.60 2.49 2.34 2.16 1.96 1.71 

26 4.22 3.37 2.98 2.74 2.59 2.47 2.31 2.13 1.95 1.69 

27 4.21 3.35 2.96 2.73 2.57 2.46 2.30 2.13 1.93 1.67 

28 4.20 3.34 2.95 2.71 2.56 2.44 2.29 2.12 1.91 1.65 

29 4.18 3.33 2.93 2.70 2.54 2.43 2.28 2.10 1.90 1.64 

30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.89 1.62 

40 4..08 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.79 1.51 

60 4..00 3.15 2.76 2.52 2.37 2.25 2.10 1.92. 1.70 1.39 

 3.84 2.99 2.60 2.37 2.26 2.10 1.94 1.75 1.52 1.00 

 



TESTING OF HYPOTHESIS 
 

 

1.    Introduction 

In applied investigations, one is often interested in comparing some characteristic (such as mean 

or variance) of a group with a specified value, or in comparing two or more groups with regard to 

the characteristic. For instance, one may want to know whether mean timber yield obtained from 

recently felled plantations of a particular age in a particular management unit is some specifid 

value, one may wish to know whether average yield of a crop in a certain district is equal to a 

specified value, one may wish to compare two species of trees with regard to mean height, to 

know if genetic fraction of total variation in a strain is more than a given value. In making such 

comparisons, one can not rely on mere numerical magnitudes of index of comparison such as 

mean and variance. This is because each group is represented only by a sample of observations 

and if another sample were drawn, the numerical value would change. This variation between 

samples from the same population can at best be reduced in a well-designed controlled 

experiment but can never be eliminated. One is forced to draw inferences in presence of sampling 

fluctuations which affect observed differences between groups, clouding real differences. 

Statistical science provides an objective procedure for distinguishing whether observed difference 

connotes any real difference among groups. Such a procedure is called testing of hypothesis. 

Thus, in short, testing of hypothesis is a method of making due allowance for sampling 

fluctuation affecting results of experiments or observations. These tests have wide applications in 

agriculture, forestry, medicine, industry, social sciences, etc.  

 
1.1   Definitions 
 

Statistical Hypothesis: It is an assumption either about the form or about the parameters of a 

distribution. For example, average height of a particular species of tree is 50 feet, normal 

distribution has mean 20.  
 

If all the parameters are completely specified, hypothesis is called a simple hypothesis, 

otherwise it is a composite hypothesis. For example, average height of tree is 50 feet is a simple 

hypothesis and average height of tree is greater than 50 feet is a composite hypothesis. 

 

Null Hypothesis (H0): The hypothesis under test for a sample study is called Null hypothesis 

(H0). It represents a theory that has been put forward, either because it is believed to be true or 

because it is to be used as a basis for argument, but has not been proved. For example, in a 

clinical trial of a new drug, null hypothesis might be that the new drug is, on average, as effective 

as the current drug i.e. H0: Effect of the two drugs, on the average, is same.  

 

Alternative Hypothesis (H1): Any null hypothesis is tested against a rival, which is called 

Alternative hypothesis (H1). For example, mean height () of trees of a particular species in a 

region is some specified value 0, i.e.  

H0:   = 0. 

Alternative hypothesis could be any of the following: 

 H1:    0       (Two-tailed) 

         < 0       (Left-tailed) 

         > 0       (Right-tailed) 

 

For framing a suitable H0 and H1, four possibilities in order of preference are the following: 
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Possibilities H0 H1 

(i) Simple Simple 

(ii) Simple Composite 

(iii) Composite Simple 

(iv) Composite Composite 

 

The first one when both are simple is of little practical importance. As Possibility (ii) is preferred 

over Possibility (iii), therefore hypotheses should always be structured in such a way that H0 is 

simple and H1 is composite. 

 

Two Types of Errors 

 

True Situation  
  

Decision Made  
H0 is True H0 is False 

Reject H0 Type I error Correct decision 

Accept H0 Correct decision Type II error 

 

Probabilities of these types of error are respectively denoted by  and , i.e. 

Probability of Type I error =   

and  Probability of Type II error = . 

 

The ideal procedure of hypothesis testing is to minimize both  and . However, this is not 

possible in practice because a test which minimizes one type of error, maximizes the other type of 

error. As Type I error is considered to be more serious than Type II error, therefore probability of 

Type I error is fixed and probability of Type II error is minimized. Generally,  is taken to be 5% 

or 1%. 

 

Level of Significance (): It is the size of Type I error. The higher the value of , less precise is 

the result. 

 

Confidence Interval: The confidence interval of a parameter with confidence coefficient 100(1-

)% is the interval (a, b) such that it is expected to lie in this interval in 100(1-)% cases. 

  

Test Statistic: A test statistic is a quantity calculated from data. Its value is used to decide 

whether or not the null hypothesis should be rejected. 

 

Critical Value(s): The critical value(s) is that value with which value of test statistic in a sample 

is compared to determine whether or not the null hypothesis is rejected. The critical value for any 

hypothesis test depends on significance level  at which the test is carried out, and whether the 

test is one-sided or two-sided. 
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Power of a Test: It is defined as the probability of rejecting H0 when it is false. Thus, 

Power = 1 -   

Among a given set of tests, best test is one having maximum power.  

 

Steps in Hypothesis Testing 

 State statistical hypotheses 

 Check assumptions  

 Calculate test statistic 

 Set the test criteria  

 Interpret the results 

 

We now discuss some tests of hypothesis that are based on normal, t, F and chi-square 

distributions. 

 

2.    Test of Significance for Large Samples 

For large n (sample size), almost all the distributions can be approximated very closely by a 

normal probability curve, we therefore use the normal test of significance for large samples. If t 

is any statistic (function of sample values), then for large sample 
 

 (0.1) N     
V(t)

E(t) -t 
 Z  

 

Thus if the discrepancy between the observed and the expected (hypothetical) value of a statistic 

is greater than Z times the standard error (S.E), hypothesis is rejected at  level of significance.  

Similarly if 
 

 t – E(t)   Z  S.E(t), 
 

the deviation is not regarded significant at 5% level of significance. In other words the deviation t 

- E(t), could have arisen due to fluctuations of sampling and the data do not provide any evidence 

against the null hypothesis which may, therefore be accepted at  level of significance.   

If Z  1.96, then the hypothesis H0 is accepted at 5% level of significance. Thus the steps to be 

used in the normal test are as follows: 

i) Compute the test statistic Z under H0. 

ii) If Z > 3, H0 is always rejected 

iii) If Z < 3, we test its significance at certain level of significance 

 

The table below gives some critical values of Z:  

Shaded Area =    

Critical Value (one-sided) 
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Level of Significance Critical Value (Z) of Z 

 Two-tailed test Single tailed test 

10% 1.645 1.280 

 5% 1.960 1.645 

 1% 2.580 2.330 

 

2.1   Test for Single Mean 

A very important assumption underlying the tests of significance for variables is that the sample 

mean is asymptotically normally distributed even if the parent population from which the sample 

is drawn is not normal. 

 

If xi ( i =1,,n) is a random sample of size n from a normal population with mean   and 

variance 
2
, then the sample mean is distributed normally with mean  and variance 

n

2σ
. Based 

on this random sample, our aim is to test that mean of the population has a specified value 0, i.e.  
 

H0:   = 0  
 

The alternative hypothesis could be any of the following: 

H1:    0  (two tailed)      

              < 0  (left tailed)    

                  > 0  (right tailed)     

 

Test Statistic:  

n/

μx
Z 0




  

follows a standard normal distribution. 

 

Test Criteria: Depending on the alternative hypothesis selected, the test criteria are as follows: 
 

 

H1 Test 
Reject H0 at level of 

significance  if 

  0 Two-tailed  Z> Z/2 

 < 0 Left-tailed  Z < -Z 

 > 0 Right-tailed Z > Z 

 

Z is the table value of Z at level of significance . If 
2
 is unknown, then it is estimated by 

sample variance s
2
 (for large n), where 

2
n

1i
i

2 )x(x
1n

1
s 


 



 

 

Example 2.1: The mean timber yield obtained from 30 recently felled plantations at the age of 50 

years in a particular management unit is 93 m
3
/ha with a standard deviation of 10 m

3
/ha. Test 

whether the mean timber yield is 100 m
3
/ha based on past records. 

Solution: H0 :   = 100 m
3
/ha, H1:     100 m

3
/ha (two tailed test). 

Here, x 93 m
3
/ha., n = 30,  = 100 m

3
/ha and  = 10 m

3
/ha. 

 

 



Testing of Hypothesis 

60 

 

 

Thus, 

 

 834.3

30
10

10093



Z  

 
 

Since Z > 1.96, we conclude that the data does not provide any evidence in favour of the null 

hypothesis H0 may therefore be rejected at 5% level of significance. Hence the decision would be 

to accept the alternative hypothesis that there has been significant decline in the productivity of 

the management unit with respect to the plantations of the species considered.  

 

Note: The value of sample mean is an acceptable value of population mean if the statistic Z lies 

between -Z/2 to Z/2, i.e. 

 -Z/2 
n/

μx




 Z/2. 

Thus, 100(1-)% confidence-interval for  is  

( )n/ Zx  ,n/ Zx 2/2/   . 

 

2.2 Test for Difference of Means 

Let )x( x 21 be the mean of a sample of size n1 (n2) from a population with mean 1 (2) and 

variance )(σ σ 2
2

2

1 .  Our aim is to test 

H0 :  1 = 2 

against H1 :  1  2   

          1 > 2   

          1 < 2   
 

Test Statistic:   
 

 (0,1) N ~  

 
n

σ

n

σ

)xx(
Z

2

2
2

1

2
1

2 1




  

 

follows a standard normal distribution  
 

Test Criteria: 
 

H1 Test 
Reject H0 at level of 

significance  if 

1  2 Two-tailed Z> Z/2 

1 < 2 Left-tailed Z < -Z 

1> 2 Right-tailed Z > Z 
 

   

 
n

1
  

n

1
σ

)xx(
Z

21

2 1




 , If 22

1 σ  σσ  2

2  
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If  is not known, then its estimate is used  

2n  n

1)s-(n  1)s-(n
 s 

21

2
22

2
112

^
2




  

 

2.3 Test for Single Proportion 

Suppose in a sample of size n (>30), x be the number of successes. Then observed proportion of 

successes = pn/x  . Let P be the population proportion. The hypothesis to be tested is that 

population proportion is some specified value P0, i.e. 
 

 H0: P = P0 

 H1: P  P0   

       P > P0   

       P < P0   

 

Test Statistic:   

 
)/nP-(1P

P - p
  Z

00

0  

 

follows approximately a standard normal distribution. 

 

Test Criteria: 
 

H1 Test 
Reject H0 at level of 

significance  if 

P  P0 Two-tailed Z> Z/2 

P < P0 Left-tailed Z < -Z 

P> P0 Right-tailed Z > Z 

 

Example 2.2: In a sample of 1000 people, 540 are rice eaters and the rest are wheat eaters. Can 

we assume that both rice and wheat are equally popular at 1% level of significance? 

Solution: It is given that n = 1000, x = Number of rice eaters = 540, p = sample proportion of 

rice eaters = 0.54  1000/540  . 

H0 : Both rice and wheat are equally popular, i.e. P = 0.5 

H1 : P  0.5 
 

2.532  
0.5/1000 x 0.5

0.5 - 0.54
   

)/nP-(1P

P - p
   Z

00

0   

 

Tabulated value of Z at 1% level of significance is 2.575. Since Z < 2.575, therefore H0 is not 

rejected and we conclude that rice and wheat are equally popular. 

 

2.4 Test for Difference of Proportions 

Suppose we want to compare two populations with respect to the prevalence of a certain attribute 

A. Let x1 (x2) be the number of persons possessing the given attribute A in random sample of size 

n1 (n2) from 1
st
 (2

nd
) population. Then sample proportions will be 

 

2

2
2

1

1
1

n

x
p  ,

n

x
p   
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Let P1 and P2 be the population proportions. Our aim here is to test that there is no significant 

difference between population proportions, i.e. 
 

H0: P1 = P2  

 H1: P1  P2   

       P1 > P2   

       P1 < P2   

 

Test Statistic:   

 

Z = 

)
n

QP

n

QP
(

pp

2

22

1

11

21




   

 

follows approximately a standard normal distribution. In case P1 =P2 = P (say) and P is not 

known, it is estimated as follows: 
 

 
21

2211

nn

pnpn
P̂




  

 

Test Criteria: 
 
 

H1 Test 
Reject H0 at level of 

significance  if 

P1  P2   Two-tailed Z> Z/2 

P1 < P2   Left-tailed Z < -Z 

P1 > P2   Right-tailed Z > Z 

Consider an experiment on rooting of stem cuttings of Casuarina equisetifolia wherein the effect 

of dipping the cuttings in solutions of IBA at two different concentrations was observed. Two 

batches of 30 cuttings each, were subjected dipping treatment at concentrations of 50 and 100 

ppm of IBA solutions respectively. Based on the observations on number of cuttings rooted in 

each batch of 30 cuttings, the following proportions of rooted cuttings under each concentration 

were obtained. At 50 ppm, the proportion of rooted cuttings was 0.5 and at 100 ppm, the 

proportion was 0.37. Test whether the observed proportions are indicative of significant 

differences in the effect of IBA at the two concentrations.  

Here, p1 = 0.5 and p2 = 0.37. Then q1 = 0.5, q2 = 0.63. The value of n1 = n2 = 30. Thus,  
 

024.1

30

3)(0.37)(0.6

30

(0.5)(0.5)

37.05.0
Z 




  

 

Since the calculated value of Z (1.024) is less than the table value (1.96) at 5% level of 

significance, we can conclude that there is no significant difference between proportion rooted 

cuttings under the two concentration levels. 

 

3.    Test of Significance for Small Samples 

In this section, the statistical tests based on t, 
2
 and F are given. 
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3.1    Tests Based on t-Distribution 
 

3.1.1 Test for an Assumed Population Mean 

Suppose a random sample x1,..,xn of size n (n2) has been drawn from a normal population 

whose variance 
2
 is unknown. On the basis of this random sample the aim is to test 

H0 :   = 0 

H0 :    0   

   > 0   

   < 0   
 

Test statistic: 

 t = 1n
0 t~

ns/

μx



, 

where 



n

1i
ix

n

1
x  and 2

n

1i
i

2 )x(x
1n

1
s 


 



 

 

The table giving the value of t required for significance at various levels of probability and for 

different degrees of freedom are called the t – tables which are given in Statistical Tables by 

Fisher and Yates. The computed value is compared with the tabulated value at  percent level of 

significance and at (n-1) degrees of freedom and accordingly the null hypothesis is accepted or 

rejected. 

 

3.1.2 Test for the Difference of Two Population Means 

Let )x(x 21  be the sample mean of a sample of size n1 (n2) from a population with mean 1 (2) 

and variance of the two population be same 
2
, which is unknown. Our aim is to test 

H0 :   1 = 2 

H1 :   1  2  or  1 > 2  or 1 < 2   
 

Let 
2
is , i =1, 2 be sample variances of the two samples. Then common unknown population 

variance 
2
 is estimated as 

 

2nn
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Test Statistic:   
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t




  

which follows a t-distribution with n1 + n2 -2 d.f. 

 

 

Test Criteria: 

H1 Test 
Reject H0 at level of 

significance  if 

1  2 Two-tailed t> )2/(t 2nn 21
  

1 < 2 Left-tailed  t < - )(t 2nn 21
  

1> 2 Right-tailed  t > )(t 2nn 21
  



Testing of Hypothesis 

64 

 

This test statistic is used under certain assumptions viz., (i) The variables involved are continuous 

(ii) The population from which the samples are drawn follow normal distribution (iii) The 

samples are drawn independently (iv) The variances of the two populations from which the 

samples are drawn are homogeneous (equal). The homogeneity of two variances can be tested by 

using F-test. 

Example 3.1: A group of 5 plots treated with nitrogen at 20 kg/ha. yielded 42, 39, 48, 60 and 41 

kg whereas second group of 7 plots treated with nitrogen at 40 kg/ha. yielded 38, 42, 56, 64, 68, 

69 and 62 kg. Can it be concluded that nitrogen at level 40 kg/ha. increases the yield 

significantly?  

Solution: H0: 1 = 2 , H1:  1 < 2  

Here,   

 

 

 

 

 

Since |t| < 1.81 (value of t at 5% and 10 d.f), the yield from two doses of nitrogen do not differ 

significantly. 

 

3.1.3     Paired t-test for Difference of Means 

When the two samples are not independent but the sample observations are paired together, then 

this test is applied. The paired observations are on the same unit or matching units. For example, 

to know the impact of a new teaching method on the performance of students, the observations, 

in terms of marks, are collected before and after the new teaching method is implemented. Let 

(xi, yi), i = 1,…,n be the pairs of observations and let di = xi - yi. Our aim is to test 
 

H0 :  1 = 2  

H1 :  1  2   

         1 > 2   

        1 < 2   

 

Test Statistic:  
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Test Criteria: 
 

 

H1 Test 
Reject H0 at level of 

significance  if 

1  2 Two-tailed t> )2/(t 1n   

1 < 2 Left-tailed t < - )(t 1n   

1> 2 Right-tailed t > )(t 1n   
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3.1.4 Test for Significance of Observed Correlation Coefficient 

Given a random sample (xi, yi) , i = 1,…, n from a bivariate normal  population. We want to test 

the null hypothesis that the population correlation coefficient is zero i.e. 

        H0 :  = 0 

        H1 :   0 

 

Test Statistic: 

2n
2

   t~  
r1

2nr
t 




 , 

where r is the sample correlation coefficient. H0 is rejected at level  if 

          t > tn-2 (/2) 

This test can also be used for testing the significance of rank correlation coefficient. 

 
 

3.2  Test of Significance Based on Chi-Square Distribution 

 

3.2.1 Test for the Variance of a Normal Population 

Let x1, x2,…,xn (n2) be a random sample from a normal population with mean  and variance 


2
. On the basis of this sample our aim is to test 

H0 : 2
0

2 σσ   

against H1 : 
2
0

2 σσ   

         2
0

2 σσ   

        2
0

2 σσ   

 

Test Statistic:  
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follows a chi-square distribution with n d.f. when  is known, and 
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follows a chi-square distribution with n-1 d.f. when  is not known. 

 

Test Criteria: 
 

H1 Test 
Reject H0 at level of significance  if 

 is known  is not known 
2
0

2 σσ   Two-tailed 
2 

< )2/1(2
n  or 


2 

> )2/(2
n   


2 

< )2/1(2
1n   or 


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1n    

2
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2 σσ   Left-tailed  
2 

< )1(2
n   
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< )1(2
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2
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2 σσ   Right-tailed 
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> )(2
n   

2 
> )(2

1n    

 

Tables are available for 
2
 at different levels of significance and with different degrees of 

freedom. 
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3.2.2 Test for Goodness of Fit 

A test of wide applicability to numerous problems of significance in frequency data is the 
2
 test 

of goodness of fit. It is primarily used for testing the discrepancy between the expected and the 

observed frequency, For instance, one may be interested in testing whether a variable like the 

height of trees follows normal distribution. A tree breeder may be interested to know whether the 

observed segregation ratios for a character deviate significantly from the Mendelian ratios. In 

such situations, we want to test the agreement between the observed and theoretical frequencies. 

Such a test is called a test of goodness of fit.  

H0 : the fitted distribution is a good fit to the given data 

H1 : not a good fit. 

 

Test statistic: If Oi and Ei, i =1,…,n are respectively the observed and expected frequency of i
th 

class, then the statistic 

  2
1-r-n

i

2
ii

n

1i

2   ~ 
E

 EO



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where r is the number of parameters estimated from the sample, n is the number of classes after 

pooling. H0 is rejected at level  if calculated 
2
 > tabulated 

2
1-r-n  (). 

 

Example 3.2: In an F2 population of chillies, 831 plants with purple and 269 with non-purple 

chillies were observed.  Is this ratio consistent with a single factor ratio of 3:1?  

Solution: On the hypothesis of a ratio of 3:1, the frequencies expected in the purple and non-

purple classes are 825 and 275 respectively. 
 

 Frequency 

 Observed (Oi) Expected (Ei) Oi - Ei 

Purpose 831 825 6 

Non-purple 269 275 -6 
 

0.17
E

)E(O2

1i i

2
ii2 


 



. 

Here 
2
 is based on one degree of freedom. It is seen from the table that the value of 0.17 for 

2 

with 1 d.f corresponds to a level of probability which lies between 0.5 and 0.7. It is concluded 

that the result is non-significant. 

 

3.2.3 Test of Independence 

Another common use of the 
2
 test is in testing independence of classifications in what are 

known as contingency tables. When a group of individuals can be classified in two ways, the 

result of the classification in two ways the results of the classification can be set out as follows: 

Contingency table 

Class A1 A2 A3 

B1 n11 n21 n31 

B2 n12 n22 n32 

B3 n13 n23 n33 
 

Such a table giving the simultaneous classification of a body of data in two different ways is 

called contingency table. If there are r rows and c columns the table is said to be an r x c table. 

 

H0: the attributes are independent 

H1: they are not independent 
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Test statistic: 
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H0  is rejected at level  if  
2
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3.3     Test of Significance Based on F-Distribution 
 

3.3.1   Test for the Comparison of Two Population Variances 

Let xi , i = 1,…,n1 and xj, j=1,…,n2 be the two random samples of sizes n1 and n2 drawn from two 

independent normal populations N )σ,μ( 2
11  and N )σ,μ( 2

21  respectively. 2
2

2
1 s and  s   are the sample 

variances of the two samples. 
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Test statistic: Assuming 2
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Tables are available giving the values of F required for significance at different levels of 

probability and for different degrees of freedom. The computed value of F is compared with the 

tabulated value and the inference is drawn accordingly. 

 

3.3.2   Test for Homogeneity of Several Population Means  
The test of significance based on t-distribution is an adequate procedure only for testing the 

significance of the difference between two sample means. In a situation when we have three or 

more samples to consider at a time, an alternative procedure is needed for testing the hypothesis 

that all the samples are drawn from the same population i.e. they have the same mean. For 

Example, 5 fertilizers are applied to four plots each of wheat and yield of wheat on each of the 

plot is obtained. The interest is to find whether effects of these fertilizers on the yields is 

significantly different or in other words, whether the samples have come from the same normal 

population. This is done through F-test that uses the technique of Analysis of Variance 

(ANOVA).   

 

ANOVA is the technique of partitioning the total variability into different known components. It 

consist in the estimation of the amount of variation due to each of the independent factors 

(causes) separately and then comparing these estimates due to assignable factors with the 

estimate due to chance factor or experimental error. The F statistic used for testing the hypothesis 

H0:  1 = 2 =…=k (k>2) is 
 

 
samples within theVariation 

means sample  theamong Variation
F   
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Practical on Testing of Hypothesis 
 

1.   Independent Samples t-Test 

An experiment was conducted to evaluate the effect of inoculation with mycorrhiza on the height 

growth of seedlings of Pinus kesiya. In the experiment, 10 seedlings (Group I) were inoculated 

with mycorrhiza while another 10 seedlings (Group II) were left without inoculation with the 

microorganism. Following table gives the height of seedlings obtained under the two groups of 

seedlings: 
 

Plot Group I Group II 

1 23.0   8.5 

2 17.4   9.6 

3 17.0   7.7 

4 20.5 10.1 

5 22.7   9.7 

6 24.0 13.2 

7 22.5 10.3 

8 22.7   9.1 

9 19.4 10.5 

10 18.8   7.4 
 

Test whether inoculated and uninoculated seedlings are significantly different.  

Solution: H0: Mean of Group I (1) = Mean of Group II (2) and H1: 1  2 

From the given data 8.20x1  , 61.9x2  ,  
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The computed value of t is compared with the tabular value of t (2.10) at n1 + n2 - 2 = 18 degrees 

of freedom. Since the computed value is greater than 2.10 and it is concluded that the populations 

of inoculated and uninoculated seedlings are significantly different with respect to their mean 

height. 

2.   Paired t-Test 

The following data pertain to organic carbon content measured at two different layers of a 

number of soil pits. Test whether the mean carbon content from two layers of soil pit differ or 

not.  
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Soil pit 

Organic Carbon (%) 

Layer 1 

(x) 

Layer 2 

(y) 

Difference 

(d) 

1 1.59 1.21   0.38 

2 1.39 0.92   0.47 

3 1.64 1.31   0.33 

4 1.17 1.52 -0.35 

5 1.27 1.62 -0.35 

6 1.58 0.91   0.67 

7 1.64 1.23   0.41 

8 1.53 1.21   0.32 

9 1.21 1.58 -0.37 

10 1.48 1.18  0.30 

 

The observations are paired by soil pits. The paired t-test can be used in this case to compare the 

organic carbon status of soil at the two depth levels.  

Solution: Mean of Layer 1 (1) = Mean of Layer 2 (2) and H1: 1  2 
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Thus, 
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1486.0

181.0
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The value of t (1.485) is less than the tabular value, 2.262, for 9 degrees of freedom at the 5% 

level of significance. It may therefore be concluded that there is no significant difference between 

the mean organic carbon content of the two layers of soil. 
 

3.   Goodness of Fit 

In an F2 population of chillies, 831 plants with purple and 269 with non-purple chillies were 

observed.  Is this ratio consistent with a single factor ratio of 3:1?  

Solution: On the hypothesis of a ratio of 3:1, the frequencies expected in the purple and non-

purple classes are 825 and 275 respectively. 
 
 

 Frequency 

 Observed (Oi) Expected (Ei) Oi - Ei 

Purpose 831 825 6 

Non-purple 269 275 -6 
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Here 
2
 is based on one degree of freedom. It is seen from the table that the value of 0.17 for 

2 

with 1 d.f corresponds to a level of probability which lies between 0.5 and 0.7. It is concluded 

that the result is non-significant. 

 
4.   Equality of Several Means (Analysis of Variance)  

Ten varieties of wheat are grown in 3 plots each and the following yields in kg per hectare are 

obtained: 

  

Variety  

Plots  
1 2 3 4 5 6 7 8 9 10 

1 7 7 14 11 9 6 9 8 12 9 

2 8 9 13 10 9 7 13 13 11 11 

3 7 6 16 11 12 5 11 11 11 11 
 

Test the significance between mean variety yields. 



PLANNING AND DESIGNING OF  

AGRICULTURAL EXPERIMENTS 
 

 

An experiment is usually associated with a scientific method for testing certain phenomena. An 

experiment facilitates the study of such phenomena under controlled conditions and thus creating 

controlled condition is an essential component. Scientists in the biological fields who are 

involved in research constantly face problems associated with planning, designing and 

conducting experiments. Basic familiarity and understanding of statistical methods that deal with 

issues of concern would be helpful in many ways. Researchers who collect data and then look for 

a statistical technique that would provide valid results will find that there may not be solutions to 

the problem and that the problem could have been avoided first by a properly designed 

experiment. Obviously it is important to keep in mind that we cannot draw valid conclusions 

from poorly planned experiments. Second, the time and cost involved in many experiments are 

enormous and a poorly designed experiment increases such costs in time and resources. For 

example, an agronomist who carries out fertilizer experiment knows the time limitation of the 

experiment. He knows that when seeds are to be planted and harvested. The experimenter plot 

must include all components of a complete design. Otherwise what is omitted from the 

experiment will have to be carried out in subsequent trials in the next cropping season or next 

year. The additional time and expenditure could be minimized by a properly planned experiment 

that will produce valid results as efficiently as possible. Good experimental designs are products 

of the technical knowledge of one's field, an understanding of statistical techniques and skill in 

designing experiments. 

 

Any research endeavor may entail the phases of Conception, Design, Data collection, Analysis 

and Dissemination. Statistical methodologies can be used to conduct better scientific experiments 

if they are incorporated into entire scientific process, i.e., from inception of the problem to 

experimental design, data analysis and interpretation. When planning experiments we must keep 

in mind that large uncontrolled variations are common occurrences. Experiments are generally 

undertaken by researchers to compare effects of several conditions on some phenomena or in 

discovering an unknown effect of particular process. An experiment facilitates the study of such 

phenomena under controlled conditions. Therefore the creation of controlled condition is the 

most essential characteristic of experimentation. How we formulate our questions and hypotheses 

are critical to the experimental procedure that will follow. For example, a crop scientist who 

plants the same variety of a crop in a field may find variations in yield that are due to periodic 

variations across a field or to some other factors that the experimenter has no control over. The 

methodologies used in designing experiments will separate with confidence and accuracy a 

varietal difference of crops from the uncontrolled variations. 

 

The different concepts in planning of experiment can be well explained through chapati tasting 

experiment. 

  

Consider an experiment to detect the taste difference in chapati made of wheat flour of c306 and 

pv 18 varieties. The null hypothesis we can assume here is that there is no taste difference in 

chapatis made of c306 or pv18 wheat flours. After the null hypothesis is set, we have to fix the 

level of significance at which we can operate. The pv18 is a much higher yielding variety than 

c306. Hence a false rejection may not help the country to grow more pv18 and the wheat 
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production may decrease while a false acceptance may give more production of pv18 wheat and 

the consumption may be less or practically nil. Thus the false acceptance or false rejection are of 

practically equal consequence and we agree to choose the level of significance at α = 0.05. Now 

to execute the experiment, a subject is to be found with extrasensory powers who can detect the 

taste differences. The colours of c306 and pv18 are different and anyone, even without tasting 

the chapatis, can distinguish the chapatis of either kind by a mere glance. Thus the taster of the 

chapatis has to be blindfolded before the chapatis are given for tasting. Afterwards, the method 

is to be decided in which the experiment will be conducted. The experiment can be conducted in 

many ways and of them three methods are discussed here: 

 Give the taster equal number of chapatis of either kind informing the taster about it. 

 Give the taster pairs of chapatis of each kind informing the taster about it. 

 Give the taster chapatis of either kind without providing him with any information. Let us 

use 6 chapatis in each of these methods. 

 

Under first method of experimentation, if the null hypothesis is true, then the experimenter 

cannot distinguish the two kinds of chapaties and he will randomly select 3 chapatiS out of 6 

chapaties given to him, as made of pvl8 wheat. In that case, all correct guesses are made if 

selection exactly coincides with the exactly used wheat variety and the probability for such an 

occurrence is: 

   

  05.0
20

11
6
3


 

 

Under second method,the pv18 wheat variety chapaties are selected from each pair given if the 

null hypothesis is true. Furthermore, independent choices are made of pv18 variety chapaties 

from each pair. Thus the probability of making all correct guesses is 

 

1/(2)
3
 = 1/8 = 0.125. 

 

In third method the experimenter has to make the choice for each chapati and the situation is 

analogous at calling heads or tails in a coin tossing experiment. The probability of making all 

correct guesses would then be: 

1/2
6
 = 1/64 = .016. 

 

If the experimenter makes all correct guesses in third method as its probability is smaller than the 

selected  = 0.05, we can reject the null hypothesis and conclude that the two wheat varieties 

give different tastes at chapaties. In other methods the probability of making all correct guesses 

does not exceed  = 0.05 and hence with either method, we cannot   reject    the   null    

hypothesis    even   if   all   correct    guesses     are        made. 

However, if 8 chapaties are used by first method and if the taster guesses all of them, we can 

reject the null hypothesis, at 0.05 level of significance, as the probability of making all correct 

guesses would then be 

  56
11

8
3


 which is smaller than 0.05. 8 chapaties will not enable us 

to reject the null hypothesis even if all correct guesses are made by second method as the 

probability of making all correct guesses is 06.0
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 it is easy to see that if 10 chapaties 
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are given by second method and if all correct guesses are made, then we can reject the null 

hypothesis at 0.05 level of significance. Not to unduly influence the taster in making guesses, we 

should also present the chapaties in a random order rather than systematically presenting them for 

tasting. 

 

The above discussed chapati tasting experiment brings home the following salient features of 
experimentation: 

 

 All the extraneous variations in the data should be eliminated or controlled excepting the 

variations due to the treatments under study. One should not artificially provide 

circumstances for one treatment to show better results than others. 

 Far a given size of the experiment, though the experiment can be done in many ways, even 

the best results may not turn out to be significant with some designs, while some other 

design can detect the treatment differences. Thus there is an imperative need the choose the 

right type of design, before the commencement of the experiment, lest the results may be 

useless. 

 If for some specific reasons related to the nature .of the experiment, a particular method has 

to be used in experimentation, then adequate number of replications of each treatment have 

to be provided in order to get valid inferences.  

 The treatments have to be randomly allocated to the experimental units. 

 

The terminologies often used in planning and designing of experiments are listed below. 

 

Treatment 

Treatment refers to controllable quantitative or qualitative factors imposed at a certain level by 

the experimenter. For an agronomist several fertilizer concentrations applied to a particular crop 

or a variety of crop is a treatment. Similarly, an animal scientist looks upon several 

concentrations of a drug given to animal species as a treatment. In agribusiness we may look 

upon impact of advertising strategy on sales a treatment. To an agricultural engineer, different 

levels of irrigation may constitute a treatment. 

 

Experimental Unit 

An experimental unit is an entity that receives a treatment e.g., for an agronomist or horticulturist 

it may be a plot of a land or batch of seed, for an animal scientist it may be a group of pigs or 

sheep, for a scientist engaged in forestry research it may be different tree species occurring in an 

area, and for an agricultural engineer it may be manufactured item. Thus, an experimental unit 

maybe looked upon as a small subdivision of the experimental material, which receives the 

treatment. 

 

Experimental Error 

Differences in yields arising out of experimental units treated alike are called Experimental Error. 

 

Controllable conditions in an experiment or experimental variable are terms as a factor. For 

example, a fertilizer, a new feed ration, and a fungicide are all considered as factors. Factors may 

be qualitative or quantitative and may take a finite number of values or type. Quantitative factors 

are those described by numerical values on some scale. The rates of application of fertilizer, the 
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quantity of seed sown are examples of quantitative factors. Qualitative factors are those factors 

that can be distinguished from each other, but not on numerical scale e.g., type of protein in a 

diet, sex of an animal, genetic make up of plant etc. While choosing factors for any experiment 

researcher should ask the following questions, like What treatments in the experiment should be 

related directly to the objectives of the study? Does the experimental technique adopted require 

the use of additional factors? Can the experimental unit be divided naturally into groups such that 

the main treatment effects are different for the different groups? What additional factors should 

one include in the experiment to interact with the main factors and shed light on the factors of 

direct interest? How desirable is it to deliberately choose experimental units of different types? 

 

Basic Principles of Design of Experiments 

Given a set of treatments which can provide information regarding the objective of an 

experiment, a design for the experiment, defines the size and number of experimental units, the 

manner in which the treatments are allotted to the units and also appropriate type and grouping of 

the experimental units. These requirements of a design ensure validity, interpretability and 

accuracy of the results obtainable from an analysis of the observations. 

 

These purposes are served by the principles of:  

 Randomization 

 Replication 

 Local (Error) control 

 
Randomization 

After the treatments and the experimental units are decided the treatments are allotted to the 

experimental units at random to avoid any type of personal or subjective bias, which may be 

conscious or unconscious. This ensures validity of the results. It helps to have an objective 

comparison among the treatments. It also ensures independence of the observations, which is 

necessary for drawing valid inference from the observations by applying appropriate statistical 

techniques. 

 

Depending on the nature of the experiment and the experimental units, there are various 

experimental designs and each design has its own way of randomization. Various speakers while 

discussing specific designs in the lectures to follow shall discuss the procedure of random 

allocation separately. 

 

Replication 

If a treatment is allotted to r experimental units in an experiment, it is said to be replicated r 

times. If in a design each of the treatments is replicated r times, the design is said to have r 

replications. Replication is necessary to 

 Provide an estimate of the error variance which is a function of the differences among 

observations from experimental units under identical treatments. 

 Increase the accuracy of estimates of the treatment effects. 

 

Though, more the number of replications the better it is, so far as precision of estimates is 

concerned, it cannot be increased infinitely as it increases the cost of experimentation. Moreover, 

due to limited availability of experimental resources too many replications cannot be taken. 
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The number of replications is, therefore, decided keeping in view the permissible expenditure and 

the required degree of precision. Sensitivity of statistical methods for drawing inference also 

depends on the number of replications. Sometimes this criterion is used to decide the number of 

replications in specific experiments. 

 

Error variance provides a measure of precision of an experiment, the less the error variance the 

more precision. Once a measure of error variance is available for a set of experimental units, the 

number of replications needed for a desired level of sensitivity can be obtained as below. 

 

Given a set of treatments an experimenter may not be interested to know if two treatment differ 

in their effects by less than a certain quantity, say, d. In other words, he wants an experiment that 

should be able to differentiate two treatments when they differ by d or more. 

 

The significance of the difference between two treatments is tested by t-test where      

,
r/s2

yy
t

2

ji 
  

  

Here, ,y i  and jy  are the arithmetic means of two treatment effects each based on r replications, 

s
2
 is measure of error variation. 

 

Given a difference d, between two treatment effects such that any difference greater than d 

should be brought out as significant by using a design with r replications, the following equation 

provides a solution of r. 

,
r/s2

d
t

2
   

 

  2

2

2

0 s2x
d

t
r                         …(1) 

 

where 0t is the critical value of the t-distribution at the desired level of significance, that is, the 

value of t at 5 or 1 per cent level of significance read from the t-table. If s
2
 is known or based on a 

very large number of observations, made available from some pilot pre-experiment investigation, 

then t is taken as the normal variate. If s
2
 is estimated with n degree of freedom (d.f.) then t0 

corresponds to n d.f. 

 

When the number of replication is r or more as obtained above, then all differences greater than d 

are expected to be brought out as significant by an experiment when it is conducted on a set of 

experimental units which has variability of the order of s
2
. For example, in an experiment on 

wheat crop conducted in a seed farm in Bhopal, to study the effect of application of nitrogen and 

phosphorous on yield a randomized block design with three replications was adopted. There were 

11 treatments two of which were (i) 60 Kg/ha of nitrogen (ii) 120 Kg/ha of nitrogen. The average 

yield figures for these two application of the fertilizer were 1438 and 1592 Kg/ha respectively 

and it is required that differences of the order of 150 Kg/ha should be brought out significant. The 

error mean square (s
2
) was 12134.88. Assuming that the experimental error will be of the same 

order in future experiments and t0 is of the order of 2.00, which is likely as the error d.f. is likely 

to be more than 30 as there are 11 treatments; Substituting in (1), we get: 
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Thus, an experiment with 4 replications is likely to bring out differences of the order of 150 

Kg/ha as significant. 

 

Another criterion for determining r is to take a number of replications which ensures at least 10 

d.f. for the estimate of error variance in the analysis of variance of the design concerned since the 

sensitivity of the experiment will be very much low as the F test (which is used to draw inference 

in such experiments) is very much unstable below 10 d.f. 

 
Local Control 

The consideration in regard to the choice of number of replications ensure reduction of standard 

error of the estimates of the treatment effect because the standard error of the estimate of a 

treatment effect is rs /2
, but it cannot reduce the error variance itself. It is, however, possible to 

devise methods for reducing the error variance. Such measures are called error control or local 

control. One such measure is to make the experimental units homogenous. Another method is to 

form the units into several homogenous groups, usually called blocks, allowing variation between 

the groups. 

 

A considerable amount of research work has been done to divide the treatments into suitable 

groups of experimental units so that the treatment effect can be estimated more precisely 

Extensive use of combinatorial mathematics has been made for formation of such group 

treatments. This grouping of experiment units into different groups has led to the development of 

various designs useful to the experimenter. We now briefly describe the various term used in 

designing of an experiment 

 

Blocking 

It refers to methodologies that form the units into homogeneous or pre-experimental subject-

similarity groups. It is a method to reduce the effect of variation in the experimental material on 

the Error of Treatment of Comparisons. For example, animal scientist may decide to group 

animals on age, sex, breed or some other factors that he may believe has an influence on 

characteristic being measured. Effective blocking removes considerable measure of variation 

nom the experimental error. The selection of source of variability to be used as basis of blocking, 

block size, block shape and orientation are crucial for blocking. The blocking factor is introduced 

in the experiment to increase the power of design to detect treatment effects. 

 

The importance of good designing is inseparable from good research (results). The following 

examples point out the necessity for a good design that will yield good research. First, a nutrition 

specialist in developing country is interested in determining whether mother's milk is better than 

powdered milk for children under age one. The nutritionist has compared the growth of children 

in village A, who are all on mother's milk against the children in village B, who use powdered 

milk. Obviously, such a comparison ignores the health of the mothers, the sanitary-conditions of 

the villages, and other factors that may have contributed to the differences observed without any 

connection to the advantages of mother's milk or the powdered milk on the children. A proper 

design would require that both mother's milk and the powdered milk be alternatively used in both 
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villages, or some other methodology to make certain that the differences observed are attributable 

to the type of milk consumed and not to some uncontrollable factor. Second, a crop scientist who 

is comparing 2 varieties of maize, for instance, would not assign one variety to a location where 

such factors as sun, shade, unidirectional fertility gradient, and uneven distribution of water 

would either favor or handicap it over the other. If such a design were to be adopted, the 

researcher would have difficulty in determining whether the apparent difference in yield was due 

to variety differences or resulted from such factors as sun, shade, soil fertility of the field, or the 

distribution of water. These two examples illustrate the type of poorly designed experiments that 

are to be avoided. 

 

Analysis of Variance 

Analysis of Variance (ANOVA) is a technique of partitioning the overall variation in the 

responses into different assignable sources of variation, some of which are specifiable and others 

unknown. Total variance in the sample data is partitioned and is expressed as the sum of its non-

negative components is a measure of the variation due to some specific independent source or 

factor or cause. ANOVA consists in estimation of the amount of variation due to each of the 

independent factors (causes) separately and then comparing these estimates due to ascribable 

factors (causes) with the estimate due to chance factor  the latter being known as experimental 

error or simply the error. 

 

Total variation present in a set of observable quantities may, under certain circumstances, be 

partitioned into a number of components associated with the nature of classification of the data. 

The systematic procedure for achieving this is called Analysis of Variance. The initial techniques 

of the analysis of variance were developed by the statistician and geneticist R. A. Fisher in the 

1920s and 1930s, and is sometimes known as Fisher's analysis of variance, due to the use of 

Fisher's F-distribution as part of the test of statistical significance. 

 

Thus, ANOVA is a statistical technique that can be used to evaluate whether there are differences 

between the average value, or mean, across several population groups. With this model, the 

response variable is continuous in nature, whereas the predictor variables are categorical. For 

example, in a clinical trial of hypertensive patients, ANOVA methods could be used to compare 

the effectiveness of three different drugs in lowering blood pressure. Alternatively, ANOVA 

could be used to determine whether infant birth weight is significantly different among mothers 

who smoked during pregnancy relative to those who did not. In a particular case, where two 

population means are being compared, ANOVA is equivalent to the independent two-sample t-

test. 

The fixed-effects model of ANOVA applies to situations in which the experimenter applies 

several treatments to the subjects of the experiment to see if the response variable values change. 

This allows the experimenter to estimate the ranges of response variable values that the treatment 

would generate in the population as a whole. In it factors are fixed and are attributable to a finite 

set of levels of factor eg. Sex, year, variety, fertilizer etc.  

Consider for example a clinical trial where three drugs are administered on a group of men and 

women some of whom are married and some are unmarried.  The three classifications of sex, 

drug and marital status that identify the source of each datum are known as factors.  The 

individual classification of each factor is known as levels of the factors.  Thus, in this example 

there are 3 levels of factor drug, 2 levels of factor sex and 2 levels of marital status. Here all the 

effects are fixed.  Random effects models are used when the treatments are not fixed. This occurs 

when the various treatments (also known as factor levels) are sampled from a larger population. 

http://en.wikipedia.org/wiki/Statistician
http://en.wikipedia.org/wiki/Geneticist
http://en.wikipedia.org/wiki/Ronald_Fisher
http://en.wikipedia.org/wiki/F-distribution
http://en.wikipedia.org/wiki/Statistical_significance
http://en.wikipedia.org/wiki/Response_variable
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When factors are random, these are generally attributable to infinite set of levels of a factor of 

which a random sample are deemed to occur   eg. research stations, clinics in Delhi, sire, etc. 

Suppose new inject-able insulin is to be tested using 15 different clinics of Delhi state. It is 

reasonable to assume that these clinics are random sample from a population of clinics from 

Delhi. It describe the situations where both fixed and random effects are present. 

 

In any ANOVA model, general mean is always taken as fixed effect and error is always taken as 

random effect. Thus class of model can be classified on the basis of factors, other than these two 

factors. ANOVA can be viewed as a generalization of t-tests: a comparison of differences of 

means across more than two groups.  

The ANOVA is valid under certain assumptions. These assumptions are: 

 Samples have been drawn from the populations that are normally distributed. 

 Observations are independent and are distributed normally with mean zero and variance σ
2
. 

 Effects are additive in nature. 

 

The ANOVA is performed as one-way, two-way, three-way, etc. ANOVA when the number of 

factors is one, two or three respectively. In general if the number of factors is more, it is termed 

as multi-way ANOVA.   

 



BASIC EXPERIMENTAL DESIGNS  
 

 

1.   Introduction 

In this chapter, three basic designs viz., Completely randomized design (CRD), Randomized 

Complete Block Design (RCBD) and Latin Square Design (LSD) are explained in detail.  

 

2.   Completely Randomized Design 

Designs are usually characterized by the nature of grouping of experimental units and the 

procedure of random allocation of treatments to the experimental units.  In a completely 

randomized design the units are taken in a single group.  As far as possible the units forming the 

group are homogeneous.  This is a design in which only randomization and replication are used.  

There is no use of local control here.  

 

Let there be v treatments in an experiment and n homogeneous experimental units.  Let the i
th

  

treatment be replicated ir times (i = 1,2,…, v) such that nr
v

1i
i 



. The treatments are allotted at 

random to the units. 

 

Normally the number of replications for different treatments should be equal as it ensures equal 

precision of estimates of the treatment effects.  The actual number of replications is, however, 

determined by the availability of experimental resources and the requirement of precision and 

sensitivity of comparisons.  If the experimental material for some treatments is available in 

limited quantities, the numbers of their replication are reduced.  If the estimates of certain 

treatment effects are required with more precision, the numbers of their replication are increased.   

 

Randomization 

There are several methods of random allocation of treatments to the experimental units.  The v 

treatments are first numbered in any order from 1 to v.  The n experimental units are also 

numbered suitably.  One of the methods uses the random number tables.  Any page of a random 

number table is taken.  If v is a one-digit number, then the table is consulted digit by digit.  If v is 

a two-digit number, then two-digit random numbers are consulted.  All numbers greater than v 

including zero are ignored. 

 

Let the first number chosen be 1n ; then the treatment numbered 1n is allotted to the first unit.  If 

the second number is 2n  which may or may not be equal to n1 then the treatment numbered 2n  is 

allotted to the second unit.  This procedure is continued.  When the i
th

 treatment number has 

occurred ir  times,  vi ,...,2,1  this treatment is ignored subsequently.  This process terminates 

when all the units are exhausted. 

 

One drawback of the above procedure is that sometimes a very large number of random numbers 

may have to be ignored because they are greater than v.  It may even happen that the random 

number table is exhausted before the allocation is complete.  To avoid this difficulty the 

following procedure is adopted.  We have described the procedure by taking v to be a two-digit 

number. 
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Let P be the highest two-digit number divisible by v. Then all numbers greater than P and zero 

are ignored.  If a selected random number is less than v, then it is used as such.  If it is greater 

than or equal to v, then it is divided by v and the remainder is taken to the random number.  When 

a number is completely divisible by v, then the random number is v.  If v is an n-digit number, 

then P is taken to be the highest n-digit number divisible by v.  The rest of the procedure is the 

same as above. 

 

Analysis   

This design provides a one-way classified data according to levels of a single factor.  For its 

analysis the following model is taken: 

                       ,iijiij r1,jv;,1,i           ,ety     

where ijy is the random variable corresponding to the observation ijy obtained from the j
th 

replicate of the i
th

 treatment,  is the general mean, it is the fixed effect of the i
th

 treatment and 

ije  is the error component which is a random variable assumed to be normally and independently 

distributed with zero means and a constant variance  2
.   

 

Let  vi    Ty i
j

ij ,...,2,1  be the total of observations from i
th

 treatment.  Let further 

.GT

i
i   Correction factor (C.F.)   = G

2
/n.  

Sum of squares due to treatments .F.C
r
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1i i

2
i 



  

Total sum of squares  =    .F.Cy
v
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r
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2
ij

i


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Analysis of Variance  

Sources of 

variation 

Degrees of 

freedom (D.F.) 

Sum of squares 

(S.S.) 

Mean squares 

(M.S.) 

F 

Treatments v – 1 SST

.F.C
r

Tv

1i i

2
i 



 

 

MST = SST / (v - 1) 

 

MST/MSE 

Error n – v SSE = by 

subtraction 

MSE = 

SSE / (n - v) 

 

Total n – 1 .F.Cy

ij

2
ij     

 

The hypothesis that the treatments have equal effects is tested by F-test where F is the ratio MST / 

MSE with (v - 1) and (n - v) degrees of freedom.   

 

3.   Randomized Complete Block Design 

It has been seen that when the experimental units are homogeneous then a CRD should be 

adopted.  In any experiment, however, besides treatments the experimental material is a major 

source of variability in the data.  When experiments require a large number of experimental units, 

the experimental units may not be homogeneous, and in such situations CRD can not be 

recommended.   When the experimental units are heterogeneous, a part of the variability can be 
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accounted for by grouping the experimental units in such a way that experimental units within 

each group are as homogeneous as possible.  The treatments are then allotted randomly to the 

experimental units within each group (or blocks). The principle of first forming homogeneous 

groups of the experimental units and then allotting at random each treatment once in each group 

is known as local control.  This results in an increase in precision of estimates of the treatment 

contrasts, due to the fact that error variance that is a function of comparisons within blocks, is 

smaller because of homogeneous blocks.  This type of allocation makes it possible to eliminate 

from error variance a portion of variation attributable to block differences.  If, however, variation 

between the blocks is not significantly large, this type of grouping of the units does not lead to 

any advantage; rather some degrees of freedom of the error variance is lost without any 

consequent decrease in the error variance.  In such situations it is not desirable to adopt 

randomized complete block designs in preference to completely randomized designs. 

 

If the number of experimental units within each group is same as the number of treatments and if 

every treatment appears precisely once in each group then such an arrangement is called a 

randomized complete block design. 

 

Suppose the experimenter wants to study v treatments.  Each of the treatments is replicated r 

times (the number of blocks) in the design.  The total number of experimental units is, therefore, 

vr.  These units are arranged into r groups of size v each.  The error control measure in this 

design consists of making the units in each of these groups homogeneous.  

 

The number of blocks in the design is the same as the number of replications.  The v treatments 

are allotted at random to the v plots in each block.  This type of homogeneous grouping of the 

experimental units and the random allocation of the treatments separately in each block are the 

two main characteristic features of randomized block designs.  The availability of resources and 

considerations of cost and precision determine actual number of replications in the design.  

 

Analysis 
The data collected from experiments with randomized complete block designs form a two-way 

classification, that is, classified according to the levels of two factors, viz., blocks and treatments.  

There are vr cells in the two-way table with one observation in each cell.  The data are orthogonal 

and therefore the design is called an orthogonal design. We take the following model:  

 ,
r,...,2,1j

;v,...,2,1i
            ,ebty ijjiij 












   

where ijy  denotes the observation from i
th

 treatment in j
th

 block.  The fixed effects ji b,t,  

denote respectively the general mean, effect of the i
th 

treatment and effect of the j
th

 block. The 

random variable ije  is the error component associated with ijy .  These are assumed to be 

normally and independently distributed with zero means and a constant variance  2
.   

 

Following the method of analysis of variance for finding sums of squares due to blocks, 

treatments and error for the two-way classification, the different sums of squares are obtained as 

follows: Let  v,...,2,1i  Ty i
j

ij   = total of observations from i
th 

treatment and    By

j
jij   

r,,1j   = total of observations from j
th 

block.  These are the marginal totals of the two-way 

data table.  Let further, .GBT

j
j

i
i   
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Analysis of Variance  
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Sum of squares 
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MSB = SSB / (r - 1) 

 

MSB/MSE 

Treatments v - 1 
SST .F.C

r

T

i

2
i   

 

MST = SST / (v - 1) 

 

MST/MSE 

Error (r - 1)(v - 1) SSE = by subtraction MSE = 

SSE / (v - 1)(r - 1) 

 

Total vr - 1 .F.Cy

ij

2
ij     

 

The hypothesis that the treatments have equal effects is tested by F-test, where F is the ratio MST 

/ MSE with (v - 1) and (v - 1)(r - 1) degrees of freedom.  We may then be interested to either 

compare the treatments in pairs or evaluate special contrasts depending upon the objectives of the 

experiment.  This is done as follows:   

 

The critical difference for testing the significance of the difference of two treatment effects, say 

ji tt   is r/MSE2t.D.C 2/),1r)(1v(  , where 2/),1r)(1v(t   is the value of Student's t at 

the level of significance  and degree of freedom (v - 1)(r - 1).  If the difference of any two-

treatment means is greater than the C.D. value, the corresponding treatment effects are 

significantly different.  

 

4.   Latin Square Design 

Latin square designs are normally used in experiments where it is required to remove the 

heterogeneity of experimental material in two directions.  These designs require that the number 

of replications equal the number of treatments or varieties.   
 

Definition 1.  A Latin square arrangement is an arrangement of v symbols in v
2

 cells arranged in 

v rows and v columns, such that every symbol occurs precisely once in each row and precisely 

once in each column.  The term v is known as the order of the Latin square. 
 

If the symbols are taken as A, B, C, D, a Latin square arrangement of order 4 is as follows: 

    A B C D 

    B C D A 

    C D A B 

    D A B C 

 

A Latin square is said to be in the standard form if the symbols in the first row and first column 

are in natural order, and it is said to be in the semi-standard form if the symbols of the first row 
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are in natural order.  Some authors denote both of these concepts by the term standard form.  

However, there is a need to distinguish between these two concepts.  The standard form is used 

for randomizing the Latin-square designs, and the semi-standard form is needed for studying the 

properties of the orthogonal Latin squares. 
 

Definition 2.  If in two Latin squares of the same order, when superimposed on one another, 

every ordered pair of symbols occurs exactly once, the two Latin squares are said to be 

orthogonal.  If the symbols of one Latin square are denoted by Latin letters and the symbols of 

the other are denoted by Greek letters, the pair of orthogonal Latin squares is also called a 

graeco-latin square. 
 

Definition 3.  If in a set of Latin squares every pair is orthogonal, the set is called a set of 

mutually orthogonal latin squares (MOLS).  It is also called a hypergraeco latin square. 
 

The following is an example of graeco latin square:  

 

         

ABCD

BADC

CDAB

DCBA

                       









                         









ABCD

BADC

CDAB

DCBA

 

                                                  

We can verify that in the above arrangement every pair of ordered Latin and Greek symbols 

occurs exactly once, and hence the two latin squares under consideration constitute a graecolatin 

square. 

 

It is well known that the maximum number of MOLS possible of order v is v - 1.  A set of v - 1 

MOLS is known as a complete set of MOLS.  Complete sets of MOLS of order v exist when v is 

a prime or prime power.  

 

Randomization 

According to the definition of a Latin square design, treatments can be allocated to the v
2
 

experimental units (may be animal or plots) in a number of ways.  There are, therefore, a number 

of Latin squares of a given order.  The purpose of randomization is to select one of these squares 

at random.  The following is one of the methods of random selection of Latin squares. 

 

Let a v  v Latin square arrangement be first written by denoting treatments by Latin letters A, B, 

C, etc. or by numbers 1, 2, 3, etc.  Such arrangements are readily available in the Tables for 

Statisticians and Biometricians (Fisher and Yates, 1974).  One of these squares of any order can 

be written systematically as shown below for a 55 Latin square: 

 

                                         

DCBAE

CBAED

BAEDC

AEDCB

EDCBA
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For the purpose of randomization rows and columns of the Latin square are rearranged randomly.  

There is no randomization possible within the rows and/or columns.  For example, the following 

is a row randomized square of the above 55 Latin square; 

 

                                          

BAEDC

CBAED

DCBAE

AEDCB

EDCBA

 

Next, the columns of the above row randomized square have been rearranged randomly to give 

the following random square: 

                                           

ACEDB

BDAEC

CEBAD

EBDCA

DACBE

 

As a result of row and column randomization, but not the randomization of the individual units, 

the whole arrangement remains a Latin square. 

 

Analysis 

In Latin square designs there are three factors.  These are the factors P, Q, and treatments.  The 

data collected from this design are, therefore, analyzed as a three-way classified data.  Actually, 

there should have been 3v  
observations as there are three factors each at v levels.  But because of 

the particular allocation of treatments to the cells, there is only one observation per cell instead of 

v in the usual three way classified orthogonal data.  As a result we can obtain only the sums of 

squares due to each of the three factors and error sum of squares.  None of the interaction sums of 

squares of the factors can be obtained.  Accordingly, we take the model 

 ijssjiijs etcrY     

 

where ijsy  denotes the observation in the i
th 

row, j
th 

column and under the s
th 

treatment;  

 v,...,2,1s,j,it,c,r, sji   are fixed effects denoting in order the general mean, the row, the 

column and the treatment effects.  The ijse is the error component, assumed to be independently 

and normally distributed with zero mean and a constant variance, 2 . 

 

The analysis is conducted by following a similar procedure as described for the analysis of two-

way classified data.  The different sums of squares are obtained as below:  Let the data be 

arranged first in a row  column table such that ijy denotes the observation of (i,  j)th cell of 

table. 
 

Let  ,v1,2,...,i total row iyR

j

th
iji   ,v1,2,...,j total column jyC th

i
ijj   sT  

sum of those observations which come from s
th 

treatment (s= 1,2,…,v),        
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 Treatment sum of squares = 
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s  , Row sum of squares = .F.C

v

R
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Analysis of Variance of v  v Latin Square Design 

Sources of  Variation D.F. S.S. M.S. F 

Rows v -1 
.F.C

v

R

i

2
i   

  

Columns v - 1 

.F.C
v

C

j

2
j
  

  

Treatments v - 1 
.F.C

v

T

s

2
s   

2
ts  

2
e

2
t s/s  

Error (v - 1)(v - 2) By subtraction 2
es   

Total v
2
-1 .F.Cy

ij

2
ij     

 

The hypothesis of equal treatment effects is tested by F-test, where F is the ratio of treatment 

mean squares to error mean squares.  If F is not significant, treatment effects do not differ 

significantly among themselves.  If F is significant, further studies to test the significance of any 

treatment contrast can be made in exactly the same way as discussed for randomized block 

designs. 

 

5.   Contrasts Analysis 

The main technique adopted for the analysis and interpretation of the data collected from an 

experiment is the analysis of variance technique that essentially consists of partitioning the total 

variation in an experiment into components ascribable to different sources of variation due to the 

controlled factors and error.  Analysis of variance clearly indicates a difference among the 

treatment means. The objective of an experiment is often much more specific than merely 

determining whether or not all of the treatments give rise to similar responses.  For examples, a 

chemical experiment might be run primarily to determine whether or not the yield of the chemical 

process increases as the amount of the catalyst is increased. A medical experimenter might be 

concerned with the efficacy of each of several new drugs as compared to a standard drug.  A 

nutrition experiment may be run to compare high fiber diets with low fiber diets. A plant breeder 

may be interested in comparing exotic collections with indigenous cultivars.  An agronomist may 

be interested in comparing the effects of biofertilisers and chemical fertilisers. A water 

technologist may be interested in studying the effect of nitrogen with Farm Yard Manure over the 

nitrogen levels without farm yard manure in presence of irrigation. 
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2.1 Contrasts 

Let y1, y2, …,yn denote n observations or any other quantities.  The linear function i

n

1i
i ylC 



 , 

where il 's are given number such that 0l
n

1i
i 



, is called a contrast of s'yi .  Let y1, y2, …,yn be 

independent random variables with a common mean  and variance 2 . The expected value of 

the random variable C is zero and its variance is .l
n

1i

2
i

2


  In what follows we shall not 

distinguish between a contrast and its corresponding random variable. 
 

Sum of squares (s.s.) of contrasts.  The sum of squares due to the contrast C is defined as 

)C(Var/C 22   = 
















n

1i

2
i

2 l/C . Here 2  is unknown and is replaced by its unbiased estimate, 

i.e. mean square error.  It is known that this square has a 22 distribution with one degree of 

freedom when the s'yi  are normally distributed.  Thus the sum of squares due to two or more 

contrasts has also a 22 distribution if the contrasts are independent. Multiplication of any 

contrast by a constant does not change the contrast.  The sum of squares due to a contrast as 

defined above is not evidently changed by such multiplication. 

Orthogonal contrasts.  Two contrasts, i

n

1i
i1 ylC 



 and i

n

1i
i2 ylC 



  are said to be orthogonal if 

and only if 0ml
n

1i
ii 



.  This condition ensures that the covariance between 1C  and 2C  is zero. 

 

When there are more than two contrasts, they are said to be mutually orthogonal if they are 

orthogonal pair wise.  For example, with four observations 4321 y,y,y ,y , we may write the 

following three mutually orthogonal contrasts: 

(i) 4321 yyyy   

(ii) 4321 yyyy   

(iii) 4321 yyyy      

The sum of squares due to a set of mutually orthogonal contrasts has a 22 distribution with as 

many degrees of freedom as the number of contrasts in the set.     

 
 



ANALYSIS OF COVARIANCE 
 

 

Introduction 

The meaning of ANVOVA is Analysis of Covariance. It is a general linear model with one 

continuous outcome variable (quantitative) and one or more factor variables (qualitative). 

ANCOVA is a merger of ANOVA and regression for continuous variables. ANCOVA tests 

whether certain factors have an effect on the outcome variable after removing the variance for 

which quantitative predictors (covariates) account. The inclusion of covariates can increase 

statistical power because it accounts for some of the variability. 

 

It is well known that in designed experiments the ability to detect existing differences among 

treatments increases as the size of the experimental error decreases, a good experiment attempts 

to incorporate all possible means of minimizing the experimental error. Besides proper 

experimentation, a proper data analysis also helps in controlling experimental error. In situations 

where blocking alone may not be able to achieve adequate control of experimental error, proper 

choice of data analysis may help a great deal. By measuring one or more covariates - the 

characters whose functional relationships to the character of primary interest are known - the 

Analysis of Covariance (ANCOVA) can reduce the variability among experimental units by 

adjusting their values to a common value of the covariates. For example, in an animal feeding 

trial, the initial body weight of the animals usually differs. Using this initial body weight as a 

covariate, the final weights recorded after the animals have been subjected to various 

physiological feeds (treatments) can be adjusted to the values that would have been obtained had 

there been no variation in the initial body weights of the animals at the start of the experiment. 

An another example, in a field experiment where rodents have (partially) damaged some of the 

plots, covariance analysis with rodent damage as a covariate could be useful in adjusting plot 

yields to the levels that they should have been had there been no rodent damage in any plot. 

 

ANCOVA requires measurement of the character of primary interest plus the measurement of 

one or more variables known as covariates. It also requires that the functional relationship of the 

covariates with the character of primary interest is known beforehand. Generally a linear 

relationship is assumed, though other type of relationships could also be assumed. 

 

Consider the case of a variety trial in which weed incidence is used as a covariate. With a known 

functional relationship between weed incidence and grain yield, the character of primary interest, 

the covariance analysis can adjust grain yield in each plot to a common level of weed incidence. 

With this adjustment, the variation in yield due to weed incidence is quantified and effectively 

separated from that due to varietal difference. 

 

ANCOVA can be applied to any number of covariates and to any type of functional relationship 

between variables viz. quadratic, inverse polynomial, etc. Here we illustrate the use of covariance 

analysis with the help of a single covariate that is linearly related with the character of primary 

interest. It is expected that this simplification shall not unduly reduce the applicability of the 

technique, as a single covariate that is linearly related with the primary variable is adequate for 

most of the experimental situations in agricultural research. 

 

Uses of Covariance Analysis in Agricultural Research 

There are several important uses of covariance analysis in agricultural research. Some of the most 

important ones are: 

http://www.answers.com/topic/general-linear-model
http://www.answers.com/topic/analysis-of-variance
http://www.answers.com/topic/regression-analysis
http://www.answers.com/topic/covariate
http://www.answers.com/topic/statistical-power
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1. To control experimental error and to adjust treatment means. 

2. To aid in the interpretation of experimental results. 

3. To estimate missing data. 

 

Error Control and Adjustment of Treatment Means 
It is now well realized that the size of experimental error is closely related to the variability 

between experimental units. It is also known that proper blocking can reduce experimental error 

by maximizing the differences between the blocks and thus minimizing differences within 

blocks. Blocking, however, can not cope with certain types of variability such as spotty soil 

heterogeneity and unpredictable insect incidence. In both instances, heterogeneity between 

experimental plots does not follow a definite pattern, which causes difficulty in getting maximum 

differences between blocks. Indeed, blocking is ineffective in the case of nonuniform insect 

incidences because blocking must be done before the incidence occurs. Furthermore, even though 

it is true that a researcher may have some information on the probable path or direction of insect 

movement, unless the direction of insect movement coincides with the soil fertility gradient, the 

choice of whether soil heterogeneity or insect incidence should be the criterion for blocking is 

difficult. The choice is especially difficult if both sources of variation have about the same 

importance. 

 

Use of covariance analysis should be considered in experiments in which blocking couldn't 

adequately reduce the experimental error. By measuring an additional variable (e.g., covariate X) 

that is known to be linearly related to the primary variable Y, the source of variation associated 

with the covariate can be deducted from experimental error.  This adjusts the primary variable Y 

linearly upward or downward, depending on the relative size of its respective covariate. The 

adjustment accomplishes two important improvements: 

 

1. The treatment mean is adjusted to a value that it would have had; had there been no 

differences in the values of the covariate. 

2. The experimental error is reduced and the precision for comparing treatment means is 

increased. 

 

Although blocking and covariance techniques are both used to reduce experimental error, the 

differences between the two techniques are such that they are usually not interchangeable. The 

ANCOVA can be used only when the covariate representing the heterogeneity among the 

experimental units can be measured quantitatively. However, that is not a necessary condition for 

blocking. In addition, because blocking is done before the start of the experiment, it can be used 

only to cope with sources of variation that are known or predictable. ANCOVA, on the other 

hand, can take care of unexpected sources of variation that occur during the experiment. Thus, 

ANCOVA is useful, as a supplementary procedure to take care of sources of variation that cannot 

be accounted for by blocking.   

 

When covariance analysis is used for error control and adjustment of treatment means, the 

covariate must not be affected by the treatments being tested. Otherwise, the adjustment removes 

both the variation due to experimental error and that due to treatment effects. A good example of 

covariates that are free of treatment effects are those that are measured before the treatments are 

applied, such as soil analysis and residual effects of treatments applied in the past experiments. In 

other cases, care must be exercised to ensure that the covariates defined are not affected by the 

treatments being tested. This technique can be illustrated through the following example: 
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Example 1: A trial was designed to evaluate 15 rice varieties grown in soil with a toxic level of 

iron. The experiment was in a RCB design with three replications. Guard rows of a susceptible 

check variety were planted on two sides of each experimental plot. Scores for tolerance for iron 

toxicity were collected from each experimental plot as well as from guard rows. For each 

experimental plot, the score of susceptible check (averaged over two guard rows) constitutes the 

value of the covariate for that plot. Data on the tolerance score of each variety (Y variable) and 

on the score of the corresponding susceptible check (X variable) are shown below: 
 

Scores of tolerance for iron toxicity (Y) of 15 rice varieties and those of the corresponding 

guard rows of a susceptible check variety (X) in a RCB trial 

 

Variety 

Number 

Replication-I Replication-II Replication-III 

X Y X Y X Y 

1. 15 22 16 13 16 14 

2. 16 14 15 23 15 23 

3. 15 24 15 24 15 23 

4. 16 13 15 23 15 23 

5. 17 17 17 16 16 16 

6. 16 14 15 23 15 23 

7. 16 13 15 23 16 13 

8. 16 16 17 17 16 16 

9. 17 14 15 23 15 24 

10. 17 17 17 17 15 26 

11. 16 15 15 24 15 25 

12. 16 15 15 23 15 23 

13. 15 24 15 24 16 15 

14. 15 25 15 24 15 23 

15. 15 24 15 25 16 16 

 

The usual analysis of variance without using the covariate (X variable) is as follows: 

 

Source                   DF                 SS          Mean Square    F Value      Pr > F 

Replication              2             104.0444        52.0222           2.85          0.0745 

Treatment              14             265.9111        18.9937           1.04          0.4448 

Error                      28             510.6222        18.2365 

Total                     44             880.5778 
 

R-Square                    C.V.                 Root MSE               Y - Mean 

  0.4201                    21.5436                  4.2704                    19.82222 

 

Using the covariate, the analysis is the following: 

 

Source                 DF           S.S.               M.S.        F-Value    Pr > F 

Replication           2           22.4802          11.2402       2.71         0.0844 

Treatment           14         152.5606          10.8972       2.63         0.0151 

Covariate X          1         398.7516        398.7516     96.24         0.0001 

Error                   27         111.8707            4.1434 
 

R-Square                  C.V.                 Root MSE                    Y Mean 

  0.8730                  10.2689                   2.0355                       19.8222 
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It is interesting to note that the use of a covariate has resulted into a considerable reduction in the 

error mean square and hence the CV has also reduced drastically. This has helped in catching the 

small differences among the treatment effects as significant. This was not possible when the 

covariate was not used. The covariance analysis will thus result into a more precise comparison 

of treatment effects. 

 

The probability of significance of pairwise comparisons among the least square estimates of the 

treatment effects are given below: 

  

Pr > |T| H0: LSMEAN(i)=LSMEAN(j) 

i/j        1           2           3           4           5           6          7           8            9        

1       .      0.3370  0.0666  0.4431  0.0019  0.3370  1.0000  0.0252  0.0232       

2     0.3370    .      0.3370  0.8425  0.0237  1.0000  0.3370  0.1834  0.1697       

3     0.0666  0.3370    .      0.2497  0.1620  0.3370  0.0666  0.6757  0.6751       

4     0.4431  0.8425  0.2497    .      0.0157  0.8425  0.4431  0.1320  0.1191       

5     0.0019  0.0237  0.1620  0.0157    .      0.0237  0.0019  0.2361  0.2493       

6     0.3370  1.0000  0.3370  0.8425  0.0237    .      0.3370  0.1834  0.1697       

7    1.0000  0.3370  0.0666  0.4431   0.0019  0.3370    .      0.0252  0.0232       

8     0.0252  0.1834  0.6757  0.1320  0.2361  0.1834  0.0252    .      0.9727       

9     0.0232  0.1697  0.6751  0.1191  0.2493  0.1697  0.0232  0.9727    .           

10   0.0001  0.0019  0.0237  0.0012  0.3370  0.0019  0.0001  0.0361  0.0385   

11   0.0874  0.4294  0.8575  0.3249  0.1046  0.4294  0.0874  0.5445  0.5439   

12   0.2497  0.8425  0.4431  0.6915  0.0351  0.8425  0.2497  0.2493  0.2361   

13   0.1270  0.5524  0.7066  0.4294  0.0739  0.5524  0.1270  0.4298  0.4229   

14   0.0446  0.2497  0.8425  0.1803  0.2158  0.2497  0.0446  0.8096  0.8204   

15   0.0589  0.3249  0.9860  0.2393  0.1452  0.3249  0.0589  0.6736  0.6809   

               

 Pr > |T| H0: LSMEAN(i)=LSMEAN(j) 

     i/j           10         11      12             13             14             15 

     1      0.0001  0.0874    0.2497      0.1270      0.0446      0.0589 

     2      0.0019  0.4294    0.8425      0.5524      0.2497      0.3249 

     3      0.0237  0.8575    0.4431      0.7066      0.8425      0.9860 

     4      0.0012  0.3249    0.6915      0.4294      0.1803      0.2393 

     5      0.3370  0.1046    0.0351      0.0739      0.2158      0.1452 

     6      0.0019  0.4294    0.8425      0.5524      0.2497      0.3249 

     7      0.0001  0.0874    0.2497      0.1270      0.0446      0.0589 

     8      0.0361  0.5445    0.2493      0.4298      0.8096      0.6736 

     9      0.0385  0.5439   0.2361      0.4229      0.8204      0.6809 

    10       .          0.0124   0.0031      0.0079      0.0351      0.0191 

    11     0.0124      .         0.5524      0.8425      0.7066      0.8425 

    12     0.0031  0.5524      .              0.6915      0.3370      0.4294       

    13     0.0079  0.8425   0.6915         .              0.5671      0.6915       

    14     0.0351  0.7066   0.3370      0.5671         .              0.8575       

    15     0.0191  0.8425   0.4294      0.6915      0.8575        .   
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1.   Introduction 

The term “repeated measures” refers broadly to the data in which the response of each 

experimental unit or subject is observed on multiple occasions or under multiple conditions. Thus 

repeated measurements refer to the situation in which multiple measurements of the response 

variable are obtained, over several time periods, from each experimental unit, such as an animal. 

Usually, the responses are taken over time, as in growth of animal weights are measured 

weekly/monthly production of fruit over the years from the same tree. Repeated measurement 

data are obtained in animal science, horticulture, clinical trials, medical science, physiological, 

psychological experiments, etc. 

 

Repeated measures experiments are a type of factorial experiment, with group and time as the 

two factors. They have been used commonly in animal, plant, and human research for several 

decades, but only in recent years statistical and computing methodologies been available to 

analyze them effectively and efficiently. The objectives of repeated measures data analysis are to 

examine and compare response trends over time. This can involve comparisons of groups at 

specific times, or averaged over time. It also can involve comparisons of times within a group. 

These are objectives common to any factorial experiment. The important feature of repeated 

measures experiments that requires special attention in data analysis is the correlation pattern 

among the responses on the same individual (animal) over time. 

 

2. Methods for Analyzing Repeated Measures  

Responses measured on the same animal are correlated because they contain a common 

contribution from the animal. Moreover, measures on the same animal close in time tend to be 

more highly correlated than measures far apart in time. Also, variances of repeated measures 

often change with time. These potential patterns of correlation and variation may combine to 

produce a complicated covariance structure of repeated measures. Special methods of statistical 

analysis are needed for repeated measures data because of the covariance structure. Standard 

regression and analysis of variance methods may produce invalid results because they require 

mathematical assumptions that do not hold with repeated measures data. In repeated measures 

analysis of variance, the effects of interest are  

i) between-subject effects such as GROUP  

ii) within-subject effects such as TIME  

iii) interactions between the two types of effects such as GROUP*TIME. 

 

There are several statistical methods used for analyzing repeated measures data. Here we give 

from basic to sophisticated methods for the analysis of repeated measure data using SAS 

software. These include: 

 

i) Separate analyses at each time point,  

ii) Univariate analysis of variance, 

iii) Univariate and multivariate analyses of time variables, and 

iv) Mixed model methodology. 

 

Separate analyses at each time point do not require special methods for repeated measures and do 

not directly address the objectives of examining and comparing trends over time. The other three 

approaches require special methodology and software. Development of statistical methods for 
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repeated measures data has been an active area of research in the past two decades because of 

advancements in computing hardware and software. Enhancements in the SAS System reflect the 

advancements in methodology and hardware. In SAS System the GLM procedure enabled users 

to perform univariate analysis of variance but did not provide valid standard errors for most 

estimates. Moreover, conclusions derived from univariate analysis of variance are often invalid 

because the methodology does not adequately address the covariance structure of repeated 

measures. The REPEATED statement is now available to the SAS in the GLM procedure and 

Mixed procedure. PROC GLM provides both univariate and multivariate tests for repeated 

measures for one response. Another approach to analysis of repeated measures is via general 

mixed models. This approach can handle balanced as well as unbalanced or missing within-

subject data, and it offers more options for modeling the within-subject covariance. The main 

drawback of the mixed models approach is that it generally requires iteration and, thus, may be 

less computationally efficient. The results provided by the REPEATED statement are based on 

univariate and multivariate analyses of contrast variables computed from the repeated measures 

variables. This approach basically bypassed the problems of covariance structure rather than 

addressing them directly. The REPEATED statement enabled users to obtain statistical tests for 

effects involving time trends. However, the tests were inefficient and the problem of incorrect 

standard errors remained. In addition, missing data on even one measure of an animal caused all 

the data for that animal to be ignored. Mixed procedure provided capabilities of mixed model 

methodology for analysis of repeated measures data. Use of mixed model methodology enabled 

the user to directly address the covariance structure and greatly enhanced the user’s ability to 

analyze repeated measures data by providing valid standard errors and efficient statistical tests.  

 

Here we shall illustrate the univariate and multivariate methods of analysis and their respective 

advantages and shortcomings. The statistical analysis methods illustrated focus on group (sex) 

comparisons at specific times, group comparisons averaged over times, and on changes over time 

in specific groups. Differences between groups (male and female) are computed at individual 

times and averaged across times.  

 

Separate analyses at each time and the GLM REPEATED statement require the data to be 

organized in “multivariate mode.” That is, there is one row per experimental unit in the data set, 

and the measurements at each time are considered separate response variables. The univariate 

ANOVA and MIXED procedure require that the data be organized in “univariate mode,” that is, 

one row per experimental unit at each time. 

 

We use the data obtained on body weight (kg) of pigs for the male and female. The body weights 

of pigs are collected at interval of 4 weeks since birth to 20 weeks of age and are given in Table -

1. Here the sex has two levels.   

  

Table 1: Body weights of pigs maintained at Jabalpur 

 

Animal 

No. 

Sex Week 

0 4 8 12 16 20 

1 Male 1 4.8 12.6 16 21 22.6 

2 Male 1 4.2 7 10 14 22 

3 Male 0.8 4 6 6.4 10 15 

4 Male 0.8 4 6 9 13 21 

5 Male 0.8 5 9.4 11 14 23 

6 Male 0.8 3.2 7 10 15 22 
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7 Male 0.8 3.2 5.5 7.4 12 17 

8 Male 0.8 3.4 7 8.7 12.4 19.2 

9 Female 1 5.4 10 13 17.4 26.4 

10 Female 1.2 4.8 12.6 16 20 21 

11 Female 1 4.6 13 18 22 24 

12 Female 0.8 4.2 8 11 13 18 

13 Female 0.8 3.8 7 7.2 12 19 

14 Female 1 5.4 11 14 19 22 

15 Female 1 6 5.4 10 17 26.8 

16 Female 1 3.4 7.8 10 13 17.8 

 

Now the analysis of this data by using different methods with the use of software is given below: 

 

I) Analysis at Individual Time Points 

Analysis of data at each time point examines group effects separately at individual observation 

times and makes no statistical comparisons among times. This can be anlysed by using even in 

Microsoft Excel (easily available software). In it we make a file in Microsoft Excel by taking 

columns as the levels of the groups and then using Anova single factor command in Data 

Analysis command in Tools. This process is repeated for each time point.  

 

No inference is drawn about trends over time, so this method is not truly a repeated measures 

analysis. Use of analysis at each time point is usually at a preliminary stage of data analysis and 

is not a preferred method because it does not address time effects. The only advantage in this 

method is that if we do not have any statistical software the data can be analyzed in Microsoft 

Excel.  

 

II) Univariate ANOVA when the data follow a trend 

Some of the repeated measures data such as growth, lactation data follow a trend. The analysis of 

such data can be done by fitting the appropriate such as linear, quadratic curves etc. on each of 

the animal. A set of estimates of parameters of these repeated data are estimated. These estimates 

are further analyzed to determine the effect of factors. The drawback of this method is that we are 

using the estimates of parameter which are not the true values and that may not be normally 

distributed.  

 

III) Univariate Analysis of Variance Using the General Linear Model  

Univariate analysis of variance (ANOVA), is the method most commonly applied to repeated 

measures data that makes comparisons between times. It treats the data as if they were from a 

split-plot design with the animals as whole-plot units and animals at particular times as sub-plot 

units. This approach also is referred to as a split plot in time analysis. If measurements have equal 

variance at all times, and if pairs of measurements on the same animal are equally correlated, 

regardless of the time lag between the measurements, then the univariate ANOVA is valid from a 

statistical point of view, and, in fact, yields an optimal method of analysis. However, 

measurements close in time are often more highly correlated than measures far apart in time, 

which will invalidate tests for effects involving time. For this procedure data is to be set in 

univariate mode  

 

IV) Analysis of Contrast Variables  

Contrast variables in repeated measures data are linear combinations of the responses over time 

for individual animals. A familiar example from basic statistical methodology is given by the 
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orthogonal polynomials (Snedecor and Cochran, 1980), which represent linear, quadratic, cubic, 

etc., trends over time. Another example is the set of differences between responses at consecutive 

time points, that is, changes from time 1 to time 2, time 2 to time 3, and so forth. A set of contrast 

variables can be used to analyze trends over time and to make comparisons between times in 

repeated measures data. The original repeated measures data for each animal are transformed into 

a new set of variables given by a set of contrast variables. Then, multivariate and univariate 

analyses can be applied to these new variables. This provides a method for analyzing repeated 

measures data that evades some of the covariance structure problems that invalidate univariate 

ANOVA analyses, as discussed in the previous section.  

 

V) Mixed Model Analysis  

As noted above, analysis of repeated measures data requires special attention to the covariance 

structure due to the sequential nature of the data on each animal. Procedures discussed previously 

either avoid the issue (analysis of contrast variables) or ignore it (univariate analysis of variance). 

Ignoring the covariance issues may result in incorrect conclusions from the statistical analysis. 

Avoiding the issues may result in inefficient analyses, which is tantamount to wasting data. The 

general linear mixed model allows the capability to address the issue directly by modeling the 

covariance structure. 

 

There are two basic steps in performing a repeated measures analysis using mixed model 

methodology. The first step is to model the covariance structure. The second step is to analyze 

time trends for groups by estimating and comparing means. 

 

Measures on different animals are independent, so covariance concern is only with measures on 

the same animal. The covariance structure refers to variances at individual times and to 

correlation between measures at different times on the same animal. There are basically two 

aspects of the correlation. First, two measures on the same animal are correlated simply because 

they share common contributions from the animal. This is due to variation between animals. 

Second, measures on the same animal close in time are often more highly correlated than 

measures far apart in time. This is covariation within animals. Three different structures will be 

shown here and one will be chosen as best among the three. First, a structure known as 

compound symmetry (CS) will be fitted. This structure specifies that measures at all times have 

the same variance, and that all pairs of measures on the same animal have the same correlation. 

The implication is that the only aspect of the covariance between repeated measures is due to the 

animal contribution, irrespective of proximity of time.  

 

Implications 

Computer software is currently available that enables researchers to analyze repeated measures 

data using mixed model methodology. This methodology provides more valid and efficient 

statistical analyses of repeated measures. Implementation of this methodology requires the data 

analyst to model the variance and correlation structure of the data as a first step. Then, 

comparisons of groups and trends over time can be analyzed. 

 

Illustration: An experiment was conducted to study the fruit (mango) weight for two types of 

pollination for four verities of mango with three replications. The experiment was planned with 

following parameters. 

 

Factors Levels Values 

Type of pollination 2 Selfed (1); Open pollination (2) 
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variety 4 Amarpali (1), Pusa (2), Arunima (3), Malika (4) 

Replication 3 1, 2, 3 

 

The data of fruit weight is given in Table-1. 

 

Table-1: Fruit weight (g) at different time points 

 

Pollination 

method 

Variety Replication Time points (Weeks) 

7 14 21 28 

1 1 1 0.0325 0.2304 0.3580 0.412 

1 1 2 0.0402 0.2364 0.449 0.521 

1 1 3 0.046 0.2339 0.357 0.457 

1 2 1 0.0243 0.224 0.426 0.512 

1 2 2 0.0497 0.124 0.387 0.587 

1 2 3 0.0406 0.1989 0.42 0.518 

1 3 1 0.0348 0.1286 0.258 0.453 

1 3 2 0.0335 0.0742 0.187 0.387 

1 3 3 0.033 0.045 0.086 0.231 

1 4 1 0.086 0.231 0.451 1.96 

1 4 2 0.0533 0.249 0.449 1.345 

1 4 3 0.0721 0.413 0.521 1.756 

2 1 1 0.107 0.368 0.857 2.436 

2 1 2 0.1225 0.326 0.511 1.957 

2 1 3 0.089 0.14 0.355 2.594 

2 2 1 0.0421 0.061 0.588 1.812 

2 2 2 0.0515 0.078 0.677 1.571 

2 2 3 0.0381 0.073 0.621 1.426 

2 3 1 0.0413 0.0426 0.643 2.26 

2 3 2 0.0312 0.0427 0.752 2.13 

2 3 3 0.0317 0.047 0.632 2.563 

2 4 1 0.1455 0.297 0.623 1.288 

2 4 2 0.983 0.334 0.421 1.314 

2 4 3 0.2286 0.308 0.545 1.074 

 

Analyze the data for main effects of the factors and their interaction with time points using the 

repeated methodology.   
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1.   Introduction 

In large-scale experimental programmes it is necessary to repeat the trial of a set of treatments 

like varieties or manures at a number of places or in a number of seasons. The places where the 

trial is repeated are usually experimental stations located in the tract. The aim of repetition is to 

study the susceptibility of treatment effects to place variation. More generally, the aim of 

repetition is to find out treatments suitable for particular tracts in which case the trials are carried 

out simultaneous on a representative selection of sites.  

 

Further, the purpose of the research carried out at experimental stations is to formulate the 

recommendations for the practitioners which consist of a population quite extensive either in 

space or time or both. Therefore, it becomes necessary to ensure that the results obtained from 

researches are valid for at least several places in the future and over a reasonably heterogeneous 

space. 

 

A single experiment will precisely furnish information about only one place where the 

experiment is conducted and about the season in which the experiment is conducted. It has, thus, 

become a common practice to repeat an experiment at different places or over a number of 

occasions to obtain valid recommendations taking into account place to place variation or 

variation over time or both. In such cases of repeated experiments appropriate statistical 

procedures for a combined analysis of data would have to be followed by the analysis of 

individual experiments varying with their objectives. In combined analysis of data, the main 

points of interest would be  

i) to estimate the average response to given treatments and  

ii) to test consistency of the responses from place to place or occasion to occasion i. e. 

interaction of the treatment effects with places or years. 

 

The utility and the significance of the estimates of average response depend on whether the 

response is consistence from place to place or changes with it, in other words on the absence or 

the presence of interaction. 

 

The results of a set of trials may, therefore, be considered as belonging to one of the following 

four types: 

i) the experimental errors are homogeneous and the interaction is absent, 

ii) the experimental errors are homogeneous and the interaction is present, 

iii) the experimental errors are heterogeneous and the interaction is absent, and 

iv) the experimental errors are heterogeneous and the interaction is present. 

 

The meaningfulness of average estimates of treatment responses would therefore, depend largely 

upon the absence of presence of this interaction analysis. 

 

2.   Analysis Procedure 

For combined analysis or analysis for groups of Experiments following steps are to be followed  
 

Step I: Construct an out line of combined analysis of variance over years or for places or 

environment, based on the basic design used. For example, the data of grain yield for four places, 

four treatments each treatment replicated five times is given in Table-1.  
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Step II: Perform usual Analysis of variance for the given data. Here the experiment conducted is 

in randomized complete block design. So perform analysis of four places separately for the four 

places. This may be done either in SAS, SPSS or EXCEL software. 

 

Step III:  We have p error mean squares that belongs to p RBD conducted and we have to test 

the homogeneity of variances. Now we have following two situations: 

 

Situation I:  When p = 2 

In this situation, we apply F-test for testing the homogeneity of variances. Here null and alternate 

hypothesis are H0: 
2
2

2
1   and H1: 

2
2

2
1  . Let 2

1Se  and 2
2Se  are the mean square errors (mse) 

for the two places. Then the value of F statistics will be 2
1Se / 2

2Se  and this value will be tested 

against the Table F value at n1and n2 degrees of freedom at 5 % level of significance, where 

n1and n2 are degrees of freedom (df) for error for the two places, respectively. If the calculated 

value of F is greater than tabulated F value then the null hypothesis of homogeneity of variance is 

rejected and the data is heterogeneous in different places, otherwise it is homogeneous. 

 

Situation II: When p > 2 

In this situation, we apply Bartlett's Chi-square test. Here null and alternate hypothesis are 

H0 : 
2
p

2
2

2
1    against the alternative hypothesis  

H1 : at least two of the s'2
i  are not equal, where 2

i   is  the error variance for i 
th 

place/ location. 

 

Let Se1
2
, Se2

2
, ..., Sep

2
 are the mse of p locations respectively and n1, n2, …, np are the df for p 

locations. The test statistics  

where 

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
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where       2

1p follows       2 distribution with p - 1 degree of freedom. 

If the calculated value of       2

1p is greater than tabulated       2

1p value at p-1df then the null 

hypothesis of homogeneity of variance is rejected and the data is heterogeneous in different 

places, otherwise it is homogeneous. 

 

Step IV:  If error variances are not homogeneous, then for performing the combined analysis of 

weighted least square is required, the weight being the reciprocals of the root mean square error. 

The weighted analysis is carried out by defining a new variable as newres = res/ root mean 

square. This transformation is similar to Aitken’s transformation. This new variable is thus 

homogeneous and thus combined analysis of variance can performed on this new variable. If 

error variance variances are homogeneous then there is no need to transform the data. 

 
 

Step V:   Now one can view the groups of experiments as a nested design with several factors 

nested within one another. The places/ locations are treated as big blocks, with the experiments 

nested within these. The combined analysis of data, therefore, can be done as that a nested 
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design. For doing the analysis, the replication wise data of treatments at each place/ location 

provide useful information. An advantage of this analysis is that there is a further reduction in 

error sum of squares because one more source of variability is taken out from the experimental 

error thus reducing the experimental error. This may also lead to the reduction in the value of CV.  
 

 

Step VI:  Next step in the analysis is to test for the significance of place   treatment interaction. 

It can be seen that the question whether the interaction place   treatment is significant, that is 

whether the difference between treatments tend to vary from place to place can be settled by 

comparing the mean square for place   treatment with the estimate of error variance by the F-

test. If the mean square is found to be non-significant it means interaction is absent. If this 

interaction is assumed to be non-existence, sum of squares for treatments   places and the error 

sum of squares can be pooled and a more precise estimate of error can be obtained for testing the 

significance of treatment differences. If, however, interaction is significant   i. e. treatment effects 

are varying with places, then the appropriate mean square for testing the significance of 

treatments is the mean square due to place   treatment.    
 

 

Exercise 

 

Table-1: Data for grain yield (kg/ plot) with four treatments in five replications 

   

Place  Replication   

Treatment I II III IV V 

1 1 33.6 33.7 30.9 33.3 15.0 

 2 34.0 27.2 46.2 36.7 11.6 

 3 30.5 33.2 15.1 33.3 29.7 

 4 30.8 14.4 14.2 9.5 12.0 

2 1 28.8 28.8 35.2 41.6 43.2 

 2 46.4 43.2 38.4 54.4 57.6 

 3 35.2 32.0 32.0 25.6 33.6 

 4 51.2 40.0 49.6 51.2 49.6 

3 1 30.1 38.1 21.4 17.6 14.3 

 2 36.1 18.3 38.0 31.0 26.6 

 3 27.2 40.7 15.5 18.1 12.3 

 4 37.8 54.5 13.2 18.1 7.3 

4 1 23.8 48.8 19.5 28.8 34.4 

 2 15.2 39.0 39.8 52.0 31.2 

 3 40.2 52.0 33.0 41.2 35.0 

 4 43.2 46.8 34.5 44.5 38.0 

 



INCOMPLETE BLOCK DESIGNS 
 

 

1.   Introduction 

Incomplete block designs are desirable when number of treatments to be tested is large and / or 

complete blocks are unavailable or inappropriate. These designs were introduced by Yates in 

order to eliminate heterogeneity to a greater extent as compared to a complete block design, when 

the number of treatments is large. The precision of the estimate of a treatment effect depends on 

the number of replications of the treatment - the larger the number of replications, the more is the 

precision. Similar is the case for the precision of estimate of the difference between two treatment 

effects. If a pair of treatment occurs together more number of times in the design, the difference 

between these two treatment effects can be estimated with more precision. To ensure equal or 

nearly equal precision of comparisons of different pairs of treatment effects, the treatments are so 

allocated to the experimental units in different blocks of equal sizes such that each treatment 

occurs at most once in a block and it has an equal number of replications and each pair of 

treatments has the same or nearly the same number of replications.  When the number of 

replications of all pairs of treatments in a design is the same, then we have an important class of 

designs called Balanced Incomplete Block (BIB) designs and when there are unequal number of 

replications for different pairs of treatments, then the designs are called as Partially Balanced 

Incomplete Block (PBIB) designs. Another important class of incomplete block designs is lattice 

designs. Some of these are Balanced Incomplete Block (BIB) designs while others are Partially 

Balanced Incomplete Block (PBIB) designs. 

 

2.   Balanced Incomplete Block (BIB) Designs 

A BIB design is an arrangement of v treatments in b blocks each of size k (<v) such that   

(i) Each treatment occurs at most once in a block 

(ii) Each treatment occurs in exactly r blocks 

(iii) Each pair of treatments occurs together in exactly  blocks. 

 

Example 2.1:  A BIB design for v = b = 5, r = k = 4 and  = 3 in the following: 
 

Blocks 

1 (1,2,3,4) 

2 (1,2,3,5) 

3 (1,2,4,5) 

4 (1,3,4,5) 

5 (2,3,4,5) 

 

The symbols v, b, r, k,  are called the parameters of the design.  These parameters satisfy the 

relations 

vr = bk             …(2.1) 

and (v-1) = r(k-1)           …(2.2) 

 

A BIB design cannot exist unless (2.1) and (2.2) are satisfied. For instance, no design exists for v 

= b = 6 and r = k = 3 since, from (2.2) =6/5 is not an integer.  However, these conditions are not 

sufficient for the existence of a BIB design. Even if both (2.1) and (2.2) are satisfied, it does not 

follow that such a design exists. For example, no BIB design exits for v = 15, b = 21, r = 7, k = 5, 

http://www.iasri.res.in/Lattic_designs/bib.html
http://www.iasri.res.in/Lattic_designs/pbib.html
http://www.iasri.res.in/Lattic_designs/pbib.html
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and  = 2 even though both conditions are satisfied. In search of a criterion for the availability of 

a BIB design, Fisher proved that no design with b<v is possible. 

 

Construction of BIB Designs 

There is no single method of constructing all BIB designs. Solutions of many designs are still 

unknown.  We describe below a few well known series of BIB designs. 

 

2.1   Unreduced BIB Designs 

These designs are obtained by taking all combinations of the v treatments k at a time.  Therefore, 

the parameters of all unreduced BIB designs are: 
 

v, k, b = 2-k
2-v

1-k
1-v

k
v C =  ,C =r  ,C        

 

The BIB design for v = 5 treatments given in the previous section is an example of an unreduced 

BIB design in blocks of size 4.  

 

Example 2.1: Let v = 5, k = 3, then b = 
5
C3 = 10, r = 

4
C2 = 6 and  = 

3
C1. The 10 blocks are: 

Blocks 

1 (1,2,3 )    

2 (1,2,4) 

3 (1,2,5) 

4 (1,3,4)     

5 (1,3,5) 

6 (1,4,5) 

7 (2,3,4) 

8 (2,3,5) 

9 (2,4,5) 

10 (3,4,5) 

 

These unreduced designs usually require a large number of blocks and replications so that the 

resulting designs will often be too large for practical purposes. 

 

2.2   BIB Designs using MOLS  

Before we describe the method, we explain the concept of mutually orthogonal Latin squares 

(MOLS) which will be used in the construction of BIB designs. 

A Latin square of order s is an arrangement of s symbols in an s  s array such that each symbol 

occurs once in each row and once in each column of the array. For example, the following are 4  

4 Latin squares of order 4 in symbols A, B, C, and D: 
 

A  B  C  D       A  B  C  D      A  B  C  D 

B  A  D  C      C  D  A  B      D  C  B  A 

C  D  A  B      D  C  B  A      B  A  D  C 

D  C  B  A      B  A  D  C     C  D  A  B 

 

Two Latin squares are pairwise orthogonal if, when one square is superimposed on the other, 

each symbol of one Latin square occurs once with each symbol of the other square.  Three or 

more squares are mutually orthogonal if they are pair-wise orthogonal. The three 4  4 Latin 

squares above are mutually orthogonal. 
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A complete set of s-1 mutually orthogonal Latin squares is known to exist for any s = p
n
, where p 

is a prime number. Tables can be found in Fisher and Yates (1963). Now we describe the 

methods of constructing BIB designs using MOLS. 

 

Suppose v= s
2
 treatments are set out in an s  s array.  A group of s blocks each of size s is 

obtained by letting the rows of the array represent blocks. Another group of s blocks is given by 

taking the columns of the array as blocks. Now suppose one of the orthogonal Latin squares is 

superimposed on to the array of treatments. A further group of s blocks is obtained if all 

treatments common to a particular symbol in the square are placed in a block. Each of the s-1 

orthogonal squares produces a set of s blocks in this manner. The resulting design is a BIB design 

with parameters v = s
2
, b = s

2 
+ s, k = s, r = s + 1,  = 1. 

 

Example 2.2:  For v = 3
2
 = 9 treatments a 3  3 array and a complete set of mutually orthogonal 

Latin squares of order 3  3 are : 
 

1  2  3      A  B  C      A  B  C 

4  5  6      C  A  B      B  C  A 

7  8  9      B  C  A      C  A  B 
 

Four groups of 3 blocks are obtained from the rows, columns and the symbols of the two squares, 

as follows: 
 

Blocks 

 (1, 2, 3)  (1, 5, 9) 

Rows (4, 5, 6) First square (2, 6, 7) 

 (7, 8, 9)  (3, 4, 8) 
    

 (1, 4, 7)  (1, 6, 8) 

Columns (2, 5, 8) Second square (2, 4, 9) 

 (3, 6, 9)  (3, 5, 7) 

 

It can be checked that this is a BIB design with parameters v = 9, b = 12, r = 4, k = 3, and  = 1. 

 

2.3   Randomization Procedure 

(i)  Allot the treatment symbols (1,2,...,v) to the v treatments at random. 

(ii) Allot the groups of k treatments to the b blocks at random. 

(iii) Randomize the positions of the treatment numbers within each block. 

 

2.4   Statistical Analysis 

Consider the following model: 
 

Observation = General mean + treatment effect + block effect + random error. 
 

Random errors are assumed to be independently and identically distributed normally with mean 

zero and constant variance 
2
. On minimising the error sum of squares with respect to the 

parameters, we get a set of normal equations which can be solved to get the estimates of different 

contrasts of various treatment and block effects. 

 

Now we compute  
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  G = Grand total of observations  

 y = grand mean = G/n, where n= vr = bk = total number of observations 

 Ti = Sum of obervations for treatment i, (i=1,2,..., v) 

 Bj = Sum of observations in block j, (j=1,2,..., b) 

 CF= G
2
/ n, 

 Qi = adjusted i
th

 treatment total 

      = Ti - (Sum of block totals in which treatment i occurs) / Block size (k) 

 

A solution for the i
th

 treatment effect is, 
 

 ̂   = (k Qi)  / (   v)  (i = 1,2, ..., v) 
 

Adjusted treatment mean for treatment i= i
th

 treatment effects ( iτ̂ ) + grand mean ( y ). 
 

Various sums of squares can be obtained as follows: 
 

(i) Total Sum of Squares (TSS) =  (observations)
2
 - CF 

(ii) Treatment  Sum of Squares unadjusted  (SSTu) = [ Ti
2 ] /r - CF 

(iii)  Block Sum of Squares unadjusted (SSBU) =  [ Bj
2 ]  / k - CF 

(iv)  Treatments Sum of Squares adjusted (SSTA) =  î  Qi 

(v) Error SS  (SSE)  = TSS  - SSBU  - SSTA 

(vi) Blocks sum of squares adjusted (SSBA) = SSTA + SSBU - SSTU 

 

The analysis of variance for a BIB design is given below: 

 

Table 2.1: ANOVA for a BIB (v, b, r, k, ) Design 
 

Source DF SS MS F 

Treatment (unadj.) v-1 SSTu   

Blocks (unadjusted) b-1 SSBu   

Treatments (adjusted) v-1 SSTA MST MST/MSE 

Blocks (adjusted) b-1 SSBA MSB MSB/MSE 

Error n-b-v+1 SSE MSE  

Total  n-1 TSS   

 

Note:  MST = SSTA / (v-1),  MSB = SSBA / (b-1) and MSE  = SSE  / (n -b- v + 1) 

Coefficient of Variation = ( MSE / y )  100 

 

Standard error of difference between two adjusted treatment means =   2/1
v)(MSE/ k 2  . 

 C.D.  =  t0.05    2/1
v)(MSE/ k 2   

 

3.   Partially Balanced Incomplete Block (PBIB) Designs 

BIB designs may not fit well to many experimental situations as these designs may not be 

available for all numbers of treatments and block sizes or may require a large number of 

replications. To overcome these difficulties PBIB designs were introduced. In these designs the 

variance of every estimated elementary contrast among treatment effects is not the same. The 

definition of PBIB designs is based on the association scheme. 
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Association Scheme   

Given v treatment symbols 1,2,..,v, a relation satisfying the following conditions is called an m-

class association scheme (m 2): 

(i)  Any two symbols are either 1
st
, 2

nd
,..., or m

th
 associates; the relation of association being 

symmetric, i.e., if the symbol  is the i
th

 associate of , then  is the i
th

 associate of . 

(ii)  Each symbol  has ni i
th 

associates, the number ni being independent of , 

(iii) If any two symbols  and  are i
th

 associates, then the number of symbols that are j
th

 

associates of  and k
th

 associate of  is p
i
jk and is independent of the pair of i

th
 associates   

and . 
 

The numbers v, ni and p
i
jk (i,j,k = 1,2,...,m) are called the parameters of the association scheme 

and satisfy the following relations: 

1vn
m

1i
i 



  

1np j

m

1k

i
jk 



,   if i = j                     

= nj ,    if  i j        
  

nip
i
jk  =  njp

j
ik          

 

Example 3.1: Consider v=12 treatments denoted by numbers 1 to 12.  Form 3 groups of 4 

symbols each as follows: (1,2,3,4), (5,6,7,8), (9,10,11,12). We now define any two treatments as 

first associates if they belong to the same group, and second associates if they belong to the 

different groups. Here, n1 = 3, n2 = 8. 

  

Definition: Given an association scheme with m classes (m 2) we have a PBIB design with m 

associate classes based on the association scheme, if the v treatment symbols can be arranged into 

b blocks, such that 

(i)   Every symbol occurs at most once in a block. 

(ii)  Every symbol occurs in exactly r blocks. 

(iii) If two symbols are i
th

 associates, then they occur together in i blocks, the number i being 

independent of the particular pair of i
th 

associates  and . 

 

The numbers v, b, r, k, i (i =1,2,...,m) are called the parameters of the design. It can be easily 

seen that 

 vr = bk  and )1k(rn i

m

1i
i 



.       

It may be mentioned that as in the case of BIB designs, the complementary design of a PBIB with 

parameters v,b,r,k,i is also a PBIB design having the same association scheme with the 

parameters v
*
=v, b

*
=b, r

*
=b-r, k

*
=v-k, i

*
=b-2r+i. 

 

PBIB designs can be broadly classified into (i) two-associate class PBIB designs (ii) three-

associate class PBIB designs and (iii) higher associate class PBIB designs. Two-class association 

schemes and the two-associate PBIB designs have been extensively studied in the literature and 

are simple to use. As an illustration, we describe Group Divisible (GD) association scheme and 

the designs based on it. 
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3.1   GD Association Scheme  

Let v = mn symbols be arranged into m groups of n symbols each. A pair of symbols belonging to 

the same group is first associates [n1 = n-1] and a pair of symbols belonging to different groups is 

second associates [n2 = n(m-1)]. A PBIB (2) design based on a GD scheme is called a GD design.  

 

Method of Construction of Some GD Designs 

Let D be a BIB design with parameters v = m, b, r, k, . Obtain a design D
*
 from D by replacing 

the i
th

 treatment (i=1,2,...,v) in D by n new treatment symbols i1,i2,...,in.  D
*
 is a group divisible 

design with the following parameters v
*
= mn, b

*
= b, r

*
= r, k

*
= nk, m, n, 1 =r , 2=. 

 

Example 3.1: Consider the following BIB design with parameters (4, 4, 3, 3, 2): 
 

(1, 2, 3) 

(1, 2, 4) 

(1, 3, 4) 

(2, 3, 4) 
 

 

Replacing 1 by a, b; 2 by c, d; 3 by e, f and 4 by g, h, the following GD design with parameters v 

= 8, b = 4, r = 3, k = 6, 1 =3 , 2 = 2. is obtained: 
 

(a, b, c, d, e, f) 

(a, b, c, d, g, h) 

(a, b, e, f, g, h) 

(c, d, e, f, g, h) 

 

3.2 Triangular association scheme and Design 

3.2.1 Association scheme: Let there be n(n-1)/2 treatments  arranged in a square array of size n 

such that the positions of the principal diagonal of the array are left blank, the n(n-1)/2 positions 

above the principal diagonal are filled up by the v treatment symbols and the positions below the 

principal diagonal are filled up by the v symbols in such a manner that the resultant arrangement 

is symmetrical  about the principal diagonal.  

 

Two treatments are first associates if they belong to same row or same column of the array and 

second associates, otherwise. Triangular scheme exists when n≥5 and here v=n(n-1)/2, n≥5, 

n1=2(n-2),  n2=(n-2)(n-3)/2 

 

1

(n-2)     (n-3)
P   

(n-3)     [(n-3)(n-4)]/2

 
  

 
  2

4                  2(n-4)
P   

2(n-4)     [(n-4)(n-5)]/2

 
  

 
 

 

Example 3.2.1: For n=5 

 

 

 

 

 

 

 

 

* 1 2 3 4 

1 * 5 6 7 

2 5 * 8 9 

3 6 8 * 10 

4 7 9 10 * 
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Table 2.2 shows the various associates of all the treatments. 

Table 2.2 

Treatment 
1

st
 Associates 2

nd
 Associates 

1 2, 3,4,5, 6,7 8,9,10,  

2 1,3,4,5, 8, 9 6,7, 10  

3 1, 2,4, 6,8,10 5,7, 9 

4 1,2,3,7,9,10, 5,6,8 

5 1,2, 6,7, 8, 9 3,4,10 

6 1,3,5,7, 8,10 2,4,9 

7 1,4,5, 6, 9,10, 2,3,8 

8 2,3,5, 6, 9,10 1,4,7 

9 2,4,5,7, 8,10 1,3,6 

10 3,4,6,7,8,9 1,2,5 

 

3.2.2 Method of construction of Triangular designs: A two class association scheme is called 

triangular design if it is based on triangular association scheme. In a triangular association 

scheme, if we take each row as a block then the resultant design is triangular design with 

parameters v = n (n-1)/2, b=n, r=2, k=n-1, 1=1, 2= 0.  

Example 3.2.2: Suppose n=5, giving rise to v=10 treatments as follows: 

 

* 1 2 3 4 

1 * 5 6 7 

2 5 * 8 9 

3 6 8 * 10 

4 7 9 10 * 

 

Taking each row as block, the following triangular design is obtained:  

 

1 2 3 4 

1 5 6 7 

2 5 8 9 

3 6 8 10 

4 7 9 10 

 

Here, v = 10, b=5, r=2, k=4, 1=1, 2= 0.  

 



FACTORIAL EXPERIMENTS 
 

 

1.   Introduction 

Factorial Experiments are experiments that investigate the effects of two or more factors or input 

parameters on the output response of a process.  Factorial experiment design, or simply factorial 

design, is a systematic method for formulating the steps needed to successfully implement a 

factorial experiment. Estimating the effects of various factors on the output of a process with a 

minimal number of observations is crucial to being able to optimize the output of the process. 

      

In a factorial experiment, the effects of varying the levels of the various factors affecting the 

process output are investigated. Each complete trial or replication of the experiment takes into 

account all the possible combinations of the varying levels of these factors.  Effective factorial 

design ensures that the least number of experiment runs are conducted to generate the maximum 

amount of information about how input variables affect the output of a process. 

 

For example, an experiment on rooting of cuttings involving two factors, each at two levels, such 

as two hormones at two doses, is referred to as a 2 x 2 or a 2
2
 factorial experiment. Its treatments 

consist of the following four possible combinations of the two levels in each of the two factors. 

 

Treatment number 
Treatment Combination 

Hormone Dose (ppm) 

1 NAA 10 

2 NAA 20 

3 IBA 10 

4 IBA 20 

 

The total number of treatments in a factorial experiment is the product of the number of levels of 

each factor; in the 2
2
 factorial example, the number of treatments is 2 x 2 = 4, in the 2

3
 factorial, 

the number of treatments is 2 x 2 x 2 = 8. The number of treatments increases rapidly with an 

increase in the number of factors or an increase in the levels in each factor. For a factorial 

experiment involving 5 clones, 4 espacements, and 3 weed-control methods, the total number of 

treatments would be 5 x 4 x 3 = 60. Thus, indiscriminate use of factorial experiments has to be 

avoided because of their large size, complexity, and cost. Furthermore, it is not wise to commit 

oneself to a large experiment at the beginning of the investigation when several small preliminary 

experiments may offer promising results. For example, a tree breeder has collected 30 new clones 

from a neighbouring country and wants to assess their reaction to the local environment. Because 

the environment is expected to vary in terms of soil fertility, moisture levels, and so on, the ideal 

experiment would be one that tests the 30 clones in a factorial experiment involving such other 

variable factors as fertilizer, moisture level, and population density. Such an experiment, 

however, becomes extremely large as factors other than clones are added. Even if only one factor, 

say nitrogen or fertilizer with three levels were included, the number of treatments would increase 

from 30 to 90. Such a large experiment would mean difficulties in financing, in obtaining an 



Factorial Experiments 

 

 107 

adequate experimental area, in controlling soil heterogeneity, and so on. Thus, the more practical 

approach would be to test the 30 clones first in a single-factor experiment, and then use the 

results to select a few clones for further studies in more detail. For example, the initial single-

factor experiment may show that only five clones are outstanding enough to warrant further 

testing. These five clones could then be put into a factorial experiment with three levels of 

nitrogen, resulting in an experiment with 15 treatments rather than the 90 treatments needed with 

a factorial experiment with 30 clones.  

      

The amount of change produced in the process output for a change in the 'level' of a given factor 

is referred to as the 'main effect' of that factor. Table 1 shows an example of a simple factorial 

experiment involving two factors with two levels each. The two levels of each factor may be 

denoted as 'low' and 'high', which are usually symbolized by '-' and '+' in factorial designs, 

respectively.  

     

Table 1. A Simple 2-Factorial Experiment 
 

 A (-) A (+) 

B (-) 20 40 

B (+) 30 52 

 

The main effect of a factor is basically the 'average' change in the output response as that factor 

goes from '-' to '+'.  Mathematically, this is the average of two numbers: 1) the change in output 

when the factor goes from low to high level as the other factor stays low, and 2) the change in 

output when the factor goes from low to high level as the other factor stays high. 

     

In the example in Table 1, the output of the process is just 20 (lowest output) when both A and B 

are at their '-' level, while the output is maximum at 52 when both A and B are at their '+' level. 

The main effect of A is the average of the change in output response when B stays '-' as A goes 

from '-' to '+', or (40-20) = 20, and the change in output response when B stays '+' as A goes from 

'-' to '+', or (52-30) = 22.  The main effect of A, therefore, is equal to 21. 

     

Similarly, the main effect of B is the average change in output as it goes from '-' to '+' , i.e., the 

average of 10 and 12, or 11. Thus, the main effect of B in this process is 11. Here, one can see 

that the factor A exerts a greater influence on the output of process, having a main effect of 21 

versus factor B's main effect of only 11. It must be noted that aside from 'main effects', factors 

can likewise result in 'interaction effects.'  Interaction effects are changes in the process output 

caused by two or more factors that are interacting with each other. Large interactive effects can 

make the main effects insignificant, such that it becomes more important to pay attention to the 

interaction of the involved factors than to investigate them individually. In Table 1, as effects of 

A (B) is not same at all the levels of B (A) hence, A and B are interacting.  

 

Thus, interaction is the failure of the differences in response to changes in levels of one factor, to 

retain the same order and magnitude of performance through out all the levels of other factors OR 

the factors are said to interact if the effect of one factor changes as the levels of other factor(s) 

changes. 

 



Factorial Experiments 

 

 108 

Graphical representation of lack of interaction between factors and interaction between factors are 

shown below. In case of two parallel lines, the factors are non-interacting. 

 

    
 

If interactions exist which is fairly common, we should plan our experiments in such a way that 

they can be estimated and tested.  It is clear that we cannot do this if we vary only one factor at a 

time.  For this purpose, we must use multilevel, multifactor experiments.  

 

The running of factorial combinations and the mathematical interpretation of the output responses 

of the process to such combinations is the essence of factorial experiments.  It allows to 

understand which factors affect the process most so that improvements (or corrective actions) 

may be geared towards these. 

  

We may define factorial experiments as experiments in which the effects (main effects and 

interactions) of more then one factor are studied together. In general if there are ‘n’ factors, say, 

F1, F2,..., Fn and i
th

 factor has si levels, i=1,...,n, then total number of treatment combinations is 

si

n

i


1

. Factorial experiments are of two types. 

 

Experiments in which the number of levels of all the factors are same i.e all si’s are equal are 

called symmetrical factorial experiments and the experiments in at least two of the si‘s are 

different are called as asymmetrical factorial experiments. Factorial experiments provide an 

opportunity to study not only the individual effects of each factor but also there interactions. They 

have the further advantage of economising on experimental resources.  When the experiments are 

conducted factor by factor much more resources are required for the same precision than when 

they are tried in factorial experiments.   

 

2.   Experiments with Factors Each at Two Levels 

The simplest of the symmetrical factorial experiments are the experiments with each of the 

factors at 2 levels.  If there are ‘n’ factors each at 2 levels, it is called as a 2
n
 factorial where the 

power stands for the number of factors and the base the level of each factor. Simplest of the 

symmetrical factorial experiments is the 2
2
 factorial experiment i.e. 2 factors say A and B each at 

two levels say 0 (low) and 1 (high). There will be 4 treatment combinations which can be written 

as 
 

 00   = a0 b0   =   1; A and B both at first (low) levels 

 10   = a1 b0   =   a ; A at second (high) level and B at first (low) level 
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 01   = a0 b1   =   b ; A at first level (low) and B at second (high) level 

 11   = a1 b1   =  ab; A and B both at second (high) level. 

 

In a 2
2
 factorial experiment wherein r replicates were run for each combination treatment, the 

main and interactive effects of A and B on the output may be mathematically expressed as 

follows: 

 

A = [ab + a - b - (1)] / 2r;     (main effect of factor A) 

B = [ab + b - a - (1)] / 2r;     (main effect of factor B) 

AB = [ab + (1) - a - b] / 2r;   (interactive effect of factors A and B) 

 

where r is the number of replicates per treatment combination; a is the total of the outputs of each 

of the r replicates of the treatment combination a (A is 'high and B is 'low); b is the total output 

for the n replicates of the treatment combination b (B is 'high' and A is 'low); ab is the total output 

for the r replicates of the treatment combination ab (both A and B are 'high'); and (1) is the total 

output for the r replicates of the treatment combination (1) (both A and B are 'low’). 

 

Had the two factors been independent, then [ab + (1) - a - b] / 2n will be of the order of zero. If 

not then this will give an estimate of interdependence of the two factors and it is called the 

interaction between A and B.  It is easy to verify that the interaction of the factor B with factor A 

is BA which will be same as the interaction AB and hence the interaction does not depend on the 

order of the factors. It is also easy to verify that the main effect of factor B, a contrast of the 

treatment totals is orthogonal to each of A and AB. 

 

Table 2. Two-level 2-Factor Full-Factorial  

RUN Comb. M A B AB 

1 (1) + - - + 

2 a + + - - 

3 b + - + - 

4 = 2
2
 ab + + + + 

 

Consider the case of 3 factors A, B, C each at two levels (0 and 1) i.e. 2
3
 factorial experiment. 

There will be 8 treatment combinations which are written as 

 

000  = a0 b0 c0   = (1);  A, B and C all three at first level 

100  = a1 b0 c0   =  a ;  A at second level and B and C at first level 

010  = a0 b1 c0  =  b ;  A and C both at first level and B at second level 

110  = a1 b1 c0   = ab;  A and B both at second level and C is at first level. 

001  = a0 b0 c1  =  c  ;  A and B both at first level and C at second level. 

101  = a1 b0 c1  =  ac;  A and C at second level, B at first level  

011  = a0 b1 c1 =  bc;  A is at first level and B and C both at second level 

111  = a1 b1 c1  = abc;  A, B and C all the three at second level 

 

In a three factor experiment there are three main effects A, B, C;  3 first order or two factor 

interactions AB, AC, BC; and one second order or three factor interaction ABC.   
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Table 3. Two-level 3-Factor Full-Factorial Experiment Pattern 
 

RUN Comb. M A B AB C AC BC ABC 

1 (1) + - - + - + + - 

2 a + + - - - - + + 

3 b + - + - - + - + 

4 ab + + + + - - - - 

5 c + - - + + - - + 

6 ac + + - - + + - - 

7 bc + - + - + - + - 

8 = 2
3
 abc + + + + + + + + 

   

Main effect A = 
1

4
{[abc] -[bc] +[ac] -[c] + [ab] -[b] + [a] -[1]} 

            = 
1

4
(a-1) (b+1) (c+1)        

AB  = 
1

4
  [(abc)-(bc) -(ac) +c) - (ab) - (b) - (a)+ (1) ] 

ABC = 
1

4
 [ (abc) - (bc) - (ac) + (c) - (ab) + (b) + (a) - (1) ] 

 

or equivalently,  

 AB    =  
1

4
  (a-1) (b-1) (c+1)                   

ABC = 
1

4
 (a-1) (b-1) (c-1)           

 

The method of representing the main effect or interaction as above is due to Yates and is very 

useful and quite straightforward.  For example, if the design is 2
4
 then 

 

 A   = (1/2
3
)  [ (a-1) (b+1) (c+1) (d+1) ] 

ABC  =  (1/2
3
)  [ (a-1) (b-1) (c-1) (d+1)] 

 

In case of a 2
n
 factorial experiment, there will be 2

n
 (=v) treatment combinations with ‘n’ main 

effects, 
n

2








  first order or two factor interactions, 

n

3








  second order or three factor interactions, 

n

4








  third order or four factor interactions and so on , 

n

r








 , (r-1)

th
 order or r factor interactions 

and 
n

n








  (n-1)

th
 order or n factor interaction. Using these v treatment combinations, the 

experiment may be laid out using any of the suitable experimental designs viz. completely 

randomised design or block designs or row-column designs, etc. 
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Steps for Analysis 

1. The Sum of Squares (S.S.) due to treatments, replications [in case randomised block design is 

used], due to rows and columns (in case a row-column design has been used), total S.S. and 

error S.S. is obtained as per established procedures. No replication S.S. is required in case of a 

completely randomised design. 

2. The treatment sum of squares is divided into different components viz. main effects and 

interactions each with single d.f. The S.S. due to these factorial effects is obtained by dividing 

the squares of the factorial effect total by r.2
n
.  For obtaining 2

n
-1 factorial effects in a 2

n
 

factorial experiment, the ‘n’ main effects is obtained by giving the positive signs to those 

treatment totals where the particular factor is at second level and minus to others and dividing 

the value so obtained by r.2
n-1

, where r is the number of replications of the treatment 

combinations. All interactions can be obtained by multiplying the corresponding coefficients 

of main effects.  

 

For a 2
2
 factorial experiment, the S.S. due to a main effect or the interaction effect is obtained 

by dividing the square of the effect total by 4r. Thus, 
 

 S.S. due to main effect of A   = [A]
2
/ 4r, with 1 d.f. 

 

 S.S. due to main effect of B   = [B]
2
/ 4r, with 1 d.f 

 

 S.S. due to interaction AB     = [AB]
2
/ 4r, with 1 d.f. 

 

3. Mean squares (M.S) is obtained by dividing each S.S. by corresponding degrees of freedom. 

4. After obtaining the different S.S.’s, the usual Analysis of variance (ANOVA) table is 

prepared and the different effects are tested against error mean square and conclusions drawn. 

5. Standard errors (S.E.’s) for main effects and two factor interactions: 
 

S.E of difference between main effect means =
2MSE

r.2n 1
 

 

S.E of difference between A means at same level of B=S.E of difference between B 

means at same level of A= 
2MSE

r.2n 2
  

 

In general,  

       S.E. for difference between means in case of a r-factor interaction = 
2MSE

r.2nr
 

 

The critical differences are obtained by multiplying the S.E. by the student’s t value at % level 

of significance at error degrees of freedom. 

 

The ANOVA for a 2
2
 factorial experiment with r replications conducted using a RCBD is as 

follows: 
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ANOVA 
 
 

Sources of Variation DF S.S. M.S. F 

Between Replications r-1 SSR MSR=SSR/(r-1) MSR/MSE 

Between treatments 2
2
-1=3 SST MST=SST/3 MST/MSE 

A 1 SSA=[A]
2
/4r MSA=SSA MSA/MSE 

  B 1 SSB=[B]
2
/4r MSB=SSB MSB/MSE 

AB 1 SSAB=[AB]
2
/4r MSAB=SSAB MSAB/MSE 

Error  (r-1)(2
2
-1) 

=3(r-1) 

SSE MSE=SSE/3(r-

1) 

 

Total r.2
2
-1=4r-1 TSS   

 

ANOVA for a 2
3
-factorial experiment conducted in RCBD with r replications is given by 

 

ANOVA 
 

Sources of 

Variation 

DF SS MS F 

Between 

Replications 

r-1 SSR MSR=SSR/(r-1) MSR/MSE 

Between treatments 2
3
 -1=7 SST MST=SST/7 MST/MSE 

A 1 SSA MSA=SSA MSA/MSE 

B 1 SSB MSB=SSB MSB/MSE 

C 1 SSC MSC=SSC MSC/MSE 

AB 1 SSAB MSAB=SSAB MSAB/MSE 

AC 1 SSAC MSAC=SSAC MSAC/MSE 

BC 1 SSBC MSBC=SSBC MSBC/MSE 

ABC 1 SSABC MSABC=SSABC MSABC/MSE 

Error  (r-1)(2
3
-1) 

=7(r-1) 

SSE MSE=SSE/7(r-1)  

Total r.2
3
-1=8r-1 TSS   

 

Similarly ANOVA table for a 2
n
 factorial experiment can be made. 

 

3.   Experiments with Factors Each at Three Levels  

When factors are taken at three levels instead of two, the scope of an experiment increases. It 

becomes more informative. A study to investigate if the change is linear or quadratic is possible 

when the factors are at three levels. The more the number of levels, the better, yet the number of 

the levels of the factors cannot be increased too much as the size of the experiment increases too 

rapidly with them. Consider two factors A and B, each at three levels say 0, 1 and 2 (3
2
-factorial 

experiment). The treatment combinations are 
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 00 = a0b0   = 1  ; A and B both at first levels 

 10  = a1b0  = a  ; A is at second level and B is at first level 

 20  = a2b0   = a
2
 ; A is at third level and b is at first level 

 01  = a0b1  = b ; A is at first level and B is at second level 

 11  = a1b1  = ab ; A and B both at second level 

 21  = a2b1  = a
2
b ; A is at third level and B is at second level 

 02 = a0b2  = b
2 

; A is at first level and B is at third level 

 12  = a1b2  = ab
2 

; A is at second level and B is at third level 

 22  = a2b2  = a
2
b

2 
; A and B both at third level 

 

Any standard design can be adopted for the experiment.   
 

The main effects A, B can respectively be divided into linear and quadratic components each with 

1 d.f. as AL, AQ, BL and BQ. Accordingly AB can be partitioned into four components as AL BL , 

AL BQ,  AQ BL, AQ BQ. 
 

The coefficients of the treatment combinations to obtain the above effects are given as 
 

Treatment 

Totals 

Factorial 

Effects  

 

[1] 

 

[a] 

 

[a
2
] 

 

[b] 

 

[ab] 

 

[a
2
b] 

 

[b
2
] 

 

[ab
2
] 

 

[a
2
b

2
] 

 

Divisor 

M +1 +1 +1 +1 +1 +1 +1 +1 +1 9r=r3
2
 

AL -1 0 +1 -1 0 +1 -1 0 +1 6r=r2 3 

AQ +1 -2 +1 +1 -2 +1 +1 -2 +1 18r=63 

BL -1 -1 -1 0 0 0 +1 +1 +1 6r=r23 

AL BL +1 0 -1 0 0 0 -1 0 +1 4r=r22 

AQ BL -1 +2 -1 0 0 0 +1 -2 +1 12r=r62 

BQ +1 +1 +1 -2 -2 -2 +1 +1 +1 18r=r36 

AL BQ -1 0 +1 +2 0 -2 -1 0 +1 12r=r26 

AQ BQ +1 -2 +1 -2 +4 -2 +1 -2 +1 36r=r66 

 

The rule to write down the coefficients of the linear (quadratic) main effects is to give a 

coefficient as +1 (+1) to those treatment combinations containing the third level of the 

corresponding factor, coefficient as 0(-2) to the treatment combinations containing the second 

level of the corresponding factor and coefficient as -1(+1) to those treatment combinations 

containing the first level of the corresponding factor. The coefficients of the treatment 

combinations for two factor interactions are obtained by multiplying the corresponding 

coefficients of two main effects. The various factorial effect totals are given as 
 

[AL]  = +1[a
2
b

2
]+0[ab

2
] -1[b

2
]+1[a

2
b]+0[ab] -1[b]+1[a

2
]+0[a] -1[1] 

[AQ] = +1[a
2
b

2
] -2[ab

2
]+1[b

2
]+1[a

2
b] -2[ab]+1[b]+1[a

2
] -2[a]+1[1] 

[BL]  = +1[a
2
b

2
]+1[ab

2
]+1[b

2
]+0[a

2
b]+0[ab]+0[b] -1[a

2
] -1[a] -1[1] 

[ALBL] = +1[a
2
b

2
]+0[ab

2
] -1[b

2
]+0[a

2
b]+0[ab]+0[b] -1[a

2
]+0[a] -1[1] 

[AQBL] = +1[a
2
b

2
] -2[ab

2
]+1[b

2
]+0[a

2
b]+0[ab]+0[b] -1[a

2
]+2[a] -1[1] 

[BQ] = +1[a
2
b

2
]+1[ab

2
]+1[b

2
] -2[a

2
b] -2[ab] -2[b] -1[a

2
] -1[a] -1[1] 



Factorial Experiments 

 

 114 

[ALBQ] = +1[a
2
b

2
]+0[ab

2
] -1[b

2
] -2[a

2
b]+0[ab]+2[b]+1[a

2
]+0[a] -1[1] 

[AQBQ]  = +1[a
2
b

2
] -2[ab

2
]+1[b

2
] -2[a

2
b]+4[ab] -2[b]+1[a

2
] -2[a]+1[1] 

 

Factorial effects are given by 

AL = [AL]/r.3 AQ= [AQ]/r.3 BL = [BL]/r.3 ALBL = [ALBL]/r.3 

AQBL = [AQBL]/r.3 BQ = [BQ]/r.3 ALBQ = [ALBQ]/r.3 AQBQ = [AQBQ]/r.3 

 

The sum of squares due to various factorial effects is given by 

SSAL = 
 A

r.2.3

L

2

; SSAq = 
 A

r.6.3

Q

2

; SSBL = 
 B

r.3.2

L

2

; SSALBL = 
 A B

r.2.2

L L

2

; 

SSAQBL = 
 A B

r.6.2

Q L

2

; SSBQ= 
 B

r.3.6

Q

2

; SSALBQ = 
 A B

r..2.6

L Q

2

; SSAQBQ = 
 A B

r.6.6

Q Q

2

; 

 

If a RBD is used with r-replications then the outline of analysis of variance is  

 

ANOVA 
 

Sources of Variation D.f SS MS 

Between Replications r-1 SSR MSR=SSR/(r-1) 

Between treatments 3
2
-1=8 SST MST=SST/8 

A 2 SSA MSA=SSA/2 

AL 1 SSAL MSAL= SSAL 

AQ 1 SSAQ          MSAQ=SSAQ 

B 2 SSB MSB=SSB/2 

BL 1 SSBL MSBL= SSBL 

BQ 1 SSBQ MSBQ=SSBQ 

AB 4 SSAB MSAB=SSAB/2 

ALBL 1 SSALBL MSALBL=SSALBL 

AQBL 1 SSAQBL MSAQBL=SSAQBL 

ALBQ 1 SSALBQ MSALBQ=SSALBQ 

AQBQ 1 SSAQBQ MSAQBQ=SSAQBQ 

Error  (r-1)(3
2
-`1) 

=8(r-1) 

SSE MSE=SSE/8(r-1) 

Total r.3
2
-1=9r-1 TSS  

 

In general, for n factors each at 3 levels, the sum of squares due to any linear (quadratic) main 

effect is obtained by dividing the square of the linear (quadratic) main effect total by r.2.3
n-

1
(r.6.3

n-1
). Sum of squares due to a ‘p’ factor interaction is given by taking the square of the total 

of the particular interaction component divided by r.(a1 a2 ...ap). 3
n-p

, where a1, a2,...,ap are taken as 

2 or 6 depending upon the linear or quadratic effect of particular factor.  

 

4.   Confounding in Factorial Experiments 

When the number of factors and/or levels of the factors increase, the number of treatment 

combinations increase very rapidly and it is not possible to accommodate all these treatment 
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combinations in a single homogeneous block. For example, a 2
5
 factorial would have 32 

treatment combinations and blocks of 32 plots are quite big to ensure homogeneity within them. 

A new technique is therefore necessary for designing experiments with a large number of 

treatments. One such device is to take blocks of size less than the number of treatments and have 

more than one block per replication. The treatment combinations are then divided into as many 

groups as the number of blocks per replication. The different groups of treatments are allocated to 

the blocks. 

 

There are many ways of grouping the treatments into as many groups as the number of blocks per 

replication. It is known that for obtaining the interaction contrast in a factorial experiment where 

each factor is at two levels, the treatment combinations are divided into two groups.  Such two 

groups representing a suitable interaction can be taken to form the contrasts of two blocks each 

containing half the total number of treatments. In such case the contrast of the interaction and the 

contrast between the two block totals are given by the same function. They are, therefore, mixed 

up and can not be separated.  In other words, the interaction has been confounded with the blocks. 

Evidently the interaction confounded has been lost but the other interactions and main effects can 

now be estimated with better precision because of reduced block size. This device of reducing the 

block size by taking one or more interaction contrasts identical with block contrasts is known as 

confounding. Preferably only higher order interactions, that is, interactions with three or more 

factors are confounded, because their loss is immaterial. As an experimenter is generally 

interested in main effects and two factor interactions, these should not be confounded as far as 

possible. 

 

When there are two or more replications, if the same set of interactions are confounded in all the 

replications, confounding is called complete and if different sets of interaction are confounded in 

different replications, confounding is called partial. In complete confounding all the information 

on confounded interactions are lost. But in partial confounding, the confounded interactions can 

be recovered from those replications in which they are not confounded.   
 

Advantages of Confounding 

It reduces the experimental error considerably by stratifying the experimental material into 

homogeneous subsets or subgroups. The removal of the variation among incomplete blocks (freed 

from treatments) within replicates results in smaller error mean square as compared with a RBD, 

thus making the comparisons among some treatment effects more precise. 
 

Disadvantages of Confounding 

 In the confounding scheme, the increased precision is obtained at the cost of sacrifice of 

information (partial or complete) on certain relatively unimportant interactions. 

 The confounded contrasts are replicated fewer times than are the other contrasts and as such 

there is loss of information on them and they can be estimated with a lower degree of 

precision as the number of replications for them is reduced. 

 An indiscriminate use of confounding may result is complete or partial loss of information on 

the contrasts or comparisons of greatest importance. As such the experimenter should 

confound only those treatment combinations or contrasts which are of relatively less or of 

importance at all. 

 The algebraic calculations are usually more difficult and the statistical analysis is complex, 

especially when some of the units (observations) are missing. 
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Confounding in 2
3
 Experiment 

Although 2
3
 is a factorial with small number of treatment combinations but for illustration 

purpose, this example has been considered. Let the three factors be A, B, C each at two levels. 
  

    Factorial Effects  

Treat. Combinations  

A B C AB AC BC ABC 

(1) - - - + + + - 

(a) + - - - - + + 

(b) - + - - + - - 

(ab) + + - + - - - 

(c) - - + + - - + 

(ac) + - + - + - - 

(bc) - + + - - + - 

(abc) + + + + + + + 

 

The various factorial effects are as follows: 

A   = (abc) + (ac) + (ab) + (a) - (bc) - (c) -  (b) - (1) 

B     = (abc) + (bc) + (ab) + (b) - (ac) - (c) -  (a) - (1) 

C     = (abc) + (bc) + (ac) + (c) - (ab) - (b) -  (a) - (1) 

AB   = (abc) +  (c)  + (ab) + (1) - (bc) - (ac) - (b) - (a) 

AC   = (abc) + (ac) + (b)   + (1) - (bc) - (c) -  (ab) - (a) 

BC   = (abc) + (bc) + (a)   + (1) - (ac) - (c) -  (ab) - (b) 

ABC = (abc) +  (c)  + (b)   + (a) - (bc) - (ac) - (ab) - (1) 

 

Let the highest order interaction ABC be confounded and we decide to use two blocks of 4 units 

(plots) each per replicate. 
 

Thus in order to confound the interaction ABC with blocks all the treatment combinations with 

positive sign are allocated at random in one block and those with negative signs in the other 

block.  Thus the following arrangement gives ABC confounded with blocks and hence we loose 

information on ABC. 
 

   Replication I  

 Block 1: (1) (ab) (ac) (bc) 

 Block 2: (a) (b) (c) (abc) 
 

It can be observed that the contrast estimating ABC is identical to the contrast estimating block 

effects.  

 

The other six factorial effects viz. A, B, C, AB, AC, BC each contain two treatments in block 1 

(or 2) with the  positive signs and two with negative sign so that they are orthogonal with block 

totals and hence these differences are not influenced among blocks and can thus be estimated and 

tested as usual without any difficulty. Whereas for confounded interaction, all the treatments in 

one group are with positive sign and in the other with negative signs. 
 

Similarly if AB is to be confounded, then the two blocks will consists of  

 
 

Block 1  (abc) (c) (ab) (1) 

Block 2 (bc) (ac) (b) (a) 
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Here AB is confounded with block effects and cannot be estimated independently whereas all 

other effects A, B, C, AC, Bc and ABC can be estimated independently. 

 

When an interaction is confounded in one replicate and not in another, the experiment is said to 

be partially confounded.  Consider again 2
3
 experiment with each replicate divided into two 

blocks of 4 units each. It is not necessary to confound the same interaction in all the replicates 

and several factorial effects may be confounded in one single experiment. For example, the 

following plan confounds the interaction ABC, AB, BC and AC in replications I, II, III and IV 

respectively. 

 
 

Rep. I 

Block 1      Block 2 

Rep. II 

Block 3       Block 4 

Rep. III 

Block 5       Block 6 

Rep. IV 

Block 7       Block 8 

(abc) (ab) (abc) (ac) (abc) (ab) (abc) (ab) 

(a) (ac) (c) (bc) (bc) (ac) (ac) (bc) 

(b) (bc) (ab) (a) (a) (b) (b) (a) 

(c) (1) (1) (b) (1) (c) (1) (c) 
 

In the above arrangement, the main effects A, B and C are orthogonal with block totals and are 

entirely free from block effects. The interaction ABC is completely confounded with blocks in 

replicate 1, but in the other three replications the ABC is orthogonal with blocks and 

consequently an estimate of ABC may be obtained from replicates II, III and IV.  Similarly it is 

possible to recover information on the other confounded interactions AB (from I, III, IV), BC 

(from I, II, IV) and AC (from I, II, III). Since the partially confounded interactions are estimated 

from only a portion of the observations, they are determined with a lower degree of precision than 

the other effects. 
 

For carrying out the statistical analysis, the various factorial effects and their S.S. are estimated in 

the usual manner with the modification that for completely confounded interactions neither the 

S.S due to confounded interaction is computed nor it is included in the ANOVA table. The 

confounded component is contained in the (2p-1) degrees of freedom (D.f.) (in case of p 

replicates) due to blocks. The partitioning of the d.f for a 2
3
 completely confounded factorial is as 

follows. 

 
 

Source of Variation D.f  

Blocks 2p-1 

A 1 

B 1 

C 1 

AB 1 

AC 1 

BC 1 

Error 6(p-1) 

Total 8p-1 

 

In general for a 2
n
 completely confounded factorial in p replications, the different d.f’s are given 

as follows: 
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Source of Variation D.f  

Replication p-1 

Blocks within replication p(2
n-r

-1) 

Treatments 2
n
-1-(2

n-r
-1) 

Error By subtraction 

Total p2
n
-1 

 

The treatment d.f has been reduced by 2
n-r

-1 as this is the total d.f confounded per block. 

   

In case of partial confounding, we can estimate the effects confounded in one replication from the 

other replication in which it is not confounded. In (2
n
, 2

r
) factorial experiment with p replications, 

following is the splitting of d.f’s. 
 

Source of Variation D.f  

Replication p-1 

Blocks within 

replication 

p(2
n-r

-1) 

Treatments 2
n
-1 

Error By subtraction 

Total p2
n
-1 

 

The S.S. for confounded effects are to be obtained from those replications only in which the given 

effect is not confounded.  

 

5.   Fractional Factorial 

In a factorial experiment, as the number of factors to be tested increases, the complete set of 

factorial treatments may become too large to be tested simultaneously in a single experiment. A 

logical alternative is an experimental design that allows testing of only a fraction of the total 

number of treatments. A design uniquely suited for experiments involving large number of factors 

is the fractional factorial. It provides a systematic way of selecting and testing only a fraction of 

the complete set of factorial treatment combinations. In exchange, however, there is loss of 

information on some pre-selected effects. Although this information loss may be serious in 

experiments with one or two factors, such a loss becomes more tolerable with large number of 

factors. The number of interaction effects increases rapidly with the number of factors involved, 

which allows flexibility in the choice of the particular effects to be sacrificed. In fact, in cases 

where some specific effects are known beforehand to be small or unimportant, use of the 

fractional factorial results in minimal loss of information.  

 

In practice, the effects that are most commonly sacrificed by use of the fractional factorial are 

high order interactions - the four-factor or five-factor interactions and at times, even the three-

factor interaction. In almost all cases, unless the researcher has prior information to indicate 

otherwise one should select a set of treatments to be tested so that all main effects and two-factor 

interactions can be estimated. 

 

In forestry research, the fractional factorial is to be used in exploratory trials where the main 

objective is to examine the interactions between factors. For such trials, the most appropriate 

fractional factorials are those that sacrifice only those interactions that involve more than two 

factors. 
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With the fractional factorial, the number of effects that can be measured decreases rapidly with 

the reduction in the number of treatments to be tested. Thus, when the number of effects to be 

measured is large, the number of treatments to be tested, even with the use of fractional factorial, 

may still be too large. In such cases, further reduction in the size of the experiment can be 

achieved by reducing the number of replications. Although the use of fractional factorial without 

replication is uncommon in forestry experiments, when fractional factorial is applied to 

exploratory trials, the number of replications required can be reduced to the minimum.  

 

Another desirable feature of fractional factorial is that it allows reduced block size by not 

requiring a block to contain all treatments to be tested. In this way, the homogeneity of 

experimental units within the same block can be improved. A reduction in block size is, however, 

accompanied by loss of information in addition to that already lost through the reduction in 

number of treatments.  

 

6. Practicals on Factorial Experiments 

Exercise 1: Analyse the data of a 2
3
 factorial experiment conducted using a RCBD with three 

replications. The three factors were the fertilizers viz. Nitrogen (N), Phosphorus (P) and 

Potassium (K). The purpose of the experiment is to determine the effect of different kinds of 

fertilizers on crop yield. The yields under 8 treatment combinations for each of the three 

randomized blocks are given below: 

 

Block- I 

npk (1) k np p n nk pk 

450 101 265 373 312 106 291 391 
 

 

Block- II 

p nk k np (1) npk pk n 

324 306 272 338 106 449 407 89 
 

 

Block- III 

p npk nk (1) n k pk np 

323 471 334 87 128 279 423 324 

 

Analysis 
 

Step 1:  The data is arranged in the following table: 

 

Blocks 

 

Treatment Combinations Total 

   (1)          n            p          np          k           nk           pk        npk  

B1 101 106 312 373 265 291 391 450 
2289 

(B1) 

B2 106 89 324 338 272 306 407 449 
2291 

(B2) 

B3 87 128 323 324 279 334 423 471 
2369 

(B3) 

Total 294 323 959 1035 816 931 1221 1370 6949 
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(T1) (T2) (T3) (T4) (T5) (T6) (T7) (T8) (G) 

 

Grand Total G = 6949,   

Number of observations (n) =24 = (r.2
n
) 

Correction Factor (C.F.) = 
G

n

2

 
( )

.
6949

24
2012025042

2

 

Total S.S. (TSS) = Sum (Obs.)
2
 - C.F = (101

2 
+106

2 
+...+ 449

2
+ 471

2
) - C.F = 352843.958 

Block (Replication) S.S (SSR) = 
B

2
C.F

j

2

3
j

r



 
1

 =  
 ( ) ( ) ( )2289 2291 2369

8

2 2 2 
 C.F  

    = 520.333 

Treatment S.S.(SST) = 
T

r
C.Fi

2

i 1

v



   

2913 .348651042.2012025
3

7082029
=

C.F
3

)1370()1221()931()816()1035()959()323()294( 22222222








 

Error S.S.(SSE) =Total S.S - Block S.S - Treatment S.S 

               = 352843.958 - 520.333 - 348651.2913 =  3672.3337 

 

Step 2: Main effects totals and interactions totals are obtained as follows: 

N     =  [npk]- [pk] +[nk] - [k] +[np] - [p]+[n]- [1] = 369 

P  =  [npk]+ [pk] - [nk] - [k] +[np] +[p] -[n]- [1] = 2221 

K        =  [npk]+ [pk] +[nk] +[k] - [np] - [p] -[n]- [1] = 1727 

NP     =  [npk] - [pk] - [nk] +[k] +[np] - [p] -[n]+[1] = 81 

NK     =  [npk] - [pk] +[nk] - [k] - [np]+ [p] -[n]+[1] = 159 

PK     =  [npk]+ [pk] - [nk] - [k] - [np]- [p]+[n]+[1] = -533 

NPK  =  [npk] - [pk] - [nk] +[k] - [np]+ [p]+[n]- [1] =-13 

 

Factorial effects = 
12)(r.2

Totaleffect  Factorial
1n 

 

Factorial effect SS =
 Factorial effect Total

r.2

2

n( ) 24
 

Here Factorial Effects 
 

       N=30.75, P=185.083, K=143.917, NP=6.75, NK=13.25, PK=-44.417, NPK=-1.083 
 

SS due to N  = 5673.375  

SS due to P  = 205535.042 
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SS due to K  =124272.0417  

SS due to NP = 273.375 

SS due to NK=1053.375  

SS due to PK = 11837.0417 

SS due to NPK=7.04166. 

 

Step 3: M.S. is obtained by dividing S.S.’s by respective degrees of freedom. 

 

ANOVA 
 

Sources of 

Variation 

DF SS MS F 

Replications r-1=2 520.333 260.167 0.9918 

Treatments 2
3
-1=7 348651.291 49807.3273 189.8797* 

N (s-1)=1 5673.375 5673.375 21.6285* 

P 1 205535.042 205535.042 783.5582* 

K 1 124272.042 124272.042 473.7606* 

NP 1 273.375 273.375 1.0422 

NK 1 1053.375 1053.375 4.0158 

PK 1 11837.041 11837.041 45.1262* 

NPK 1 7.0412 7.0412 0.02684 

Error (r-1) (2
n
-1)=14 3672.337 262.3098  

Total r.2
n
-1=23 352843.958   

*indicates significance at 5% level of significance 

Step 5: S.E of difference between main effect means =
MSE

r.2n 2
=8.098 

 

S.E of difference between N means at same level of P or K = S.E of difference between P (or K) 

means at same level of N =S.E of difference between P means at same level of K = S. E. of 

difference between K means at same level of P = 
MSE

r.2n 3
= 11.4523. t0.05 at 14 d.f.  = 2.145.  

Accordingly critical differences (C.D.) can be calculated. 

 

Exercise 2: The data on mean maximum culm height of Bambusa arundinacea tested with two 

levels of spacing (Factor A, 10 m x 10 m and 12 m x 12m) and three levels of age at planting 

(Factor B, 6, 12 and 24 months) laid out in RCBD with three replications is given below. 
 

Treatment combination Maximum culm height of a clump (cm) 

Rep. I Rep. II Rep. III 

a1b1 46.50 55.90 78.70 

a1b2 49.50 59.50 78.70 
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a1b3 127.70 134.10 137.10 

a2b1 49.30 53.20 65.30 

a2b2 65.50 65.00 74.00 

a2b3 67.90 112.70 129.00 

 

ANOVA of a 2 x 3 Factorial Experiment in RCBD 
 

Source of 

variation 

Df SS MS F 

Replication   2   2040.37 1020.187  8.60* 

Treatment   5 14251.87 2850.373 24.07* 

A    1 12846.26 6423.132 3.45 

B   2    408.98   408.980 54.12* 

AB   2    996.62   498.312 4.20* 

Error 10   1186.86   118.686 
 

Total 17 17479.10 
  

         *Significant at 5% level. 

The result indicates that the main effect of factor A (spacing) is not significant at the 5% level of 

significance. The analysis shows a significant interaction between spacing and age, indicating that 

the effect of age vary with the change in spacing. 

 

Exercise 3: A 3
2
 experiment was conducted to study the effects of the two factors Nitrogen (N) 

and Phosphorus (P) (each at three levels 0, 1, 2) on sugar beets. Two replications of nine plots 

each were used. The table shows the plan and the percentage of sugar (approximated to nearest 

whole number).   

 

Replication Treatment % of sugar 

     N            P  

I     0             1 14 

     2             0 15 

     0             0 16 

     2             1 15 

     0             2 16 

     1             2 18 

     1             1 17 

     1             0 19 

     2             2 17 

II     1             2 20 

     1             0 19 

        1             1 17 

     0             0 18 

         2             1 19 
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     0             1 16 

      0             2 16 

     2             2 19 

     2             0 16 

 

Analyse the data. 
 

Analysis 
 

Step 1:  Sum of squares for replications, treatments and total sum of squares is obtained by 

arranging the data in a Replication x Treatment table as follows: 

 

 

Rep. 

Treatment Combinations 

    1         n          n
2 

          p         np        n
2
p        p

2
        np

2
      n

2
p

2 

   00       10         20          01        11         21         02        12         22 

Total 

1 16 19 15 14 17 15 16 18 17 147 

(R1) 

2 18 19 16 16 17 19 16 20 19 160 

(R2) 

Total 34 

(T1) 

38 

(T2) 

31 

(T3) 

30 

(T4) 

34 

(T5) 

34 

(T6) 

32 

(T7) 

38 

(T8) 

36 

(T9) 

307 

(G) 

 

Grand Total = 307,   

No. of observations (N) = r.3
2
 =18 

Correction Factor (C.F.) = 
( )307

18

2

=5236.0556 

Total S.S.(TSS) = Sum(observation)
2
-C.F. = 16

2
+18

2
+...+17

2
+19

2
-5236.0556 = 48.9444 

Replication SS (SSR)    =   
R R

C.F.1

2

2

2


9
= 

147 160

9
5236 0556

2 2
 .  = 9.3888 

Treatment SS (SST)   = 
Sum(treatment totals)

r
C.F.

2

  

   = 
34 38 38 36

2
5236 0556

2 2 2 2   


...
.  = 32.4444 

Error SS = Total SS - Replication SS - Treatment SS = 7.1112 

Step 2: Obtain various factorial effects totals  

 

[NL]  =+1[n
2
p

2
]+0[np

2
] -1[p

2
]+1[n

2
p]+0[np] -1[p]+1[n

2
]+0[n] -1[1] = 5 

[NQ] =+1[n
2
p

2
] -2[np

2
]+1[p

2
]+1[n

2
p] -2[np]+1[p]+1[n

2
] -2[n]+1[1] =-23 

[PL]  =+1[n
2
p

2
]+1[np

2
]+1[p

2
]+0[n

2
p]+0[np]+0[p] -1[n

2
] -1[n] -1[1] = 3 

[NLPL] =+1[n
2
p

2
]+0[np

2
] -1[p

2
]+0[n

2
p]+0[np]+0[p] -1[n

2
]+0[n] -1[1] = 7 

[NQPL] =+1[n
2
p

2
] -2[np

2
]+1[p

2
]+0[n

2
p]+0[np]+0[p] -1[n

2
]+2[n] -1[1] = 3 



Factorial Experiments 

 

 124 

[PQ] =+1[n
2
p

2
]+1[np

2
]+1[p

2
] -2[n

2
p] -2[np] -2[p] -1[n

2
] -1[n] -1[1] = 13 

[NLPQ] =+1[n
2
p

2
]+0[np

2
] -1[p

2
] -2[n

2
p]+0[np]+2[p]+1[n

2
]+0[n] -1[1] =-7 

[NQPQ]=+1[n
2
p

2
] -2[np

2
]+1[p

2
] -2[n

2
p]+4[np] -2[p]+1[n

2
] -2[n]+1[1] =-11 

 

Step 3: Obtain the sum of squares due to various factorial effects  

SSNL = 
 N

r.2.3
=

5L
22

12
2 0833 . ; SSNQ = 

 N

r.6.3

Q

2
223

36
14 6944




( )
. ;  

SSPL = 
 P

r.3.2

L

2 23

12
0 7500  . ;  SSNLPL = 

 N P

r.2.2

L L

2 27

8
61250  . ; 

SSNQPL = 
 N P

r.6.2

Q L

2
23

24
0375  . ; SSPQ= 

 
6944.4

36

13

r.3.6

P 22

Q
 ;  

SSNLPQ = 
 N P

r..2.6

L Q

2
27

24
2 0417




( )
. ; SSNQPQ = 

 N P

r.6.6

Q Q

2
211

72
16806




( )
. ; 

ANOVA 
 

Sources of Variation DF SS MS F  

Between Replications 1 9.3888 9.3888 10.5623* 

Between treatments 8 32.4444 4.0555 4.5624* 

N 2 16.7774 8.3887 9.4371* 

NL 1 2.0833 2.0833 2.3437 

NQ 1 14.6944 14.6944 16.5310* 

P 2 5.4444 2.7222 3.0624 

PL 1 0.7500 0.7500 0.8437 

PQ 1 4.6944 4.6944 5.2811 

NP 4 10.2223 2.5556 2.875 

NLPL 1 6.1250 6.1250 6.8905* 

NQPL 1 0.3750 0.3750 0.4219 

NLPQ 1 2.0417 2.0417 2.2968 

NQPQ 1 1.6806 1.6806 1.8906 

Error 8 7.1112 0.8889  

Total 17 48.9444   

    *indicates the significance at 5% 



SPLIT AND STRIP PLOT DESIGNS 
 

 

1.   Split Plot Design 

1.1  Introduction 

In conducting experiments, sometimes some factors have to be applied in larger experimental 

units while some other factors can be applied in comparatively smaller experimental units. 

Further some experimental materials may be rare while the other experimental materials may be 

available in large quantity or when the levels of one (or more) treatment factors are easy to 

change, while the alteration of levels of other treatment factors are costly, or time-consuming. 

One more point may be that although two or more different factors are to be tested in the 

experiment, one factor may require to be tested with higher precision than the others. In all such 

situations, a design called the split plot design is adopted. 

 

A split plot design is a design with at least one blocking factor where the experimental units 

within each block are assigned to the treatment factor levels as usual, and in addition, the blocks 

are assigned at random to the levels of a further treatment factor. The designs have a nested 

blocking structure. In a block design, the experimental units are nested within the blocks, and a 

separate random assignment of units to treatments is made within each block. In a split plot 

design, the experimental units are called split-plots (or sub-plots), and are nested within whole 

plots (or main plots). 

     

In split plot design, plot size and precision of measurement of effects are not the same for both 

factors, the assignment of a particular factor to either the main plot or the sub-plot is extremely 

important. To make such a choice, the following guidelines are suggested: 

 

Degree of Precision- For a greater degree of precision for factor B than for factor A, assign factor 

B to the sub-plot and factor A to the main plot e.g. a plant breeder who plans to evaluate ten 

promising rice varieties with  three levels of fertilization, would probably wish to have greater 

precision for varietal comparison than for fertilizer response. Thus, he would designate variety as 

the sub-plot factor and fertilizer as the main plot factor. Or, an agronomist would assign variety to 

main plot and fertilizer to sub-plot if he wants greater precision for fertilizer response than variety 

effect. 

 

Relative Size of the Main effects- If the main effect of one factor (A) is expected to be much 

larger and easier to detect than that of the other factor (B), factor A can be assigned to the main 

plot and factor B to the sub-plot. This increases the chance of detecting the difference among 

levels of factor B which has a smaller effect. 

 

Management Practices- The common type of situation when the split plot design is automatically 

suggestive is the difficulties in the execution of other designs, i.e. practical execution of plans. 

The cultural practices required by a factor may dictate the use of large plots. For practical 

expediency, such a factor may be assigned to the main plot e.g. in an experiment to evaluate 

water management and variety, it may be desirable to assign water mangement to the main plot to 

minimize water movement between adjacent plots, facilitate the simulation of the water level 

required, and reduce border effects. Or, if ploughing is one of the factors of interest, then one 

cannot have different depths of ploughing in different plots scattered randomly apart. 
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1.2  Randomization and Layout 

There are two separate randomization processes in a split plot design – one for the main plot and 

another for the sub-plot. In each replication, main plot treatments are first randomly assigned to 

the main plots followed by a random assignment of the sub-plot treatments within each main plot. 

This procedure is followed for all replications. A possible layout of a split plot experiment with 

four main plot treatments(a=4), three sub-plot treatments(b=3), and four replications(r=4) is given 

below: 

 

           Rep. I                             Rep. II                          Rep. III                          Rep. IV  

 

b1 

 

b3 

 

b2 

 

b2 

  

b3 

 

b1 

 

b2 

 

b1 

  

b3 

 

b1 

 

b2 

 

b3 

  

b2 

 

b3 

 

b3 

 

b1 

 

b3 

 

b2 

 

b1  

 

b3 

  

b1 

 

b2 

 

b1 

 

b3 

  

b2 

 

b3 

 

b3 

 

b2 

  

b1 

 

b2 

 

b1 

 

b2 

 

b2 

 

b1  

 

b3 

 

b1 

  

b2 

 

b3 

 

b3 

 

b2 

  

b1 

 

b2 

 

b1 

 

b1 

  

b3 

 

b1 

 

b2 

 

b3 

  a4      a2      a 1       a3            a1     a4     a2    a3              a3     a2     a4     a1             a1    a4     a3    a2       

 

The above layout has the following important features –   The size of the main plot is b times the 

size of the sub-plot,    Each main plot treatment is tested r times whereas each sub-plot treatment 

is tested ar times, thus the number of times a sub-plot treatment is tested will always be larger 

than that for the main plot and is the primary reason for more precision for the sub-plot treatments 

relative to the main plot treatments. 

  

This concept of splitting each plot may be extended further to accommodate the application of 

additional factors. An extension of this design is called the split-split plot design where the sub-

plot is further divided to include a third factor in the experiment. The design allows for 3 different 

levels of precision associated with the 3 factors. That is, the degree of precision associated with 

the main factor is lowest, while the degree of precision associated with the sub-sub plot is the 

highest.               

 

1.3  Model 

The model for simple split plot design is 

        Yijk =   i  j  ij  k  ()jk   ijk 

for i = 1,2, …,r, j = 1,2, …,a, k = 1,2, …b,  

where, 

Yijk        : observation corresponding to k
th

 level of sub-plot factor(B), j
th 

level of main plot   

               factor(A) and the i
th

 replication. 
 
          : general mean 

  i        : i
th

 block effect 

 j         : j
th

 main plot treatment effect 

 k        : k
th

 sub-plot treatment effect 

()jk     : interaction between j
th

 level of main-plot treatment and the k
th

 level of sub-  

              plot treatment  

The error components ij and ijk are independently and normally distributed with means zero and 

respective variances 
2
 and 

2
.    
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1.4  Analysis 

Whole-Plot analysis: 

This part of the analysis is based on comparisons of whole-plot totals: 

 The levels of A are assigned to the whole plots within blocks according to a randomized 

complete block design, and so the sum of squares for A needs no block adjustment.  There 

are a –1 degrees of freedom for A, so the sum of squares is given by  

      rab/yrb/yssA 2

j

2
   j .. .. .            

      [ The “dot” notation means “add over all values of the subscript replaced with a dot” ]    

                                                                                                       

 There are r –1 degrees of freedom for blocks, giving a block sum of squares of 

        rab/yab/yssR 2

i

2
i .... .   

 There are a whole plots nested within each of the r blocks, so there are, in total, r(a -1)  

whole-plot degrees of freedom. Of these, a –1 are used to measure the effects of A leaving (r 

–1)(a –1) degrees of freedom for whole-plot error. Equivalently, this can be obtained by the 

subtraction of the block and A degrees of freedom from the whole-plot total degrees of 

freedom  i.e.  (ra –1) –(r –1) –(a –1) = (r –1)(a –1). 

        So, the whole plot error sum of squares, is obtained as 

        ssA  - ssR - rab/yb/yssE 2

j

2
ji

i

 1 ....        

 The whole plot error mean square msE1 = ssE1 / (r –1)(a –1), is used as the error estimate to 

test the significance of whole plot factor(A). 

 

Sub-plot analysis: 

This part of the analysis is based on the observations arising from the split-plots within whole 

plots: 

 There are rab –1 total degrees of freedom, and the total sum of squares is 

         rab/yysstot 2

i j k

2
k j i ...     

 Due to the fact that all levels of B are observed in every whole plot as in a randomized 

complete block design, the sum of squares for B needs no adjustment for whole plots, and is 

given by - 

        rab/yra/ yssB 2

k

2
k .. .. .  , corresponding to b –1 degrees of freedom. 

 The interaction between the factors A and B is also calculated as part of the split-plot 

analysis. Again, due to the complete block structure of both the whole-plot design and the 

split-plot design, the interaction sum of squares needs no adjustment for blocks. The number 

of interaction degrees of freedom is (a –1)(b –1), and the sum of squares is 

         ssB -ssA  - rab/yr/yss(AB) 2

k

2
k j

j

.. . .      

 Since there are b split plots nested within the ra whole plots, there are, in total, ra(b –1) 

split-plot degrees of freedom. Of these, b –1 are used to measure the main effect of B, and (a 

–1)(b –1) are used to measure the AB interaction, leaving ra(b–1) – (b–1) – (a–1)(b–1) = 

a(r–1)(b–1) degrees of freedom for error. Equivalently, this can be obtained by subtraction 

of the whole plot, B, and AB degrees of freedom from the total i.e. (rab –1) – (ra – 1) – (b – 

1) – (a –1)(b –1) = a(r –1)(b –1). 
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        The split-plot error sum of squares can be calculated by subtraction: 

        ssE2 = sstot – ssR – ssA – ssE1 – ssB – ss(AB). 

 

 The split-plot error mean square msE2 = ssE2  a(r –1)(b –1) is used as the error estimate in 

testing the significance of split-plot factor(B) and interaction(AB). 

 

 The analysis of variance table is outlined as follows: 

 

                                                      ANOVA 

Source of Variation Degrees of 

Freedom 

Sum of 

Squares 

Mean Square F 

Whole plot analysis    

Replication  r-1 ssR - - 

Main plot treatment(A)  a-1 ssA msA  msA/msE1 

Main plot error(E1) (r-1)(a-1) ssE1 msE1 =Ea  

Sub-plot analysis     

Sub-plot treatment(B) b-1 ssB msB  msB/msE2 

Interaction 

 (AxB) 

(a-1)(b-1)      ss(AB)         ms(AB)                 ms(AB)/msE2             

Sub-plot error(E2) a(r-1)(b-1) ssE2 msE2 =Eb  

Total rab-1 sstot   

  

 1.5  Standard Errors and Critical Differences                                                                   

  Estimate of S.E. of difference between two main plot treatment means = 
rb

E2 a  

  Estimate of S.E. of difference between two sub-plot treatment means   = 
ra

E2 b  

 

  Estimate of S.E. of difference between two sub-plot treatment means 

  at the same level of main plot treatment  =   
r

E2 b                                                             

                                                       

  Estimate of S.E. of difference between two main plot treatment  

  means at the same or different levels of sub-plot treatment  =     
 

rb

E1)E-(b2 ab                                                              

Critical difference is obtained by multiplying the S.Ed by t5% table value for respective error d.f. 

for (i), (ii) & (iii).  For (iv), as the standard error of mean difference involves two error terms, we 

use the following equation to compute the weighted t values: 

                                           t = 
ab

aabb

E1)E-b(

tEt1)E-(b




   

where ta and tb are t-values at error d.f. (Ea) and error d.f.(Eb) respectively. 

 

Example 1: In a study carried by agronomists to determine if major differences in yield response 

to N fertilization exist among different varieties of jowar, the main plot treatments were three 

varieties of jowar (V1: CO-18, V2: CO-19 and V3: C0-22), and the sub-plot treatments were N 
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rates of 0, 30, and 60 Kg/ha. The study was replicated four times, and the data gathered for the 

experiment are shown in Table 1. 
 

             Table 1:  Replication-wise yield data. 

  N rate, Kg/ha 

Replication Variety 0 30 60 

  Yield, kg per plot 

I V1 15.5 17.5 20.8 

 V2 20.5 24.5 30.2 

 V3 15.6 18.2 18.5 

II V1 18.9 20.2 24.5 

 V2 15.0 20.5 18.9 

 V3 16.0 15.8 18.3 

III V1 12.9 14.5 13.5 

 V2 20.2 18.5 25.4 

 V3 15.9 20.5 22.5 

IV V1 12.9 13.5 18.5 

 V2 13.5 17.5 14.9 

 V3 12.5 11.9 10.5 

               

    Analyze the data and draw conclusions. 

 

Steps of analysis: 

 Calculate the replication totals (R), and the grand total (G) by first constructing a table for the 

replication  variety totals shown in Table 1.1, and then a second table for the variety  

nitrogen totals as shown in Table 1.2. 

 

Table 1.1  Replication  Variety (RA) - table of yield totals. 

 Variety  

Replication   V1   V2   V3 Rep.Total(R) 

I  53.8  75.2  52.3 181.3 

II  63.6  54.4  50.1 168.1 

III  40.9  64.1  58.9 163.9 

IV  44.9  45.9  34.9 125.7 

Variety Total(A) 203.2 239.6 196.2  

Grand Total(G)    639.0 

 

Table 1.2  Variety   Nitrogen (AB) - table of yield totals. 

                  Variety  

Nitrogen  V1   V2   V3 Nitrogen 

Total(B) 

N0  60.2  69.2  60.0 189.4 

N1  65.7  81.0  66.4 213.1 

N2  77.3  89.4  69.8 236.5 

        

 Compute the various sums of squares for the main plot analysis by first computing the 

correction factor: 
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C.F. = 
334

(639)
 

rab

G 22


  = 11342.25 

 

Total S.S. (sstot) =  [ (15.5)
2
 + (20.5)

2
 +  …  + (10.5)

2
 ]  -  C.F. 

                      =  637.97 

Replication S.S. (ssR) = C.F.
ab

R 2




 

                                   = 11342.25
33

(125.7)(163.9)(168.1)(181.3) 2222





   

                                   = 190.08 

S.S. due to Variety (ssA) =  C.F.
rb

A2




   

 

                                        =  11342.25
34

(196.2)(239.6)(203.2) 222





 

                                        =  90.487     

     

Main plot error S.S. (ssE1) = ssA ssR C.F.
b

(RA)2




  

=  90.487  190.08  11342.25
3

(34.9)  ... (63.6)(53.8) 222




  

                                       = 174.103 

 Compute the various sums of squares for sub-plot analysis: 

          

S.S. due to Nitrogen (ssB) =  C.F.
ra

B2




   

                                           =  11342.25
34

(236.5)(213.1)(189.4) 222





  

                                           =  92.435 

 

S.S. due to Interaction (A  B) = ssB ssA C.F.
r

(AB)2




  

                                   92.435  90.487  11342.25
4

(69.8)  ... (65.7)(60.2) 222




   

                                         = 9.533 

 

Sub-plot error S.S. (ssE2) = Total S.S.  All other sum of squares 

                                =  637.97  ( 190.08 + 90.487 + 174.103 + 92.435 +9.533) 

                                =  81.332 

 

 Calculate the mean square for each source of variation by dividing the S.S. by its 

corresponding degrees of freedom and compute the F value for each effect that needs to be 
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tested, by dividing each mean square by the corresponding error mean square, as shown in 

Table 1.3. 

 

Table 1.3   ANOVA 

Source of 

variation 

Degrees of 

freedom 

Sum of Squares Mean 

Square 

F 

Replication 3 190.08 63.360  

Variety(A) 2 90.487 45.243 1.56
ns 

Error(a) 6 174.103 29.017(Ea)  

Nitrogen(B) 2 92.435 46.218 10.23
** 

VarietyNitrogen 

    (AB) 

4 9.533 2.383 <1 

Error(b) 18 81.332 4.518 (Eb)  

Total 35 637.97   

                   
ns

 –
 
not significant,   

** 
- significant at 1% level. 

 

 Compute the coefficient of variation for the main plot and sub-plot as: 

  cv(a)  100
G.M.

Ea
 , and    cv(b)  100

G.M.

Eb
   respectively.  

 

 Compute standard errors and to make specific comparisons among treatment means compute 

respective critical differences only when F-tests show significance differences and interpret. 

 

 Conclusion: There was no significant difference among variety means. Yield was 

significantly affected by nitrogen. However, the interaction between N rate and variety was 

not significant. All the varieties gave significant response to 30 kg N/ha as well as to 60 kg 

N/ha. 

 

2.   Strip Plot Design 

2.1  Introduction 

Sometimes situation arises when two factors each requiring larger experimental units are to be 

tested in the same experiment, e.g., suppose four levels of spacing and three levels of methods of 

ploughing are to be tested in the same experiment. Here both the factors require large 

experimental units. If the combinations of the two factors at all possible levels are allotted in a 

R.B.D. in the normal way, the experimental plots shall have to be very large thereby bringing 

heterogeneity. So, it will not be appropriate. On the other hand if one factor (spacing) is taken in 

main plots and other factor (methods of ploughing) is taken in sub-plots within main plots, the 

sub-plots shall have to be large enough. Hence split plot design also will not be appropriate. In 

such situations a design called Strip plot design is adopted. 

 

The strip plot is a 2-factor design that allows for greater precision in the measurement of the 

interaction effect while sacrificing the degree of precision on the main effects. The experimental 

area is divided into three plots, namely the vertical-strip plot, the horizontal-strip plot, and the 

intersection plot. We allocate factors A and B, respectively, to the vertical and horizontal-strip 

plots, and allow the intersection plot to accommodate the interaction between these two factors. 

As in the split plot design, the vertical and the horizontal plots are perpendicular to each other. 

However, in the strip plot design the relationship between the vertical and horizontal plot sizes is 
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not as distinct as the main and sub-plots were in the split plot design. The sub-plot treatments 

instead of being randomized independently within each main plot as in the case of split plot 

design are arranged in strips across each replication.  The intersection plot, which is one of the 

characteristics of the design, is the smallest in size. 

 

2.2  Randomization and Layout 

In this design each block is divided into number of vertical and horizontal strips depending on the 

levels of the respective factors. Let A represent the vertical factor with a levels, B represent the 

horizontal factor with b levels and r represent the number of replications. To layout the 

experiment, the experimental area is divided into r blocks. Each block is divided into b horizontal 

strips and b treatments are randomly assigned to these strips in each of the r blocks separately and 

independently. Then each block is divided into a vertical strips and a treatments are randomly 

assigned to these strips in each of the r blocks separately and independently. A possible layout of 

a strip plot experiment with a 5 (a1, a2, a3, a4, and a5), b 3 (b1, b2, and b3) and four replications 

is given below: 

    

             Rep. I                           Rep. II                           Rep. III                          Rep. IV     

b2        b1         b3        b2       

b1        b3         b1        b3       

b3        b2         b2        b1       

       a4   a1  a2  a5  a3               a2  a4   a3   a1  a5               a5  a4  a1  a3  a2               a3   a1   a4  a5  a2        

        

The strip plot design sacrifices precision on the main effects of both the factors in order to 

provide higher precision on the interaction which will generally be more accurately determined 

than in either randomised blocks or simple split plot design. Consequently this design is not 

recommended unless practical considerations necessitate its use or unless the interaction is the 

principle object of study. 

 

2.3  Model  

The model for strip plot design is 

        Yijk =   i  j  ()ij  k  ()ik  ()jk   ijk 

for i = 1,2, …,r, j = 1,2, …,a, k = 1,2, …b,  

 

where, 

Yijk  : observation corresponding to j
th

 level of factor A, k
th

 level of factor B and i
th

  replication 
 
          : general mean 

  i        : i
th

 block effect 

 j            : effect of j
th

 level of factor A 

 k        : effect of k
th

 level of factor B 

()jk     : interaction between j
th

 level of factor A and the k
th

 level of factor B  

The error components ()ij, ()ik  and ijk are independently and normally distributed with 

means zero and respective variances 
2

a,  
2

b,  and 
2
.  
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2.4  Analysis 

In statistical analysis separate estimates of error are obtained for main effects of the factor, A and 

B and for their interaction AB. Thus there will be three error mean squares applicable for testing 

the significance of main effects of the factors and their interaction separately. 

 

Suppose 4 levels of spacings (A) and 3 levels of methods (B) of ploughing are to be tested in the 

same experiment. Each replication is divided into 4 strips vertically and into 3 strips horizontally. 

In the vertical strips the four different levels of spacings are allotted randomly and in the 

horizontal strips three methods of ploughing are allotted randomly. Let there be 4 replications(R). 

The analysis of variance is carried out in three parts viz. vertical strip analysis, horizontal strip 

analysis and interaction analysis as follows: 

 

 Form spacing  replication (A  R) table of yield totals and from this table compute the S.S. 

due to replication, S.S. due to spacings and S.S. due to interaction - Replication  Spacing 

i.e. error(a). 
 

 Form method  replication (B  R) table of yield totals and from this table compute the S.S. 

due to methods and S.S. due to interaction - Replication  Method i.e. error(b). 
 

 Form spacing  method (A  B) table of yield totals and from this table compute the S.S. 

due to interaction - Spacing  Method. 
 

 Total S.S. will be obtained as usual by considering all the observations of the experiment 

and the error S.S. i.e. error(c) will be obtained by subtracting from total S.S. all the S.S. for 

various sources. 

 

 Now, calculate the mean square for each source of variation by dividing each sum of squares 

by its respective degrees of freedom. 
 

 Compute the F-value for each source of variation by dividing each mean square by the 

corresponding error term. 

 

 The analysis of variance table is outlined as follows: 

 

 

ANOVA 

Source of Variation Degrees of 

Freedom 

Sum of 

Squares 

Mean 

Square 

F 

Replication(R)  (r-1)= 3 ssR - - 

Spacing(A)  (a-1)= 3 ssA msA  msA/msE1 

Error(a) (r-1)(a-1)= 9 ssE1 msE1 =Ea  

Method(B) (b-1)= 2 ssB msB  msB/msE2 

Error(b)                          (r-1)(b-1)= 6 ssE2 msE2 =Eb  

SpacingMethod 

     (AB) 

(a-1)(b-1)= 6 ss(AB) ms(AB) ms(AB)/msE3 

 Error(c) (r-1)(a-1)(b-1)=18  ssE3 msE3 =Ec  

Total (rab-1)= 47 sstot   
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2.5  Standard Errors and Critical Differences                                                                  

Estimate of S.E. of difference between two A level means = 
rb

E2 a  

Estimate of S.E. of difference between two B level means = 
ra

E2 b  

 

Estimate of S.E. of difference between two A level means at the same level of B means = 

 
rb

E1)E-(b2 ac   

 

Estimate of S.E. of difference between two B level means at the same level of A means = 

 
ra

E1)E-(a2 bc   

 

Critical difference is obtained by multiplying the S.Ed by t5% table value for respective error d.f. 

for (i) & (ii).  For (iii) & (iv), as the standard error of mean difference involves two error terms, 

we use the following equation to compute the weighted t values: 

 

                         t = 
ac

aacc

E1)E-b(

tEt1)E-(b




 ,  and   t = 

bc

bbcc

E1)E-a(

tEt1)E-(a




  respectively, 

 

where ta, tb, and tc are t-values at error d.f. (Ea), error d.f.(Eb) and error d.f.(Ec) respectively. 

 



RESPONSE SURFACE DESIGNS 
 

 

1. Introduction 

The subject of Design of Experiments deals with the statistical methodology needed for making 

inferences about the treatment effects on the basis of responses (univariate or multivariate) 

collected through the planned experiments.  To deal with the evolution and analysis of methods 

for probing into mechanism of a system of variables, the experiments involving several factors 

simultaneously are being conducted in agricultural, horticultural and allied sciences. Data from 

experiments with levels or level combinations of one or more factors as treatments are normally 

investigated to compare level effects of the factors and also their interactions. Though such 

investigations are useful to have objective assessment of the effects of levels actually tried in the 

experiment, this seems to have inadequate, especially when the factors are quantitative in nature.  

The above analysis cannot give any information regarding the possible effects of the intervening 

levels of the factors or their combinations, i.e., one is not able to interpolate the responses at the 

treatment combinations not tried in the experiment. In such cases, it is more realistic and 

informative to carry out investigations with the twin purposes: 

a) To determine and to quantify the relationship between the response and the settings of a 

group of experimental factors. 

b) To find the settings of the experimental factors that produces the best value or the best set of 

values of the response(s). 

If all the factors are quantitative in nature, it is natural to think the response as a function of the 

factor levels and data from quantitative factorial experiments can be used to fit the response 

surfaces over the region of interest.  Response surfaces besides inferring about the twin purposes 

can provide information about the rate of change of a response variable.  They can also indicate 

the interactions between the quantitative treatment factors.  The special class of designed 

experiments for fitting response surfaces is called response surface designs.  A good response 

surface design should possess the properties viz., detectability of lack of fit, the ability to 

sequentially build up designs of increasing order and the use of a relatively modest, if not 

minimum, number of design points. Before formulating the problem mathematically, we shall 

give examples of some experimental situations, where response surface methodology can be 

usefully employed. 

 

Example 1: The over-use of nitrogen (N) relative to Phosphorus (P) and Potassium (K) concerns 

both the agronomic and environmental perspective.  Phosphatic and Potassic fertilizers have been 

in short supply and farmers have been more steadily adopting the use of nitrogenous fertilizers 

because of the impressive virtual response. There is evidence that soil P and K levels are 

declining. The technique of obtaining individual optimum doses for the N, P and K through 

separate response curves may also be responsible for unbalanced fertilizer use. Hence, 

determining the optimum and balanced dose of N, P and K for different crops has been an 

important issue. This optimum and balanced dose should be recommended to farmers in terms of 

doses from the different sources and not in terms of the values of N, P and K alone, as the 

optimum combination may vary from source to source.  However, in actual practice the values of 

N, P and K are given in terms of kg/ha rather than the combined doses alongwith the source of 

the fertilizers. 
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Example 2: For value addition to the agriculture produce, food-processing experiments are being 

conducted.  In these experiments, the major objective of the experimenter is to obtain the 

optimum combination of levels of several factors that are required for the product.  To be 

specific, suppose that an experiment related to osmotic dehydration of the banana slices is to be 

conducted to obtain the optimum combination of levels of concentration of sugar solution, 

solution to sample ratio and temperature of osmosis.  The levels of the various factors are the 

following 

 Factors Levels 

1. Concentration of sugar solution 40%, 50%, 60%, 70% and 80% 

2. Solution to sample ratio 1:1, 3:1, 5:1, 7:1and 9:1 

3. Temperature of osmosis 25
0
C, 35

0
C, 45

0
C, 55

0
C and 65

0
C  

 

In this situation, response surface designs for 3 factors each at five equispaced levels can be used. 
 

Example 3: Yardsticks (a measure of the average increase in production per unit input of a given 

improvement measure) of many fertilizers, manures, irrigation, pesticides for various crops are 

being obtained and used by planners and administrators in the formulation of policies relating to 

manufacture/import/subsidy of fertilizers, pesticides, development of irrigation projects etc. 
 

The yardsticks have been obtained from the various factorial experiments.  However, these will 

be more reliable and satisfy more statistical properties, if response surface designs for slope 

estimation are used. 
 

In general response surface methodology is useful for all the factorial experiments in agricultural 

experimental programme that are under taken so as to determine the level at which each of these 

factors must be set in order to optimize the response in some sense and factors are quantitative in 

nature.  To achieve this we postulate that the response is a function of input variables, i.e. 

  uvuuuu exxxy  ,...,, 21                            (1.1) 

where Nu ,...,2,1 represents the N observations and iux  is the level of the thi  factor in the thu  

observation. The function   describes the form in which the response and the input variables are 

related and ue  is the experimental error associated with the thu observation such that E (eu) = 0 

and Var(eu) = 2
.   Knowledge of function  gives a complete summary of the results of the 

experiment and also enables us to predict the response for values of the iux  that are not included 

in the experiment. If the function  is known then using methods of calculus, one may obtain the 

values of vxxx ,...,, 21  which give the optimum (say, maximum) response. In practice the 

mathematical form of  is not known; we, therefore, often approximate it, within the 

experimental region, by a polynomial of suitable degree in variables iux . The adequacy of the 

fitted polynomial is tested through the usual analysis of variance. Polynomials which adequately 

represent the true dose-response relationship are called Response Surfaces and the designs that 

allow the fitting of response surfaces and provide a measure for testing their adequacy are called 

response surface designs. If the function  in (1.1) is of degree one in sxiu '  i.e. 

uvuvuuu exxxy   ...22110                                 (1.2) 
 

we call it a first-order response surface in vxxx ,...,, 21 . If (1.1) takes the form 
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We call it a second-order (quadratic) response surface. Henceforth, we shall concentrate on the 

second order response surface which is more useful in agricultural experiments. 

 

2. The Quadratic Response Surface 
The general form of a second-degree (quadratic) surface is 

         exxxxxx

xxxxxxy

uvuuvvvuuuu

vuvvuuvuvuuu


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 ,1,131132112

22
222

2
11122110

...

......




 

Let us assume that sxiu '  satisfy the following conditions: 

(A) 0

1 1
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
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



 
 
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u
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

, if any i is odd, for 32,1,0 ori   and   .4i  

(B) 


N

u
iux

1

2 constant (for all i ) 2N  (say) 

(C)   


N

u
iux

1

4  constant (for all i ) = 4CN  (say)             (2.1) 

(D) 

 2

1

2
ui

N

u

iuxx constant 4N  (say), for all ii   

We shall estimate the parameters si '  through the method of least squares. Let 

sbsbsbb iiiii ',',',0   denote the best linear unbiased estimate of sss iiiii ',',',0   respectively. 

Under the above restrictions on sxiu ' , the normal equations are found to be: 
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u bNNby
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
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                           (2.2) 

  
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
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Solving the above normal equations, we obtain the estimates bi‘s as 
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                         (2.3) 

where   2
241  vvC  . 

 

The variances of and covariances between the estimated parameters are as follows: 
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Other covariances are zero. From the above expressions it is clear that a necessary condition for 

the design to exist is that 0 . Thus, a necessary condition for a Second Order Design to exist 

is that 

(E)  12
24  vCv                                (2.5) 

If ŷ  is the estimated response at any given experimental point  02010 ,...,, vxxx , then the variance 

of ŷ is given by 
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If 2

1

2
0 dx

v

i
i 



, where d  is the distance of the point  02010 ,...,, vxxx  from the origin, then we may 

write  
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From the above expression, it is clear that if the coefficient of  
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zero, the variance of the estimated response at  02010 ,...,, vxxx  will be a function of d , the 

distance of the point  02010 ,...,, vxxx  from the origin. Now, the coefficient of  
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Obviously, this is zero, if and only if 3C  . Thus, when 3C  , the variance of the estimated 

response at a given point, the response being estimated through a design satisfying (A), (B), (C), 

(D), (E) becomes a function of the distance of that point from the origin. Such designs are called 

as Second Order Rotatable Designs (SORD). We may now formally define a SORD: 

 

Let us consider N  treatment combinations (points)   Nuvixiu ,...,2,1,,...,2,1,   to form a design 

in v  factors, through which a Second-degree surface can be fitted. This design is said to be a 

SORD if the variance of the estimated response at any given point is a function of the distance of 

that point from the origin. The necessary and sufficient conditions for a set of points 

  Nuvixiu ,...,2,1,,...,2,1,   to form a SORD are 
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, if any i is odd, for 32,1,0 ori   and   .4i  
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(C’)     
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 constant = 3 4N                                                          vi ,...,2,1  

(D’)  22
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u

iuxx 4N  ;                                                                     ii   

(E’)  22
24  vv                          (2.9) 

 

The conditions (A’), (B’) and (D’) are same as conditions (A), (B) and (D) in (2.1). 

 

We now prove the following. 

 

Lemma: If a set of points  ,,...,2,1,,...,2,1, Nuvixiu   satisfying (A’), (B’), (C’) and (D’) are 

such that every point is equidistant from the origin, then 

 22
24  vv                                   (2.10) 
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Proof: Let d  be the distance of any point from the origin. Then, since all the points are 

equidistant from the origin, we have 
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Thus,   44
2
2

2 13   vvvv  

or,   02 2
24   vv  

 

An arrangement of points satisfying (A’), (B’), (C’) and (D’) but not (E’) is called a Second 

Order Rotatable Arrangement (SORA). A SORA can always be converted to an SORD by adding 

at least one central point. 

 

A near stationary region is defined as a region where the surface slopes along the v  variable axes 

are small compared to the estimate of experimental error. The stationary point of a near stationary 

region is the point at which the slope of the response surface is zero when taken in all the 

directions. The coordinates of the stationary point   02010 ,...,, vxxx0x  are obtained by 

differentiating the following estimated response equation with respect to each ix  and equating the 

derivatives to zero and solving the resulting equations 
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In matrix notation (2.11) can be written as 

  Bxxbx  0
ˆ bxY                                    (2.12) 

where     vv bbbxxx ,...,,,,...,, 2121 bx  

and 
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From equation (2.12) 

 
Bxb 2

ˆ






x

xY
                        (2.13) 

 

The stationary point 0x  is obtained by equating (2.13) to zero and solving for x , i.e. 
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bBx0
1

2

1
                        (2.14) 

 

To find the nature of the surface at the stationary point we examine the second derivative of 

 xŶ . From (2.13) 

 
 

B2
ˆ

2

2






x

xY
  (since B is symmetric). 

The stationary point is a maximum, minimum or a saddle point according as B is negative 

definite, positive definite or indefinite matrix. If v ,...,, 21  represent the v eigenvalues of B. 

Then it is easy to see that if v ,...,, 21  are 

(i)   All negative, then at 0x  the surface is a maximum 

(ii)   All positive, then at 0x  the surface is a minimum 

(iii) of mixed signs, i.e. some are positive and others are negative, then 0x  is a saddle point of 

the fitted surface. 

 

Furthermore, if  i  is zero (or very close to zero), then the response does not change in value in 

the direction of the axis associated with ix  variable. The magnitude of i  indicates how quickly 

the response changes in the direction of axis associated with ix  variable. 

The conditions in (2.1) and (2.9) help in fitting of the response surfaces and define some 

statistical properties of the design like rotatability.  However, these conditions need not necessary 

be satisfied before fitting a response surface. This can be achieved by using the software 

packages like the Statistical Analysis System (SAS).  PROC RSREG fits a second order response 

surface design and locates the coordinates of the stationary point, predict the response at the 

stationary point and give the eigenvalues v ,...,, 21  and the corresponding eigen vectors. It also 

helps in determining whether the stationery point is a point of maxima, minima or is a saddle 

point.  The lack of fit of a second order response surface can also be tested using LACKFIT 

option under model statement in PROC RSREG.  The lack of fit is tested using the statistic 

 

F =
)N'/(NSS

(N'-p) /SS

PE

LOF


                       (2.15)  

 

where N is the total number of observations, N’ is the number of distinct treatments and p is the 

number of terms included in the model.  SSPE (sum of squares due to pure error) has been 

calculated in the following manner: denote the l
th

 observation at the u
th

 design point by ylu, where 

l =1,…, ru (  1), u=1,…, N   . Define uy  to be average of ru observations at the u
th

 design point. 

Then, the sum of squares for pure error is  

 

                  SSPE = 2
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                    (2.16) 

 

Then sum of squares due to lack of fit (SSLOF) = sum of squares due to error - SSPE 

The analysis of variance table for a second order response surface design is given below. 
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Table 1.  Analysis of Variance for second order response surface 

Source      d.f.                    S.S. 

Due to regression 
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Total 1N  
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In the above table CF = correction factor = 
 

N

Total Grand 2

.  For testing the lack of fit the sum of 

squares is obtained using (2.16) and then sum of squares is obtained by subtracting the sum of 

squares due to pure error from sum of squares due to error.  The sum of squares due to lack of fit 

and sum of squares due to pure error are based on 1
2

2' 









v
vN and NN  degrees of freedom 

respectively.   

 

It is suggested that in the experiments conducted to find a optimum combination of levels of 

several quantitative input factors, at least one level of each of the factors should be higher than 

the expected optimum.  It is also suggested that the optimum combination should be determined 

from response surface fitting rather than response curve fitting, if the experiment involves two or 

more than two factors. 

 

3. Construction of Second Order Rotatable designs 

A second order response surface design is at least resolution V fractional factorial design. Here  

 

3.1 Central Composite Rotatable Designs 

Let there be v factors in the design.  A class of SORD for v factors can be constructed in the 

following manner.  Construct a factorial v-factors with levels   containing p2  combinations, 

where p2  is the smallest fraction of v2  without confounding any interaction of third order or 

less.  Next, another v2  points of the following type are considered: 

        00,000,000 . These  vN p 22   points, give rise to a SORD in 

v factors with levels 0,,   . For this design, 
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On applying the condition of rotatability,  
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This equation gives a relationship between   and  . For determining   and   uniquely, we 

either fix  1  or .12   For .2,1 2/p2      

 

Example. Let 4v . Then the points of the SORD are 

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

  0 0 0 

  0 0 0 

0   0 0 

0   0 0 

0 0   0 

0 0   0 

0 0 0   

0 0 0   

0 0 0 0 

 

There are 25 points – a central point has been added because, all the non-central points are 

equidistant from the origin, as  2 , here. 

 

3.2  Construction of SORD using BIB Designs 

If there exists a BIB design D with parameters **,*,*,*, krbv  such that  *3* r , then a 

SORD with each factor at 3 levels can be constructed.  
 

Let *N be the ** bv   incidence matrix of D. Then *N  is a matrix of order ** vb  , every row 

of which contains exactly *k  unities and every column contains exactly *r unities, rest positions 

being filled up by zeros. In *N , replace the unity by  . Then, we get *b combinations 

involving   and zero.  Next, each of these combinations are ‘multiplied’ with those of a 
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*2k factorial with levels 1  where, the term ‘multiplication’ means the multiplication of the 

corresponding entries in the two combinations, zero entries remaining unaltered.  Thus, if 

 0  is multiplied by  11   we get  0  . The procedure of multiplication gives 

rise to *b *2k  points each of *v -dimension.  These points evidently satisfy all the conditions 

(A’), (B’), (C’) and (D’); however, since each point in the arrangement is at the same distance 

from the origin, we have to take at least one central point to get a SORD in *vv  factors.  The 

levels of the factors are 0, . The value of   can be determined by fixing 12  . 

 

SORD’s can be constructed using BIB designs, even when *3*r  . In the case, where 

*3* r  the set of *b *k2 points obtained using *N  is to be augmented with further 

*v2 points of the type  

        00,000,000  

For the N points (N = *b *k2 + *v2 ), we have  
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Thus 4*4*4 2*32*2  kkr    

   or,   2

1*

2122 2.**3





k

r  

When *3* r , the points augmented are of type    ......  and p2  in number, where 

p2  is the smallest fraction of *2v  factorial with levels  , such that no interaction of order 

three or less is confounded.  In this case,  
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44*22
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Thus, 44*44* 22*2.32*3  pkpk r   

     or,   4*41 2*3*2  kp r  , 

which gives     21*2122 2.*3*  pkr  . 
 

In both the cases, we get *v -factor SORD with each factor at five levels 
 

4.    Practical Exercise 

Exercise 1: Consider an experiment that was conducted to investigate the effects of three 

fertilizer ingredients on the yield of a crop under fields conditions using a second order rotatable 

design. The fertilizer ingredients and actual amount applied were nitrogen (N), from 0.89 to 2.83 

kg/plot; phosphoric acid (P2O5) from 0.265 to 1.336 kg/plot; and potash (K2O), from 0.27 to 1.89 

kg/plot. The response of interest is the average yield in kg per plot. The levels of nitrogen, 

phosphoric acid and potash are coded, and the coded variables are defined as 

X1=(N-1.629)/0.716, X2=(P2O5-0.796)/0.311, X3=(K2O -1.089)/0.482 
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The values 1.629, 0.796 and 1.089 kg/plot represent the centres of the values for nitrogen, 

phosphoric acid and potash, respectively. Five levels of each variable are used in the 

experimental design. The coded and measured levels for the variables are listed as 

 Levels of xI 

 -1.682 -1.000 0.000 +1.000 +1.682 

N 0.425 0.913 1.629 2.345 2.833 

P2O5 0.266 0.481 0.796 1.111 1.326 

K2O 0.278 0.607 1.089 1.571 1.899 

Six center point replications were run in order to obtain an estimate of the experimental error 

variance. The complete second order model to be fitted to yield values is 

  
 





2

1

3

2

3

1

2
3

1
0

i i
iiii

i
iii

i
ii xxxxY  +e 

The following table list the design settings of 1x , 2x  and 3x  and the observed values at 15 design 

points N, P2O5, K2O and yield are in kg. 

 

Table 2: Central Composite Rotatable Design Settings in the Coded Variables 1x , 2x  and 

3x , the original variables N, P2O5, K2O and the Average Yield of a Crop at Each Setting 

1x  2x  3x  N P2O5 K2O Yield 

-1 -1 -1 0.913 0.481 0.607 5.076 

1 -1 -1 2.345 0.481 0.607 3.798 

-1 1 -1 0.913 1.111 0.607 3.798 

1 1 -1 2.345 1.111 0.607 3.469 

-1 -1 1 0.913 0.481 1.571 4.023 

1 -1 1 2.345 0.481 1.571 4.905 

-1 1 1 0.913 1.111 1.571 5.287 

1 1 1 2.345 1.111 1.571 4.963 

-1.682 0 0 0.425 0.796 1.089 3.541 

1.682 0 0 2.833 0.796 1.089 3.541 

0 -1.682 0 1.629 0.266 1.089 5.436 

0 1.682 0 1.629 1.326 1.089 4.977 

0 0 -1.682 1.629 0.796 0.278 3.591 

0 0 1.682 1.629 0.796 1.899 4.693 

0 0 0 1.629 0.796 1.089 4.563 

0 0 0 1.629 0.796 1.089 4.599 

0 0 0 1.629 0.796 1.089 4.599 

0 0 0 1.629 0.796 1.089 4.275 

0 0 0 1.629 0.796 1.089 5.188 

0 0 0 1.629 0.796 1.089 4.959 
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The output for the above problem is as follows: 
    

                   Response Surface for Variable YIELD 

                   Response Mean             4.464050 

                   Root MSE                  0.356424 

                   R-Square                    0.8440 

                   Coef. of Variation          7.9843 

  

Regression     d.f.   Sum of Squares   R-Square     F-Ratio     Prob > F 

 Linear                3        1.914067       0.2350      5.022     0.0223 

 Quadratic              3        3.293541       0.4044      8.642     0.0040 

 Crossproduct           3        1.666539       0.2046      4.373     0.0327 

 Total Regression        9        6.874147       0.8440      6.012     0.0049 

 

Regression     d.f.    Sum of Squares   R-Square     F-Ratio     Prob > F 

Lack of Fit             5       0.745407        0.149081     1.420    0.3549 

Pure Error             5       0.524973        0.104995 

Total Error          10       1.270380        0.127038 

 

Parameter           d.f     Estimate        Std Error         T-ratio Prob > |T| 

INTERCEPT               1          6.084180        1.543975        3.941  0.0028 

N                       1          1.558870        0.854546         1.824  0.0981 

P                       1         -6.009301        2.001253      -3.003  0.0133 

K                       1         -0.897830        1.266909       -0.709  0.4947 

N*N                     1         -0.738716        0.183184       -4.033  0.0024 

P*N                     1         -0.142436        0.558725       -0.255  0.8039 

P*P                     1           2.116594        0.945550       2.238  0.0491 

K*N                     1           0.784166        0.365142       2.148  0.0573 

K*P                     1           2.411414        0.829973       2.905  0.0157 

K*K                    1         -0.714584        0.404233      -1.768  0.1075 

 

Factor           d.f.        Sum of Squares       Mean Squares    F-Ratio    Prob > F 

 N                4          2.740664         0.685166       5.393     0.0141 

 P                4          1.799019         0.449755       3.540    0.0477 

 K                4          3.807069         0.951767       7.492     0.0047 

 Canonical Analysis of Response Surface      

       Factor            Critical Value 

                       N                 1.758160 

                       P                 0.656278 

                       K                 1.443790 

           

 Predicted value at stationary point       4.834526 kg 
                                     

 Eigenvectors 

       Eigenvalues           N           P                K 

          2.561918         0.021051         0.937448         0.347487 

         -0.504592         0.857206       -0.195800          0.476298 

         -1.394032        -0.514543      -0.287842          0.807708 
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Stationary point is a saddle point. 

 

The eigenvalues obtained are 321 and,   as 2.561918, -0.504592, -1.394032. As 32 and   

are negative, therefore, take 032 WW . Let  

M = {0.021051     0.857206     -0.514543, 

          0.937448   -0.195800     -0.287842, 

          0.34787       0.476298      0.807708}; 

denotes the matrix of eigenvectors. The estimated response at the stationary points be 4.834526 

kg/plot. Let the desired response be desY =5.0 kg/plot. Therefore, let 1W , obtained from the 

equation is sqrt (difference/2.561918)=AX1, say. To obtain various different sets of many values 

of 1W , generate a random variable, u , which follows uniform distribution and multiply this value 

with 1u2   such that 1W  lies within the interval, (-AX1, AX1). Now to get a combination of 

s'xi  that produces the desired response obtain 0xW*Mx  . 
 

Combinations of N, P, K estimated to produce 5.0 kg/plot of Beans. 

Y N P K 

5.0 1.760 0.730 1.471 

 1.762 0.815 1.503 

 1.754 0.460 1.371 

One can select a practically feasible combination of N, P and K. 

 

5. Response Surface Designs for Slope Estimation 

The above discussion relates to the response surface designs for response optimization. In many 

practical situations, however, the experimenter is interested in estimation of the rate of change of 

response for given value of independent variable(s) rather than optimization of response. This 

problem is frequently encountered e.g., in estimating rates of reaction in chemical experiments; 

rates of growth of biological populations; rates of changes in response of a human being or an 

animal to a drug dosage, rate of change of yield per unit of fertilizer dose.  Efforts have been 

made in the literature for obtaining efficient designs for the estimation of differences in responses 

i.e., for estimating the slope of a response surface. 

 

Many researchers with different approaches have taken up the problem of designs for estimating 

the slope of a response surface. We confine ourselves to two main approaches, namely 

 Slope Rotatability 

 Minimax Designs 
 

The designs possessing the property that the estimate of derivative is equal for all points 

equidistant from the origin are known as slope rotatable designs.  For a second order response 

surface, the rate of change of response due to thi  independent variable is given by  
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For second order design satisfying (2.1) we have 

 ),(),(),( iiiiijiiii bbCovbbCovbbCov   
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Thus in order to obtain slope rotatable design, the design must satisfy  

 Conditions of symmetry (2.1) 

  1
2
2

4  vcv



 

    iiii bVarbVar 4 . 

It is important to note here that no rotatable design can be slope rotatable. 

 

A minimax design is one that minimizes the variance of the estimated slope maximized over all 

points in the design. 

 

  

 



DESIGNS FOR MIXTURE EXPERIMENTS 
 

 

Mixtures are formed by blending or mixing two or more components. Some common 

examples are: 

(a) Construction concrete (mixture of sand, water and cement) 

(b) Railroad flares (product of blending together Magnesium, Sodium Nitrate, Strontium 

Nitrate and binder) 

(c) Fruit punch (mixture of juices of watermelon, orange and pineapple) 

(d) Fertilizer mixture (mixture of Potash, Rock Phosphate, Super Phosphate and urea) 

(e) Cake formulation (blend of baking powder, shortening, flour, sugar, and water) 

The manufacturers of such products are interested in one or more properties of the final 

product. For example, in construction concrete, the hardness or compression strength of the 

mixture is of interest; in railway flares, the illumination and duration of the illumination of the 

flares are the interesting properties; in fruit punch the fruitiness flavor of the punch is the 

property of interest: in fertilizer mixture, the crop yield is of interest; and in cake formulation, 

the property of interest is the fluffiness of the cake or the layered appearance. The property of 

the final product depends on the percentage or proportions of the ingredients mixed. 

Another reason for mixing two or more ingredients is to see whether the blend has a more 

desirable property than the individual ingredients. For example, suppose there are three types 

of gasoline, A, B and C, in stock. One may be interested in the antiknock rating of the stocks, 

used singly and in combination. That is, one may want to know if there exists some 

combination of the three which yields higher antiknock rating than the three used singly. If 

that is true, naturally one would go for the combination rather than any for the single stocks! 

As the property of the final product depends on the mixture combination, one would be 

interested to study the functional relationship between the measured property or measured 

response and the mixing proportions of the ingredients. From experimental viewpoint, such a 

study is of interest in order (i) to determine some combination of the mixture ingredients that 

would be best in some sense, or (ii) to have a better understanding of the effects of the 

ingredients on the response. 

Consider a mixing blend with q components in the proportions ),...,,( 21 qxxxx .Clearly, 0

ix  1, and 1  i  q, and  

.1
1




q

i
ix                         (1) 

Because of the natural constraint (1), a mixture experiment belongs to a class of its own. It has 

vast application in different research areas and also industries, such as  

 Agriculture 

 Engineering 

 Pharmaceutical 

 Biomedical 

 Horticulture 

etc   

The experimental region for a mixture experiment is given by 

   1 2

1

{( , ,..., ) : 0,  1 ,  1}
q

q i i

i

x x x x i q x


     
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Geometrically,  is represented by a q-1 dimensional simplex. The vertex points of the 

simplex region are of the type (1,0,...,0), (0,1,0,...,0), ..., (0,0,...,0,1).These points are called 

pure or single point mixtures. The experimental points lie within or on the boundary of the 

simplex region. 

For example, consider a mixture of two components with mixing proportions 

.1,1,0),,( 212121  xxxxxx    Here the experimental region will be a straight line with the 

end point (0, 1) and (1, 0): 

 

For a mixture of three components with mixing proportions 

,1,1,,0),,,( 321321321  xxxxxxxxx    the experimental region is a triangle with vertex 

points (1,0,0), (0,1,0) and (0,0,1): 

 

The points (1/2, 1/2,0), (1/2,0, 1/2) and (0, 1/2, 1/2) are called the mid-points of the edges, 

and the point (1/3,1/3,1/3) is the overall centroid point. 

For a 4-component mixture, the experimental region is a tetrahedron with four extreme points 

and six mid-points of edges. 

Let xY denote the response corresponding to the mixture combination x. Scheffé (1958) first 

defined models for expressing the response in terms of the mixing proportions of the 

ingredients. The models are as follows: 

Linear (homogeneous):  


q

i
iixY

1
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Quadratic :
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Special cubic : ,
111
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where  is the error term assumed to be distributed with mean zero and variance 2
. 

The quadratic model is found to be appropriate in most situations. 

A mixture experiment is conducted to estimate the parameters of the fitted model or to 

estimate some functions of the model parameters, like say the optimum mixture combination 

that optimizes the expected response. There are several different types of designs for a 

mixture experiment. The most common ones are the simplex lattice and the simplex centroid 

designs. Other common designs are the simplex axial and extreme vertex designs. Each 

design is used for a different purpose as listed below: 

 If there are many components in a mixture, the first choice is to screen out the most 

important ones. The simplex axial and simplex centroid designs are used for this purpose. 

 If the number of components is not large, but a high order polynomial equation is needed 

in order to accurately describe the response, then a simplex lattice design can be used. 

 Extreme vertex designs are used for the cases when there are constraints on one or more 

components (e.g., if the proportion of watermelon juice in a fruit punch recipe is required 

to be less than 30%, and the combined proportion of watermelon and orange juice should 

always be between 40% and 70%).  

 

Simplex Lattice Design 

The response in a mixture experiment is usually described by a polynomial function. This 

function represents how the components affect the response. To get a better idea about the 

shape of the response surface, the natural choice for a design would be the one whose points 

are spread evenly over the whole simplex. An ordered arrangement consisting of a uniformly 

spaced distribution of points on a simplex is known as a lattice. 

A {q, m} simplex lattice design for q components consists of points defined by the following 

coordinate settings: the proportions assumed by each component take the m+1 equally spaced 

values from 0 to 1, 

 

and the design space consists of all the reasonable combinations ( that is summing up to 1) of 

values of the components. “m” is usually called the degree of the lattice. Each reasonable 

combination of values defines a support point of the design. 

For example, for a {3, 2} design, ,3,2,1,1,
2

1
,0  ixi   and its design space has 6 support 

points. They are: 

 



Designs of Mixture Experiments 

 

152 
 

Since the {3, 2} design has 6 support points, it can be used to fit upto a quadratic response 

function, which also has 6 coefficients. 

For a {3, 3} design, ,3,2,1,1,
3

2
,

3

1
,0  ixi  , and its design space has 10 support points. They 

are: 

 

This design can be used to fit upto a full cubic response function. 

In general, for a simplex design with degree m, where each component has m + 1 possible 

values, the experiment results can be used to fit a polynomial equation up to an order of m.  

For a {q, m} design, the total number of support points is 






 

m

mq

      

1
. To reduce the number 

of points and still be able to fit a high order polynomial model, we often use the simplex 

centroid design. 

 

Simplex Centroid Design 

In a simplex centroid design, the non-zero co-ordinates of a support point have the same 

value. For example, the support points of a simplex centroid design for a three component 

mixture are as follow: 

 
In the above simplex plot, the points (2), (4) and (6) are called the second degree centroids. 

Each of them has two non-zero components with equal values. Point 0 is a third degree 

centroid and all the three components have the same value. For a design with q components, 

the highest degree of centroid is q. It is called the overall centroid, or the center point of the 

design. 
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For a q component simplex centroid design, the total number of support points is . They 

are the points correspond to the q permutations of (1, 0, 0,…, 0), 








2

q
 permutations of (1/2, 

1/2, 0, 0, 0, 0, …,0), the 
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q
 permutations of (1/3, 1/3, 1/3, 0, 0, 0, 0,…, 0)…., and the 

overall centroid (1/q, 1/q, …, 1/q). If the degree of centroid is defined as m (< q), then the 

total number of support points is ....
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Simplex Axial Design 

The simplex lattice and simplex centroid designs have support points on the boundaries of the 

simplex (namely, vertices, edges, faces, etc.), except for the overall centroid. Axial designs, 

on the other hand, are designs consisting mainly of the points positioned inside the simplex. 

Axial designs have been recommended for use when the component effects are to be 

measured in a screening experiment, particularly when first degree models are to be fitted. 

The axial of a component  is defined as the imaginary line extending from the base 

point )1/(1,0  qxx ji ,  for all i  j, to the vertex where ,0,1  ji xx  all for all i  j.  

In a simplex axial design, all the points are on the axial. The simplest form of axial design is 

one whose points are positioned equidistant from the overall centroid )./1,...,/1,/1( qqq . 

Traditionally, points located at half the distance from the overall centroid to the vertex are 

called axial points/blends. An example is given below for a three component mixture. 

. 

The points (4), (5) and (6) are the axial mixtures or blends. 

A design D is specified by its support points and the replication of the support points in the 

experimentation. Once the design D is decided upon, the experimenter carries out the 

experiment say N (pre-determined) times, using the support points of the design. Suppose D 

has k ( the number of parameters in the model) support points, and the i-th point is used in ni 

experiments, such that .
1

Nn
k

i
i 



 To estimate the parameters of the response model, the 

method of least squares is used, based on the response observations obtained from the 

experimentation.   
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We can write the response model as Yx = ,)(  θxf  where  denotes the vector of model 

parameters. For example, in Scheffé’s linear (homogeneous)  model, ),...,,()( 21 qxxx xf  

and ;),...,,( 21  qθ in Scheffé’s quadratic model,  

),...,,...,,,...,,()( 112121 qqqq xxxxxxxxx  xf  and 

.),,...,,...,,,...,,( 112121   qqqq θ  

If kii ,...,2,1,)(  x  be the support points and Y
N1

 be the observed response vector, the least 

squares estimator of  is given by 

 ,)(ˆ 1 YXXX DDD  θ  

where ,)(),...,(,...,)(),...,(,)(),...,( )()()2()2()1()1(

21

















      

timesn

kk

timesntimesn

D

k

X

   

xfxfxfxfxfxf  

and .)()ˆ.( 12  DD XXDisp θ  

To compare two designs D1 and D2  on a meaningful basis we consider the information matrix 

DDXX  on a per observation basis, namely : 

                      MD  = (XDXD )/ N.  

The optimum design is obtained so as to minimize some real-valued concave function of the 

dispersion matrix of θ̂ . In the class of N- point designs, it is difficult to find such a design, 

particularly when N is not small, as standard optimization techniques based on calculus 

cannot be applied. To overcome this, Kiefer introduced the concept of: 

Approximate/Continuous design. 
 

Continuous Design: A continuous design is characterized by its distinct support points and 

their masses or weights: 

 ,
...

...

21

)()2()1(










              

x      x    x

k

k

www
  

where wi 0  is the mass/weight attached to the support point )(ix , i = 1,2,...,k, such that 

.1
1




q

i
iw  

By the mass of a support point we mean the proportion of times the experiment should be 

conducted using that support point. For example, if the mass of a support point is 0.25 and the 

total number of times the experiment is repeated is 100, then the number of times the mixing 

proportion given by the support point is used is 1000.25 = 4. 

A commonly used continuous design, called the weighted centroid design, is defined as 

follows: 

 

Weighted Centroid Design: A weighted centroid design has the same support points as a 

simplex centroid design, but different masses are attached to groups of points of the same 

type. That is, it attaches a non-negative mass w1 to each of the support points having one non-
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zero co-ordinate, a non-negative mass w2 to each of the support points having two non-zero 

components, and so on such that the sum of all masses is equal to 1.  For example, in a two-

component mixture experiment conducted using a weighted centroid design, a mass w1 is 

attached to each of (1,0) and (0,1), and a mass w2 to (1/2,1/2) such that wi  0 for i =1, 2, and 

2w1 + w1 =1. In a three-component mixture experiment, the weighted centroid design attaches 

a mass w1 to (1,0,0), (0,1,0), (0,0,1), a mass w2 to each of (1/2.1/2.0), (0,1/2,1/2), (0,1/2,1/2) 

and a mass w3 to (1/3,1/3,1/3) such that wi  0 for i =1, 2, 3 and 3w1 + w2 + w3 =1.  

To get an optimum design among the class of competing designs, two commonly used 

concave functions of the dispersion matrix of θ̂  are the determinant of )ˆ.(θDisp and Trace [

)ˆ.(θDisp ]. Accordingly we get the following optimality criteria: 

(a) D-optimality criterion: Minimize | )ˆ.(θDisp | or maximize | DDXX  | 

(b) Trace-optimality criterion: Minimize Trace [ )ˆ.(θDisp ].  

For Scheffé’s linear (homogeneous) model for a q- component mixture, the D-optimality and 

Trace-optimality criteria give the same optimum design, which has support points at the 

vertices of the simplex with equal mass. The number of support points here is equal to the 

number of parameters to be estimated. Such a design is called a saturated design. 

For Scheffé’s quadratic model for a q- component mixture, the D-optimal design is a saturated 

design with support points at the vertices of the simplex and at the mid-points of the edges, 

each having the same mass. The trace optimal design, on the other hand  is found to be a 

weighted centroid design with masses that minimize Trace [ )ˆ.(θDisp ]. 

 



MULTIVARIATE ANALYSIS OF VARIANCE 
 

 

The meaning of ANOVA and MANOVA is Analysis of Variance and Multivariate Analysis of 

Variance, respectively. Here we shall discuss ANOVA and MANOVA in brief with their 

applications in agricultural science. 

 

1. ANOVA 

Analysis of Variance (ANOVA) is a technique of partitioning the overall variation in the 

responses into different assignable sources of variation, some of which are specifiable and others 

unknown. Total variance in the sample data is partitioned and is expressed as the sum of its non-

negative components is a measure of the variation due to some specific independent source or 

factor or cause. ANOVA consists in estimation of the amount of variation due to each of the 

independent factors (causes) separately and then comparing these estimates due to ascribable 

factors (causes) with the estimate due to chance factor  the latter being known as experimental 

error or simply the error. 

 

Total variation present in a set of observable quantities may, under certain circumstances, be 

partitioned into a number of components associated with the nature of classification of the data. 

The systematic procedure for achieving this is called Analysis of Variance. The initial techniques 

of the analysis of variance were developed by the statistician and geneticist R. A. Fisher in the 

1920s and 1930s, and is sometimes known as Fisher's analysis of variance, due to the use of 

Fisher's F-distribution as part of the test of statistical significance. 

Thus, ANOVA is a statistical technique that can be used to evaluate whether there are differences 

between the average value, or mean, across several population groups. With this model, the 

response variable is continuous in nature, whereas the predictor variables are categorical. For 

example, in a clinical trial of hypertensive patients, ANOVA methods could be used to compare 

the effectiveness of three different drugs in lowering blood pressure. Alternatively, ANOVA 

could be used to determine whether infant birth weight is significantly different among mothers 

who smoked during pregnancy relative to those who did not. In a particular case, where two 

population means are being compared, ANOVA is equivalent to the independent two-sample t-

test. 

 There are three conceptual classes of ANOVA models: 

a) Fixed-effects models: The fixed-effects model of ANOVA applies to situations in which the 

experimenter applies several treatments to the subjects of the experiment to see if the 

response variable values change. This allows the experimenter to estimate the ranges of 

response variable values that the treatment would generate in the population as a whole. In it 

factors are fixed and are attributable to a finite set of levels of factor eg. Sex, year, variety, 

fertilizer etc.  

Consider for example a clinical trial where three drugs are administered on a group of men 

and women some of whom are married and some are unmarried.  The three classifications of 

sex, drug and marital status that identify the source of each datum are known as factors.  The 

individual classification of each factor is known as levels of the factors.  Thus, in this 

example there are 3 levels of factor drug, 2 levels of factor sex and 2 levels of marital status. 

Here all the effects are fixed.   

http://en.wikipedia.org/wiki/Statistician
http://en.wikipedia.org/wiki/Geneticist
http://en.wikipedia.org/wiki/Ronald_Fisher
http://en.wikipedia.org/wiki/F-distribution
http://en.wikipedia.org/wiki/Statistical_significance
http://en.wikipedia.org/wiki/Fixed-effects_model
http://en.wikipedia.org/wiki/Response_variable
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b) Random effects models: Random effects models are used when the treatments are not fixed. 

This occurs when the various treatments (also known as factor levels) are sampled from a 

larger population. When factors are random, these are generally attributable to infinite set of 

levels of a factor of which a random sample are deemed to occur   eg. research stations, 

clinics in Delhi, sire, etc. Suppose new inject-able insulin is to be tested using 15 different 

clinics of Delhi state. It is reasonable to assume that these clinics are random sample from a 

population of clinics from Delhi. 

 

c) Mixed-effect models: It describe the situations where both fixed and random effects are 

present. 

 

In any ANOVA model, general mean is always taken as fixed effect and error is always taken as 

random effect. Thus class of model can be classified on the basis of factors, other than these two 

factors. ANOVA can be viewed as a generalization of t-tests: a comparison of differences of 

means across more than two groups.  

 

The ANOVA is valid under certain assumptions. These assumptions are: 

 Samples have been drawn from the populations that are normally distributed. 

 Observations are independent and are distributed normally with mean zero and variance σ
2
. 

 Effects are additive in nature. 

 Populations have equal variance. 

 Samples are randomly and dependently distributed eij ~ N (0, σ
2
). 

 

The ANOVA is performed as One-way, Two-way, three-way, etc. ANOVA when the number of 

factors is one, two or three respectively. In general if the number of factors is more than we 

perform multi-factor ANOVA.   

2. Multivariate Analysis of Variance (MANOVA) 

Multivariate analysis of variance (MANOVA) is a generalized form of univariate ANOVA with 

several dependent variables. Multivariate analysis of variance is simply an ANOVA with several 

dependent variables. When more than one dependent variable is studied simultaneously to see the 

effects of the factors (groups) then the technique of analysis used is called MANOVA. Thus 

MANOVA is an extension of ANOVA. Also, MANOVA is the multivariate analogue to 

Hotelling's T
2
. The purpose of MANOVA is to test whether the vectors of means for the two or 

more groups are sampled from the same sampling distribution. Just as Hotelling's T
2
 will provide 

a measure of the likelihood of picking two random vectors of means out of the same hat, 

MANOVA gives a measure of the overall likelihood of picking two or more random vectors of 

means out of the same hat. 

For example in varietal trials the data is collected on several plant characteristics and quality 

parameters. In these experimental situations the data is generally analyzed separately for each of 

the characters. The best treatment or genotype is identified separately for each of the characters. 

In these situations, Multivariate Analysis of Variance (MANOVA) can be helpful. Similarly, a 

researcher is interested to examine the effect breed and sex in body weight, body length. Then 

MANOVA is applied by taking body weight and body length simultaneously as dependent 

variables and breed and sex as two factors.  

 

There are two major situations in which MANOVA is used. The first is when there are several 

correlated dependent variables and the researcher desires a single, overall statistical test on this 

http://en.wikipedia.org/wiki/Random_effects_model
http://en.wikipedia.org/w/index.php?title=Mixed-effect_model&action=edit&redlink=1
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set of variables instead of performing multiple individual tests. The second and in some cases, the 

more important purpose is to explore how independent variables influence some patterning of 

response on the dependent variables.  

 

 The pattern of analysis of a MANOVA is similar to ANOVA 

 If there is a significant multivariate effect then examine the univariate effects (i.e. ANOVA for 

each dependent variable separately) 

 If there is a significant univariate effect then conduct post hoc tests as necessary 

 

Assumptions of MANOVA 

 Multivariate Normality 

 The sampling distributions of the dependent variables and all linear combinations of them are 

normal.  

 Homogeneity of Variance-Covariance Matrices  

 It is assumed that linear relationships between all pairs of DVs exist 

 Multicollinearity – the relationship between pairs of variables is high (r>.80) 

 Singularity – a variable is redundant; a variable is a combination of two or more of the other 

variables. 
 

Consider a two-way MANOVA with factors as Factor A and Factor B for experiment conducted 

to compare v levels of Factor A and r levels of Factor B and the data is collected on p-variables. 

Let ijky denote the observed value of the k
th

 response variable for the i
th 

level of Factor A in the j
th

 

level of Factor B, p,...,2,1k;r...,,2,1j;v,...,2,1i  . The data is rearranged as follows:  

  Factor B    

 Factor A 1 2  j  r Factor A 

Mean  

1 y11 y12  y1j  y1r .1y  

2 y21 y22  y2j  y2r .2y  

              

i yi1 yi2  yij  yir .iy  

              

v yv1 yv1  yv1  yv1 .vy  

Factor B 

Mean 
1.y  2.y   j.y   r.y  ..y  

 

Here ijy  = ( )y ... ...y y  y ijpijkij21ij is a p-variate vector of observations.  





r

1j
ij.i

r

1
yy ; 




v

1i
ijj.

v

1
yy  and 

 


v

1i

r

1j
ij..

vr

1
yy .  

The observations can be represented by a two-way classified multivariate model  

 

ijjiij : ebt μ y Ω   i = 1, 2,…,v; j = 1, 2,…,b,                               (1) 

 = (1 2 … k … p)‟ is the 1p  vector of general means, ti = (ti1 ti2 … tik … tip)‟ are the effects 

of i
th

 level of Factor A on p-characters, and bj=(bj1 bj2 … bjk … bjp)‟ are the effects of j
th

 level of 

Factor B on p-characters.  eij = (eij1 eij2 … eijk … eijp)‟ is a p-variate random vector associated with 

yij and assumed to be distributed independently as p variate normal distribution ),( Σ0N p . The 
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equality of treatment effects is to be tested i.e. H0: (ti1 ti2…tik…tip)‟ = (t1 t2…tk…tp)‟ (say) 

p,,2,1i   against the alternative :H1  at least two of the Factor A effects are unequal. Under 

the null hypothesis, the model (1) reduces to  

 

ijjij0  : eb α  yΩ                                      (2) 

where )tμ...,,tμ tμ( pp2211 α .  

 

An outline of MANOVA Table for testing the equality of treatment effects and replication effects 

is  

 

MANOVA Table 
 

Source DF SSCPM (Sum of Squares and Cross Product Matrix) 

Factor A v-1 = h 
H =    


v

1i ...i...ib yyyy  

Factor B r-1 = t 
B=    


b

1j ..j...j.v yyyy  

Residual (v-1)(r-1) 

= s 
R=     


v

1i
b

1j ..j..iij..j..iij yyyyyyyy  

Total vr-1 
T=     


v

1i
b

1j ..ij..ij yyyy =H+B+R 

 

Here H, B, R and T are the sum of squares and sum of cross product matrices of Factor A, Factor 

B, errors (residuals) and totals respectively. The residual sum of squares and cross products 

matrix for the reduced model 0  is denoted by 0R  and is given by HRR 0 . 

 

The null hypothesis of equality of treatment mean vectors is rejected if the ratio of generalized 

variance (Wilk's lambda statistic) 
RH

R


  is too small. Assuming the normal distribution, 

Rao (1973) showed that under null hypothesis   is distributed as the product of independent beta 

variables. A better but more complicated approximation of the distribution of  is  

 

ph

)cab(1
b/1

b/1 




~ F (ph, ab-c)  

 

where 






 


2

1hp
sa ,     5hp/4hpb 2222  , 

2

2ph
c


  

 

For some particular values of h and p, it reduces to exact F-distribution. The special cases are 

given below: 
 

For h = 1 and any p, this reduces to  
pΛ

)1ps(Λ)1( 
~ F (p, s – p + 1)  

For h=2 and any p, it reduces to  
pΛ

)1ps()Λ1( 
~ F (2p, 2(s – p + 1))  
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For p=2 and any h:  
hΛ

)1s()Λ1( 
~ F (2h, 2(s – 1)). 

For p = 1, the statistic reduces to the usual variance ratio statistics. 

 

The hypothesis regarding the equality of Factor B effects can be tested by replacing   by 

RB

R


 and h by t in the above. 

 

Several other criteria viz. Pillai's Trace, Hotelling-Lawley Trace or Roy's Greatest Root are 

available in literature for testing the null hypothesis in MANOVA. Wilks' Lamda is, however, the 

commonly used criterion. Here, we shall restrict to the use of Wilks' Lamda criterion. For further 

details on MANOVA, a reference may be made to Seber (1983) and Johnson and Wichern 

(1988). 

 

Remark 1: One complication of multivariate analysis that does not arise in the univariate case is 

the ranks of the matrices. The rank of R should not be smaller than p or in other words error 

degrees of freedom s should be greater than or equal to p (s  p).  

 

Advantages of MANOVA 

In comparison to ANOVA, MANOVA has the following advantages: 

 The researcher improves their chances of finding what changes as a result of the experimental 

treatment 

 Since only „one‟ DV is tested the researcher is protected against inflating the type 1 error due 

to multiple comparisons 

 It can show differences that individual ANOVAs do not – it is sometimes more powerful 

 

2.1 Multivariate Treatment Contrast Analysis 

If the treatments are found to be significantly different through MANOVA, then the next 

question is “which treatments are significantly different?” This question can be answered through 

multivariate treatment contrast analysis. In the literature, the multivariate treatment contrast 

analysis is generally carried out using the 2 -statistic. The 2 -statistic is based on the 

assumption that the error variance-covariance matrix is known. The error variance-covariance 

matrix is, however, generally unknown. Therefore, the estimated value of error variance-

covariance matrix is used. The error variance-covariance matrix is estimated by sum of squares 

and cross products (SSCP) matrix for error divided by the error degrees of freedom. As a 

consequence, test based on 2 -statistic is an approximate solution. The procedure using the 

Wilk‟s Lambda criterion is also described in the sequel.  

 

Suppose the hypothesis to be tested is H0: 'ii tt  against H1: 'ii tt  . This hypothesis can be 

rewritten as  

H0: = )( 'ii tt  = 0 against H1: = )( 'ii tt   0,                 (3) 

where )( 'ii  tt  =  piipkiik2i2i1i1i tt...tt...tttt   . Here ikt denote the effect of 

treatment i for the dependent variable k. The best linear unbiased estimate of )( 'ii tt   is  

                piipkiik2i2i1i1i.i.i yy...yy...yyyy'  


 yy   

where iky  is the mean of treatment i for variable k. 
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i) 2 Test 

The statistic based on 2 , requires covariance matrix of the contrast of interest. The covariance 

matrix, in case of a RCB design for elementary treatment contrast is obtained by dividing the 

SSCP matrix for errors obtained in MANOVA by half of the product of error degrees of freedom 

and the number of replications. Let this variance-covariance matrix is denoted by cΣ . Under null 

hypothesis, x = '.i.i yy   follows p- variate normal distribution with mean vector 0 and variance-

covariance matrix cΣ . Applying the Aitken's transformation, it can be shown that xΣz 2/1
c
  

follows a p-variate normal distribution with mean vector 0 and variance-covariance matrix Ig, 

where Ig, denotes the identity matrix of order g. Then using the results of quadratic forms, it can 

easily be seen that zz  xΣx 1  follows a 2  distribution with p-degrees of freedom.  

 

ii) Wilk’s Lambda Criterion 
For testing the null hypothesis (3), we obtain a sum of squares and products matrix for the above 

elementary treatment contrast. Let the SSCP matrix for above elementary treatment contrast be 

ppG .  The diagonal elements of G are then obtained by 

                   v,...,2,1'ii;p,...,2,1kyy
2

r
g

2
k'iikkk 








               (4) 

and the off diagonal elements are obtained by  

                   'k'i'ikk'iik'kk yyyy
2

r
g                             (5) 

The null hypothesis is rejected if the value of Wilk's Lambda 
||

||
*

RG

R
Λ


  is small, where R is 

the SSCP matrix due to residuals as obtained through MANOVA. The hypothesis is then tested 

using the following F-test statistics based on Wilk's Lambda for h = 1  

 
p

1pedf

*

*1 

Λ

Λ
  F(p, s-p+1). 

 

Exercise 1: An experiment was conducted at IGFRI, Jhansi to investigate the effect of four types 

of trees (treatments) on different parameters viz. height, collar diameter, DBH, crown diameter. 

The data are as follows: 

 

TREE-TYPE HEIGHT COLLAR DIAMETER DBH CROWNDIA 

1 4 10.5 6.9 15.13 

1 3.6 9.3 6.3 10.21 

1 1.5 2.5 1.2 0.17 

1 3.8 7 4.3 2.63 

2 3 9.1 5.8 5.24 

2 3.7 8.1 5.1 5.89 

2 3.8 7.5 5.5 4.47 

2 3.8 9.8 6.4 7.57 

3 5.3 11.1 6.9 13.09 

3 4.9 12.1 8 12.93 

3 5.6 13.7 9.2 15.26 

3 4.5 10.3 6.5 10.55 
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4 4.7 13.7 9.1 20.66 

4 4.8 14.9 10 25.62 

4 4.6 11.7 9.7 16.21 

4 5.5 12.7 8.7 17.79 

 

Analyze the data given to examine the effect of tree-type on the four measurements of tree by 

using MANOVA and interpret the results. 
 
 

 



CLUSTER ANALYSIS 
 

 

1.   Introduction 

Cluster analysis is usually done in an attempt to combine cases into groups when the group 

membership is not known prior to the analysis. Cluster analysis is a technique for grouping 

individual or objects into unknown groups. It differs from other methods of classification such as 

Discriminant analysis, in that in cluster analysis the number and characteristics of the groups are 

to be derived from the data and are not usually known prior to the analysis. 

 

In biology, cluster analysis has been used for   decades in the area of taxonomy, where living 

things are classified into arbitrary groups on the basis of their characteristics group. The 

classification proceeds from the most general to the most specific in steps. The most general 

classification is kingdom followed by phylum, subphylum, and class etc. Cluster analysis has 

been used in medicine to assign patient to specific diagnostic categories on the basis of their 

presenting symptoms and signs. Cluster analysis is also an important tool for investigation in data 

mining. For example consumers can be clustered on the basis of their purchases in marketing 

research. Here the emphasis may be on the methods that can be used for large data sets. In short it 

is possible to find application of cluster analysis in virtually any field of research. It is also 

possible to cluster the variables rather than the cases. Clustering of variables is sometimes used in 

analyzing the items in a scale to determine which items tends to be close together in terms of 

individual response to them.  

 
2.   Clustering Methods (Johnson and Wichern, 2006) 
The commonly used methods of clustering fall into two general categories.   

(i) Hierarchical and  

(ii) Non hierarchical.                                               

       

Hierarchical clustering techniques proceed by either a series of mergers or a series of successive 

divisions. Agglomerative hierarchical method starts with the individual objects, thus there are as 

many clusters as objects. The most similar objects are first grouped and these initial groups are 

merged according to their similarities. Eventually, as the similarity decreases, all subgroups are 

fused into a single cluster. 

 

Divisive hierarchical methods work in the opposite direction. An initial single group of objects is 

divided into two sub groups such that the objects in one sub group are far from the objects in the 

others. These subgroups are then further divided into dissimilar subgroups. The process continues 

until there are as many subgroups as objects i.e., until each object form a group.   The results of 

both agglomerative and divisive method may be displayed in the form of a two dimensional 

diagram known as Dendrogram. It can be seen that the Dendrogram illustrate the mergers or 

divisions that have been made at successive levels.  

 

Linkage methods are suitable for clustering items, as well as variables. This is not true for all 

hierarchical agglomerative procedure. The following types of linkage are now discussed:  

(i) Single linkage (minimum distance or nearest neighbour),  

(ii) Complete linkage (maximum distance or farthest neighbour) and 

(iii) Average linkage (average distances).  
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The merging of cluster under the three linkage criteria is illustrated schematically in the figure 

given below.                                                                                                                                                                      

                                                                                                       cluster distance 
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From the above figure, we see that Single linkage results when groups are fused according to the 

distance between their nearest members. Complete linkage occurs when groups are fused 

according to the distance between there farthest members. For Average linkage, groups are fused 

according to the average distance between pair of members in the respective sets.  

 

The following are the steps in the agglomerative hierarchical clustering algorithm for groups of N 

objects (items or variables). 

i. Start with N clusters, each containing a single entity and an N×N symmetric matrix of 

distance (or similarities) D = {dik }.  

ii. Search the distance matrix for the nearest (most similar) pair of clusters. Let the distance 

between most similar clusters U and V be  duv. 

iii. Merge clusters U and V. Label the newly formed cluster (UV). Update the entries in the 

distance matrix by (a) deleting the rows and columns corresponding to clusters U and V and 

(b) adding a row and column giving the distances between cluster (UV) and the remaining 

clusters. 

iv. Repeat steps (ii) and (iii) a total of N-1 times (All objects will be in a single cluster after the 

algorithm terminates). Record the identity of clusters that are merged and the levels (distances 

or similarities) at which the mergers take place. 

 

The basic ideas behind the cluster analysis are now shown by presenting the algorithm 

components of linkage methods. 
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2.1 Single Linkage   
The inputs to a single linkage algorithm can be distances or similarities between pair of objects. 

Groups are formed from the individual entities by merging nearest neighbors, i.e. smallest 

distance or largest similarities.   

 

Initially, we must find the smallest distance in D = {dik} and merge the corresponding objects, 

say, U and V, to get cluster (UV). For step 3 of general algorithm the distance between (UV) and 

any other cluster W are computed by d(u,v),w = min {duw, dvw}  

 

The results of single linkage clustering can be graphically displayed in the form of Dendrogram 

or tree diagram. The branches in the tree represent clusters. The branches come together (merge) 

at nodes whose positions along a distance (or similarity) axis indicate the level at which the 

fusion occurs.   

 

2.2 Complete Linkage 
Here at each stage, the distance (similarity) between clusters is determined by the distance 

(similarity) between the two elements. One from each cluster that is most distant. Thus complete 

linkage ensures that all items in a cluster are with in some maximum distance (or minimum 

similarity) of each other. 

 

The general agglomerative algorithm again starts by finding the minimum entry in          D = 

{dik} and merging the corresponding objects, such as U and V, to get cluster (UV). For step (iii) 

of general algorithm, the distance between (UV) and any other cluster W is    

                                        D(uv)w = max {duw , dvw}    

 

Here duw and dvw are the distances between the most distant members of clusters U and W and 

clusters V and W. 

 

2.3 Average Linkage 
Average linkage treats the distances between two clusters as the average distance between all 

pairs of items where one member of pair belongs to each cluster. 

 

Again the input to average linkage algorithm may be distances or similarities and the method can 

be used to group objects or variables. The average linkage algorithm proceeds in the manner of 

the general algorithm, we begin by searching the distance matrix D = {dik} to find the nearest 

(most similar) objects for example U and V. These objects are merged to form the cluster (UV). 

For step 3 of general agglomerative algorithm the distance between (UV) and other cluster W are 

determined by 

 

                            d(uv)w  = ( ∑ ∑ dik ) / (N(uv) * Nw), 

                                             i  k  

where dik  is the distance between object i in the cluster (UV) and object k in the cluster W, and 

Nuv and Nw are the member of items in clusters (UV) and W respectively.  

 

2.4 Centroid   
This method assigns each item to the cluster having nearest centroid (means). The process has 

three steps, 

 

i. Partition the items into k initial clusters. 
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ii. Proceed through the list of items assigning an item to the cluster whose centroid (mean) is 

nearest. Recalculate the centroid (mean) for the cluster receiving the new item and the cluster 

losing the item.  

iii. Repeat step (ii) until no more assignments take place. 

 

2.5 Ward’s Hierarchical Clustering Methods 

Ward considered hierarchical clustering procedure based on minimizing the loss of information 

from joining two groups. This method is usually implemented with loss of information taken to 

be an increase in an error sum of squares criterion, ESS. First for a given cluster k, let ESSk be 

the sum of the square deviation of every item of the cluster from the cluster mean (centroid). If 

there are currently K clusters, define ESS as the sum of the ESSk or ESS = ESS1+ESS2+ …. 

+ESSk. At each step in the analysis the union of every possible pair of cluster is considered and 

the two clusters whose combination results in the smallest increase in ESS (minimum loss of 

information) are joined. Initially each cluster consist of a single item, and if there are N items, 

ESSk = 0, k = 1, 2,…, N so ESS = 0  at the other extreme, when all the clusters are combined in a 

single group of N items, the value of   ESS is    

 

                                 ESS = 
1

( ) '( )
N

j j

j

X X X X


  , 

where Xj  is the multivariate measurement associated with the j
th

 item and X  is the mean of all 

the items. The results of Ward’s method can be displayed by a Dendrogram. The vertical axis 

gives the value of ESS at which the mergers occur. 

 

2.6 Non Hierarchical Clustering Method                            
Non hierarchical clustering techniques are designed to group items, rather than variables, into a 

collection of K clusters. The number of clusters, K, may either be specified in advance or 

determined as part of the clustering procedure. Because a matrix of distance does not have to be 

determined and the basic data do not have to be stored during the computer run. Non hierarchical 

methods can be applied to much larger data sets than can hierarchical techniques. Non 

hierarchical methods start from either (1) an initial partition of items into groups or (2) an initial 

set of seed points which will form nuclei of the cluster. 

 

2.7 K means Clustering ( Afifi, Clark and Marg, 2004) 

The K means clustering is a popular non hierarchical clustering technique. For a specified 

number of clusters K the basic algorithm proceeds in the following steps.  

 

i. Divide the data into K initial cluster. The number of these clusters may be specified by the 

user or may be selected by the program according to an arbitrary procedure. 

 

ii. Calculate the means or centroid of the K clusters.  

 

iii. For a given case, calculate its distance to each centroid. If the case is closest to the centroid of 

its own cluster, leave it in that cluster; otherwise, reassign it to the cluster whose centroid is 

closest to it. 

 

iv. Repeat step (iii) for each case. 

 

v. Repeat steps (ii), (iii), and (iv) until no cases are reassigned. 
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The first step considers all the data as one cluster. For the hypothetical data set this step is 

illustrated as in the figure below. The algorithm then searches for the variable, with the highest 

variance in this case X1. The original cluster is now split into two clusters using the mid range of 

X1 as the dividing point as shown in plot (b) of figure drawn below. If the data are standardized, 

then each variable has a variance of one. In that case the variable with the smallest range is 

selected to make the split. The algorithm in general proceeds in this manner by further splitting 

the clusters until the specified member K is achieved. That is, it successively finds that particular 

variable and the cluster producing the largest variance and splits that cluster accordingly until K 

clusters are obtained. At this stage, step (i) of the basic algorithm is completed and it proceeds 

with the other steps.  
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(a) Starts with all points in one cluster. 
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(b) Cluster is split into 2 clusters at mid range of X1(variable with largest var.) 
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(c) Point 3 is closure to centroid of cluster (1, 2, 3) and stays assigned to (1, 2, 3) 

 

(d) Every point is now closest to centroid of its own cluster. 

 

3.   Dendrogram 

Dendrogram is also called hierarchical tree diagram or plot, and shows the relative size of the 

proximity coefficients at which cases are combined. The bigger the distance coefficient or the 

smaller the similarity coefficient, the more clustering involved combining unlike entities, which 

may be undesirable. Trees are usually depicted horizontally, not vertically, with each row 

representing a case on the Y axis, while the X axis is a rescaled version of the proximity 

coefficients. Cases with low distance/high similarity are close together. Cases showing low 

distance are close, with a line linking them a short distance from the left of the Dendrogram, 

indicating that they are agglomerated into a cluster at a low distance coefficient, indicating 

alikeness. When, on the other hand, the linking line is to the right of the Dendrogram the linkage 

occurs at a high distance coefficient, indicating the cases/clusters were agglomerated even though 

much less alike. If a similarity measure is used rather than a distance measure, the rescaling of the 

X axis still produces a diagram with linkages involving high alikeness to the left and low 

alikeness to the right.  

 
4.   Proximity Measures (Timm, 2002) 

Proximity measures are used to represent the nearest of two objects. If a proximity measure 

represents similarity, the value of the measure increases as two objects become more similar. 

Alternatively if the proximity measure represents dissimilarities the value of the measure 

decreases in value as two objects become more alike. Let X and Y represents two objects in a p-

variate space then an example of dissimilarity measures is the Euclidian distance between X and 

Y. For measure of similarity, we may use the proportion of the elements in the two vectors that 

match. 

 

4.1 Dissimilarity Measures   

Given two objects X and Y in a ‘p’ dimensional space, a dissimilarity measure satisfies the 

following conditions: 

 

1. d (X,Y) ≥ 0 for all objects X and Y. 

2. d (X,Y) = 0 iff X = Y. 

3. d (X,Y) = d (Y,X). 
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Condition (3) implies that the measure is symmetric so that the dissimilarity measure that 

compares X and Y is same as the comparison for object Y verses X. Condition (2) requires the 

measures to be zero, when ever object X equals to object Y. The objects are identical if d(X, Y) = 

0. Finally, Condition (1) implies that the measure is never negative. 

Some dissimilarity measures are as follows. 

 

4.1.1 Euclidian Distance  
This is probably the most commonly chosen type of distance. It simply is the geometric distance 

in the multidimensional space. It is computed as, 

 

d(X,Y)= 
1

2 2

1

{ ( ) }
p

i i

i

X Y


   or 

 in matrix form 

      

d (X,Y)= ( ) '( )X Y X Y   

 

where        X' = (X1,X2, … , Xp ) 

                  Y' = (Y1, Y2, … , Yp)  

 

The statistical distance between the same two observations is of the form 

 

d (X,Y) = ( ) ' ( )X Y A X Y  , 

where A = S
-1

 and S contains the sample variances and covariances. 

 

Euclidian and square Euclidian distances are usually computed from raw data and not from 

standardized data. 

  
4.1.2 Square Euclidean Distance  
Square the standard Euclidean distance in order to place progressively greater weight on objects 

that are further apart. This distance is computed as:  

            

d²(X,Y) =  2

1

( )
p

i i

i

X Y


  

or in matrix form                 

 

d²(X,Y) = (X - Y)´ (X - Y) 

 

4.1.3 Minkowski Metric 
When there is no idea about prior knowledge of the distance group then one goes for minkowski 

metric. This can be computed as given below: 

 

d(X,Y) =  
1

1

{ }
p

m
m

i i

i

X Y


  

 

For m = 1, d(X,Y) measures the city block distance between two points in p dimensions. For m = 

2, d(X,Y) becomes the Euclidean distance. In general, varying m changes the weight given to 

larger and smaller differences. 
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4.1.4 City-Block (Manhattan) Distance 

This distance is simply the average difference across dimensions. In most cases, this distance 

measure yields result similar to the simple Euclidean distance. This can be computed as : 

 

d(X,Y) = 
1

p

i i

i

X Y


  

 

4.1.5 Chebychev Distance 
This distance measure may be appropriate in case when we want to define the objects as different 

if they are different on any one of the dimensions. The chebychev distance is computed as: 

d(X,Y)  = maximum i iX Y  

Two additional popular measures of distance or dissimilarity are given by the Canberra metric 

and the Czekanowski coefficient. Both of these measures are defined for non negative variables 

only. We have  

 

Canberra Metric:    d(X, Y) =
1 ( )

p
i i

i i i

X Y

X Y




  

 

 

Czekanowski Coefficient = 1- 1

1

2 min( , )

( )

p

i i

i

p

i i

i

X Y

X Y











 

 

4.2 Similarity Measure 
Given two objects X and Y in a p-dimensional space, a similarity measure satisfies the following 

conditions: 

 

 1. 0 ≤ S(X,Y) ≤1 for all objects X and Y 

 2. S(X,Y) = 1 iff  X = Y  

 3. S(X,Y) = S(Y, X) 

Here S(X,Y) = 1 – d(X,Y) 

S(X,Y) = similarity measure  

D(X,Y) = dissimilarity measure  

   

Let  the frequency of matches and mix matches for objects X and Y be arranged in the form of a 

contigency table as follows: 

                      

          Object (X) 

1                                   0 

 

            Totals 

Object(Y)                 1 

                                  0     

a                                  b 

c                                  d 

             a+b 

             c+d 

Totals a+c                          b+d   P=a+b+c+d 

 

 a represents the frequency of 1-1 matches  

 b represents the frequency of 1-0 matches 
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 c represents the frequency of 0-1 matches 

 d represents the frequency of 0-0 matches 

   

Following is the list of common similarity coefficients defined in terms of the frequency in the 

table. 

               

           

               Coefficient                     Rationale 

 

1.  (a+d)/p Equal weights for 1-1 matches and 0-0 matches. 

2. 2(a+d)/(2(a+d)+b+c) Double weight for 1-1 matches and 0-0 matches. 

3. (a+d)/(a+d+2(b+c)) Double weight for unmatched pairs.  

4. a/p No 0-0 matches in numerator. 

5. a/(a+b+c) No 0-0 matches in numerator or denominator. 

6. 2a/(2a+b+c) No 0-0 matches in numerator and denominator. 

Double weight for 1-1 matches 

7. a/(a+2(b+c)) No 0-0 matches in numerator or denominator. 

Double weight for unmatched pairs 

8. a/(b+c) Ratio of matches to mismatches with 0-0  

Matches excluded. 

 

Coefficient of 1, 2, and 3 in the table are monotonically related. Suppose coefficient-1 is        

calculated for two contingency table.  If [(a1+d1)/p]  ≥[(a11+d11)/p], then we also have 

[2(a1+d1)/(2(a1+d1)+b1+c1)]≥ [2(a11+d11)/(2(a11+d11)+b11+c11)] and coefficient 3 will be at least as 

large for table 1 as it is for table 2. 

 

Here a1, b1, c1, d1 are from table 1 and a11, b11 ,c11 , d11 are from table 2. 

 

5.   Illustration (Chatfield and Collins, 1990) 

Given below is food nutrient data on calories, protein, fat, calcium and iron. The objective of the 

study is to identify suitable clusters of food nutrient data based on the five variables.   

 
Food Items Calories Protein Fat Calcium Iron 

1 340 20 28 9 2.6 

2 245 21 17 9 2.7 

3 420 15 39 7 2 

4 375 19 32 9 2.6 

5 180 22 10 17 3.7 

6 115 20 3 8 1.4 

7 170 25 7 12 1.5 

8 160 26 5 14 5.9 
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9 265 20 20 9 2.6 

10 300 18 25 9 2.3 

11 340 20 28 9 2.5 

12 340 19 29 9 2.5 

13 355 19 30 9 2.4 

14 205 18 14 7 2.5 

15 185 23 9 9 2.7 

16 135 22 4 25 0.6 

17 70 11 1 82 6 

18 45 7 1 74 5.4 

19 90 14 2 38 0.8 

20 135 16 5 15 0.5 

21 200 19 13 5 1 

22 155 16 9 157 1.8 

23 195 16 11 14 1.3 

24 120 17 5 159 0.7 

25 180 22 9 367 2.5 

26 170 25 7 7 1.2 

27 170 23 1 98 2.6 

 

R-Code for Performing Cluster Analysis Based on the Above data 

Following R code is useful for the above problem. Here, k=3 has been mentioned for getting 

three clusters. For getting more clusters, accordingly number need to be changed.  
 

rw<-read.csv(file.choose(),header = TRUE) #data entry from CSV 

rw 

rw1<-as.matrix(rw) 

rw1 

row.names(rw1)<-seq(1:27) # name of the row for which grouping need to be done 

rw1 

rw2<-as.data.frame(scale(rw1)) #for standarization 

rw2 

install.packages(c("cluster", "factoextra")) #required package 

library (cluster) 

library(factoextra) 

summary(rw2) 

dist_mat<-dist(rw2, method = 'euclidian') #for distance matrix 

dist_mat 

#dendogram 

hclust_avg <- hclust(dist_mat, method = 'average') 

plot(hclust_avg) 

plot(hclust_avg) 

rect.hclust(hclust_avg , k = 3, border = 2:6) 

abline(h = 2, col = 'red') 

Dendrogram for above data 
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Interpretation 

The main objective of our analysis is to grouping the food items on the basis of their nutrient 

content based on the five variables such that food items with in the groups are homogeneous and 

between the groups are heterogeneous. 

 

Number of groups Food items 

Two groups Group-1 (1,11,12,…,27) 

Group-2 (25) 

Three groups Group-1 (1,11,…,10) 

Group-2 (5,15,…,27) 

Group-3 (27) 

Four groups Group-1 (1,11,…,10) 

Group-2 (5,15,…,19) 

Group-3 (17,18,…,27) 

Group-4 (25) 

Five groups 

 

 

Five groups 

Group-1 (1,11,…,10) 

Group-2 (5,15,…,19) 

Group-3 (17,18) 

Group-4 (22,24,27) 

Group-5 (25) 

Six groups Group-1 (1,11,…,3) 

Group-2 (2,9,10) 

Group-3 (5,15,…,19) 

Group-4 (17,18) 

Group-5 (22,24,27) 

Group-6 (25) 

 

6.   Examples of Clustering Application 

 Marketing: Help marketers discover distinct groups in their customer bases, and then use 

this knowledge to develop targeted marketing programs. 

 Land Use: Identification of areas of similar land use in earth observation database. 

 Insurance: Identifies groups motor insurance policy holders with a high average claim cost. 

 City Planning: Identification of group of houses according to their house type, value and 

geographical location. 
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 Earthquake Studies: Observed earthquake epicenters should be clustered along continent 

faults. 

 Field of medicine: Clustering of diseases, cure for disease of symptoms of disease can lead 

to very useful taxonomies. 

 Field of psychiatry: The correct diagnosis of clusters of symptoms such as Paranoia, 

Schizophrenia etc. is essential for successful therapy. 

 In Archeology: Researches have attempt to establish taxonomies of stone tools, funerals 

object etc by applying cluster analytic techniques. 

 Field of plant and animal ecology: Clustering is used to describe and to make spatial and 

temporal comparison of communities of organism in heterogeneous environment. 

 Field of Bioinformatics: In transcriptomics, clustering is used to build groups of genes 

with related represents patterns and also in sequence analysis, it is used to group 

homologous sequence into gene families. 

 Social network analysis: In the study of social network, clustering may be used to 

recognize community with large group of people. In general, when ever we need to classify 

a mountain of information into manageable meaningful piles, cluster analysis is of great 

utility. It is also used in data mining. 

 

7.   Conclusions 

In this presentation, different issues related to cluster analysis have been discussed. Unlike other 

methods of classification, cluster analysis however, has not yet gained a standard methodology. 

Nonetheless a number of techniques are developed for dividing multivariate sample on a 

composition which is not known in advance into several groups. 

 

Cluster analysis is a heuristic technique for classifying cases into groups when knowledge of the 

actual group membership is unknown. There are numerous method for performing the analysis, 

with out good guidelines for choosing among them. Unless there is considerable separation 

among the inherent group, it is not realistic to expect very clear results with cluster analysis. In 

particular if the observations are distributed in a nonlinear manner, it may be difficult to achieve 

distinct groups. Cluster analysis is quite sensitive to outliers. In fact it is sometimes used to find 

outlier. The data should be carefully screened before running cluster programs. Many statistical 

package programs are also being used for the purpose of cluster analysis. 

 



DISCRIMINANT FUNCTION ANALYSIS 
 

 

Introduction 

Discriminant function analysis is a statistical analysis to predict a categorical dependent 

variable (called a grouping variable) by one or more continuous or binary independent 

variables (called predictor variables). The original dichotomous discriminant analysis was 

developed by Sir Ronald Fisher in 1936. It is different from an ANOVA or MANOVA, which 

is used to predict one (ANOVA) or multiple (MANOVA) continuous dependent variables by 

one or more independent categorical variables. Discriminant function analysis is useful in 

determining whether a set of variables is effective in predicting category membership. 

Discriminant analysis is used when groups are known a priori (unlike in cluster analysis). 

Each case must have a score on one or more quantitative predictor measures, and a score on a 

group measure. In simple terms, discriminant function analysis is classification - the act of 

distributing things into groups, classes or categories of the same type. 

 

Moreover, it is a useful follow-up procedure to a MANOVA instead of doing a series of one-

way ANOVAs, for ascertaining how the groups differ on the composite of dependent 

variables. In this case, a significant F test allows classification based on a linear combination 

of predictor variables. Terminology can get confusing here, as in MANOVA, the dependent 

variables are the predictor variables, and the independent variables are the grouping variables.  

 

Assumptions 

The assumptions of discriminant analysis are the same as those for MANOVA. The analysis 

is quite sensitive to outliers and the size of the smallest group must be larger than the number 

of predictor variables. The major assumptions are: 

 
 Multivariate normality: Independent variables are normal for each level of the 

grouping variable.
 

 Homogeneity of variance/covariance (homoscedasticity): Variances among group 

variables are the same across levels of predictors. Can be tested with Box's M statistic.
 

 It has been suggested, however, that linear discriminant analysis be used when 

covariances are equal, and that quadratic discriminant analysis may be used when 

covariances are not equal. 
 

 Multicollinearity: Predictive power can decrease with an increased correlation 

between predictor variables.
 

 Independence: Participants are assumed to be randomly sampled, and a participant’s 

score on one variable is assumed to be independent of scores on that variable for all 

other participants.
 

 It has been suggested that discriminant analysis is relatively robust to slight violations 

of these assumptions, and it has also been shown that discriminant analysis may still 

be reliable when using dichotomous variables (where multivariate normality is often 

violated).
 

 

Discriminant analysis works by creating one or more linear combinations of predictors, 

creating a new variable for each function. These functions are called discriminant functions. 

The number of functions possible is either Ng-1 where Ng = number of groups, or p (the 

number of predictors), whichever is smaller. The first function created maximizes the 

differences between groups on that function. The second function maximizes differences on 

that function, but also must not be correlated with the previous function. This continues with 

subsequent functions with the requirement that the new function not be correlated with any of 

the previous functions. 

http://en.wikipedia.org/wiki/Continuous_variable
http://en.wikipedia.org/wiki/Binary_variable
http://en.wikipedia.org/wiki/Independent_variable
http://en.wikipedia.org/wiki/ANOVA
http://en.wikipedia.org/wiki/MANOVA
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Homoscedasticity
http://en.wikipedia.org/wiki/Linear_discriminant_analysis
http://en.wikipedia.org/wiki/Quadratic_classifier#Quadratic_discriminant_analysis
http://en.wikipedia.org/wiki/Multicollinearity
http://en.wikipedia.org/wiki/Statistical_independence
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Given group , with  sets of sample space, there is a discriminant rule such that 

if , then . Discriminant analysis then, finds “good” regions of  to minimize 

classification error, therefore leading to a high percent correct classified in the classification 

table. Each function is given a discriminant score to determine how well it predicts group 

placement. 

Structure Correlation Coefficients: The correlation between each predictor and the 

discriminant score of each function. This is a whole correlation. 

 Standardized Coefficients: Each predictor’s unique contribution to each function, 

therefore this is a partial correlation. Indicates the relative importance of each predictor in 

predicting group assignment from each function. 

 Functions at Group Centroids: Mean discriminant scores for each grouping variable are 

given for each function. The farther apart the means are, the less error there will be in 

classification. 

 

Discrimination rules 

 Maximum likelihood: Assigns x to the group that maximizes population (group) density. 

 Bayes Discriminant Rule: Assigns x to the group that maximizes , 

where  represents the prior probability of that classification, and πi represents the 

population density.  

 Fisher’s linear discriminant rule: Maximizes the ratio between SSbetween and SSwithin , and 

finds a linear combination of the predictors to predict group. 

  

Eigen values 

An eigen value in discriminant analysis is the characteristic root of each function. It is an 

indication of how well that function differentiates the groups, where the larger the eigenvalue, 

the better the function differentiates. This however, should be interpreted with caution, as 

eigenvalues have no upper limit. The eigenvalue can be viewed as a ratio 

of SSbetweenand SSwithin as in ANOVA when the dependent variable is the discriminant 

function, and the groups are the levels of the IV. This means that the largest eigenvalue is 

associated with the first function, the second largest with the second, etc. 

 

Effect size 

Some suggest the use of eigenvalues as effect size measures, however, this is generally not 

supported. Instead, the canonical correlation is the preferred measure of effect size. It is 

similar to the eigenvalue, but is the square root of the ratio of SSbetween and SStotal. It is the 

correlation between groups and the function. Another popular measure of effect size is the 

percent of variance for each function. This is calculated by: (λx/Σλi) X 100 where λx is the 

eigenvalue for the function and Σλi is the sum of all eigenvalues. This tells us how strong the 

prediction is for that particular function compared to the others. Percent correctly classified 

can also be analyzed as an effect size. The kappa value can describe this while correcting for 

chance agreement.  

 

Variations 

 Multiple discriminant analysis (MDA): related to MANOVA. Has more than two 

groups, and uses multiple dummy variables. 

 Sequential discriminant analysis: assesses the importance of a set of IVs over and 

above a set of controls. In this case, the controls are entered first, and then the IVs.  

 Stepwise discriminant analysis: Selects the most correlated predictor first, removes 

that variance in the grouping variable then adds the next most correlated and continues 

http://en.wikipedia.org/wiki/Maximum_likelihood
http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Linear_Discriminant_Analysis
http://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
http://en.wikipedia.org/wiki/Effect_size
http://en.wikipedia.org/wiki/Canonical_correlation
http://en.wikipedia.org/wiki/Linear_Discriminant_Analysis#Multiclass_LDA
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until the change in canonical correlation is not significant. Of course, both forward 

and backward stepwise procedures may be performed.  

 

In DFA one wishes to predict group membership from a set of (usually continuous) predictor 

variables.  In the most simple case one has two groups and p predictor variables.  A linear 

discriminant equation,  ppi XbXbXbaD  2211  , is constructed such that the two 

groups differ as much as possible on D.  That is, the weights are chosen so that were you to 

compute a discriminant score ( Di ) for each subject and then do an ANOVA on D, the ratio of 

the between groups sum of squares to the within groups sum of squares is as large as possible.  

The value of this ratio is the eigenvalue.  “Eigen” can be translated from the German as 

“own,” “peculiar,” “original,” “singular,” etc.   

 

The eigenvalue 
groupswithin

groupsbetween

SS

SS

_

_
 =  on D (the quantity maximized by the discriminant 

function coefficients obtained).  The canonical correlation 
total

groupsbetween

SS

SS _
 =  on D 

(equivalent to eta in an ANOVA and equal to the point biserial r between Group and D),  

  

Wilks lambda is used to test the null hypothesis that the populations have identical means on 

D.  Wilks lambda is 
total

groupswithin

SS

SS _ =  , so the smaller the  the more doubt cast upon that 

null hypothesis.  SPSS uses a 2
 approximation to obtain a significance level.  We can 

determine how much of the variance in the grouping variable is explained by our predictor 

variables by subtracting the  from one.   

  

DFA is mathematically equivalent to a MANOVA.  Looking at  from the perspective of a 

MANOVA, when we combine the rating scales with weights that maximize group differences 

on the resulting linear combination, the groups do differ significantly from one another.  Such 

a MANOVA is sometimes done prior to doing univariate analyses to provide a bit of 

protection against inflation of alpha. Recall that the grouping variable is predictor variable in 

MANOVA (is it what is being predicted in DFA) and the rating scales are the MANOVA 

outcome variables (and our DFA predictor variables).  If the MANOVA is not significant, we 

stop.  If it is significant, we may go on to do an ANOVA on each dependent variable.  SPSS 

gave us those ANOVAs. 

  

We have created (or discovered) a dimension (like a component in PCA) on which the two 

groups differ.  The univariate ANOVAs may help us explain the nature of the relationship 

between this discriminant dimension and the grouping variable.  For example, some of the 

variates may have a significant relationship with the grouping variable and others might not, 

but the univariate ANOVAs totally ignore the correlations among the variates.  It is possible 

for the groups to differ significantly on D but not on any one predictor by itself. 

  

The standardized discriminant function coefficients may help. These may be treated as Beta 

weights in a multiple regression predicting D from z-scores on the X’s, 

ppi ZZZD   2211 .  Of course, one must realize that these coefficients reflect 

the contribution of one variate in the context of the other variates in the model.  A low 

standardized coefficient might mean that the groups do not differ much on that variate or it 

might just mean that that variate’s correlation with the grouping variable is redundant with 

that of another variate in the model.  Suppressor effects can also occur.  
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Correlations between variates and D may also be helpful.  These are available in the loading 

or structure matrix.  Generally, any variate with a loading of .30 or more is considered to be 

important in defining the discriminant dimension. These correlations may help us understand 

the discriminant function we have created.  

  

If your primary purpose is to predict group membership from the variates (rather than to 

examine group differences on the variates), you need to do classification.  SPSS classifies 

subjects into predicted groups using Bayes’ rule:   









g

i
ii

ii
i

GDpGp

GDpGp
DGp

1

)|()(

)|()(
)|( . 

  

Each subject’s discriminant score is used to determine the posterior probabilities of being in 

each of the two groups.  The subject is then classified (predicted) to be in the group with the 

higher posterior probability. 

  

By default, SPSS assumes that all groups have equal prior probabilities.  For two groups, each 

prior = ½, for three, 1/3, etc.  I asked SPSS to use the group relative frequencies as priors, 

which should result in better classification. 

  

Another way to classify subjects is to use Fisher’s classification function coefficients.  For 

each subject a D is computed for each group and the subject classified into the group for 

which e’s D is highest.  To compute a subjects D1  you would multiply e’s scores on the 22 

rating scales by the indicated coefficients and sum them and the constant.  For e’s D2  you 

would do the same with the coefficients for Group 2.  If D1  >  D2  then you classify the 

subject into Group 1, if D2  >  D1 , the you classify em into Group 2. 

  

For validity of significance tests, one generally does not worry about this if sample sizes are 

equal, and with unequal sample sizes one need not worry unless the p  < .001.  The DFA is 

thought to be very robust and Box’s M is very sensitive.  Non-normality also tends to lower 

the p for Box’s M.  The classification procedures are not, however, so robust as the 

significance tests are.  One may need to transform variables or do a quadratic DFA (SPSS 

won’t do this) or ask that separate rather than pooled variance-covariance matrices be used.  

Pillai’s criterion (rather than Wilk’s ) may provide additional robustness for significance 

testing -- although not available with SPSS discriminant, this criterion is available with SPSS 

MANOVA.  

 

ANOVA on D.  Conduct an ANOVA comparing the verdict groups on the discriminant 

function.  Then you can demonstrate that the DFA eigenvalue is equal to the ratio of the 

SSbetween to SSwithin from that ANOVA and that the ratio of SSbetween to SStotal is the squared 

canonical correlation coefficient from the DFA. 

 

Comparison and validation of models 
 

R
2 

(Coefficient of Determination)
 
 

It is in general used for checking the adequacy of the model. R
2
 is given by the following 

formula       

 
t

res

ss

ss
R 12   

where ssres  and sst are the residual sum of square and the total sum of square respectively. 
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R
2
 never decreases when a regressor is added to the model, regardless of the value of the 

contribution of the variable to the model. Therefore, it is difficult to judge whether an increase 

in R
2
 is really telling anything important. So it is preferable to use Adjusted R

2  
 when models 

to be compared are based on different number of regressors. Adjusted R
2
 is given by the 

following formula 

 
)1/(

)/(
12






nss

pnss
R

t

res
adj    

where ssres /(n-p) is the residual mean square and sst /(n-1) is the total mean square. The total 

mean square is constant regardless of how many variables are in the model. On adding a 

regressor in the model Adjusted R
2 

increases only if the addition of the regressor reduces the 

residual mean square. It also penalizes for adding terms that are not helpful, so it is very 

important in evaluating and comparing the candidate regression models. 

Percent Deviation  

This measures the deviation (in percentage) of forecast from the actual yield data. The 

formula for calculating the percent deviation of forecast is given below 

 

 
( )

100
actual yield forecasted yield

percentagedeviation
actual yield


   

 

Root Mean Square Error (RMSE) 

It is also a measure of comparing two models. The formula of RMSE is given bellow 

 2

1

]
1

}2)(
1

[{ 




n

i
iEiO

n
RMSE  

Oi and the Ei are the observed and forecasted value of the crop yield respectively and n is the 

number of years for which forecasting has been done. 

 



 

PRINCIPAL COMPONENTS ANALYSIS 
 

 

Multivariate data consist of observations on several different variables for a number of 

individuals or subjects. Data of this type arise in all the branches of science, ranging from 

psychology to biology, and methods of analyzing multivariate data constitute an increasingly 

important area of statistics.  Indeed, the vast majority of data in forestry is multivariate and 

proper handling of such data is highly essential. Principal components analysis (PCA) and Factor 

analysis (FA) are multivariate techniques applied to a single set of variables to discover which 

sets of variables in the set form coherent subsets that are relatively independent of one another.  

The details of PCA and FA are discussed as below. 
 

Principal Components Analysis 
Most of the times the variables under study are highly correlated and as such they are effectively 

“saying the same thing”.  To examine the relationships among a set of p correlated variables, it 

may be useful to transform the original set of variables to a new set of uncorrelated variables 

called principal components.  These new variables are linear combinations of original variables 

and are derived in decreasing order of importance so that, for example, the first principal 

component accounts for as much as possible of the variation in the original data.   
 

Let x1, x2, x3, . . . , xp are variables under study, then first principal component may be defined as  
 

 z1 = a11 x1 + a12 x2 + ...... + a1p xp 
 

such that  variance of z1 is as large as possible subject to the condition that  
 

 a11
2
 + a12

2
 + ..... + a1p

2
  =   1 

 

This constraint is introduced because if this is not done, then Var(z1) can be increased simply by 

multiplying any a1js by a constant factor 
 

 The second principal component is defined as  
 

  z2  = a21 x1 + a22 x2 + ....... + a2p xp  
 

such that Var(z2) is as large as possible next to Var( z1 )subject to the constraint that  
 

 a21
2
 + a22

2
 + ....... + a2p

2
   =   1   and   cov(z1, z2) = 0 and so on. 

 

It is quite likely that first few principal components account for most of the variability in the 

original data.  If so, these few principal components can then replace the initial p variables in 

subsequent analysis, thus, reducing the effective dimensionality of the problem.  An analysis of 

principal components often reveals relationships that were not previously suspected and thereby 

allows interpretation that would not ordinarily result.  However,  Principal Component Analysis 

is more of a means to an end rather than an end in itself because this frequently serves as 

intermediate steps in much larger investigations by reducing the dimensionality of the problem 

and providing easier interpretation. It is a mathematical technique which does not require user to 

specify the statistical model or assumption about distribution of original variates.  It may also be 

mentioned that principal components are artificial variables and often it is not possible to assign 

physical meaning to them. Further, since Principal Component Analysis transforms original set of 

variables to new set of uncorrelated variables, it is worth stressing that if original variables are 

uncorrelated, then there is no point in carrying out principal component analysis. 
 

Computation of principal components : 

http://www.pfc.forestry.ca/profiles/wulder/mvstats/orthog_e.html
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Let us consider the following  data on average minimum  temperature (x1), average relative 

humidity at 8 hrs. (x2), average relative humidity at 14 hrs. (x3) and total rainfall in cm. (x4) 

pertaining to Raipur district from 1970 to 1986 for kharif season from 21st May to 7th Oct. 

 

X1 x2 x3 x4 

 

25.0 

 

86 

 

66 

 

186.49 

24.9 84 66 124.34 

25.4 77 55  98.79 

24.4 82 62 118.88 

22.9 79 53  71.88 

7.7 86 60 111.96 

25.1 82 58  99.74 

24.9 83 63 115.20 

24.9 82 63 100.16 

24.9 78 56   62.38 

24.3 85 67 154.40 

24.6 79 61 112.71 

24.3 81 58  79.63 

24.6 81 61 125.59 

24.1 85 64   99.87 

24.5 84 63 143.56 

24.0 81 61 114.97 

 

 

Mean     23.56 

 

82.06 

 

61.00 

 

112.97 

S.D.      4.13     2.75   3.97   30.06 

 

with the variance co-variance matrix. 
 

       =  

17 02 412 154 514

7 56 850 54 82

1575 92 95

90387

. . . .

. . .

. .

.



















 

 

Find the eigen values and eigen vectors of the above matrix.  Arrange the eigen values in 

decreasing order.  Let the eigen values in decreasing order and corresponding eigen vectors are  
 

1  =  916.902     a1  =  (0.006,     0.061,     0.103,     0.993) 

2  =    18.375     a2  =  (0.955,    -0.296,     0.011,     0.012) 

3  =      7.87       a3  =  (0.141,     0.485,     0.855,    -0.119) 

4  =      1.056     a4  =  (0.260,     0.820,    -0.509,     0.001) 
 

The principal components for this data will be 
 

 z1  =   0.006  x1 +  0.061 x2  +  0.103 x3 +  0.993 x4 

 z2  =   0.955 x1  -   0.296 x2 +  0.011 x3 +  0.012 x4 

 z3  =   0.141 x1 +   0.485 x2 +  0.855 x3  -  0.119 x4 

 z4  =   0.26   x1 +   0.82   x2  -  0.509 x3 +  0.001 x4 
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The variance of principal components will be eigen values i.e.  
 

Var( z1 ) =   916.902,  Var( z2 )  =  18.375,  Var (z3 )  = 7.87, Var(z4 )  = 1.056 
 

The total variation explained by original variables is  
 

   = Var(x1) + Var(x2) + Var(x3) + Var(x4) 
 

   = 17.02 + 7.56 + 15.75 + 903.87  =  944.20 
 

The total variation explained by principal components is 
 

 1 + 2 + 3 + 4 = 916.902 + 18.375 + 7.87 + 1.056 = 944.20 
 

As such, it can be seen that the total variation explained by principal components is same as that 

explained by original variables.  It could also be proved mathematically as well as empirically 

that the principal components are uncorrelated.The proportion of total variation accounted for by 

the first principal component is 
  

  1                            916.902 

 -------------------------    =     ------------   =   .97 

 1  +  2  + 3  +  4              944.203 

 

Continuing, the first two components account for a proportion  
 

         1 + 2                      935.277 

 -------------------------    =     ------------   =   .99 

 1  +  2  + 3  +  4              944.203 

 

of the total variance.    
 

Hence, in further analysis, the first or first two principal components z1 and z2 could replace four 

variables by sacrificing negligible information about the total variation in the system.  The scores 

of principal components can be obtained by substituting the values of xi s in equations of zi s.  

For above data, the first two principal components for first observation i.e. for year 1970 can be 

worked out as  
 

 z1 = 0.006 x 25.0 + 0.061 x 86 + 0.103 x 66 + 0.993 x 186.49 = 197.380 

 z2 = 0.955 x 25.0  - 0.296 x 86 + 0.011 x 66 + 0.012 x 186.49 = 1.383 
 

Similarly for the year 1971 
 

 z1  = 0.006 x 24.9 + 0.061 x 84 + 0.103 x 66 + 0.993 x 124.34 = 135.54 

 z2  = 0.955 x 24.9 - 0.296 x 84 + 0.011 x 66 + 0.012 x 124.34 =     1.134 

 

Thus the whole data with four variables can be converted to a new data set with two principal 

components. 
 

Note: The principal components depend on the scale of measurement, for example, if in the 

above example X1 is measured in 
0
F instead of  

0
C and X4 in mm in place of cm, the data gives 

different principal components when transformed to original x’s.  In very specific situations 

results are same.  The conventional way of getting around this problem is to use standardized 

variables with unit variances, i.e., correlation matrix in place of dispersion matrix. But the 

principal components obtained from original variables as such and from correlation matrix will 

not be same and they may not explain the same proportion of variance in the system.  Further 
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more, one set of principal components is not simple function of the other. When the variables are 

standardized, the resulting variables contribute almost equally to the principal components 

determined from correlation matrix. Variables should probably be standardized if they are 

measured on scales with widely differing ranges or if measured units are not commensurate.  

Often population dispersion matrix or correlation matrix are not available.  In such situations 

sample dispersion matrix or correlation matrix can be used. 
 

Applications of principal components: 

 The most important use of principal component analysis is reduction of data.  It provides the 

effective dimensionality of the data.  If first few components account for most of the variation 

in the original data, then first few components’ scores can be utilized in subsequent analysis 

in place of original variables. 
 

 Plotting of data becomes difficult with more than three variables.  Through principal 

component analysis, it is often possible to account for most of the variability in the data by 

first two components, and it is possible to plot the values of first two components scores for 

each individual.  Thus, principal component analysis enables us to plot the data in two 

dimensions. Particularly detection of outliers or clustering of individuals will be easier 

through this technique.  Often, use of principal component analysis reveals grouping of 

variables which would not be found by other means. 
 

 Reduction in dimensionality can also help in analysis where no. of variables is more than the 

number of observations, for example, in discriminant analysis and regression analysis.  In 

such cases, principal component analysis is helpful by reducing the dimensionality of data. 
 

 Multiple regression can be dangerous if independent variables are highly correlated.  

Principal component analysis is the most practical technique to solve the problem.  

Regression analysis can be carried out using principal components as regressors in place of 

original variables.  This is known as principal component regression.  
 

 



 

 

FACTOR ANALYSIS  
 

 

Factor analysis has originated in the field of psychology to define the concepts like intelligence, 

attitude, etc. The essential purpose of factor analysis is to describe, if possible, the covariance 

relationships among many variables in terms of a few underlying, but unobservable, random 

quantities called factors.  Under the factor model assuming linearity, each response variate is 

represented as a linear function of a small number of unobservable common factors   and a single 

latent specific factor.  The common factors generate the covariances among the observable 

responses while the specific terms contribute only to the variances of their particular response.  

Basically the factor model is motivated by the following argument - Suppose variables can be 

grouped by their correlations, i.e., all variables within a particular group are highly correlated 

among themselves but have relatively small correlations with variables in a different group.  It is 

conceivable that each group of variables represents a single underlying construct, or factor, that is 

responsible for the observed correlations.  For example, for an individual, marks in different 

subjects may be governed by aptitudes (common factors) and individual variations (specific 

factors) and interest may lie in obtaining scores on unobservable aptitudes (common factors) 

from observable data on marks in different subjects. 

 

The Factor Model 

Suppose observations are made on p variables for n individuals (xij, i=1,2,…p; j=1,2,…n). The 

factor analysis model assumes that there are m underlying factors (m<p)  and each observed 

variable is a linear function of these factors and specific factor,  so that 

 

xij =  a i1 f1j + a i2 f2j +………… + a im fmj +  ai0 yij            j = 1,2,….,p 

 

where a i1, a i2, ……., a im are factor loadings given to i-th variable corresponding to m common 

hypothetical factors of j-th respondent (f1j, f2j, ….., fmj) and ai0 is the loading given to factor 

specific to i-th variable pertaining to j-th respondent (yij). 
 

The proportion of the variance of the j-th variable contributed by the m common factors is called 

the j-th communality and the proportion due to the specific factors is called the uniqueness, or 

specific variance.   

 

Factor analysis involves : 

 Deciding number of common factors (m) 

 Estimating factor loadings (aik ) 

 Calculating factor scores (fkj ) 

 

Methods of Estimation 

Factor analysis is done in two parts, first solution is obtained by placing some restrictions and 

then final solution is obtained by rotating this solution.  There are two most popular methods 

available in literature for parameter estimation, the principal component (and the related 

principal factor) method and the maximum likelihood method.  The solution from either method 

can be rotated in order to simplify the interpretation of factors i.e. either factor loadings are close 

to unity or close to zero.   The most popular method for orthogonal rotation is Varimax Rotation 

method. In some specific situations, oblique  rotations are also used. It is always prudent to try 

more than one method of solution.  If the factor model is appropriate for the problem at hand, the 

solutions should be consistent with one another.  The estimation and rotation methods require 
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iterative calculations that must be done on a computer. If variables are uncorrelated factor 

analysis will not be useful.  In these circumstances, the specific factors play the dominant role, 

whereas the major aim of the factor analysis is to determine a few important common factors. 

 

Number of factors is theoretically given by rank of population variance covariance matrix.  

However, in practice, number of common factors retained in the model is increased until a 

suitable proportion of total variance is explained.  Another convention, frequently encountered in 

packaged computer programs is to set m equal to the number of eigenvalues greater than one (for 

example, in SAS and SPSS).   

 

As in principal component analysis, principal factor method for factor analysis depends upon   

unit of measurements.  If units are changed, the solution will change.  However, in this approach 

estimated factor loadings for a given factor do not change as the number of factors is increased.  

In contrast to this, in maximum likelihood method,  the solution does not change if units of 

measurements are changed.  However, in this method the solution changes if number of common 

factors is changed.   

 

Example: In a consumer - preference study, a random sample of customers were asked to rate 

several attributes of a new product.  The response on a 5-point semantic differential scale were 

tabulated and the attribute correlation matrix constructed which is given below: 

 

Attribute    Correlation matrix 

     1 2 3 4 5 

 

Taste    1       1 .02 .96 .42 .01     

Good buy for money  2 .02 1 .13 .71 .85 

 

Flavor    3 .96 .13 1 .5 .11 

 

Suitable for snack  4 .42 .71 .50 1 .79 

 

Provides energy  5 .01 .85 .11 .79 1 

 

 

It is clear from the correlation matrix that variables 1 and 3 and variables 2 and 5 form groups.  

Variable 4 is “closer” to the (2,5) group than (1,3) group.  Observing the results, one can expect 

that the apparent linear relationships between the variables can be explained in terms of, at most, 

two or three common factors.  

 

Initial Factor Method: Principal Components 
 

                                 Prior Communality Estimates: ONE        

             Eigenvalues of the Correlation Matrix:  Total = 5  Average = 1 

   

                                      1              2      3               4           5 

               Eigenvalue        2.8531    1.8063    0.2045     0.1024     0.0337 

               Difference        1.0468    1.6018   0.1021     0.0687 

               Proportion        0.5706     0.3613    0.0409     0.0205     0.0067 

               Cumulative       0.5706     0.9319     0.9728    0.9933      1.0000 
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                                               FACTOR1     FACTOR2 

                                     TASTE       0.55986     0.81610 

                                     MONEY      0.77726    -0.52420 

                                     FLAVOR      0.64534     0.74795 

                                     SNACK       0.93911    -0.10492 

                                     ENERGY      0.79821    -0.54323 

 

                                  Variance explained by each factor 

                                            FACTOR1    FACTOR2 

                                           2.853090   1.806332 

 

                            Final Communality Estimates: Total = 4.659423 

 

                               TASTE     MONEY    FLAVOR     SNACK    ENERGY 

                              0.979461   0.878920    0.975883      0.892928   0.932231 

 

                        Residual Correlations with Uniqueness on the Diagonal 

                                  

   TASTE  MONEY FLAVOR SNACK      ENERGY 

                 TASTE       0.02054     0.01264   -0.01170  -0.02015        0.00644 

                 MONEY     0.01264     0.12108    0.02048  -0.07493       -0.05518 

                 FLAVOR   -0.01170   0.02048     0.02412  -0.02757        0.00119 

                 SNACK      -0.02015  -0.07493    -0.02757   0.10707        -.01660 

                 ENERGY   0.00644   -0.05518     0.00119   -0.01660        0.06777 

 

Rotation Method: Varimax 

 

 Rotated Factor Pattern 

                                                 FACTOR1     FACTOR2 

                                     TASTE       0.01970     0.98948 

                                     MONEY       0.93744    -0.01123 

                                     FLAVOR      0.12856     0.97947 

                                     SNACK       0.84244     0.42805 

                                     ENERGY      0.96539    -0.01563 

 

                                  Variance explained by each factor 

 

                                            FACTOR1    FACTOR2 

                                           2.537396   2.122027 

 

                            Final Communality Estimates: Total = 4.659423 

 

                               TASTE     MONEY    FLAVOR     SNACK    ENERGY 

 

                               0.979461  0.878920    0.975883     0.892928    0.932231 

 

Initial Factor Method: Maximum Likelihood 

Eigenvalues of the Weighted Reduced Correlation Matrix:   

Total = 84.5563187   
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Average = 16.9112637 

                                       1          2           3            4          5 

               Eigenvalue       59.7487   24.8076    0.1532     -0.0025    -0.1507 

               Difference        34.9411   24.6544    0.1557      0.1482 

               Proportion        0.7066     0.2934      0.0018     -0.0000    -0.0018 

               Cumulative       0.7066     1.0000      1.0018      1.0018    1.0000 

                                               

Factor Pattern 

                                                 FACTOR1     FACTOR2 

                                     TASTE       0.97601    -0.13867 

                                     MONEY       0.14984     0.86043 

                          FLAVOR      0.97908              -0.03180 

                               SNACK       0.53501     0.73855 

                                     ENERGY       0.14567                0.96257 

 

  Variance explained by each factor 

                                                  FACTOR1    FACTOR2 

                                    Weighted    59.748704  24.807616 

                                    Unweighted   2.241100   2.232582 

 

                                      TASTE     MONEY    FLAVOR    SNACK     ENERGY 

                    Communality   0.971832     0.762795    0.959603    0.831686   0.947767 

  

Rotation Method: Varimax 

Rotated Factor Pattern 

                                                

            FACTOR1    FACTOR2 

                                     TASTE      0.02698     0.98545 

                                     MONEY    0.87337     0.00342 

                                     FLAVOR   0.13285     0.97054 

                                     SNACK     0.81781     0.40357 

                                     ENERGY  0.97337    -0.01782 

  

                                  Variance explained by each factor 

                                                  FACTOR1    FACTOR2 

                                    Weighted    25.790361  58.765959 

                                    Unweighted   2.397426   2.076256 

 

    TASTE     MONEY    FLAVOR     SNACK    ENERGY 

          Communality   0.971832    0.762795   0.959603     0.831686     0.947767 

 

 

It can be seen that two factor model with factor loadings shown above is providing a good fit to 

the data as the first two factors explains 93.2% of the total standardized sample variance, 

i.e.,
   











p
x , where p is the number of variables.  It can also be seen from the results that 

there is no clear-cut distinction between factor loadings for the two factors before rotation but 

after rotation the same is clear. 

   



DATA DIAGNOSTICS AND TRANSFORMATION 
 

 

The raw data consist of measurements of some attribute on a collection of individuals. The 

measurement would have been made in one of the following scales viz., nominal, ordinal, interval 

or ratio scale.  

 

Levels of Measurement 

 Nominal scale refers to measurement at its weakest level when number or other symbols are 

used simply to classify an object, person or characteristic, e.g., state of health (healthy, 

diseased).  

 Ordinal scale is one wherein given a group of equivalence classes, the relation greater than 

holds for all pairs of classes so that a complete rank ordering of classes is possible, e.g., 

socio-economic status.  

 When a scale has all the characteristics of an ordinal scale, and when in addition, the 

distances between any two numbers on the scale are of known size, interval scale is 

achieved, e.g., temperature scales like centigrade or Fahrenheit.  

 An interval scale with a true zero point as its origin forms a ratio scale. In a ratio scale, the 

ratio of any two scale points is independent of the unit of measurement, e.g., height of trees.  

 

The data can be classified as qualitative/quantitative depending on the levels based on which the 

observations are collected. There are several statistical procedures available in literature for the 

analysis of data which are broadly classified in to two categories viz., parametric tests and non-

parametric tests. A parametric test specifies certain conditions about the distribution of responses 

in the population from which the research sample was drawn. The meaningfulness of the results 

of a parametric test depends on the validity of these assumptions. A nonparametric test is based 

on a model that specifies very general conditions and none regarding the specific form of the 

distribution from which the sample was drawn. Hence nonparametric tests are also known as 

distribution free tests. Certain assumptions are associated with most nonparametric statistical 

tests, but these are fewer and weaker than those of parametric tests. 

 

Nonparametric test statistics utilize some simple aspects of sample data such as the signs of 

measurements, order relationships or category frequencies. Therefore, stretching or compressing 

the scale does not alter them. As a consequence, the null distribution of the nonparametric test 

statistic can be determined without regard to the shape of the parent population distribution. 

These tests have the obvious advantage of not requiring the assumption of normality or the 

assumption of homogeneity of variance. They compare medians rather than means and, as a 

result, if the data have one or two outliers, their influence is negated. 

 

Besides, the interpretation of data based on analysis of variance (ANOVA) is valid only when the 

following assumptions are satisfied: 

1. Additive Effects: Treatment effects and block (environmental) effects are additive. 

2. Independence of errors: Experimental errors are independent. 

3. Homogeneity of Variances: Errors have common variance. 

4. Normal Distribution: Errors follow a normal distribution. 

 

Also the statistical tests t, F, z, etc. are valid under the assumption of independence of errors and 

normality of errors. The departures from these assumptions make the interpretation based on 
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these statistical techniques invalid. Therefore, it is necessary to detect the deviations and apply 

the appropriate remedial measures. 

 The assumption of independence of errors, i.e., error of an observation is not related to or 

depends upon that of another. This assumption is usually assured with the use of proper 

randomization procedure. However, if there is any systematic pattern in the arrangement of 

treatments from one replication to another, errors may be non-independent. This may be 

handled by using nearest neighbour methods in the analysis of experimental data. 

 The assumption of additive effects can be defined and detected in the following manner: 

 

Additive Effects 

The effects of two factors, say, treatment and replication, are said to be additive if the effect of 

one-factor remains constant over all the levels of other factors. A hypothetical set of data from a 

randomized complete block (RCB) design, with 2 treatments and 2 replications, with additive 

effects is given in Table 1. 

Table  1 

Treatment Replication Replication Effect 

I II I - II 

A 190 125 65 

B 170 105 65 

Treatment Effect (A-B) 20 20  

 

Here, the treatment effect is equal to 20 for both replications and replication effect is 65 for both 

treatments. 

 

When the effect of one factor is not constant at all the levels of other factor, the effects are said to 

be non-additive. A common departure from the assumption of additivity in biological 

experiments is one where the effects are multiplicative. Two factors are said to have 

multiplicative effects if their effects are additive only when expressed in terms of percentages. 

Table 2 illustrates a hypothetical set of data with multiplicative effects. 

Table  2 

Treatment Replication Replication Effect 

I II I - II 100(I - II)/II 

A 200 

(2.30103) 

125 

(2.09691) 

75 

(0.20412) 

60 

B 160 

(2.20412) 

100 

(2.0000) 

60 

(0.20412) 

60 

Treatment Effect (A-B) 40 

(0.09691) 

25 

(0.09691) 

  

100 (A - B)/B 25 25   

 

In this case, the treatment effect is not constant over replications and the replication effect is not 

constant over treatments. However, when both treatment effect and replication effect are 

expressed in terms of percentages, an entirely different pattern emerges. For such violations of 

assumptions, Logarithmic transformation is quite suitable. For illustration, the Logarithmic 

transformation of data in Table 2 is given in brackets. 

 

This is, however a crude method for testing the additivity. Tukey (1949) gave a statistical test for 

testing the additivity in a RCB design. This test is known as one degree of freedom test for non-

additivity. In this test, one degree of freedom is isolated from error and this degree of freedom is 
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called as the degree of freedom for non-additivity. In the sequel, we describe the procedure in 

brief. 
 

Suppose that an experiment has been conducted to compare v treatments using RCB design with 

r replications. Let ijy denote the observed value of the response variable for thi  treatment in thj  

replication; i = 1,2, …, v;  j = 1,2, …, r. Arrange the data in a v  r table as given below: 

 
Treatme

nt 

1 2  j  r Treatment 

Total 

Treatment 

Mean 

Deviations 

from Grand 

Mean  

Sum of 

Cross 

Product 

1 
11y  12y   

jy1   
ry1  .1T  .1y  .1d  1C  

2 
21y  22y   

jy2

 

 
ry2

 
.2T  .2y  .2d  2C  

                    

i 
1iy  2iy   

ijy   
iry  .iT  .iy  .id  iC  

                    

v 
1vy  2vy   

vjy   
vry  .vT  .vy  .vd  vC  

Replicati

on Total 
1.R  2.R   

jR.   
rR.  G (Grand 

total) 

 

Replicati

on Mean 
1.y  2.y   

jy.   
ry.   

GM = 
vr

G
 

Deviatio

n from 

Grand 

Mean 

1.d  2.d   
jd.   

rd.  

where 



r

j
iji yT

1
. ;      rTy ii /..  ;   




v

i
ijj yR

1
. ;  vRy jj /..   ;  GMyd ii  ..  

GMyd jj  .. ;   



r

j
jiji dyC

1
.  

 

Obtain   



v

i
iidCL

1
. ;   




v

i
idD

1

2
.1 ;  




r

j
jdD

1

2
.2  

Sum of squares due to non-additivity (SSNA)= 
21

2

DD

L


 

 

The sum of squares due to treatments, replications and total sum of squares are given by 

 

Sum of squares due to treatments (SST) = 



v

i

i

vr

G

r

T

1

22
.  

 

Sum of squares due to replications (SSR) = 



r

j

j

vr

G

v

R

1

22
.
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Total sum of squares (TSS) = 
vr

G
y

v

i

r

j
ij

2

1

2 


 

 

Sum of squares due to Error (SSE) = TSS – SST-SSR-SSNA 

 

Then the outline of ANOVA table is 

Source df SS MS 

Treatments v-1 SST MST 

Replications r-1 SSR MSR 

Non-additivity 1 SSNA MSNA 

Error (v-1)(r-1)-1 SSE MSE 

Total vr-1 TSS  

 

The mean squares (MS) are obtained by dividing sum of squares (SS) by corresponding degrees 

of freedom (df). The non-additivity is tested by F-statistic with 1 and (v-1)(r-1)-1 degree of 

freedom calculated value of F =  
MSE

MSNA
. 

 

Normality of Errors 

The assumptions of homogeneity of variances and normality are generally violated together. To 

test the validity of normality of errors for the character under study, one can take help of Normal 

Probability Plot, Anderson-Darling Test, D'Augstino's Test, Shapiro - Wilk's Test, Ryan-Joiner 

test, Kolmogrov-Smirnov test, etc. In general moderate departures from normality are of little 

concern in the fixed effects ANOVA as F - test is slightly affected but in case of random effects, 

it is more severely impacted by non-normality. The significant deviations of errors from 

normality, makes the inferences invalid. So before analyzing the data, it is necessary to convert 

the data to a scale that it follows a normal distribution. In the data from designed field 

experiments, we do not directly use the original data for testing of normality or homogeneity of 

observations because this is embedded with the treatment effects and some of other effects like 

block, row, column, etc. So there is need to eliminate these effects from the data before testing 

the assumptions of normality and homogeneity of variances. For eliminating the treatment effects 

and other effects we fit the model corresponding to the design adopted and estimate the residuals. 

These residuals are then used for testing the normality of the observations. In other words, we 

want to test the null hypothesis H0: errors are normally distributed against alternative hypothesis 

H1: errors are not normally distributed. For details on these tests one may refer to D’Agostino and 

Stephens (1986). Most of the standard statistical packages available in the market are capable of 

testing the normality of the data. In SAS and SPSS commonly used tests are Shapiro-Wilk test 

and Kolmogrov-Smirnov test. MINITAB uses three tests viz. Anderson-Darling, Ryan-Joiner, 

Kolmogrov-Smirnov for testing the normality of data. 

 

Homogeneity of Error Variances 

A crude method for detecting the heterogeneity of variances is based on scatter plots of means 

and variance or range of observations or errors, residual vs fitted values, etc. To be clearer, let ijY  

be the observation pertaining to thi  treatment  vi )1(1  in the thj  replication  irj )1(1 . 

Compute the mean and variance for each treatment across the replications (the range can be used 

in place of variance) as 
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 Mean = 



ir

j
ij

i
i Y

r
Y

1
.

1
;  Variance =  







ir

j
iij

i
i YY

r
S

1

2
.

2

1

1
 

Draw the scatter plot of mean vs variance (or range). If 2
.iS 's  vi )1(1  are equal (constant) or 

nearly equal, then the variances are homogeneous. Based on these scatter plots, the heterogeneity 

of variances can be classified into two types:  

1. Where the variance is functionally related to mean. 

2. Where there is no functional relationship between the variance and the mean. 

 

For illustration some scatter - diagrams of mean and variances (or range) are given as: 

          (a) Homogeneous variance                  (b) Heterogeneous variance where variance is  

    proportional to mean 

 
   (c) Heterogeneous variance without any functional  

     relationship between variance and mean 

 

The first kind of variance heterogeneity (figure b) is usually associated with the data whose 

distribution is non-normal viz., negative binomial, Poisson, binomial, etc. The second kind of 

variance heterogeneity usually occurs in experiments, where, due to the nature of treatments 

tested, some treatments have errors that are substantially higher (lower) than others. For example, 

in varietal trials, where various types of breeding material are being compared, the size of 

variance between plots of a particular variety will depend on the degree of genetic homogeneity 

of material being tested. The variance of F2 generation, for example, can be expected to be higher 

than that of F1 generation because genetic variability in F2 is much higher than that in F1. The 

variances of varieties that are highly tolerant of or highly susceptible to, the stress being tested 

are expected to be smaller than those of having moderate degree of tolerance. Also in testing 

yield response to a chemical treatment, such as, fertilizer, insecticide or herbicide, the non-

uniform application of chemical treatments may result in a higher variability in the treated plots 

than that in the untreated plots. 
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The scatter-diagram of means and variances of observations for each treatment across the 

replications gives only a preliminary idea about homogeneity of error variances.  Statistically the 

homogeneity of error variances is tested using Bartlett's test for normally distributed errors and 

Levene test for non-normal errors. These tests are described in the sequel.   

 

Bartlett's Test for Homogeneity of Variances 

Let there are v- independent samples drawn from same population and i
th

 sample is of size ir  and 

  Nrrr v  ...21 . In the present case, the independent samples are the residuals of the 

observations pertaining to v treatments and i
th

 sample size is the number of replications of the 

treatment i.  One wants to test the null hypothesis 22
2

2
10 ...: vH    against the alternative 

hypothesis :1H at least two of the si '2 are not equal, where 2
i  is the error variance for 

treatment i. 

 

Let ije  denotes the residual pertaining to the observation of treatment i from replication j, then it 

can easily be shown that the sum of residuals pertaining to a given treatment is zero. In this test 


 





ii r

j
ij

i

r

j
iij

i
i e

r
ee

r
S

1

2

1

2
.

2

1

1
)(

1

1
 is taken as unbiased estimate of 

2
i . The procedure 

involves computing a statistic whose sampling distribution is closely approximated by the 2  

distribution with v - 1 degrees of freedom. The test statistic is 

 
c

q
3026.22

0
  

and null hypothesis is rejected when  2
1,

2
0 


v , where 2
1, v  is the upper   percentage 

point of 2  distribution with v - 1 degrees of freedom. 

To compute 2
0

 , follow the steps: 

Step 1: Compute mean and variance of all v-samples. 

Step 2: Obtain pooled variance 

 

vN

Sr

S

v

i
ii

p







1

2

2

1

 

Step 3: Compute    



v

i
iip SrSvNq

1

2
10

2
10 log1log  

Step 4: Compute 
 

   
















 




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i
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v
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1
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1
1  

Step 5: Compute 2
0

 . 

 

Bartlett's 2  test for homogeneity of variances is a modification of the normal-theory likelihood 

ratio test. While Bartlett's test has accurate Type I error rates and optimal power when the 
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underlying distribution of the data is normal, it can be very inaccurate if that distribution is even 

slightly non-normal (Box 1953). Therefore, Bartlett's test is not recommended for routine use.  

 

An approach that leads to tests that are much more robust to the underlying distribution is to 

transform the original values of the dependent variable to derive a dispersion variable and then to 

perform analysis of variance on this variable. The significance level for the test of homogeneity 

of variance is the p-value for the ANOVA F-test on the dispersion variable.  Commonly used test 

for testing the homogeneity of variance using a dispersion variable is Levene Test given by 

Levene (1960). The procedure is described in the sequel. 

 

Levene Test for homogeneity of Variances  

The test is based on the variability of the residuals. The larger the error variance, the larger the 

variability of the residuals will tend to be. To conduct the Levene test, we divide the data into 

different groups based on the number of treatments if the error variance is either increasing or 

decreasing with the treatments, the residuals in the one treatment will tend to be more variable 

than those in others treatments. The Levene test than consists simply F – statistic based on one 

way ANOVA used to determine whether the mean of absolute/ Square root deviation from mean 

are significantly different or not. The residuals are obtained from the usual analysis of variance. 

The test statistic is given as 
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..  and ije  is the j

th
 residual for the i

th
 plot, ie  is 

the mean of the residuals of the i
th

 treatment. 
 

This test was modified by Brown and Forsythe (1974). In the modified test, the absolute 

deviation is taken from the median instead of mean in order to make the test more robust.  

 

In the present investigation, the Bartlett's 2 -test has been used for testing the homogeneity of 

error variances when the distribution of errors is normal and Levene test for non-normal errors.  

 

Remark 1: In a block design, it can easily be shown that the sum of residuals within a given 

block is zero. Therefore, the residuals in a block of size 2 will be same with their sign reverse in 

order. As a consequence, q in Bartlett’s test and numerator in Levene test statistic becomes zero 

for the data generated from experiments conducted to compare only two treatments in a RCB 

design. Hence, the tests for homogeneity of error variances cannot be used for the experiments 

conducted to compare only two treatments in a RCB design. Inferences from such experiments 

may be drawn using Fisher-Behren t-test. Further, Bartlett’s test cannot be used for the 

experimental situations where some of the treatments are singly replicated. 
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Remark 2: In a RCB design, it can easily be shown that the sum of residuals from a particular 

treatment is zero. As a consequence, the denominator of Levene test statistic is zero for the data 

generated from RCB designs with two replications. Therefore, Levene test cannot be used for 

testing the homogeneity of error variances for the data generated from RCB designs with two 

replications.  

 

Data Transformation 

In this section, we shall discuss the remedial measures for non-normal and/or heterogeneous data 

in greater details.  

 

Data transformation is the most appropriate remedial measure, in the situation where the 

variances are heterogeneous and are some functions of means. With this technique, the original 

data are converted to a new scale resulting into a new data set that is expected to satisfy the 

homogeneity of variances. Because a common transformation scale is applied to all observations, 

the comparative values between treatments are not altered and comparison between them remains 

valid. 

 

Error partitioning is the remedial measure of heterogeneity that usually occurs in experiments, 

where, due to the nature of treatments tested some treatments have errors that are substantially 

higher (lower) than others. 

 

Here, we shall concentrate on those situations where character under study is non-normal and 

variances are heterogeneous. Depending upon the functional relationship between variances and 

means, suitable transformation is adopted. The transformed variate should satisfy the following: 

1. The variances of the transformed variate should be unaffected by changes in the means. This 

is also called the variance stabilizing transformation. 

2. It should be normally distributed. 

3. It should be one for which effects are linear and additive. 

4. The transformed scale should be such for which an arithmetic average from the sample is an 

efficient estimate of true mean. 

 

The following are the three transformations, which are being used most commonly, in biological 

research. 

a) Logarithmic Transformation 

b) Square root Transformation 

c) Arc Sine or Angular Transformation 

 

a) Logarithmic Transformation 

This transformation is suitable for the data where the variance is proportional to square of the 

mean or the coefficient of variation (S.D./mean) is constant or where effects are multiplicative. 

These conditions are generally found in the data that are whole numbers and cover a wide range 

of values. This is usually the case when analyzing growth measurements such as trunk girth, 

length of extension growth, weight of tree or number of insects per plot, number of eggmass per 

plant or per unit area etc. 

 

For such situations, it is appropriate to analyze log X instead of actual data, X. When data set 

involves small values or zeros, log (X+1), )1X2log(   or log 









8

3
X  should be used instead of 
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log X. This transformation would make errors normal, when observations follow negative 

binomial distribution like in the case of insect counts. 

 

b)  Square-Root Transformation  

This transformation is appropriate for the data sets where the variance is proportional to the 

mean. Here, the data consists of small whole numbers, for example, data obtained in counting 

rare events, such as the number of infested plants in a plot, the number of insects caught in traps, 

number of weeds per plot, parthenocarpy in some varieties of mango. This data set generally 

follows the Poisson distribution and square root transformation approximates Poisson to normal 

distribution. 

 

For these situations, it is better to analyze X  than that of X, the actual data. If X is confirmed to 

small whole numbers then, 
2

1
X   or 

8

3
X   should be used instead of X . 

 

This transformation is also appropriate for the percentage data, where, the range is between 0 to 

30% or between 70 and 100%. 

 

c) Arc Sine Transformation 

This transformation is appropriate for the data on proportions, i.e., data obtained from a count and 

the data expressed as decimal fractions and percentages. The distribution of percentages is 

binomial and this transformation makes the distribution normal. Since the role of this 

transformation is not properly understood, there is a tendency to transform any percentage using 

arc sine transformation. But only that percentage data that are derived from count data, such as % 

barren tillers (which is derived from the ratio of the number of non-bearing tillers to the total 

number of tillers) should be transformed and not the percentage data such as % protein or % 

carbohydrates, %nitrogen, etc. which are not derived from count data. For these situations, it is 

better to analyze )(sin 1 X than that of X, the actual data. If the value of X is 0%, it should be 

substituted by 








n4

1
 and the value of 100% by 










n4

1
100 , where n is the number of units upon 

which the percentage data is based. 

 

It is interesting to note here that not all percentage data need to be transformed and even if they 

do, arc sine transformation is not the only transformation possible. The following rules may be 

useful in choosing the proper transformation scale for percentage data derived from count data. 

Rule 1: The percentage data lying within the range 30 to 70% is homogeneous and no 

transformation is needed. 
 

Rule 2: For percentage data lying within the range of either 0 to 30% or 70 to 100%, but not both, 

the square root transformation should be used. 
 

Rule 3: For percentage that do not follow the ranges specified in Rule 1 or Rule 2, the Arc Sine 

transformation should be used. 

The other transformations used are reciprocal square root [
X

1
, when variance is proportional to 

cube of mean], reciprocal [ 
X

1
, when variance is proportional to fourth power of mean] and 

tangent hyperbolic transformation.  
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The transformation discussed above are a particular case of the general family of 

transformations known as Box-Cox transformation. 
 

d) Box-Cox Transformation 

By now we know that if the relation between the variance of observations and the mean is known 

then this information can be utilized in selecting the form of the transformation. We now 

elaborate on this point and show how it is possible to estimate the form of the required 

transformation from the data. The transformation suggested by Box and Cox (1964) is a power 

transformation of the original data. Let yut be the observation pertaining to the u
th

 plot; then the 

power transformation implies that we use yut’s as 

ut

*
ut yy 

.                                 

The transformation parameter  in 
utut yy *  may be estimated simultaneously with the other 

model parameters (overall mean and treatment effects) using the method of maximum likelihood. 

The procedure consists of performing, for the various values of , a standard analysis of variance 

on  

            

    (A) 
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uty  is the geometric mean of the observations. The maximum likelihood estimate of  is the 

value for which the error sum of squares, say SSE (), is minimum. Notice that we cannot select 

the value of  by directly comparing the error sum of squares from analysis of variance on y  

because for each value of  the error sum of squares is measured on a different scale. Equation 

(A) rescales the responses so that the error sums of squares are directly comparable.  This is a 

very general transformation and the commonly used transformations follow as particular cases.  

The particular cases for different values of  are given below. 

 

 Transformation 

1 No Transformation 

½ Square Root 

0 Log 

-1/2 Reciprocal Square Root 

-1 Reciprocal 

 

Remark 3: If any one of the observations is zero then the geometric mean is undefined. In the 

expression (A), geometric mean is in denominator so it is not possible to compute that 

expression. For solving this problem, we add a small quantity to each of the observations. 
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Note: It should be emphasized that transformation, if needed, must take place right at the 

beginning of the analysis, all fitting of missing plot values, all adjustments by covariance etc. 

being done with the transformed variate and not with the original data. At the end, when the 

conclusions have been reached, it is permissible to 're-transform' the results so as to present them 

in the original units of measurement, but this is done only to render them more intelligible. 
 

As a result of this transformation followed by back transformation, the means will rather be 

different from those that would have been obtained from the original data. A simple example is 

that without transformation, the mean of the numbers 1, 4, 9, 16 and 25 is 11. Suppose a square 

root transformation is used to give 1, 2, 3, 4 and 5, the mean is now 3, which after back- 

transformation gives 9. Usually the difference will not be so great because data do not usually 

vary as much as those given, but logarithmic and square root transformation always lead to a 

reduction of the mean, just as angles of equal formation usually lead to its moving away from the 

central value of 50%. 
 

However, in practice, computing treatment means from original data is more frequently used 

because of its simplicity, but this may change the order of ranking of converted means for 

comparison. Although transformations make possible a valid analysis, they can be very awkward. 

For example, although a significant difference can be worked out in the usual way for means of 

the transformed data, none can be worked out for the treatment means after back transformation. 

 

Non-parametric tests in the Analysis of Experimental Data 

When the data remains non-normal and/or heterogeneous even after transformation, a recourse is 

made to non-parametric test procedures. A lot of attention is being paid to develop non-

parametric tests for analysis of experimental data. Most of these non-parametric test procedures 

are based on rank statistic. The rank statistic has been used in development of these tests as the 

statistic based on ranks is 

1. distribution free 

2. easy to calculate and  

3. simple to explain and understand. 
 

Another reason for use of rank statistic is due to the well known result that the average rank 

approaches normality quickly as n (number of observations) increases, under the rather general 

conditions, while the same might not be true for the original data {see e.g. Conover and Iman 

(1976, 1981)}. The non-parametric test procedures available in literature cover completely 

randomized designs, randomized complete block designs, balanced incomplete block designs, 

design for bioassays, split plot designs, cross-over designs and so on. For an excellent and 

elaborate discussions on non-parametric tests in the analysis of experimental data, one may refer 

to Siegel and Castellan Jr. (1988), Deshpande, Gore and Shanubhogue (1995), Sen (1996), and 

Hollander and Wolfe (1999). 
 

Kruskal-Wallis Test can be used for the analysis of data from completely randomized designs. 

Skillings and Mack Test helps in analyzing the data from a general block design. Friedman Test 

and Durbin Test are particular cases of this test. Friedman Test is used for the analysis of data 

from randomized complete block designs and Durbin test for the analysis of data from balanced 

incomplete block designs. 

 

Some examples of testing the assumptions of normality and homogeneity of errors and remedial 

measures are discussed in the Appendix.  
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Appendix  
 

Example 1: Suppose an entomologist is interested in determining whether four different kinds of 

traps caught equivalent insects when applied to same field. Each of the traps is used six times on 

the field and resulting data (number of insects per hour) are as shown below alongwith mean, 

variance and range. 

 

Treatment Replication Mean Variance Range 

 I II III IV V VI 
iY  2

iS   

A 3 1 12 7 17 2 7 40.4 16 

B 9 29 21 24 28 45 31 138.4 36 

C 63 84 97 61 98 71 79 270.8 37 

D 172 118 109 172 143 168 147 798.4 63 

  

A scatter plot of mean and variance and mean versus range are given as follows: 

Both plots indicate that variances are heterogeneous and variance is proportional to mean. 

 

Obtain the residuals for testing the normality and homogeneity of error terms. The 

residuals obtained are given below: 

 

Treatment Replication Mean Variance 

 I II III IV V VI  2
iS  

A -1.00 0.75 10.00 -1.25 3.25 -11.75 0 50.35 

B -14.00 9.75 0.00 -3.25 -4.75 12.25 0 94.85 

C -13.00 11.75 23.00 -19.25 12.25 -14.75 0 314.85 

D 28.00 -22.25 -33.00 23.75 -10.75 14.25 0 650.20 

 

Test for Normality of error terms  
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Shapiro-Wilk Test Kolmogrov-Smirnov Test 

Statistic 

(SW) 

p-value Statistic 

(KS) 

p-value 

0.980 0.882 0.110 0.200 

 

The errors were found to be normally distributed. Therefore, homogeneity of error variances was 

tested using Bartlett's test. It is described in the sequel. 

 

Pooled Variance    
5625.277
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20.65085.31485.9435.5052 
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






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 324.82
0
 . 

Since 81.72
3,05.0  , therefore, we reject the null hypothesis and conclude that the variances are 

unequal.  

 

 The 
.i

2
i

Y

S
 are 5.77, 5.32, 3.43 and 5.43, indicating that variance is proportional to mean. 

Therefore, square root transformation should be used. After application of square root 

transformation, the residuals are 

 

Treatment Replication Variance 

 I II III IV V VI 2
iS  

A -0.03614 -0.92542 1.05800 0.20614 0.98287 -1.28544 0.928 

B -1.34939 0.87854 -0.40473 -0.12183 -0.42993 1.42735 0.999 

C -0.28226 0.78841 0.99143 -1.08068 0.30794 -0.72483 0.694 

D 1.66779 -0.74153 -1.64469 0.99637 -0.86087 0.58293 1.622 

 

Normality of error terms on the transformed data: 

Shapiro-Wilk Test Kolmogrov-Smirnov Test 

Statistic 

(SW) 

p-value Statistic 

(KS) 

p-value 

0.956 0.414 0.127 0.200 

 

The errors remain normally distributed after transformation. The results of homogeneity of error 

variances using Bartlett's test are 

 

Bartlett's Test (normal distribution): Test statistic = 0.89, p-value = 0.828 

Hence, we conclude that the errors are normally distributed and have a constant variance after 

transformation.  
 

The results of analysis of variance with original and transformed data are given in the sequel. 
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ANOVA: Original Data 

Source DF Seq SS Adj. SS Mean Square F (F-calc) p(Pr>F) 

Replication 5 689.0 689.0 137.8 0.37 0.86 

Treatment 3 70828.5 70828.5 23609.5 63.80 0.00 

Error 15 5551.0 5551.0 370.1   

Total 23 77068.5     
 

R-Square  Root MSE 

92.80%  19.2371 
 

Tukey Simultaneous Tests for All Pairwise Treatment Comparisons 

 1 2 3 4 

1 .    

2 0.3525 .   

3 0.0001 0.0013 .  

4 0.0000 0.0000 0.0001 . 
 

 

ANOVA: Transformed Data 

Source DF Seq SS Adj. SS Mean Square F (F-calc) p(Pr>F) 

Replication 5 5.055 5.055 1.011 0.71 0.622 

Treatment 3 326.603 326.603 108.868 76.98 0.000 

Error 15 21.214 21.214 1.414   

Total 23 352.872     
 

R-Square Root MSE 

93.99% 1.18922 
 

 

Tukey Simultaneous Tests for All Pairwise Treatment Comparisons 

 1 2 3 4 

1 .    

2 0.0091    

3 0.0000 0.0003   

4 0.0000 0.0000 0.0015 . 
 

With transformed data treatments 1 and 2 are significantly different whereas with original data, 

they were not. 

 

Example 2: A varietal trial on Rapeseed-Mustard was conducted at Faizabad with 11 varieties 

using a randomized complete block design with 3 replications. The experimental data (Yield in 

kg/ha ) obtained from the above experiment is  

    

Treatments  

 

Replications 

R1 R2 R3 

MCN-157 952.380 1058.200 1079.364 

MCN-158 846.560 634.920 687.830 

MCN-159 529.100 687.830 687.830 

MCN-160 1058.200 1005.290 952.380 

MCN-161 1111.110 888.888 846.560 
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MCN-162 899.470 634.920 1005.290 

MCN-163 1058.200 1164.020 952.380 

MCN-164 687.830 740.740 529.100 

MCN-165 952.380 952.380 867.724 

MCN-166 1058.200 1058.200 529.100 

MCN-167 1269.840 1164.020 1216.930 

 

The analysis of variance of the original data is given as 
  

ANOVA: Original Data 

Sources DF SS MS F Prob. >F 

Replication 2 52534.9880     26267.4940      1.46   0.2563 

Treatment 10 967055.0471     96705.5047      5.37   0.0007 

Error 20 360218.589 18010.929   

Total 32 1379808.624    

 

R-Square CV RMSE Yld Mean 

0.738936 14.878 134.2048 902.035 
 

Normality of error terms was tested, the results are given as 

Shapiro-Wilk Test Kolmogrov-Smirnov Test 

Statistic 

(SW) 

p-value Statistic 

(KS) 

p-value 

0.9679 0.4249 0.1018 >0.1500 

Since the data is normal, therefore, Bartlett’s test is used for testing the homogeneity of error 

variances. The results are given as  

Bartlett’s Test 

Test Statistic : 20.177 

P-Value        : 0.0276 

The errors were found to be heterogeneous. 
 

Therefore, we can conclude that the data is heterogeneous and normal.  
 

Therefore, Box-Cox transformation was used as a remedial measure. In the sequel we describe 

the results of the Box-Cox transformation. 
 

For this we transform the data by varying  from -10 to +10 with an increment of 0.01.  The error 

sum of squares are computed for each value of . The value of  with minimum error sum of 

squares is used for transformation given in (A).  The minimum value SSE is obtained for  = 

2.38. Therefore, reciprocal transformation was used.  
 

The assumptions of normality and homogeneity of errors are again tested using the transformed 

data.  
 

Normality of error terms was tested, the results are given as 

 

Shapiro-Wilk Test Kolmogrov-Smirnov Test 

Statistic 

(SW) 

p-value Statistic 

(KS) 

p-value 

0.984 0.8885 0.0867 >0.1500 
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Since the data is normal, therefore, Bartlett’s Test is used for testing the homogeneity of error 

variances. The results are given as  
 

Bartlett's Test (normal distribution) 

   Test Statistic  : 15.725 

P-Value         :  0.107757 
 

The transformed observations were found to be normal and homogeneous Therefore, ANOVA 

was performed on the transformed data. The results obtained are: 

 

ANOVA: Transformed Data 
Sources DF SS MS F Prob. >F 

Replication 2 3.865471E13 1.93273335E13 1.62 0.2238 

Treatment 10 7.8841391E14 7.8841391E13 6.59 0.0002 

Error 20 2.3934391E14 1.1967195E13 

 

  

Total 32 1.0664125E15    
 

R-Square CV RMSE Transformed Yld Mean 

0.7756 29.563 3459363 11701777 
 

We can see that there is no change in the results of significance of treatment and replication 

effects. However, the transformed data satisfied the assumptions of ANOVA. 



NONPARAMETRIC TESTS 
 

 

1.   Introduction 

A parametric test specifies certain conditions about the distribution of responses in the population 

from which the research sample was drawn. The meaningfulness of the results of a parametric 

test depends on the validity of these assumptions. A nonparametric test is based on a model that 

specifies very general conditions and none regarding the specific form of the distribution from 

which the sample was drawn. Hence nonparametric tests are also known as distribution free tests. 

Certain assumptions are associated with most nonparametric statistical tests, but these are fewer 

and weaker than those of parametric tests. 

 

Nonparametric test statistics utilize some simple aspects of sample data such as the signs of 

measurements, order relationships or category frequencies. Therefore, stretching or compressing 

the scale does not alter them. As a consequence, the null distribution of the nonparametric test 

statistic can be determined without regard to the shape of the parent population distribution. 

These tests have the obvious advantage of not requiring the assumption of normality or the 

assumption of homogeneity of variance. They compare medians rather than means and, as a 

result, if the data have one or two outliers, their influence is negated. 

 
Advantages of nonparametric tests 

 Non-parametric methods are used with all scales 

 When sample size is very small, there may be no alternative to use a nonparametric test 

unless the population distribution is known exactly 

 They are easier to learn and compute  

 Fewer assumptions are made 

 Due to the reliance on fewer assumptions, non-parametric methods are more robust  

 Need not involve population parameters 

 Results may be as exact as parametric procedures 

 

Disadvantages of nonparametric tests 

 There may be wastage of information  

 Parametric models are more efficient if data permit. 

 It is difficult to compute by hand for large samples 

 Tables are not widely available 

 In cases where a parametric test would be appropriate, non-parametric tests have less power. 

In other words, a larger sample size can be required to draw conclusions with the same degree 

of confidence.  

 

The inferences drawn from tests based on the parametric tests such as t, F and 
2
 may be 

seriously affected when the parent population’s distribution is not normal. The adverse effect 

could be more when sample size is small. Thus when there is doubt about the distribution of the 

parent population, a nonparametric method should be used. In many situations, particularly in 

social and behavioral sciences, observations are difficult or impossible to take on numerical 

scales and a suitable nonparametric test is an alternative under such situations. Some commonly 

used nonparametric tests are discussed in the sequel. 
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2. Run Test for Randomness 

Run test is used for examining whether or not a set of observations constitutes a random sample 

from an infinite population. Test for randomness is of major importance because the assumption 

of randomness underlies statistical inference. In addition, tests for randomness are important for 

time series analysis. Departure from randomness can take many forms.  
 

H0: Sample values come from a random sequence 

H1: Sample values come from a non-random sequence 

 

Test Statistic: Let r be the number of runs (a run is a sequence of signs of same kind bounded by 

signs of other kind). For finding the number of runs, the observations are listed in their order of 

occurrence. Each observation is denoted by a ‘+’ sign if it is more than the previous observation 

and by a ‘-‘ sign if it is less than the previous observation. Total number of runs up (+) and down 

(-) is counted. Too few runs indicate that the sequence is not random (has persistency) and too 

many runs also indicate that the sequence is not random (is zigzag). 

 

Critical Value: Critical value for the test is obtained from the table for a given value of n and at 

desired level of significance (). Let this value be rc. 

 

Decision Rule: If rc (lower)   r   rc (upper), accept H0. Otherwise reject H0. 

 

Tied Values: If an observation is equal to its preceding observation denote it by zero. While 

counting the number of runs ignore it and reduce the value of n accordingly. 

 

Large Sample Sizes: When sample size is greater than 25 the critical value rc can be obtained 

using a normal distribution approximation. 

 

The critical values for two-sided test at 5% level of significance are 
 

rc (lower)  =  - 1.96   

 rc (upper)  =  + 1.96   
 

For one-sided tests, these are  
 

 rc (left tailed)    =  - 1.65 , if r   rc ,  reject H0 

 rc (right tailed)  =  + 1.65 , if r   rc ,  reject H0,  
 

where 
3

1n2 
   and 

90

29n16 
 . 

 

Example 2.1: Data on value of imports of selected agricultural production inputs from U.K. by a 

county (in million dollars) during recent 12 years is given below: Is the sequence random? 
 

5.2 5.5 3.8 2.5 8.3 2.1 1.7 10.0 10.0 6.9 7.5 10.6 
 

H0: Sequence is random.    

H1: Sequence is not random. 
 

5.2 5.5 3.8 2.5 8.3 2.1 1.7 10.0 10.0 6.9 7.5 10.6 

 + - - + - - + 0 - + + 
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Here n = 11, the number of runs r = 7. Critical n values for  = 5% (two sided test) from the table 

are rc (lower)  = 4  and rc (upper)  = 10. Since rc (lower)   r   rc (upper), i.e., observed r lies 

between 4 and 10, H0 is accepted. The sequence is random. 

 
 

3. Wald-Wolfowitz Two-Sample Run Test 

Wald–Wolfowitz run test is used to examine whether two random samples come from 

populations having same distribution. This test can detect differences in averages or spread or any 

other important aspect between the two populations. This test is efficient when each sample size 

is moderately large (greater than or equal to 10). 
 

H0: Two sample come from populations having same distribution 

H1: Two sample come from populations having different distributions 

 

Test Statistic: Let r denote the number of runs. To obtain r, list the n1+ n2 observations from two 

samples in order of magnitude. Denote observations from one sample by x’s and other by y’s. 

Count the number of runs. 

 

Critical Value: Difference in location results in few runs and difference in spread also result in 

few number of runs. Consequently, critical region for this test is always one-sided. The critical 

value to decide whether or not the number of runs are few, is obtained from the table. The table 

gives critical value rc for n1 (size of sample 1) and n2 (size of sample 2) at 5% level of 

significance. 

 

Decision Rule: If r   rc, reject H0. 

 

Tie: In case x and y observations have same value, place the observation x(y) first if run of x(y) 

observation is continuing. 

 

Large Sample Sizes: For sample sizes larger than 20 critical value rc is given below.  
 

 rc =  - 1.96   at 5% level of significance 
 

where 
21

21

nn

nn2
1


  and  

)1nn()nn(

)nnnn2(nn2

21
2

21

21211 2




  

 

Example 3.1: To determine if a new hybrid seeding produces a bushier flowering plant, 

following data was collected. Examine if the data indicate that new hybrid produces larger shrubs 

than the current variety? 
 

Shrubs Girth (in inches) 

Hybrid x 31.8 32.8 39.2 36.0 30.0 34.5 37.4 

Current 

Variety 

y 35.5 27.6 21.3 24.8 36.7 30.0  

 

H0: x and y populations are identical 

H1: There is some difference in girth of x and y shrubs. 
 

Consider the combined ordered data. 
 

21.3 24.8 27.6 30.0 30.0 31.8 32.8 34.5 35.5 36.0 36.7 37.4 39.2 

y y y y x x x x y x y x x 
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Test statistic r = 6 (total number of runs). For n1 = 7 and n2 = 6, critical value rc at 5% level of 

significance is 3. Since r > rc, we accept H0 and conclude that x and y have identical distribution. 

 

4.   Median Test for Two Samples 

To test whether or not two samples come from same population, median test is used. It is more 

efficient than the run test but each sample should be of size 10 at least. In this case, the 

hypothesis to be tested is 
 

H0 : Two samples come from populations having same distribution. 

H1 : Two samples come from populations having different distribution. 

 

Test Statistic: χ
2
 (Chi-square). To test the value of test statistics two samples of sizes n1 and n2 are 

combined. Median M of the combined sample of size n = n1 + n2 is obtained. Number of 

observations below and above the median M for each sample is determined. This is then analyzed 

as a 2 × 2 contingency table in the manner given below. 
 

 Number of Observations  

 Sample 1 Sample 2 Total 

Above Median a b a+b 

Below Median c d c+d 

 a+c= n1 b+d = n2 n = a+b+c+d 

 

 χ
2 

=  
d)b)(cd)(ac)(b(a

)dcba(bc)ad( 2




 

 

Decision Rule: if χ
2 

≥ 
2
c , reject H0 otherwise accept it. 

 

Tie: Ties are ignored and n is adjusted accordingly. 

 

Remark: This test can be extended to k samples with number of observations below and above 

the combined median M from a 2 × k contingency table.   
 

 

Example 4.1: Perform a median test on the problem of Example 3.1 for testing that the two 

samples come from same population. 

H0 : x and y populations are identical. 

H1 : There is some difference in girth of x and y shrubs. 

 

Seventh value 32.8 is the median of combined ordered sequence. 

 
 

 Number of Observations  

 x y Total 

Above M 4 2  6 

Below M 2 4  6 

 6 6 12 
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χ
2 

=  33.1
3

4

6.6.6.6

)416(12 2




. 

 

Since χ
2 

=1.33 < χc
2 

=3.84, H0 is accepted. It is concluded that two samples come from the same 

population. There is no significant difference in the girth of hybrid and current variety of shrub. 

 

Remark: This example is for demonstrating the test procedure. In real situation n should be at 

least 20 and each cell frequency at least 5. 

 

5.   Sign Test for Matched Pairs 

In many situations, comparison of effect of two treatments is of interest but observations occur in 

pairs. Thus the two samples are not truly random. Because of such pair-wise dependence ordinary 

two sample tests are not appropriate. In such situations when one member of the pair is 

associated with the treatment A and the other with treatment B, nonparametric sign test has wide 

applicability. It can be applied even when qualitative data are available. As the name suggests it 

is based on the signs of the response differences Di. If i
th

 pair of observation is denoted by (xi, yi) 

where x is the effect of treatment A and y to B then Di = xi – yi. The hypothesis to be tested is  

H0 : No difference in the effect of treatments A and B. 

H1 : A is better than B. 

 

Test Statistic: Let S be the number of ‘-’ signs. 

 

Critical Value: Critical value Sc corresponding to n, the number of pairs, is given in Table 3. 

Significance level is given by α1 as critical region is one sided (left tailed). 

 

Decision Rule: If S ≤ Sc reject H0, otherwise accept H0. 

 

Tie: In case two values of a pair are equal, reject that pair and reduce the number of observations 

accordingly. 

 

Remark: In case, if the alternative H1 is that there is some difference in effect of A and B, S 

represents either the number of negative signs or the number of positive signs whichever turn out 

to be smaller. Critical region is two sided and significance level is given by α2 for finding Sc. 

 

Example 5.1: In a market study, two brands of lemonade were compared. Each of 50 judges 

tasted two samples, one of brand A and one of brand B with the following results: 35 preferred 

brand A, 10 preferred B, and 5 could not tell the difference. Thus, n = 45 and S = 10. Assuming 

α1 = 5%, critical value Sc = 16 from Table 3. Since S < Sc, we reject H0 of no difference in favour 

of the alternative H1 that the brand A is preferred. 

 

6.   Wilcoxon Signed Rank Test for Matched Pairs 

In situations where there is some kind of pairing between observations in the two samples, 

ordinary two sample tests are not appropriate. Signed rank tests are useful in such situations. 

When observations are measured data, signed rank test is more efficient than sign test as it takes 

account of the magnitude of the observed differences, if the difference between the response of 

the two treatments A and B is to be tested the test hypothesis is 

H0 : No difference in the effect of treatments A and B. 

H1 : Treatment A is better than B. 

 



Nonparametric Tests 

 

 209 

Test Statistic: T represents the sum of ranks with negative signs. For calculating T, obtain the 

differences Di = xi – yi where xi’s are response of treatment A and yi’s of treatment B. Rank the 

absolute values of differences. Smallest give rank 1. Ties are assigned average ranks.  Assign to 

each rank sign of observed difference. Obtain the sum of negative ranks. 

 

Critical Value: Tc is given in Table 4 for n number of pairs. Significance level is given by α1 as 

critical region is one sided. 

 

Decision Rule: T ≤ Tc reject H0, other wise accept it. 

 

Tie: Discard the pair for which difference = 0 and reduce n accordingly. Equal differences are 

assigned average ranks. 

 

Example 6.1: Blood pressure reading of ten patients before and after medication for reducing the 

blood pressure are as follows:  

 

Patient  1 2 3 4 5 6 7 8 9 10 

Before 

treatment 

x 86 84  78 90 92 77 89 90 90 86 

After 

treatment 

y 80 80  92 79 92 82 88 89 92 83 

Differences    6   4 -14 11   0 -5   1   1 -2  3 

Rank    7   5 9   8 Discard   6 1.5 1.5  3  4 

Sign  + + - + Discard - + + - + 

 

Test the null hypothesis of no effect against the alternative that medication is effective. 

 

Rank sum of negative differences = 3+6+9 = 18. Therefore value of test statistic T = 18. For n = 

9 and α1 = 5%, Tc = 8 from Table 4. Since T > Tc, null
 
hypothesis of no effect of medication is 

accepted. 

 

7.   Kolmogorov-Smirnov Test 

In situations where there is unequal number of observations in two samples, Kolmogorov-

Smirnov test is appropriate. This test is used to test whether there is any significant difference 

between two treatments A and B (say). The test hypothesis is 

H0 : No difference in the effect of treatments A and B. 

H1 : There is some difference in the effect of treatments A and B. 

 

Test Statistic: The test statistic is Dm,n = )x(G)x(Fsup nm  , F and G are the sample empirical 

distributions of sample observations of two samples respectively with respective sample sizes m 

and n. F(xi) is calculated as the average number of sample observations of the first sample that 

are less than xi. Similarly G(xi) is calculated. Dm,n is largest value of the absolute difference 

between F(x) and G(x). 

 

Critical Value: Tabulated value of Dm,n is available for different values of m, n and for different 

levels of significance and is given in Table 4 for n number of pairs. Significance level is given by 

α1 as critical region is one-sided. 
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Decision Rule: If the calculated value of Dm,n is greater than the tabulated value of Dm,n, H0 is 

rejected otherwise it is accepted. 

 

Example 7.1: The following data represent the lifetimes (hours) of batteries for different brands: 

 

Brand A 40 30 40 45 55 30 

Brand B 50 50 45 55 60 40 

 

Are these brands different with respect to average life? 

 

We first calculate the sample empirical distributions of two samples as follows: 

 

x )x(F6  )x(G6  )x(G)x(F 66   

30 2/6 0 2/6 

40 4/6 1/6 3/6 

45 5/6 2/6 3/6 

50 5/6 4/6 1/6 

55 1 5/6 1/6 

60 1 1 0 

 

D6,6 = )x(G)x(Fsup 66   = 3/6. From table, the critical value for m = n = 6 at level  = .05 is 

4/6. Since the calculated value of Dm,n is not greater than the tabulated value, H0 is not rejected 

and it is concluded that the average length of life for two brands is the same. 

 

8. Kruskal-Wallis Test 

This test is appropriate for use under the following circumstances: (a) If somebody wants to 

compare three or more conditions; (b) each condition is performed by a different group of 

participants; i.e. you have an independent-measures design with three or more conditions. (c) data 

do not meet the requirements for a parametric test. (i.e. use it if the data are not normally 

distributed; if the variances for the different conditions are markedly 

different; or if the data are measurements on an ordinal scale). 

 

If the data meet the requirements for a parametric test, it is better to use a one-way independent-

measures Analysis of Variance (ANOVA) because it is more powerful than the Kruskal-Wallis 

test. 
 

Example: Does physical exercise alleviate depression? Here, some individuals are randomly 

allocated to one of three groups: no exercise; 20 minutes of jogging per day; or 60 minutes of 

jogging per day. At the end of a month, ach individual is asked to rate how depressed they now 

feel, on a Likert scale that runs from 1 ("totally miserable") through to 100 (ecstatically happy"). 

 

Rating on depression scale 

No 

exercise 

Jogging for 

20 minutes 

Jogging for 60 

minutes 

23 22 59 

26 27 66 

51 39 38 
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49 29 49 

58 46 56 

37 48 60 

29 49 56 

44 65 62 

 

Out Put 

 

Test Statistics
a,b

 

 Depression 

Chi-Square 7.290 

df 2 

Asymp. Sig. .026 

a. Kruskal Wallis Test 

b. Grouping Variable: Depression 

 

A Kruskal-Wallis test revealed that there is a significant effect of exercise on depression.  

 

9. Friedman’s Test 

It is a non-parametric statistical test for testing whether samples originate from the same 

distribution. It is used for comparing more than two samples that are related. When the 

Friedman’s test leads to significant results, then at least one of the samples is different from the 

other samples. 

 

Example: A researcher wants to examine whether music has an effect on the perceived 

psychological effort required to perform an exercise session. The dependent variable is 

"perceived effort to perform exercise" and the independent variable is "music type", which 

consists of three categories: "no music", "classical music" and "dance music". To test whether 

music has an effect on the perceived psychological effort required to perform an exercise session, 

the researcher recruited 12 runners who each ran three times on a treadmill for 30 minutes. For 

consistency, the treadmill speed was the same for all three runs. In a random order, each subject 

ran: (a) listening to no music at all; (b) listening to classical music; and (c) listening to dance 

music. At the end of each run, subjects were asked to record how hard the running session felt on 

a scale of 1 to 10, with 1 being easy and 10 extremely hard. A Friedman test was then carried out 

to see if there were differences in perceived effort based on music type. 

 

No Music Classical Music Dance Music 

8 8 7 

7 6 6 

6 8 6 

8 9 7 

5 8 5 

9 7 7 

7 7 7 

8 7 7 

http://en.wikipedia.org/wiki/Non-parametric_statistics
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8 6 8 

7 6 6 

7 8 6 

9 9 6 

 

 

It shows that an overall statistically significant difference between the mean ranks of the related 

groups.  
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Table 1: Critical values for runs up and down test 

 

 α1 = 5 % α1 = 2.5 % α1 = 1 % α1 = 0.5 % 

 α2 = 10 % α2 = 5 % α2 = 2 % α2 = 1 % 

n Lower Upper Lower Upper Lower Upper Lower Upper 

3 - - - - - - - - 

4 - - - - - - - - 

5 1 - 1 - - - - - 

6 1 - 1 - 1 - 1 - 

7 2 - 2 - 1 - 1 - 

8 2 - 2 - 2 - 1 - 

9 3 8 3 - 3 - 2 - 

10 3 9 3 - 3 - 2 - 

11 4 10 4 10 3 - 3 - 

12 4 11 4 11 4 - 3 - 

13 5 12 5 12 4 12 4 - 

14 6 12 5 13 5 13 4 13 

15 6 13 6 14 5 14 4 14 

16 7 14 6 14 6 15 5 15 

17 7 15 7 15 6 16 6 16 

18 8 15 7 16 7 16 6 17 

19 8 16 8 17 7 17 7 18 

20 9 17 8 17 8 18 7 18 

21 10 18 9 18 8 19 8 19 

22 10 18 10 19 9 20 8 20 

23 1 19 10 20 10 20 9 21 

24 1 20 11 20 10 21 10 22 

25 12 21 11 21 11 22 10 22 

 

α1 : Significance level for one sided test 

α2 : Significance level for two sided test 

 

Source: Distribution Free Tests by H.R. Neave and P.L. Worthington. London, Unwin Hyman. 
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Table 2: Critical values for the two sample run test. 

 

      n1 

n2 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

2           2 2 2 2 2 2 2 2 2 

3     2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 

4    2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 

5   2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 

6  2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6 

7  2 2 3 3 3 4 4 5 5 5 5 5 6 6 6 6 6 6 

8  2 3 3 3 4 4 5 5 5 6 6 6 6 6 7 7 7 7 

9  2 3 3 4 4 5 5 5 6 6 6 7 7 7 7 8 8 8 

10  2 3 3 4 5 5 5 6 6 7 7 7 7 8 8 8 8 9 

11  2 3 4 4 5 5 6 6 7 7 7 8 8 8 9 9 9 9 

12 2 2 3 4 4 5 6 6 7 7 7 8 8 8 9 9 9 10 10 

13 2 2 3 4 5 5 6 6 7 7 8 8 9 9 9 10 10 10 10 

14 2 2 3 4 5 5 6 7 7 8 8 9 9 9 10 10 10 11 11 

15 2 2 3 4 5 6 6 7 7 8 8 9 9 10 10 11 11 11 12 

16 2 3 4 4 5 6 6 7 8 8 9 9 10 10 11 11 11 12 12 

17 2 3 4 4 5 6 7 7 8 9 9 10 10 11 11 11 12 12 13 

18 2 3 4 5 5 6 7 8 8 9 9 10 10 11 11 12 12 13 13 

19 2 3 4 5 6 6 7 8 8 9 10 10 11 11 12 12 13 13 13 

20 2 3 4 5 6 6 7 8 9 9 10 10 11 12 12 13 13 13 14 

 

Significance level 5% 

 

Source: Statistics in Research by Borten Ostle. Ames. Iowa USA. Iowa State University Press. 
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Table 3: Critical values for the Sign test (matched pairs) 

 

 α1  5 % 2.5 % 1 % 0.5 %  α1  5 % 2.5 % 1 % 0.5 % 

n α2  10 % 5 % 2 % 1 % n α2  10 % 5 % 2 % 1 % 

1  - - - - 26  8 7 6 6 

2  - - - - 27  8 7 7 6 

3  - - - - 28  9 8 7 6 

4  - - - - 29  9 8 7 7 

5  0 - - - 30  10 9 8 7 

6  0 0 - - 31  10 9 8 7 

7  0 0 0 - 32  10 9 8 8 

8  1 0 0 0 33  11 10 9 8 

9  1 1 0 0 34  11 10 9 9 

10  1 1 0 0 35  12 11 10 9 

11  2 1 1 0 36  12 11 10 9 

12  2 2 1 1 37  13 12 10 10 

13  3 2 1 1 38  13 12 11 10 

14  3 2 2 1 39  13 12 11 11 

15  3 3 2 2 40  14 13 12 11 

16  4 3 2 2 41  14 13 12 11 

17  4 4 3 2 42  15 14 13 12 

18  5 4 3 3 43  15 14 13 12 

19  5 4 4 3 44  16 15 13 13 

20  5 5 4 3 45  16 15 14 13 

21  6 5 4 4 46  16 15 14 13 

22  6 5 5 4 47  17 16 15 14 

23  7 6 5 4 48  17 16 15 14 

24  7 6 5 5 49  18 17 15 15 

25  7 7 6 5 50  18 17 16 15 

 

α1 : Significance level for one sided test 

α2 : Significance level for two sided test 

 

Source: Distribution Free Tests by H.R. Neave and P.L. Worthington. London, Unwin Hyman. 
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Table 4: Critical values for the Wilcoxon signed rank test 

 

 α1  5 % 2.5 % 1 % 0.5 %  α1  5 % 2.5 % 1 % 0.5 % 

n α2  10 % 5 % 2 % 1 % n α2  10 % 5 % 2 % 1 % 

1  - - - - 26  110 98 84 75 

2  - - - - 27  119 107 92 83 

3  - - - - 28  130 116 101 91 

4  - - - - 29  140 126 110 100 

5  0 - - - 30  151 137 120 109 

6  2 0 - - 31  163 147 130 118 

7  3 2 0 - 32  175 159 140 128 

8  5 3 1 0 33  187 170 151 138 

9  8 5 3 1 34  200 182 162 148 

10  10 8 5 3 35  213 195 173 159 

11  13 10 7 5 36  227 208 185 171 

12  17 13 9 7 37  241 221 198 182 

13  21 17 12 9 38  256 235 211 194 

14  25 21 15 12 39  271 239 224 207 

15  30 25 19 15 40  286 264 238 220 

16  35 29 23 19 41  302 279 252 233 

17  41 34 27 23 42  319 294 266 244 

18  47 40 32 27 43  336 310 281 261 

19  53 46 37 32 44  353 327 296 276 

20  60 52 43 37 45  371 343 312 291 

21  67 58 49 42 46  389 361 328 307 

22  75 65 55 48 47  407 278 345 322 

23  83 73 62 54 48  426 296 362 339 

24  91 81 69 61 49  446 415 379 355 

25  100 89 76 68 50  466 434 397 373 

 

α1 : Significance level for one sided test 

α2 : Significance level for two sided test 

 

Source: Distribution Free Tests by H.R. Neave and P.L. Worthington. London, Unwin Hyman. 

 

 

 

 



 

 

SAMPLING IN FIELD EXPERIMENTS 
 

 

In agricultural field experiments, the size of the plot is selected in order to achieve a prescribed 

degree of precision for measurement of the character of primary interest.  We then measure the 

character under study on the whole of the experimental unit i.e. plot.  Because of the nature of the 

character of primary interest like yield, the plot size required is often larger than that needed to 

measure other characters. In order to save expense and time the measurements of additional 

characters of interest can be made by sampling a fraction of the whole plot.  For example, for 

plant height, the measurements can be made only from say 10 of the 200 plants in the plot, for 

tiller number, count only 1 m
2
 of the 15 m

2
 plot, for leaf area, measure from only 20 of the 

approximately 2000 leaves in the plot.  For such cases like plant height, leaf area etc. it may not 

be always feasible or desirable to get the plot wise measurements. Here we resort to sampling in 

each plot and obtain the measurements on a certain number of sampling units in each plot and  

subject the data for statistical analysis. 
    
An appropriate sample is one that provides an estimate, or a sample value, that is as close as 

possible to the value that would have been obtained had all plants in the plot been measured - the 

plot value. The difference between the sample value and the plot value constitutes the sampling 

error. Thus a good sampling technique is one that gives small sampling error.   
 

The sampling unit is the unit on which actual measurement is made.  The important features of 

an appropriate sampling unit are: 

 Ease of Identifications 

 Ease of Measurement 

 High Precision  

 Low  Cost 
 

The number of sampling units taken from the population is sample size.  In a replicated field trial 

where each plot is a population, sample size could be the number of plants per plot used for 

measuring plant height, the number of leaves per plot used for measuring leaf area, or the number 

of hills per plot used for counting tillers. The required sample size for a particular experiment is 

governed by:  

(i) The size of the variability among sampling units within the same plot (sampling           

variance)  

(ii) The degree of precision desired for the character of interest.  

 

In practice, the size of the sampling variance for most plant characters is generally not known.  

The desired level of precision can, however, be prescribed by the researcher based on 

experimental objective and previous experience, in terms of the margin of error, either of the plot 

mean or of the treatment mean.  

The sample size for a simple random sampling design that can satisfy a prescribed margin of 

error of the plot mean is computed as:         

        n = 
( )( )

( )( )

Z v

d X

s
2

2 2
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where n is the required sample size, Z is the value of the standardized normal variate 

corresponding  to the level  of significance   , vs is the sampling variance, X is the mean value, 

and d is the margin of error  expressed as a fraction of the plot mean. 
 

The information of primary interest to the researcher is usually the treatment means (the average 

over all plots receiving the same treatment) or actually the difference of means, rather than the 

plot mean (the value from a single plot).  Thus, the desired degree of precision is usually 

specified in terms of the margin of error of the treatment mean rather than of the plot mean.  In 

such a case, sample size is computed as:  

      n = 
(Z )(v )

r(D )(X ) (Z )(v )

2
s

2 2 2
p




 

where n is the required sample size, r is the number of replications, Z  and vs are as defined 

earlier, vp is the variance between plots of the same treatment (i.e. experimental error), and D is 

the prescribed margin of error expressed as a fraction of  the treatment  mean.   In this case, 

additional information on the size of the experimental error (vp) is needed to compute sample 

size.  
 

A sampling design specifies the manner in which the n sampling units are to be selected from 

the whole plot.  There are five commonly used sampling designs in replicated field trials: simple 

random sampling, multistage random sampling, stratified random sampling, stratified multistage 

random sampling, and sub-sampling with an auxiliary variable.  
 

In a simple random sampling design, there is only one type of sampling unit and, hence, the 

sample size (n) refers to the total number of sampling units to be selected from each plot 

consisting of N units.  The selection of the n sampling units is done in such a way that each of the 

N units in the plot is given the same chance of being selected in plot sampling, two of the most 

commonly used random procedures for selecting n sampling units per plot are the random-

number technique and the random - pair technique.  
 

In contrast to the simple random sampling design, where only one type of sampling unit is 

involved, the multistage random sampling design is characterized by a series of sampling 

stages.  Each stage has its own unique sampling unit.  This design is suited for cases where the 

sampling unit is not the same as the measurement unit.  For example, in a rice field experiment, 

the unit of measurement for panicle length is a panicle and that for leaf area is a leaf.  The use of 

either the panicle or the leaf as the sampling unit, however, would require the counting and listing 

of all panicles or all leaves in the plot which is time-consuming task that would definitely not be 

practical. 

 

The stratified random sampling design is useful where there is large variation between 

sampling units and where important sources of variability follow a consistent pattern.  In such 

cases, the precision of the sample estimate can be improved by grouping the sampling units into 

different strata in such a way that variability between sampling units within a stratum is smaller 

than that between sampling units from different strata.  Some examples of stratification criterion 

used in agricultural experiments are as follows: 
 

 Soil Fertility Pattern.  In an insecticide trial where block is based primarily on the direction 

of insect migration, known patterns of soil fertility cause substantial variability among plants 

in the same plot.  In such a case, a stratified random sampling design may be used so that 
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each plot is first divided into several strata based on the known fertility patterns and sample 

plants are then randomly selected from each stratum.  

 Stress Level.  In a variety screening trial for tolerance for soil salinity, areas within the same 

plot may be stratified according to the salinity level before sample plants are randomly 

selected from each stratum.  

 Within-Plant Variance.  In a rice hill, panicles from the taller tillers are generally larger than 

those from the shorter ones.  Hence, in measuring such yield components as panicle length or 

number of grains per panicles, panicles within a hill are stratified according to the relative 

height of the tillers before sample panicles are randomly selected from each position (or 

stratum).  
 

Stratified multistage random sampling: Consider the case where a rice researcher wishes to 

measure the average number of grains per panicle through the use of a two-stage sampling design 

with individual hills in the plot as the primary sampling unit and individual panicles in a hill as 

the secondary sampling unit. It is realized that the number of grains per panicle varies greatly 

between the different panicles of the same hill.  A logical alternative is to apply the stratification 

technique by dividing the panicles in each selected hill (i.e., primary sampling unit) into k strata, 

based on their relative position in the hill, before a simple random sample of m panicles from 

each stratum is taken separately and independently for the k strata.  In this case, the sampling 

technique is based on a two-stage sampling design with stratification applied on the secondary 

unit.  Of course, instead of the secondary unit (panicles) the researcher could have stratified the 

primary unit (i.e., single-hill) based on any source of variation pertinent to his experiment.  In 

that case, the sampling technique would have been a two-stage sampling design with 

stratification of the primary unit.  Or, the researcher could have applied both stratification criteria 

-one on the hills and another on the panicles-and the resulting sampling design would have been a 

two-stage sampling with stratification of both the primary and secondary units.  

 

Sub-sampling with an auxiliary variable. The main features of a design for subsampling with 

an auxiliary variable are:  

 In addition to the character of interest, say X, another character, say Z, which is  closely 

associated with and is easier to measure than X, is  chosen.  

 Character Z is measured both on the main sampling unit and on the subunit, whereas variable 

X is measured only on the subunit. The subunit is smaller than the main sampling  unit and is 

embedded in the main  sampling  unit.  
 

This design is usually used when the character of interest, say X, is so variable that the large size  

of sampling unit or the large  sample size required  to achieve   a  reasonable  degree of precision 

or both,  would  be impractical.  To improve the precision in the measurement of X , without 

unduly  increasing  either  the sample size or the size of sampling unit, the subsampling with an 

auxiliary variable design can be used.  

 

Supplementary Techniques  
So, far, we  have discussed sampling techniques for  individual plots, each of  which is treated  

independently  and without  reference  to other  plots in the same  experiment.  However, in a 

replicated field trial where the sampling technique is to be applied to each and all plots in the 

trial, a question usually raised is whether the same set of random sample can be repeated in all 

plots or whether different random processes are needed for different plots. And, when data of a 

plant character are measured more than once over time, the question is whether the measurements 
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should be made on the same samples at all stages of observation or should randomization be 

applied.  
 

The two techniques aimed at answering these questions are block sampling and sampling for 

repeated measurements.  
 

Block  Sampling  is  a technique in which all plots of the same block (i.e. replication ) are 

subjected to the same  randomization scheme (i.e. using the  same sample location  in the plot)  

and  different sampling  schemes are applied separately and independently for different blocks. 

The block sampling technique has the following desirable features: 

 Randomization is minimized.  With   block sampling randomization is done only r times 

instead of rt times as it is when randomization is done separately for each and all plots.  

 Data collection is facilitated.  With block  sampling, all plots in the same  block have the 

pattern  of sample  locations so that an observer (data  collector) can easily move  from plot to 

plot within  a block  without the need  to reorient himself  to a new pattern of  sample  

location. 

 Uniformity between plots of the same block is enhanced because there is no added variation 

due to changes in sample location from plot to plot.  
 

Data collection by block is encouraged.  For example, if data collection is to be done by several 

persons, each can be conveniently assigned to a particular block which facilitates the speed and 

uniformity of data collection. Even if there is only one observer for the whole experiment, he can 

complete the task one block at a time, taking   advantage of the similar sample locations of plots 

in the same block and minimizing one source of variation among plots, namely, the time span in 

data collection.  
 

Sampling for Repeated Measurements: Plant characters are commonly measured at different 

growth stages of the crop.  For example, tiller number in rice may be measured at 30, 60, 90 and 

120 days after transplanting or at the tillering, flowering,  and harvesting stages.  If such 

measurements are made on the same   plants at all stages of observation, the resulting data may 

be biased because plants that are subjected to frequent handling may behave differently from 

others. In irrigated wetland rice, for example, frequent trampling around plants, or frequent 

handling of plants not only affect the plant characters being measured but   also affect   the 

plants’ final yields.  On the other hand, the use of an entirely different set of sample plants at 

different growth stages could introduce variation due to differences between sample plants. The 

partial replacement procedure provides for a satisfactory compromise between the two conflicting 

situations.  With partial replacement, only a portion p of the sample plants used in one growth 

stage is retained for measurement in the succeeding stage.  The other portion of (1-p) sample 

plants is randomly obtained from the remaining plants in the plot.  The size of p depends on the 

size of the estimated undesirable effect of repeated measurements of the sample plants in a 

particular experiment.  The smaller this effect, the larger p should be. For example, in the 

measurement of plant height and tiller number in transplanted rice, p is usually about 0.75.  That 

is, about 75% of the sample plants measured at given growth stage is retained for measurement in 

the succeeding stage and the remaining 25% is obtained at random from the other plants in the 

plot.  

 

Analysis  

The various steps involved in the analysis of sampled data is described here considering a block 

design setting. Suppose an experiment is conducted with ‘t’ treatments replicated ‘r’ times and let 
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there be ‘n’ observations made in each plot.  We assume the following linear additive model for 

the block design. 

 Yijk =  + i + j + eij + ijk  

where Yijk is the observation on the k
th  

sample for the i
th

 treatment in the j
th

 replicate (i = 1,2,...,t ; 

j = 1,2,...,r; k = 1,2,...,n),   is the general mean effect, i  is the effect of  i
th 

treatment,  j is the 

effect of  j
th

 replication, eij  is the plot error distributed as N(0 ,  e

2
),  ijk  is the  sampling error 

distributed as N(0 ,  s

2
). 

 

The analysis of variance will be of the form given below: 

 

ANOVA  

Source  D.F.  S.S M.S.  E(M.S.)  

Replication (r-1)  SST   

 

Treatments 

 

(t-1) 

 

SSR 

 
 s

2
 + n e

2
 +

rn

t
i

j



1

2( . )   

 

Treatment x Replication 

(Plot error) 

(t-1) (r-1) SSRT s
1

2
  s

2
e
2n  

 

Sampling Error  

(Samples within plots) 

rt(n-1)  SSE s
2

2
 s

2  

 

Total rtn-1    

 

The sampling error is estimated as  s
2  = s2

2
. 

The plot error is estimated as  e
2 

s s

n
1
2

2
2

. 

When e
2  is negative, it is taken as zero.  

The variance of the i
th

 treatment mean ( Yi.. ) based on r-replications and s-samples per plot   =   

 s
2

e
2 n

rn
 

The estimated variance of ( Yi.. ) = 
(   ) s en

rn

2 2
 

Taking the number of sampling units in a plot to be large (infinite), the estimated variance of a 

treatment mean when there is complete recording (i.e. the entire plot is harvested) =
e

r

2

 

 

The efficiency of sampling as compared to complete recording  

 
 /

(   ) /



 

e

s e

r

n rn

2

2 2
 

 

The standard error of a treatment mean ( Yi.. ) with ‘n’ samples per plot and with ‘r’ replications is   
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The percentage standard error or coefficient of variation is   

 p = 
 

/
 s e

rn r
x

2 2
1 2

100







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

















 (Y  )  i..  

Thus  

 n  =


( )





s

er p

2

2 2

2

2

1

100

(Y  )  

r
i.. 



















 

 

For any given r and p, there will be t values for s corresponding to the t treatment means.  The 

maximum s will ensure the estimation of any treatment mean with a standard error not exceeding 

p percent.  
 

The sum of squares due to different components of ANOVA can be obtained as follows: 
 

Form a two way table between replications and treatments, each  cell figure being the total  over 

all samples from a plot.  

 

Grand Total (G.T.)  = yijk

kji

 ,   Correction factor (C.F.)= 
(G.T. )   

rtn

2

 

Total  S.S.  = y nijk
kji

C F.










 

2

.  

Ti = i
th

 treatment total = y ijk

kj

   

Rj = j
th

 replication total = y ijk

ki

  

Treatment S.S. = 
T

rn
C Fi

i

2

  . . ,  Replication  S.S. = 
R

tn
C F

j

j

2

  .  

Replication x Treatment S.S. = Total S.S. - Replication S.S -Treatment S.S. 

 

Total S.S. of the entire data = y C Fijk

kji

2  . .  

S.S. due to sampling error = Total S.S. of the entire data - Replication S.S. -    

            Treatment S.S. - Replication x Treatment S.S.  

 

Exercise: To study the effect of differences in the number of plants per hill on the growth of 

Maize crop, a randomized block design was laid out at the Agricultural College Farm, Poona.  

The treatments tried were A - one plant per hill, B - two plants per hill, C - three plants per hill, D 

- four plants per hill.  
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The net plot size used in the layout was 26’ x 20’ and the spacing between hills was 2’ x 2’.  The 

table below gives the data on the length (in inches) of 5 cobs randomly selected from each plot:  

 

Length of cobs (in inches)  

 

Replication  Cob 

 number  

Treatments  

            A                B           C          D 

      

I 1 9.3 9.0 8.6 6.4 

 2 8.8 9.0 7.0 7.2 

 3 9.0 10.5 8.4 6.8 

 4 8.8 8.9 9.1 7.7 

 5 8.6 9.2 8.2 6.0 

      

II 1 10.2 9.7 9.0 6.4 

 2 9.0 10.0 8.0 7.4 

 3 9.4 9.2 8.1 6.8 

 4 9.6 10.5 8.2 6.8 

 5 9.8 10.3 7.0 6.6 

      

Replication  Cob 

 number  

Treatments  

  A B C D 

III 1 9.9 8.4 7.5 6.3 

 2 10.4 9.4 7.5 6.7 

 3 11.0 8.2 8.5 6.0 

 4 10.8 9.1 8.0 7.0 

 5 10.0 9.8 8.6 7.3 

      

IV 1 10.6 8.8 7.0 8.4 

 2 9.2 9.3 7.3 7.8 

 3 9.9 9.9 7.6 8.0 

 4 10.4 9.0 6.7 8.4 

 5 9.9 8.0 6.5 7.5 

      

V 1 10.4 11.0 9.9 7.7 

 2 9.0 10.4 9.0 7.0 

 3 9.7 9.0 8.9 7.0 

 4 9.3 10.2 8.9 6.7 

 5 9.6 9.6 9.4 7.2 

   

(a) Analyze the data and find the standard error of treatment means.  

(b) Estimate the plot and sampling components of error variance and use these estimates to find 

out the relative efficiency of sampling.  

(c) Prepare a table giving the minimum number of sampling units per plot necessary to estimate 

the treatment means with 4 and 5 percent standard error when the number of replications are 

5 and 6.  
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Calculations  
Step 1:  Form the following two way table between replications and treatments, each cell figure 

being the total of cob lengths in five samples from a plot.  

 

Replication  Treatments  Total  

         A            B            C         D  

I 44.5 46.6 41.3 343.1 166.5 

II 48.0 49.7 40.3 34.0 172.0 

III 52.1 44.9 40.1 33.3 170.4 

IV  50.0 45.0 35.1 40.1 170.2 

V 48.0 50.2 46.1 35.6 179.9 

      

Total  242.6 236.4 202.9 177.1 859.0 

 

 

Step 2: Calculation of sum of squares and Analysis of variance. 

 

The various sum of squares can be obtained using the formulae given above and the Analysis of 

Variance table can be obtained.  

 

 ANOVA  

 

Source  D.F. S.S. M.S.          F 

Replication    4 4.91 1.23      0.59  

Treatment    3     112.09  37.36    18.05** 

Replication x Treatment  

(plot error)  

12 24.88  2.07      6.68* 

Samples within plots  

(Sampling error )  

80 24.91 0.31  

Total  99 166.79    

 

** denotes significant at 1 percent level and * significant at 5 percent level. 

 

The mean square (s 1

2
) is first tested against s 2

2
  if - (i)  s 1

2
 is significant, then treatments  are 

tested against s 1

2
 and  if -(ii) s 1

2
 is not significant , the  treatments are tested against the pooled  

mean square of s 1

2
 and s 2

2
. 

In the present case s 1

2
 is significant, so we test the treatments against s 1

2
. 

 

Step 3:    Standard Error  

 

Standard Error of the difference between two treatment means  

 

 S.Ed = 
s

rn
1
2

= 
2 x 2.07

5 x 5
= 0.4069 inches.  

 

Step 4:  Efficiency  
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Thus the number   of sampling units required to measure the treatment means  with 4 and 5  per 

cent  standard error when  the number  of replication are 5 and 6 is worked out and is presented 

below.  

Sampling units per plot (s) 

 

Treatments Treatment 

means 

p=4 

      r = 5               r = 6 

p=5 

       r = 5              r = 6 

    

1 9.704         1                     1           1                   1 

2 9.456         1                     1           1                   1 

3 8.116         2                     2           1                   1 

4 7.084         5                     3           2                   1 

 

Step 6: Conclusion  

(a) The treatments are found to be highly significant.  

(b) Efficiency of sampling as compared to complete recording is 85 per cent.  

(c) The number  of sampling units necessary to estimate treatment means with  

 (i) 4 per cent standard error  

      when number of replications is 5 is 5,  

      when number of replications is 6 is 3.  

 (ii) 5 per cent standard error 

      when number of replications is 5 is 2,  

      when number of replications is 6 is 1. 

 

 

 

 



 
 

PROBIT ANALYSIS OF DOSE-RESPONSE DATA 
 

 

1.   Introduction 

Probit analysis is widely used in various fields where the response variable is qualitative. The 

main application of probit analysis is observed in the field of toxicological studies, where it 

transforms the sigmoid dose-response curve to a straight line that can then be easily analyzed by 

regression either through least squares or maximum likelihood. In other words, probit analysis is 

a methodology which transforms the complex percentage affected vs. dose response into a linear 

relation of probit vs. dose response. The probit can then be translated into percentages. The 

method is appropriate because of the typical shape found in the dose response curve. The method 

is approximate but allows quantification of consequence due to exposure.  

 

“Probit” is an abbreviation of the term “probability unit” (the term is attributed to Bliss) and was 

the first such model developed and studied to treat data such as the percentage of pest killed by a 

pesticide. Bliss(1934) proposed transforming the percentage killed into “probit” (he defined it 

arbitrarily as equal to 0 for 0.0001 and 10 for 0.9999) and included a table to aid other 

researchers to convert kill-percentage to probit, which then could be plotted against the logarithm 

of the dose i.e. dosage. The table introduced by Bliss was carried forward in an important text on 

toxicological application by Finney (1952). Values tabulated by Bliss can be derived from probit 

as defined here by adding a value of 5. Using Bliss‟s idea, Leslie et al. (1945) were able to 

discuss the distribution of body–weight at which female rats in the wild reach maturity through 

probit analysis.  

 

Mainly Probit analysis is used to analyze data from bioassays [most commonly refers to 

assessment of vitamins, hormones, toxicants and drugs of all kinds by means of response 

produced when doses are given to experimental animals (Finney 1952)] experiments, such as 

proportion of insect killed by several concentrations of an insecticide or at several time intervals 

at one or more concentration of an insecticide (Throne et al., 1995). One type of assay which has 

been found valuable in many different fields, but especially in toxicological studies, is that 

dependent upon quantal or all-or-nothing response. Though quantitative measurement of a 

response is almost always to be preferred when practicable, there are certain responses which 

permit no graduation and which can only be expressed as „occurring‟ or „not-occurring‟. The 

most common example is mortality such as in many insecticidal studies the interest lies in 

whether or not a test insect is dead, or whether the insect has reached a certain degree of 

inactivation. In fungicidal investigations, failure of a spore to germinate is a quantal response of 

similar importance. 

 

2.   Probit Model                               

In probability theory and statistics, the probit function is the inverse cumulative distribution 

function (CDF), associated with the standard normal distribution.  An alternative distribution 

could be the logistic distribution, which leads to the logit or logistic model. Both logistic and 

probit curves are so similar that they yield almost identical results. In practice they give estimated 

probabilities that differs very little (Aldrich and Nelson, 1984). The choice between logistic and 

probit is a matter of practical preference and experience. 

 

For the standard normal distribution N (0, 1), the CDF is commonly denoted by Φ (z) 

(continuous, monotone increasing sigmoid function) given by, 
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2uz z -
21

( ) ( ) ( )du du
2π

z Z z u e

 

                                                          … (2.1) 

 

As an example, considering the familiar fact that the N (0, 1) distribution places 95% of 

probability between -1.96 and 1.96, and is symmetric about zero, it follows that 

 

                ( 1.96) 0.025 1 (1.96)                                                                                  … (2.2) 

 

The probit function gives the 'inverse' computation, generating a value of an N (0, 1) random 

variable, associated with specified cumulative probability. Formally, the probit function is the 

inverse of Φ (z), denoted by Φ 
− 1

(p). Continuing the example, 

 

              1 1(0.025) 1.96 (0.975)                                                                          … (2.3) 

 

In general, 

 

               (probit(p))=p  and probit (Φ(z))=z                                                                   … (2.4) 

 

In statistics, a probit model is a popular specification of a generalized linear model. If Y be a 

binary response variable, and let X be the single predictor variable, then the probit model 

assumes that, 

 

               2i

i i i

1α+βx

2

-

P(Y =1|X = x)=Φ(α+βx )

1
dz

2

z
e







 
                                                                     … (2.5) 

 

where Φ is the CDF of the standard normal distribution. The parameters β are estimated by 

maximum likelihood. 

 

3.   Quantal Response 

3.1 Frequency Distribution of Tolerance                        

Two major components in any dose-response situation are the stimulus (e.g. a vitamin, a drug, a 

mental test or a physical force) and the subject (e.g. an animal, a plant, a human volunteer etc.). A 

stimulus is applied to the subject at a specified dose, intensity specified in units of concentration, 

weight, time or other appropriate measure, under controlled environmental condition. As a result 

subject manifests a response. 

  

The response is quantal, occurrence or non-occurrence will depend upon the intensity of the 

stimulus. For any subject under controlled conditions, response occurs above a certain level of 

intensity, such a value is generally known as threshold or limen, but tolerance is now widely 

accepted. The tolerance value will vary from one subject to another in the population used. For 

quantal response data it is therefore necessary to consider distribution of tolerance over the 

population studied. If the dose or intensity of stimulus is measured by z, the distribution of 

tolerance may be expressed by: 
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              dP=f(z)dz                                                                                                             … (3.1) 

 

This equation states the proportion, dP , of the whole population of subject whose tolerance  lie  

between z and z+dz  at  the time of testing, where dz  represents a small interval on dose scale; 

the factor relating  dP  to the length of this interval is the frequency function, f(z) , uniquely 

determined for each possible value of z. 

 

If a dose 
0z  were given to the whole population, every individual whose tolerance was less than 

0z  would respond. The proportion of these is P ,  

where 

                 
0z

0

P= f(z)dz                                                                                                             ... (3.2) 

 

The measure of dose is here assumed to be a quantity that can conceivably range from zero 

to , response being certain for very high doses so that 

                 

0

f(z)dz 1



                                                                                                            … (3.3) 

 

3.2 The Dose Metameter                           

The frequency distribution of tolerances, as measured on the natural scale, is usually markedly 

skewed, but often a simple transformation of the scale of measurement will convert it to a 

distribution approximately of normal form. The transformed scale of dose on which tolerances 

are normally distributed is known as metametric scale, and the measure of dose is the dose 

metameter. 

 

The transformation 

 

                10x=log z                                                                                                               … (3.4) 

generally brings normality in the response variable, however for some fungicide a better 

transformation may be  

                ix =z , where usually i 1 . 

 

3.3 The Median Effective Dose                         The 

effectiveness of a stimulus in relation to a quantal response is referred to as the minimal effective 

dose, or, for a more restricted class of stimuli as the minimal lethal dose. However it does not 

take into account the variation in tolerance within a population. The logical weakness of such 

concepts is the assumption that there is a dose for any given chemical, which is only just 

sufficient to kill all or most of the animals of a given species, and that doses a bit lesser would 

not kill any animal of that species. However, in toxicological studies such assumptions do not 

always hold good. 

  

It might be thought that the minimal lethal dose of a poison could instead be defined as the dose 

just sufficient to kill a member of the species with the least possible tolerance, and also a 

maximal non-lethal dose as the dose, which will just fail to kill the most resistant member.  Some 

doses will be so low that no test subject will succumb to them and others so high as to prove fatal 
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at all and difficulties arise in determination of the end-points of these ranges. The problem is that 

of determining the dose at which the dose response curve for the whole population needs the 0% 

or 100% levels of kill and even a very large experiment could scarcely estimate these points with 

any accuracy. 

 

Alternatively, a median lethal dose, or, as a more general term to include response other than 

mortality, a median effective dose is preferred. This is the dose that will produce a response in 

half the population. The median effective dose is commonly referred to as the ED50, the more 

restricted concept of median lethal dose as the LD50. With a fixed total number of subjects, 

effective doses in the neighborhood of ED50 can usually be estimated more precisely than those 

for more extreme percentage levels and this is, therefore, particularly favoured in expressing the 

effectiveness of the stimulus. The ED50 can be regarded as the median of the tolerance 

distribution and thus it is the level of tolerance such that exactly half the subject lies on either 

side of it.  

 

For any distribution of tolerance, the ED50 is the value of 0z , such that  

                
0z

0

f(z)dz 0.5                                                                                                         … (3.5) 

When a simple normalizing transformation for the doses is available, so that x, the normalizing 

measure of dose (commonly known as dosage), has a normally distributed tolerance, equation 

(3.1) is transformable to 

                

2
2

1
(x-μ)

2σ1
dP= e dx

σ 2Π



.                                                                                  … (3.6) 

where  is the center of the distribution and 2 , its variance. The  is the population value of the 

mean dosage tolerance, or median effective dosage, and efforts must be directed at estimating it 

from the observational data. The log10ED50 is the value of 0x  for which   

  

                
 

2
0

2

1x x-μ
2σ1

e dx 0.5
σ 2π





                                                                               … (3.7) 

 

The solution of equation (3.7) is , so that the ED50 is
μ10 . 

Any two insecticides may require the same rate of application in order to be effective to half the 

population, but, if the distribution of tolerances has a lesser 'spread' for one than for the other, any 

increase or decrease from this rate will produce a greater change in mortality for the first than for 

the second. This spread is measured by the variance 2 . This measure along with the ED50 fully 

describes the effectiveness of the stimulus. The smaller the value of 2 , the greater is the effect 

on mortality of any change in dose. 

 

4.   Estimation of the Median Effective Dose 

4.1 The N.E.D. and Probit Transformation                                   

Initially the measure of the probability of response was proposed on a transformed scale i.e. the 

normal equivalent deviate (or N.E.D.). This response metameter is Y, defined by: 
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21Y u
21

P = e du
2π




                                                                                            ... (4.1) 

Thus the N.E.D. of any value of Р between 0 and 1 is defined as the abscissa corresponding to a 

probability Р in a normal distribution with mean 0 and variance 1. 

 

Equation (4.1) determines either of Р and Y uniquely from the other. From integration of 

equation (3.6), if Р is the probability of response at a dosage whose metameter is a particular 

value X, then  

 

                  

2
2

1
( )

21
P

2

X x

e dx




 

 



                                                                               … (4.2) 

 

which by writing x = μ+σu  

 

becomes   

2

(X-μ)
1σ u
21

P e du
2π





                                                                                          … (4.3) 

                 Comparison 

of equation (4.3) with equation (4.1) shows that 

 

                
(X - μ)

Y=
σ

                                                                                                            … (4.4) 

Thus, the relation between the dose metameter (x) and the N.E.D. of the probability of response 

at that dosage is a straight line. 

 

Bliss (1934) suggested a slightly different response metameter. Bliss defined the probit of the 

proportion Р as Y, where 

 

                 

21Y-5 - u
21

P = e du
2π


                                                                                           … (4.5) 

 

For any Р, the probit is simply the N.E.D. increased by 5. All subsequent theory is essentially 

same for the two metameters. The N.E.D, however, is negative if Р is less than 50%, whereas the 

probit is generally positive unless Р is exceedingly small. 

 

Comparison with equation (4.1) shows that the probit of the expected proportion responded is 

related by the linear equation  

 

                
1

Y=5+ (x-μ)
σ

                                                                                                        … (4.6) 

 

In particular, the median effective dosage is estimated as that value of x which gives Y = 5.       
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4.2 The Probit Regression Line                                 When 

experimental data on the relationship between dosage and response have been obtained, either a 

graphical or an arithmetical approach can be used to estimate the parameters. Both approaches 

depend on the probit transformation. The graphical approach is much more rapid and is 

sufficiently good for many purposes, but for some, more complex problems, or when an accurate 

assessment of the precision of estimates is wanted, the more detailed arithmetical analysis is 

necessary. Here graphical approach is discussed. 

 

To start with, the percentage response observed for each dose are calculated and converted to 

probits by means of the following table (Finney, 1971): 

 

Table 4.1: Transformation of percentages to probits 

 

 
The probits are then plotted against the dose metameter i.e. the logarithm (base 10) of the dose. 

Very extreme probits, say outside the range 2.5-7.5, carry little weight and should be disregarded. 

A straight line is drawn to fit the points as satisfactorily as possible.  The line is nothing but the 

weighted regression line of the mortality probit on x. By visual inspection, the log10ED50 is 

estimated from the line as m, the dosage at which Y = 5. This can be taken as estimate of .The 

estimated slope of the line (b) is an estimate of 1/σ, can be obtained as the increase in Y for a unit 

increase in x. These two estimates are then substituted for the parameters in equation (4.6) to give 

the estimated relation between dosage and response. To test the hypothesis that the line is an 

adequate representation of the data, a 2χ test of the form        

                                                                                                                                                                                                                                                       

                
2

2 2
k-2

(r -np)
χ = ~ χ

np(1-p)
                                                                                         … (4.7)      

 

may be used. Here n is the number of subjects exposed to a specific concentration, r is the 

observed number of units respond out of n number of unit, 
r

p =
n

 is the estimated proportion of 

response for that particular concentration. Here k level of concentration is applied over the test 

subject and summation is taken over all the level of concentration tested. A value of 2χ  within 



Probit Analysis of Dose-Response Data 

232 

 

the limits of random variation indicates satisfactory agreement theory (the line) and observation 

(the data). 

 

Example 4.1: Table 4.2 contains the data on effect of a series of concentrations of the pesticide 

Rotenone when spraying on Macrosiphoniella sanborni, the chrysanthemum aphis, in batches of 

about fifty (Finney, 1971). 

             

Table 4.2: Toxicity of Rotenone to Macrosiphoniella sanborni 
  

Concentration 

(mg. /1.) 

No. of 

insects 

(n) 

No. of 

affected  

(r) 

% kill 

(p) 

Log 

concentration  

(x) 

Empirical 

probit 

10.2 50 44 88 1.01 6.18 

  7.7 49 42 86 0.89 6.08 

  5.1 46 24 52 0.71 5.05 

  3.8 48 16 33 0.58 4.56 

  2.6 50 6 12 0.41 3.82 

0 49 0 0 - - 

 

Table 4.2 summarizes the dose metameter, percentage kill, and empirical probit values for the 

experiment. Over the range of concentrations tested, the relation between percentage kills and log 

concentration is apparently sigmoid. The percentages are plotted against the logarithm of doses 

and fitted with the normal sigmoid curve in Fig. 4.1. 

 

 
 

Fig.4.1: Relation between percentage kill of Macrosiphoniella sanborni and logarithm of dose 

of Rotenone. 

 

In order to fit a straight line, percentages of kill have been converted into probits using Table 4.1 

and are given in the last column of Table 4.3. When probits are plotted against dosages 

(logarithm to the base 10 of doses); they lie nearly on a straight line. Fig 4.2 gives the plot of 

probits vs. dosages. From this line, probits corresponding to many different values of x can be 

found out and converted back to percentages by using Table 4.1 inversely. 
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Fig. 4.2: Relation between probit of kill of Macrosiphoniella sanborni and logarithm of dose of 

Rotenone. 

 

In Fig. 4.2 of the present example, a probit value of 5 is given by a dosage of m = 0.687; this 

therefore is the estimate of log10ED50, and the ED50 is estimated as a concentration of 4.86mg/l. 

Similarly the log10ED90 corresponds to a probit of 6.28 and is therefore 1.006; the ED90 is thus 

estimated as 10.14 mg/l.     

Thus Fig. 5.2 can also be used to give the slope of the line: an increase of 0.319 in x corresponds 

with an increase of 1.28 in probit. Hence the estimated regression coefficient of probit on dosage, 

or the rate of increase of probit value per unit increase in x, is 

                           

                  b = 4.01                                                                                                                … (4.8) 

 Thus equation (4.6) becomes  

 
 

                  Y = 5 + 4.01 (x – 0.687), or Y = 2.25 + 4.01x                                                    … (4.9)  

 

Equation (4.9) may be used to calculate expected numbers of insects killed at each concentration. 

By substitution of the values of x used in the experiment, the equation gives the values of Y 

which are given in column 2 of Table 4.3 as expected probits. Thus a probit of 6.30 corresponds 

to a percentage of between 90 and 91, or, more accurately, 90 + 2/6%. If the expected proportion 

for any concentration is multiplied by n, the number of insects tested at that concentration, the 

result is the expected number of responded insects, or the average number which would be 

affected in a batch of size n if equation (4.9) represents the true relationship between dosage and 

response. These numbers, np, may then be compared with the actual numbers affected, r, in order 

to judge the adequacy of the equation.        
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Table 4.3: Comparison of Observed and Expected Mortality 

 

Log 

concentrat

ion 

 

 

(x) 

Expect

ed 

probit 

 

 

(Y) 

% 

kill 

 

 

 

(p) 

 

No. 

of 

insect

s 

 

(n) 

No. affected Discrepancy 

 

 

 

(r-np) 

2(r-np)

np(1-p)

 

Observed 
 
 

 

(r) 

Expected 

 

 
(np) 

1.01 6.30 90.3 50 44 45.2 -1.2 0.33 

0.89 5.83 79.7 40 42 39.1 2.9 1.06 

0.71 5.10 54.0 46 24 24.8 -0.8 0.06 

0.58 4.58 33.7 48 16 16.2 -0.2 0.00 

0.41 3.90 13.6 50 6 6.8 -0.8 0.11 

                                                                                                                            
2

[3]χ =1.56  

 

Since proportion of response has been estimated from the data, the degree of freedom of 2χ (=3) 

is two less than the number of concentrations tested. From Fisher and Yates Table (1964, Table 

IV), the tabulated value of 2
[3]χ  at 5% level of significance is 7.815. Thus the calculated value of 

2
[3]  (1.56) is much smaller than the tabulated value of 

2

[3]χ  at 5% level of significance. Hence, 

the probit regression line is very satisfactory representation of the results of the experiment. 

 

5.   Conclusions 

Probit analysis has been widely used in diverse fields wherein the response variable is qualitative. 

Probit analysis for dose-response studies under regression framework is commonly done.  In such 

studies, the estimation of the median effective dose (ED50) i.e. the dose that will produce a 

response in half the population along with its variance can be chiefly done. This can be easily be 

achieved by using any standard statistical software.   

 



LOGISTIC REGRESSION  
 

 

1. Introduction 

Regression analysis is a widely used method for obtaining a functional relationship between the 

response or dependent variable and one or more explanatory or predictor variables. In all the 

regression models, we implicitly assumed that the response variable is quantitative in nature 

whereas the explanatory variables are either quantitative, qualitative or a mixture thereof. In case 

of qualitative or non-metric response variable usual assumptions of regression models are 

violated, hence, it is better to look for alternative models. In practice, situations involving 

categorical outcomes are quite common. Suppose we want to study the labour force participation 

(LFP) decision of adult males. Since an adult is either in the labour force or not, LFP is a yes or 

no decision. Similarly, in the setting of evaluating an extension program, for example, predictions 

may be made for the dichotomous outcome of success/failure or improved/not-improved. An 

economist may be interested in determining the probability that an agro-based industry will fail 

given a number of financial ratios and the size of the firm (i.e. large or small) etc. 
 

Usually discriminant analysis could be used for addressing each of the above problems. 

However, because the independent variables are mixture of categorical and continuous variables, 

the multivariate normality assumption may not hold. In these cases the most preferable technique 

is the logistic regression analysis as it does not make any assumptions about the distribution of 

the independent variables.  

 

2.   Violation of Assumptions of Linear Regression Model when Response is Qualitative                                                                                                                               

Linear regression is considered in order to explain the constraints in using such model when the 

response variable is qualitative. Consider the following simple linear regression model with 

single predictor variable and a binary response variable: 

 

             i 0 1 i iY =β +β X +ε  , i = 1, 2, …, n     

where the outcome Yi is binary (taking values 0,1), 2
i εε ~ N(0,σ )  ,   and   are independent and n 

is the number of observations.  

Let  iπ  denote the probability that Yi =1 when Xi = x, i.e. 

                      i i i iπ =P(Y =1|X = x) =P(Y =1)                                                            

thus                  i iP(Y =0)=1-π       .                           

Under the assumption iE(ε ) 0 , the expected value of the response variable is  

i i i iE(Y )=1.(π )+0.(1-π )= π  

If the response is binary, then the error terms can take on two values, namely, 

                      i iε 1 π        when Yi =1 

                       i iε π       when Yi =0 

 Because the error is dichotomous (discrete), so normality assumption is violated. Moreover, the 

error variance is given by: 

                       
2 2

i i i i i

i i

V(ε ) π (1-π ) (1-π )(-π )

π (1-π )

 


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It can be seen that variance is a function of  
iπ 's  and it is not constant. Therefore the assumption 

of homoscadasticity (equal variance) does not hold. 

 

3.   Logistic Regression 

Logistic regression is normally recommended when the independent variables do not satisfy the 

multivariate normality assumption and at the same time the response variable is qualitative.  

Situations where the response variable is qualitative and independent variables are mixture of 

categorical and continuous variables, are quite common and occur extensively in statistical 

applications in agriculture, medical science etc. The statistical model preferred for the analysis of 

such binary (dichotomous) responses is the binary logistic regression model, developed primarily 

by a researcher named Cox during the late 1950s.   Processes producing sigmoidal or elongated 

S-shaped curves are quite common in agricultural data. Logistic regression models are more 

appropriate when response variable is qualitative and a non-linear relationship can be established 

between the response variable and the qualitative and quantitative factors affecting it.  It 

addresses the same questions that discriminant function analysis and multiple regression do but 

with no distributional assumptions on the predictors. In logistic regression model, the predictors 

need not have to be normally distributed, the relationship between response and predictors need 

not be linear or the observations need not have equal variance in each group etc.  A good account 

on logistic regression can be found in Fox (1984) and Kleinbaum (1994). 

 

The problem of non-normality and heteroscadasticity leads to the non applicability of least square 

estimation for the linear probability model. Weighted least square estimation, when used as an 

alternative, can cause the fitted values not constrained to the interval (0, 1) and therefore cannot 

be interpreted as probabilities. Moreover, some of the error variance may come out to be 

negative. One solution to this problem is simply to constrain the probability of outcome to the 

unit interval while retaining the linear relation between probability of outcome and regressor 

within the interval. However, this constrained linear probability model has certain unattractive 

features such as abrupt changes in slope at the extremes 0 and 1 making it hard for fitting the 

same on data. A smoother relation between the probability of outcome and regressor is generally 

more sensible. To correct this problem, a positive monotone (i.e. non-decreasing) function is 

required to transform linear combination of regressor to unit interval. Any cumulative probability 

distribution function (CDF) meets this requirement. That is, re-specify the model as  πi = P (β0 + 

β1xi). where, πi is the probability of outcome and P is the cumulative distribution function. 

Moreover, it is advantageous if P is strictly increasing, for then, the transformation is one-to-one, 

so that model can be rewritten as P
-1

(πi) = (β0 + β1xi), where  P
-1

 is the inverse of the CDF P. Thus 

the non-linear model for itself will become both smooth and symmetric, approaching π = 0 and   

π = 1 as asymptotes. Thereafter maximum likelihood method of estimation can be employed for 

model fitting. 

 

3.1 Properties of Logistic Regression Model 

The Logistic response function resembles an S-shape curve, a sketch of which is given in the 

following figure. Here the probability π initially increases slowly with increase in X, and then the 

increase accelerates, finally stabilizes, but does not increase beyond 1.      
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The shape of the S-curve can be reproduced if the probabilities can be modeled  with only one 

predictor variable as follows: 

-zπ= P(Y=1|X= x)= 1/(1+e )     

where z = β0 + β1x, and e is the base of the natural logarithm. Thus for more than one (say r) 

explanatory variables, the probability π is modeled as  

1 1 r r

-z

π= P(Y=1|X = x ...X = x )

=1/(1+e )
 

where     0 1 1 r rz= β +β x +...+β x . 

This equation is called the logistic regression equation. It is nonlinear in the parameters β0, β1… 

βr.  Modeling the response probabilities by the logistic distribution and estimating the parameters 

of the model constitutes fitting a logistic regression. The method of estimation generally used is 

the maximum likelihood estimation method.  

To explain the popularity of logistic regression, let us consider the mathematical form on which 

the logistic model is based. This function, called f (z), is given by   

                 f (z) = 1/ (1+e
-z

) , -∞ < z < ∞                                                                   

Now when z = -∞, f (z) =0 and when z = ∞, f (z) =1. Thus the range of f (z) is 0 to1. So the 

logistic model is popular because the logistic function, on which the model is based, provides  

• Estimates that lie in the range between zero and one.  

• An appealing S-shaped description of the combined effect of several explanatory 

variables on the probability of an event. 

 

3.2. Maximum Likelihood Method of Estimation of Logistic Regression 

Generally, the maximum likelihood method is used for estimating the parameters of the logistic 

regression model. The maximum likelihood estimates β0 and β1 in the simple logistic regression 

model are those values of β0 and β1 that maximize the log-likelihood function. No closed-form 

solution exists for the values of β0 and β1 that maximize the log-likelihood function. Computer 

intensive numerical search procedures are therefore required to find the maximum likelihood 

estimates and . Standard statistical software such as SPSS (Analyze- Regression-Binary 
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Logistic) provide maximum likelihood estimates for logistic regression. Once these estimates 

and  are found, by substituting these values into the response function the fitted response 

function, say, , can be obtained. The fitted response function is as follows:  

                                                                                            
 

When log of the odds of occurrence of any event is considered using a logistic regression model, it 

becomes a case of logit analysis.  Thus formed logit model will have its right hand side as a linear 

regression equation. 

 

4.   Practical Constraint  

Sometimes quantitative information on adoption of a technology is not available but is available 

in qualitative form such as adopted / non-adopted, low / high adoption etc. The statistical model 

preferred for the analysis of such binary (dichotomous) responses is the binary logistic regression 

model. It can be used to describe the relationship of several independent variables to the binary 

(say, named 0 & 1) dependent variable. The logistic regression is used for obtaining probabilities 

of occurrence, say E, of the different categories when the model is of the form: P(E =1)  = 

)exp(1

1

z
 where z is a function of associated variables, if  P(E =1)  0.5  then there is more 

chance of occurrence of an event and if  P(E =1) < 0.5  then probability of occurrence of the 

event is minimum.  If the experimenter wants to be more stringent, then the cutoff value of 0.5 

could be increased to, say, 0.7.  

 

 

 

0β̂

1β̂

iπ̂

 0 1 i
i ˆ ˆ- β +β X

1
π̂ =

1+e

 
 
 
 
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MS-EXCEL: STATISTICAL PROCEDURES 
 

 

Microsoft (MS) Excel ( ) is a powerful spreadsheet that is easy to use and allows you to store, 

manipulate, analyze, and visualize data. It also supports databases, graphic and presentation 

features. It is a powerful research tool and needs a minimum of teaching. Spreadsheets offer the 

potential to bring the real numerical work alive and make statistics enjoyable. But the main 

disadvantage is that some advanced statistical functions are not available and it takes a longer 

computing time as compared to other specialized software. 
 

 
 

Data Entry in Spreadsheets 

 Data entry should be started soon after data collection in the field  

 The raw data collected should be entered directly into computer. Calculations (e.g. % dry 

matter) or conversions (e.g. kg/ha to t/ha) by hand will very likely result in errors and 

therefore require more data checking once the data are in MS-Excel. Calculations can be 

written in MS-Excel using formulae (e.g. sum of wood biomass and leaf biomass to give total 

biomass).  

 

Data Checking 

One can use calculations and conversions for data checking. For example, if the collected data is 

grain yield per plot it may be difficult to see whether the values are reasonable. However, if these 

are converted to yield per hectare then one can compare the numbers with our scientific 

knowledge of grain yields. Simple formulae can be written to check for consistency in the data.  

For example, if tree height is measured 3 times in the year, a simple formula that subtracts 'tree 

height 1' from 'tree height 2'can be used to check the correctness of the data. The numbers in the 

resulting column should all be positive. We cannot have a shrinking tree! For new columns of 

calculated or converted data suitable header information (what the new column is, units and short 

name) at the top of the data should be included. 

 

Missing Values 

In MS-Excel the missing values are BLANK cells. It is useful to know this when calculating 

formulae and summaries of the data. For example, when calculating the average of a number of 

cells, if one cell is blank MS-Excel ignores this as an observation (i.e., the average is the 
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sum/number of non-blank cells). But if the cell contains a '0' then this is included in the 

calculation (i.e., the average is the sum/no. of cells). In a column of 'number of fruit per plot', a 

missing value could signify zero (tree is there but no fruit), dead (tree was there but died so no 

fruit), lost (measurement was lost, illegible.) or not representative (tree had been browsed 

severely by goats). In this example, depending on the objectives of the trial, the scientist might 

choose to put a '0' in the cells of trees with no fruit and leave blank (but add comments) for the 

other 'missing values'. 

 

Pivot Tables (to check consistency between replicates)  

Variation between replicates is expected, but some level of consistency is also usual. We can use 

pivot tables to look at the data. A pivot table is an interactive worksheet table that quickly 

summarizes large amount of data using a format and calculation methods you choose. It is called 

pivot table because you can rotate its row and column heading around the core data area to give 

you different views of the source data. A pivot table provides an easy way for you to display and 

analyze summary information about data already created in MS-Excel or other application.  

 

 Keep the cursor anywhere within the data range 

 Choose “Insert” “Pivot Table” then “OK” 

 From the “Pivot table Field List” drag and drop the respective fields under  “Column 

Labels” , “Row Labels” and “ Values” 

 Select “Value Field Settings” by clicking on the down arrow in “ Values” and choose 

the appropriate option and then click “OK” 

 

 
 

Scatter Plots (to check consistency between variates) 

We can often expect two measured variables to have a fairly consistent relationship with each 

other.  For example, 'number of fruits' with 'weight of fruits' or Stover yield plotted against grain 

yield.  To look for odd values we could plot one against the other in a scatter plot. Scatter plots 

are useful tools for helping to spot outliers.  This option is available under “Insert” menu. 

 

Line Plots (to examine changes over time) 

Where measurements on a 'unit' are taken on several occasions over a period of time it may be 

possible to check that the changes are realistic. A check back at the problematic data which is not 

in the usual trend can be made. .  This option is available under “Insert” menu. 
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Double Data Entry 
One effective, although not always practical, way of checking for errors caused by data entry 

mistakes is double entry. The data are entered by two individuals onto separate sheets that have 

the same design structure. The sheets are then compared and any inconsistencies are checked 

with the original data. It is assumed that the two data entry operators will not make the same 

errors. There is no 'built-in' system for double entry in MS-Excel. However, there are some 

functions that can be used to compare the two copies. An example is the DELTA function that 

compares two values and returns a 1 if they are the same and a 0 otherwise. To use this function 

we would set up a third worksheet and input a formula into each cell that compares the two 

identical cells in the other two worksheets. The 0's on the third worksheet will therefore identify 

the contradictions between the two sets of data. This method can also be used to check survey 

data but for the process to work the records must be entered in exactly the same order in both 

sheets. If a section at the bottom of the third worksheet contains mostly 0's, this could indicate 

that you have omitted a record in one of the other sheets. 

 

Preparing Data for Export to a Statistical Package 
Statistical analysis of research data usually involves exporting the data into a statistical package 

such as GENSTAT, SAS or SPSS. These packages require you to give the MS-Excel cell range 

from which data are to be taken. In the latest editions of MS-Excel we can mark these ranges 

within MS-Excel and then transfer them directly into the statistical packages. 

 Highlight the data you require including the column titles (the codes which have been used 

to label the factors and variables).  

 Go to the Name Box, an empty white box at the top left of the spreadsheet. Click in this box 

and type a name for the highlighted range (e.g., Data). Press Enter. 

 From now on, when you want to select your data to export go to the Name Box and select 

that name (e.g. Data). The relevant data will then be highlighted. 

MS-Excel Help 
If you get stuck on any aspect of MS-Excel then use the Help facility by clicking “F1” key. It 

contains extensive topics and by typing in a question you can extract the required information.  

See the snapshot below for an example: 

 

Features of MS-Excel 
 

Analytic Features 
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 The windows interface includes windows, pull down menus, dialog boxes and mouse 

support 

 Repetitive tasks can be automated with MS-Excel. Easy to use macros and user defined 

functions 

 Full featured graphing and charting facilities 

 Supports on screen databases with querying, extracting and sorting functions 

 Permits the user to add, edit, delete and find database records 

 

Presentation Features 

 Individual cells and chart text can be formatted to any font and font size  

 Variations in font size, style and alignment control can be determined 

 The user can add legends, text, pattern, scaling and symbols to charts. 

 

Charts and Graphs 

A chart is a graphic representation of worksheet data. The dimension of a chart depends upon the 

range of the data selected. Charts are created on a worksheet or as a separate document that is 

saved with an extension xlsx. MS-Excel automatically scales the axes, creates columns categories 

and labels the columns. Values from worksheet cells or data points are displayed as bars, lines, 

columns, pie slices, or other shapes in the chart. Showing a data in a chart can make it clearer, 

interesting and easier to understand. Charts can also help the user to evaluate his/her data and 

make comparisons between different worksheet values. 
 

Creating Line Chart 

 Select relevant part of data 

 Choose “Insert” “line” 

 Select an appropriate option of line chart and click 
 

Necessary changes in the chart can be done by clicking the right button of the mouse and 

choosing appropriate options. 
 

 
 

Sorting and Filtering 

MS-Excel makes it easy to organize, find and create report from data stored in a list. 
 

Sort: To organize data in a list alphabetically, numerically or chronologically. 

 

(i) To sort entire list 

 Select a single cell in the list 
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 Choose “data” “sort” 

 

(ii) Sorting column from left to right 

 Choose the “option” button in the sort dialog box 

 In the sort option dialog box, select “sort left to right” 

 Choose “OK” 
 

 
 

Filter: To quickly find and work with a subset of your data without moving or sorting it. 

 Choose “Data” and click on “Filter”  

 MS-Excel place a drop down arrow directly on the column labels of the list 

 Choose the column based on which the data has to be filtered. Clicking on the arrow displays 

a list of all the unique items in the column. Choose “Number Filter” option and define the 

required conditions. 
 

 
 

Statistical Functions 

Excel‟s statistical functions are quite powerful. In general, statistical functions take lists as 

arguments rather than single numerical values or text. A list could be a group of numbers 

separated by commas, such as (3,5,1,12,15,16), or a specified range of cells, such as (A1:A6), 

which is the equivalent of typing out the list (A1,A2,A3,A4,A5,A6). The function COUNT(list) 

counts the number of values in a list, ignoring empty or nonnumeric cells, whereas 

COUNTA(list) counts the number of values in the list that have any entry at all. MIN(list) returns 

a list‟s smallest value, whereas MAX(list) returns a list‟s largest value. The functions 

AVERAGE(list), MEDIAN(list), MODE(list), STDEV(list) all carry out the statistical operations 

you would expect (STDEV stands for standard deviation), when you pass a list of values as an 

argument.  
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Create a Formula 

Formulas are equations that perform calculations on values in your worksheet. A formula starts 

with an equal sign (=). For example, the following formula multiplies 2 by 3 and then adds 5 to 

the result: =5+2*3. The following formulas contain operators and constants: 
 

 

 Example formula What it does 

=128+345 Adds 128 and 345 

=5^2 Squares 5 

 Click the cell in which you want to enter the formula.  

 Type = (an equal sign).  

 Enter the formula.  

 Press ENTER.  

 

Create a Formula that Contains References or Names: A1+23 

The following formulas contain relative references and names of other cells. The cell that 

contains the formula is known as a dependent cell when its value depends on the values in other 

cells. For example, cell B2 is a dependent cell if it contains the formula =C2. 

 
 

Example formula What it does 

=C2 Uses the value in the cell C2 

=Sheet2!B2 Uses the value in cell B2 on Sheet2 

=Asset-Liability Subtracts a cell named Liability from a cell named Asset 

 Click the cell in which the formula enter has to be entered.  

 In the formula bar, type = (equal sign).  

 To create a reference, select a cell, a range of cells, a location in another worksheet, or a 

location in another workbook. One can drag the border of the cell selection to move the 

selection, or drag the corner of the border to expand the selection.  

 Press ENTER.  

Create a Formula that Contains a Function: =AVERAGE(A1:B4) 

The following formulas contain functions:  
 
 

Example formula  What it does  

=SUM(A:A) Adds all numbers in column A 

=AVERAGE(A1:B4) Averages all numbers in the range 

 

 

 Click the cell in which the formula enter has to be entered.  

 To start the formula with the function, click “insert function” on the formula bar.  

 Select the function.  

 Enter the arguments. When the formula is completed, press ENTER.  
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Create a Formula with Nested Functions: =IF(AVERAGE(F2:F5)>50, SUM(G2:G5),0)  

Nested functions use a function as one of the arguments of another function. The following 

formula sums a set of numbers (G2:G5) only if the average of another set of numbers (F2:F5) is 

greater than 50. Otherwise it returns 0.  

 

Statistical Analysis Tools 

Microsoft Excel provides a set of data analysis tools — called the Analysis ToolPak — that one 

can use to save steps when you develop complex statistical or engineering analyses. Provide the 

data and parameters for each analysis; the tool uses the appropriate statistical or engineering 

macro functions and then displays the results in an output table. Some tools generate charts in 

addition to output tables. 

 

Accessing the Data Analysis Tools: To access various tools included in the Analysis ToolPak 

click on “Data” menu, then click “Data Analysis” and select the appropriate analysis option. If 

the “Data Analysis” command is not available, we need to load the Analysis ToolPak “select and 

run the “Analysis ToolPack” from the “Add-Ins”.  

 

Correlation 

The “Correlation” analysis tool measures the relationship between two data sets that are scaled to 

be independent of the unit of measurement. It can be used to determine whether two ranges of 

data move together — that is, whether large values of one set are associated with large values of 

the other (positive correlation), whether small values of one set are associated with large values 

of the other (negative correlation), or whether values in both sets are unrelated (correlation near 

zero).  

 

If the experimenter had measured two variables in a group of individuals, such as foot-length and 

height, he/she can calculate how closely the variables are correlated with each other. Select 

“Data”, “Data Analysis”. Scroll down the list, select “Correlation” and click OK. A new window 

will appear where the following information needs to be entered:  

 

Input range. Highlight the two columns of data that are the paired values for the two variables. 

The cell range will automatically appear in the box. If column headings are included in this 

range, tick the Labels box.  

 

Output range. Click in this box then select a region on the worksheet where the user want the 

data table displayed. It can be done by clicking on a single cell, which will become the top left 

cell of the table.  

 

Click OK and a table will be displayed showing the correlation coefficient (r) for the data. 
 

CORREL(array1, array2) also returns the correlation coefficient between two data sets. 

 

Covariance 

Covariance is a measure of the relationship between two ranges of data. The “covariance” tool 

can be used to determine whether two ranges of data move together,  i.e., whether large values of 

one set are associated with large values of the other (positive covariance), whether small values 

of one set are associated with large values of the other (negative covariance), or whether values in 

both sets are unrelated (covariance near zero). 
 

To return the covariance for individual data point pairs, use the COVAR worksheet function. 

mk:@MSITStore:C:/Program%20Files/Microsoft%20Office/Office10/1033/xlmain10.chm::/html/xldccCreateFormulaToCalculateValue.htm##
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Regression 

The “Regression” analysis tool performs linear regression analysis by using the "least squares" 

method to fit a line through a set of observations. You can analyze how a single dependent 

variable is affected by the values of one or more independent variables. For example, one can 

analyze how grain yield of barley is affected by factors like ears per plant, ear length (in cms), 

100 grain weight (in gms) and number of grains per ear.  

 

Descriptive Statistics 

The “Descriptive Statistics” analysis tool generates a report of univariate statistics for data in the 

input range, which includes information about the central tendency and variability of the entered 

data. 

 

Sampling 

The “Sampling” analysis tool creates a sample from a population by treating the input range as a 

population. When the population is too large to process or chart, a representative sample can be 

used. One can also create a sample that contains only values from a particular part of a cycle if 

you believe that the input data is periodic. For example, if the input range contains quarterly sales 

figures, sampling with a periodic rate of four places values from the same quarter in the output 

range. 

 

Random Number Generation 

The “Random Number Generation” analysis tool fills a range with independent random numbers 

drawn from one of several distributions. We can characterize subjects in a population with a 

probability distribution. For example, you might use a normal distribution to characterize the 

population of individuals' heights. 

 

ANOVA: Single Factor 

“ANOVA: Single Factor” option can be used for analysis of one-way classified data or data 

obtained from a completely randomized design. In this option, the data is given either in rows or 

columns such that observations in a row or column belong to one treatment only. Accordingly, 

define the input data range. Then specify whether, treatments are in rows or columns. Give the 

identification of upper most left corner cell in output range and click OK. In output, we get 

replication number of treatments, treatment totals, treatment means and treatment variances. In 

the ANOVA table besides usual sum of squares, Mean Square, F-calculated and P-value, it also 

gives the F-value at the pre-defined level of significance. 

 

ANOVA: Two Factors with Replication 

This option can be used for analysis of two-way classified data with m-observations per cell or 

for analysis of data obtained from a factorial CRD with two factors with same or different levels 

with same replications.  

 

ANOVA: Two Factors without Replication 

This option can be utilized for the analysis of two-way classified data with single observation per 

cell or the data obtained from a randomized complete block design. Suppose that there are „v‟ 

treatments and „r‟ replications and then prepare a v  r data sheet. Define it in input range, define 

alpha and output range. 
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t-Test: Two-Sample Assuming Equal Variances:  

This analysis tool performs a two-sample student's t-test. This t-test form assumes that the means 

of both data sets are equal; it is referred to as a homoscedastic t-test. You can use t-tests to 

determine whether two sample means are equal. TTEST(array1,array2,tails,type) returns the 

probability associated with a student‟s t test. 

 

t-Test: Two-Sample Assuming Unequal Variances:  

This t-test form assumes that the variances of both ranges of data are unequal; it is referred to as a 

heteroscedastic t-test. Use this test when the groups under study are distinct.  

 

t-Test: Paired Two Sample For Means:  

This analysis tool performs a paired two-sample student's t-test to determine whether a sample's 

means are distinct. This t-test form does not assume that the variances of both populations are 

equal. One can use this test when there is a natural pairing of observations in the samples, like a 

sample group is tested twice - before and after an experiment. 

 

F-Test Two-Sample for Variances 

The F-Test Two-Sample for Variances analysis tool performs a two-sample F-test to compare 

two population variances. For example, you can use an F-test to determine whether the time 

scores in a swimming meet have a difference in variance for samples from two teams. 

FTEST(array1, array2) returns the result of an F-test, the one tailed probability that the variances 

of Array1 and array 2 are not significantly different. 

 

Transformation of Data  

The validity of analysis of variance depends on certain important assumptions like normality of 

errors and random effects, independence of errors, homoscedasticity of errors and effects are 

additive. The analysis is likely to lead to faulty conclusions when some of these assumptions are 

violated. A very common case of violation is the assumption regarding the constancy of variance 

of errors. One of the alternatives in such cases is to go for a weighted analysis of variance 

wherein each observation is weighted by the inverse of its variance. For this, an estimate of the 

variance of each observation is to be obtained which may not be feasible always. Quite often, the 

data are subjected to certain scale transformations such that in the transformed scale, the constant 

variance assumption is realized. Some of such transformations can also correct for departures of 

observations from normality because unequal variance is many times related to the distribution of 

the variable also. Major aims of applying transformations are to bring data closer to normal 

distribution, to reduce relationship between mean and variance, to reduce the influence of 

outliers, to improve linearity in regression, to reduce interaction effects, to reduce skewness and 

kurtosis. Certain methods are available for identifying the transformation needed for any 

particular data set but one may also resort to certain standard forms of transformations depending 

on the nature of the data. Most commonly used transformations in the analysis of experimental 

data are Arcsine, Logarithmic and Square root. These transformations of data can be carried out 

using the following options. 

 

Arcsine (ASIN): In the case of proportions, derived from frequency data, the observed 

proportion p can be changed to a new form  = sin
-1(
p). This type of transformation is known as 

angular or arcsine transformation. However, when nearly all values in the data lie between 0.3 

and 0.7, there is no need for such transformation. It may be noted that the angular transformation 

is not applicable to proportion or percentage data which are not derived from counts. For 

example, percentage of marks, percentage of profit, percentage of protein in grains, oil content in 



MS-EXCEL: Statistical Procedures 

 248 

seeds, etc., can not be subjected to angular transformation. The angular transformation is not 

good when the data contain 0 or 1 values for p. The transformation in such cases is improved by 

replacing 0 with (1/4n) and 1 with [1-(1/4n)], before taking angular values, where n is the number 

of observations based on which p is estimated for each group.  

 

ASIN gives the arcsine of a number. The arcsine is the angle whose sine is number and this 

number must be from -1 to 1. The returned angle is given in radians in the range 2/  to 2/ . 

To express the arcsine in degrees, multiply the result by 180/  . For this go to the CELL where 

the transformation is required and write =ASIN (Give Cell identification for which 

transformation to be done)* 180*7/22 and press ENTER. Then copy it for all observations. 
 

Example: ASIN (0.5) equals 0.5236 ( /6 radians) and ASIN (0.5)* 180/PI equals 30 (degrees). 

 

Logarithmic (LN): When the data are in whole numbers representing counts with a wide range, 

the variances of observations within each group are usually proportional to the squares of the 

group means. For data of this nature, logarithmic transformation is recommended. It squeezes the 

bigger values and stretches smaller values. A simple plot of group means against the group 

standard deviation will show linearity in such cases. A good example is data from an experiment 

involving various types of insecticides. For the effective insecticide, insect counts on the treated 

experimental unit may be small while for the ineffective ones, the counts may range from 100 to 

several thousands. When zeros are present in the data, it is advisable to add 1 to each observation 

before making the transformation. The log transformation is particularly effective in normalizing 

positively skewed distributions. It is also used to achieve additivity of effects in certain cases. 

 

LN gives the natural logarithm of a positive number.  Natural logarithms are based on the 

constant e (2.718281828845904). For this go the CELL where the transformation is required and 

write = LN(Give Cell Number for which transformation to be done) and press ENTER. Then 

copy it for all observations. 

 

Example: LN(86) equals 4.454347, LN(2.7182818) equals 1, LN(EXP(3)) Equals 3 and 

EXP(LN(4)) equals 4. Further, EXP returns e raised to the power of a given number, LOG 

returns the logarithm of a number to a specified base and LOG 10 returns the base-10 logarithm 

of a number. 

 

Square Root (SQRT): If the original observations are brought to square root scale by taking the 

square root of each observation, it is known as square root transformation. This is appropriate 

when the variance is proportional to the mean as discernible from a graph of group variances 

against group means. Linear relationship between mean and variance is commonly observed 

when the data are in the form of small whole numbers (e.g., counts of wildlings per quadrat, 

weeds per plot, earthworms per square metre of soil, insects caught in traps, etc.). When the 

observed values fall within the range of 1 to 10 and especially when zeros are present, the 

transformation should be, (y + 0.5).  

 

SQRT gives square root of a positive number. For this go to the CELL where the transformation 

is required and write = SQRT (Give Cell No. for which transformation to be done = 0.5) and 

press ENTER. Then copy it for all observations. However, if number is negative, SQRT return 

the #NUM  error value. 
 

Example: SQRT(16) equals 4, SQRT(-16) equals #NUM and SQRT(ABS(-16)) equals 4. 
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Once the transformation has been made, the analysis is carried out with the transformed data and 

all the conclusions are drawn in the transformed scale. However, while presenting the results, the 

means and their standard errors are transformed back into original units. While transforming back 

into the original units, certain corrections have to be made for the means. In the case of log 

transformed data, if the mean value is y , the mean value of the original units will be antilog ( y + 

1.15 y ) instead of antilog ( y ). If the square root transformation had been used, then the mean in 

the original scale would be antilog (( y + V( y ))
2
 instead of ( y )

2
 where V( y ) represents the 

variance of y . No such correction is generally made in the case of angular transformation. The 

inverse transformation for angular transformation would be p = (sin q)
2
. 

Sum(SUM): It gives the sum of all the numbers in the list of arguments.  For this go to the CELL 

where the sum of observations is required and write = SUM (define data range for which the sum 

is required) and press ENTER. Instead of defining the data range, the exact numerical values to 

be added can also be given in the argument viz. SUM (Number1, number2,…), number1, 

number2,… are 1 to 30 arguments for which you want the sum. 
 

Example: If cells A2:E2 contain 5, 15,30,40 and 50; SUM(A2:C2) equals 50, SUM(B2:E2,15) 

equals 150 and SUM(5,15) equals 20. 

 

Some other related functions with this option are: 
 

AVERAGE returns the average of its arguments, PRODUCT multiplies its arguments and 

SUMPRODUCT returns the sum of the products of corresponding array components.  

    

Sum of Squares (SUMSQ): This gives the sum of the squares of the list of arguments. For this 

go to the CELL where the sum of squares of observations is required and write = SUMSQ (define 

data range for which the sum of squares is required) and press ENTER.  
 

Example: If cells A2:E2 contain 5, 15, 30, 40 and 50; SUMSQ(A2:C2) equals 1150 and 

SUMSQ(3,4) equals 25. 

 

Matrix Multiplication (MMULT): It gives the matrix product of two arrays, say array 1 and 

array 2. The result is an array with the same number of rows as array1, say a and the same 

number of columns as array2, say b. For getting this mark the a  b cells on the spread sheet. 

Write =MMULT (array 1, array 2) and press Control +Shift+ Enter. The number of columns in 

array1 must be the same as the number of rows in array2, and both arrays must contain only 

numbers. Array1 and array2 can be given as cell ranges, array constants, or references. If any 

cells are empty or contain text, or if the number of columns in array1 is different from the number 

of rows in array2, MMULT returns the VALUE error value. 

 

Determinant of a Matrix (MDETERM): It gives the value of the determinant associated with 

the matrix. Write = MDETERM(array) and press Control + Shift + Enter. 

 

Matrix Inverse (MINVERSE): It gives the inverse matrix for the non-singular matrix stored in 

a square array, say of order p. i.e., an array with equal number of rows and columns. For getting 

this mark the p  p cells on the spread sheet where the inverse of the array is required and write = 

MINVERSE(array) and press Control + Shift + Enter. Array can be given as a cell range, such as 

A1:C3; as an array constant, such as {1,2,3;4,5,6;7,8,8}; or as a name for either of these. If any 

cells in array are empty or contain text, MINVERSE returns the VALUE error value.  
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Example: MINVERSE ({4,-1;2,0}) equals {0,0.5;-1,2}and MINVERSE ({1,2,1;3,4,-1;0,2,0}) 

equals {0.25, 0.25,-0.75;0,0,0.5;0.75,-0.25,-0.25}. 

 

Transpose (TRANSPOSE): For getting the transpose of an array mark the array and then select 

copy from the EDIT menu.  Go to the left corner of the array where the transpose is required.  

Select the EDIT menu and then paste special and under paste special select the TRANSPOSE 

option.  
 

Exercises on MS-Excel 
 

1. Table below contains values of pH and organic carbon content observed in soil samples 

collected from natural forest. Compute mean, median, standard deviation, range and 

skewness of the data.  

 

Soil 

pit 

pH 

(x) 

Organic 

carbon (%) 

(y) 

 Soil pit pH 

(x) 

Organic 

carbon (%) 

(y) 

1 5.7 2.10  9 5.4 2.09 

2 6.1 2.17  10 5.9 1.01 

3 5.2 1.97  11 5.3 0.89 

4 5.7 1.39  12 5.4 1.60 

5 5.6 2.26  13 5.1 0.90 

6 5.1 1.29  14 5.1 1.01 

7 5.8 1.17  15 5.2 1.21 

8 5.5 1.14     

 

2. Consider the following data on various characteristics of a crop: 

pp ph ngl yield 

142 0.525 8.2 2.47 

143 0.64 9.5 4.76 

107 0.66 9.3 3.31 

78 0.66 7.5 1.97 

100 0.46 5.9 1.34 

86.5 0.345 6.4 1.14 

103.5 0.86 6.4 1.5 

155.99 0.33 7.5 2.03 

80.88 0.285 8.4 2.54 

109.77 0.59 10.6 4.9 

61.77 0.265 8.3 2.91 

79.11 0.66 11.6 2.76 

155.99 0.42 8.1 0.59 

61.81 0.34 9.4 0.84 

74.5 0.63 8.4 3.87 

97 0.705 7.2 4.47 

93.14 0.68 6.4 3.31 

37.43 0.665 8.4 1.57 

36.44 0.275 7.4 0.53 

51 0.28 7.4 1.15 

104 0.28 9.8 1.08 
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49 0.49 4.8 1.83 

54.66 0.385 5.5 0.76 

55.55 0.265 5 0.43 

88.44 0.98 5 4.08 

99.55 0.645 9.6 2.83 

63.99 0.635 5.6 2.57 

101.77 0.29 8.2 7.42 

138.66 0.72 9.9 2.62 

90.22 0.63 8.4 2 
 

(i) Sort yield in ascending order and filter the data ph less than 0.3 or greater than 0.6 from 

the data. 

(ii) Find the correlation coefficient and fit the multiple regression equation by taking yield as 

dependent variable. 

 

3.  Let A, B and C be three matrices as follows: 

A



















31113
51938
27653
91642

B 





















18
91
42
75
31

   C





















55821
16632
75532
88763
48132

. 

 Find (i) AB (ii) C
-1

  (iii) A   (iv) A
T
. 

 

4. Draw line graph for the following data on a tree species: 

 

Year Height (cm) Diameter 

1981 21   5.0 

1982 34   8.0 

1983 11   9.0 

1984 13   3.0 

1985 15   2.4 

1986 55   5.5 

1987 30   6.9 

1988 50   9.1 

1989 23 10.0 

1990 22   2.5 

1991 37   3.4 

1992 38   6.2 

1993 37   7.0 

1994 11   8.1 

1995 20   9.0 

1996 16   3.7 

1997 54   9.0 

1998 33   4.0 

1999 12   6.7 

2000 19   7.7 

 

Also draw a bar diagram using the above data. 
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5. The table below lists plant height in cm of seedlings of rice belonging to the two varieties. 

Examine whether the two samples are coming from populations having equal variance, using 

F-test. Further, test whether the average height of the two groups are the same, using 

appropriate t-test.  

 

Plot Group 

I 

Group II 

1 23.0 8.5 

2 17.4 9.6 

3 17.0 7.7 

4 20.5 10.1 

5 22.7 9.7 

6 24.0 13.2 

7 22.5 10.3 

8 22.7 9.1 

9 19.4 10.5 

10 18.8 7.4 

6. Examine whether the average organic carbon content measured from two layers of a set of 

soil pits from a pasture are same using paired t-test from the data given below: 

 Organic carbon (%) 

Soil 

pit 

Layer 1 

(x) 

Layer 2 

(y) 

1 1.59 1.21 

2 1.39 0.92 

3 1.64 1.31 

4 1.17 1.52 

5 1.27 1.62 

6 1.58 0.91 

7 1.64 1.23 

8 1.53 1.21 

9 1.21 1.58 

10 1.48 1.18 

7. Mycelial growth in terms of diameter of the colony (mm) of R. solani isolates on PDA 

medium after 14 hours of incubation is given in the table below. Carry out the CRD analysis 

for the data. And draw your inferences.  

R. solani isolates Mycelial growth 

  Repl. 1 Repl. 2 Repl. 3 

RS 1 29.0 28.0 29.0 

RS 2 33.5 31.5 29.0 

RS 3 26.5 30.0   

RS 4 48.5 46.5 49.0 

RS 5 34.5 31.0   
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8. Following is the data on mean yield in kg per plot of an experiment conducted to compare 

the performance of 8 treatments using a Randomized Complete Block design with 3 

replications. Perform the analysis of variance. 
 

Treatment  

(Provenance) 

Replication 

  I II III 

1 30.85 38.01 35.10 

2 30.24 28.43 35.93 

3 30.94 31.64 34.95 

4 29.89 29.12 36.75 

5 21.52 24.07 20.76 

6 25.38 32.14 32.19 

7 22.89 19.66 26.92 

8 29.44 24.95 37.99 
 
 

9. From the following data make a summary table for finding out the average of X9 for various 

years and various levels of X6 using pivot table and pivot chart report option of MS-Excel. 
 

YR X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

1995 1 1 40 30 0 60 40 4861 5208 5556 5694 

1995 1 2 40 30 0 60 40 4167 4444 4861 5035 

1995 2 3 40 30 0 60 40 4618 4653 4653 5174 

1995 2 4 40 30 0 60 40 4028 4167 4514 4722 

1995 2 5 40 30 0 60 40 4306 4514 4653 4861 

1996 2 1 40 30 0 60 40 6000 5750 5499 6250 

1996 2 2 40 30 0 60 40 5646 5000 5250 5444 

1996 2 3 40 30 0 60 40 4799 5097 4896 5299 

1996 2 4 40 30 0 60 40 5250 5299 4194 4847 

1996 3 1 40 30 0 60 40 5139 5417 5764 5903 

1996 3 2 40 30 0 60 40 5417 5694 6007 6111 

1996 4 1 40 30 0 60 40 6300 7450 7750 8000 

1996 4 2 40 30 0 60 40 6350 7850 7988 8200 

1996 4 3 40 30 0 60 40 5750 6400 6600 6700 

1996 4 4 40 30 0 60 40 6000 7250 7450 7681 

1996 5 1 40 30 0 60 40 3396 4090 5056 5403 

1996 5 2 40 30 0 60 40 5194 5000 6000 6500 

1996 5 3 40 30 0 60 40 4299 4250 4750 5250 

1996 6 1 40 30 0 60 40 4944 5194 5000 5097 

1996 6 2 40 30 0 60 40 5395 5499 5499 5597 

1996 6 3 40 30 0 60 40 3444 5646 5000 5000 

1996 6 4 40 30 0 60 40 6250 6500 6646 6750 

1997 1 1 120 30 30 120 60 5839 6248 6199 6335 

1997 1 2 120 30 30 120 60 5590 5652 5702 5851 

1997 2 1 120 30 30 120 60 4497 4794 4894 5205 

1997 2 2 120 30 30 120 60 4696 5006 5304 5702 

1997 2 3 120 30 30 120 60 4398 4596 4894 5304 

1997 2 4 120 30 30 120 60 4497 5503 5702 6099 



MS-EXCEL: Statistical Procedures 

 254 

1997 3 1 120 30 30 120 60 4199 5602 5801 6000 

1997 3 2 120 30 30 120 60 3404 3901 4199 4497 

1997 3 3 120 30 30 120 60 3602 5404 5503 5801 

1997 3 4 120 30 30 120 60 3602 4297 4497 4696 

1997 4 1 120 30 30 120 60 3205 3801 4199 4894 

1997 4 2 120 30 30 120 60 3801 4794 6099 6298 

1997 4 3 120 30 30 120 60 3503 5205 6298 6795 

1997 4 4 120 30 30 120 60 3205 4894 5503 6199 

1997 5 1 120 30 30 120 60 4199 4099 4199 4297 

1997 5 2 120 30 30 120 60 3304 3702 3602 3801 

1997 5 3 120 30 30 120 60 2596 2894 3106 3205 

1998 1 1 40 30 0 60 40 3727 3106 3404 3503 

1998 1 2 40 30 0 60 40 4894 4348 4447 4534 

1998 1 3 40 30 0 60 40 2696 2795 3056 3205 

1998 2 2 40 30 0 60 40 5503 4298 4497 4795 

1998 2 3 40 30 0 60 40 5006 3702 3702 3901 
 

10. From the data given in problem 10, sort X10 in ascending order. Also, filter the data for X11 < 

4200 or X11 > 5000. 



R SOFTWARE: AN OVERVIEW 
 

 

R is a free software environment for statistical computing and graphics. It compiles and runs on a 

wide variety of UNIX platforms, Windows and MacOS. R is a vehicle for newly developing 

methods of interactive data analysis. It has developed rapidly, and has been extended by a large 

collection of packages. 

R environment 

The R environment provides an integrated suite of software facilities for data manipulation, 

calculation and graphical display. It has 

 a data handling and storage facility, 

 a suite of operators for calculations on arrays and matrices, 

 a large, integrated collection of intermediate tools for data analysis, 

 graphical facilities for data analysis and display, and 

 a well developed, simple and effective programming language (called „S‟) which includes 

conditionals, loops, user defined functions and input and output facilities. 

Origin 

R can be regarded as an implementation of the S language which was developed at Bell 

Laboratories by Rick Becker, John Chambers and Allan Wilks, and also forms the basis of the S-

Plus systems. Robert Gentleman and Ross Ihaka of the Statistics Department of the University of 

Auckland started the project on R in 1995 and hence the name software has been named as „R‟.  

R was introduced as an environment within which many classical and modern statistical 

techniques can be implemented. A few of these are built into the base R environment, but many 

are supplied as packages. There are a number of packages supplied with R (called “standard” and 

“recommended” packages) and many more are available through the CRAN family of Internet 

sites (via http://cran.r-project.org) and elsewhere. 

 

Availability 

Since R is an open source project, it can be obtained freely from the website https://www.r-

project.org/. One can download R from any CRAN mirror out of several CRAN (Comprehensive 

R Archive Network) mirrors. Latest available version of R is R version 3.6.0 and it has been 

released on 26.04.2019.  

 

Installation 

To install R in windows operating system, simply double click on the setup file. It will 

automatically install the software in the system. 

 

Usage 

R can work under Windows, UNIX and Mac OS. In this note, we consider usage of R in 

Windows set up only.  

 

Difference with other packages 

There is an important difference between R and the other statistical packages. In R, a statistical 

analysis is normally done as a series of steps, with intermediate results being stored in objects. 
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Thus whereas SAS and SPSS will give large amount of output from a given analysis, R will give 

minimal output and store the results in an object for subsequent interrogation by further R 

functions. 

 

Invoking R  
If properly installed, usually R has a shortcut icon on the desktop screen and/or you can find it 

under Start|All Programs|R menu. 

 

 
 

To quit R, type q() at the R prompt (>) and press Enter key. A dialog box will ask whether to save 

the objects you have created during the session so that they will become available next time when 

R will be invoked.  

 
 

Windows of R 

R has only one window and when R is started it looks like 

  

 
 

R commands 

i. R commands are case sensitive, so X and x are different symbols and would refer to 

different variables.  

ii. Elementary commands consist of either expressions or assignments.  

iii. If an expression is given as a command, it is evaluated, printed and the value is lost. 
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iv. An assignment also evaluates an expression and passes the value to a variable but the 

result is not automatically printed. 

v. Commands are separated either by a semi-colon („;‟), or by a newline.  

vi. Elementary commands can be grouped together into one compound expression by braces 

„{„ and „}‟. 

vii. Comments can be put almost anywhere, starting with a hashmark („#‟). Anything written 

after # marks to the end of the line is considered as a comment. 

viii. Window can be cleared of lines by pressing Ctrl + L keys. 

 

Executing commands from or diverting output to a file 

If commands are stored in an external file, say „D:/commands.txt‟ they may be executed at any 

time in an R session with the command 

 
> source("d:/commands.txt") 

 

For Windows Source is also available on the File menu.  

 

The function sink(),  

 
> sink("d:/record.txt") 

 

will divert all subsequent output from the console to an external file, „record.txt‟ in D drive. The 

command 

 
> sink() 

 

restores it to the console once again. 

 

Simple manipulations of numbers and vectors 

R operates on named data structures. The simplest such structure is the numeric vector, which is a 

single entity consisting of an ordered collection of numbers. To set up a vector named x, say, 

consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R command 

 
> x <- c(10.4, 5.6, 3.1, 6.4, 21.7) 

 

The function c() assigns the five numbers to the vector x. The assignment operator (<-) „points‟ 

to the object receiving the value of the expression. Once can use the „=‟ operator as an 

alternative. 

 

A single number is taken as a vector of length one.  

 

Assignments can also be made in the other direction, using the obvious change in the assignment 

operator. So the same assignment could be made using 

 
> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x 

 

If an expression is used as a complete command, the value is printed. So now if we were to use 

the command 

 
> 1/x 
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the reciprocals of the five values would be printed at the terminal. 

 

The elementary arithmetic operators  

+  addition 

– subtraction 

*  multiplication 

/  division  

 ^  exponentiation 

 

Arithmetic functions  
log, exp, sin, cos, tan, sqrt,  

 

Other basic functions 

max(x) – maximum element of vector x,  

min(x)- minimum element of vector x,  

range (x) – range of the values of vector x ,   

length(x) - the number of elements in x,  

sum(x) - the total of the elements in x,  

prod(x) – product of the elements in x 

mean(x) – average of the elements of x 

var(x) – sample variance of the elements of (x) 

sort(x) – returns a vector with elements sorted in increasing order. 

 

Logical operators 

< - less than 

<= less than or equal to 

> greater than 

>= greater than or equal to 

 == equal to  

!= not equal to. 

 

Other objects in R 

Matrices or arrays - multi-dimensional generalizations of vectors. 

Lists - a general form of vector in which the various elements need not be of the same type, and 

are often themselves vectors or lists. 

Functions - objects in R which can be stored in the project‟s workspace. This provides a simple 

and convenient way to extend R. 

 

Matrix facilities 

A matrix is just an array with two subscripts. R provides many operators and functions those are 

available only for matrices. Some of the important R functions for matrices are 

t(A) – transpose of the matrix A   

nrow(A) – number of rows in the matrix A 

ncol(A) – number of columns in the matrix A 

A%*% B– Cross product of two matrices A and B 

A*B – element by element product of two matrices A and B 

diag (A) – gives a vector of diagonal elements of the square matrix A 

diag(a) – gives a matrix with diagonal elements as the elements of vector a 
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eigen(A) – gives eigen values and eigen vectors of a symmetric matrix A 

rbind (A,B) – concatenates two matrix A and B by appending B matrix below A matrix (They 

should have same number of columns) 

cbind(A, B) - concatenates two matrix A and B by appending B matrix in the right of A matrix 

(They should have same number of rows) 

 

Data frame  
Data frame is an array consisting of columns of various mode (numeric, character, etc). Small to 

moderate size data frame can be constructed by data.frame() function. For example, following is 

an illustration how to construct a data frame from the car data*:  

   

Make Model Cylinder Weight Mileage Type 

Honda Civic V4 2170 33 Sporty 

Chevrolet  Beretta V4 2655 26 Compact 

Ford Escort V4 2345 33 Small 

Eagle Summit V4 2560 33 Small 

Volkswagen Jetta V4 2330 26 Small 

Buick Le Sabre V6 3325 23 Large 

Mitsubishi Galant V4 2745 25 Compact 

Dodge Grand Caravan V6 3735 18 Van 

Chrysler New Yorker V6 3450 22 Medium 

Acura Legend V6 3265 20 Medium 

> Make<-c("Honda","Chevrolet","Ford","Eagle","Volkswagen","Buick","Mitsbusihi",  

+ "Dodge","Chrysler","Acura")  
> Model=c("Civic","Beretta","Escort","Summit","Jetta","Le Sabre","Galant",  

+ "Grand Caravan","New Yorker","Legend")  

Note that the plus sign (+) in the above commands are automatically inserted when the carriage 

return is pressed without completing the list. Save some typing by using rep() command. For 

example, rep("V4",5) instructs R to repeat V4 five times.  

> Cylinder<-c(rep("V4",5),"V6","V4",rep("V6",3))  
> Cylinder  

 [1] "V4" "V4" "V4" "V4" "V4" "V6" "V4" "V6" "V6" "V6"  
> Weight<-c(2170,2655,2345,2560,2330,3325,2745,3735,3450,3265)  

> Mileage<-c(33,26,33,33,26,23,25,18,22,20)  
> Type<-c("Sporty","Compact",rep("Small",3),"Large","Compact","Van",rep("Medium",2))  

Now data.frame() function combines the six vectors into a single data frame.  
 

> Car<-data.frame(Make,Model,Cylinder,Weight,Mileage,Type)  

> Car  
         Make         Model Cylinder Weight Mileage    Type  

1       Honda         Civic       V4   2170      33  Sporty  

2   Chevrolet       Beretta       V4   2655      26 Compact  

3        Ford        Escort       V4   2345      33   Small  
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4       Eagle        Summit       V4   2560      33   Small  

5  Volkswagen         Jetta       V4   2330      26   Small  

6       Buick      Le Sabre       V6   3325      23   Large  

7  Mitsbusihi        Galant       V4   2745      25 Compact  

8       Dodge Grand Caravan       V6   3735      18     Van  

9    Chrysler    New Yorker       V6   3450      22  Medium  

10      Acura        Legend       V6   3265      20  Medium  

> names(Car)  
[1] "Make"     "Model"    "Cylinder" "Weight"   "Mileage"  "Type"  

Just as in matrix objects, partial information can be easily extracted from the data frame:  

> Car[1,]  

   Make Model Cylinder Weight Mileage   Type 

1 Honda Civic       V4   2170      33 Sporty 

In addition, individual columns can be referenced by their labels:  

> Car$Mileage  

 [1] 33 26 33 33 26 23 25 18 22 20  

> Car[,5]        #equivalent expression 

> mean(Car$Mileage)    #average mileage of the 10 vehicles  

[1] 25.9  

> min(Car$Weight)  

[1] 2170  

table() command gives a frequency table:  

> table(Car$Type)  

Compact   Large  Medium   Small  Sporty     Van  

      2       1       2       3       1       1  

If the proportion is desired, type the following command instead:  

> table(Car$Type)/10  

Compact   Large  Medium   Small  Sporty     Van  

    0.2     0.1     0.2     0.3     0.1     0.1  

Note that the values were divided by 10 because there are that many vehicles in total. If you don't 

want to count them each time, the following does the trick:  

> table(Car$Type)/length(Car$Type)  

Cross tabulation is very easy, too:  

> table(Car$Make, Car$Type)  
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             Compact Large Medium Small Sporty Van  

  Acura      0       0     1      0     0      0  

  Buick      0       1     0      0     0      0  

  Chevrolet  1       0     0      0     0      0  

  Chrysler   0       0     1      0     0      0  

  Dodge      0       0     0      0     0      1  

  Eagle      0       0     0      1     0      0  

  Ford       0       0     0      1     0      0  

  Honda      0       0     0      0     1      0  

  Mitsbusihi 1       0     0      0     0      0  

  Volkswagen 0       0     0      1     0      0  

What if you want to arrange the data set by vehicle weight? order() gets the job done.  

> i<-order(Car$Weight);i  

 [1]  1  5  3  4  2  7 10  6  9  8  
> Car[i,]  

         Make         Model Cylinder Weight Mileage    Type  

1       Honda         Civic       V4   2170      33  Sporty  

5  Volkswagen         Jetta       V4   2330      26   Small  

3        Ford        Escort       V4   2345      33   Small  

4       Eagle        Summit       V4   2560      33   Small  

2   Chevrolet       Beretta       V4   2655      26 Compact  

7  Mitsbusihi        Galant       V4   2745      25 Compact  

10      Acura        Legend       V6   3265      20  Medium  

6       Buick      Le Sabre       V6   3325      23   Large  

9    Chrysler    New Yorker       V6   3450      22  Medium  

8       Dodge Grand Caravan       V6   3735      18     Van  

Creating/editing data objects  

> y<-c(1,2,3,4,5);y  

[1] 1 2 3 4 5  

If you want to modify the data object, use edit() function and assign it to an object. For example, 

the following command opens R Editor for editing.  

> y<-edit(y)  

If you prefer entering the data.frame in a spreadsheet style data editor, the following command 

invokes the built-in editor with an empty spreadsheet.  

> data1<-edit(data.frame())  

After entering a few data points, it looks like this:  
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You can also change the variable name by clicking once on the cell containing it. Doing so opens 

a dialog box: 

 
 

When finished, click  in the upper right corner of the dialog box to return to the Data Editor 

window. Close the Data Editor to return to the R command window (R Console). Check the 

result by typing:  

> data1  

 

 

Reading data from files 

When data files are large, it is better to read data from external files rather than entering data 

through the keyboard.  To read data from an external file directly, the external file should be 

arranged properly. 

 

The first line of the file should have a name for each variable. Each additional line of the file has 

the values for each variable.  

Input file form with names and row labels: 

Price  Floor  Area  Rooms Age  isNew 

52.00  111.0  830  5  6.2  no 
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54.75  128.0  710  5  7.5  no 

57.50  101.0  1000  5  4.2  yes 

57.50  131.0  690  6  8.8  no 

59.75  93.0  900  5  1.9  yes 

... 

   

By default numeric items (except row labels) are read as numeric variables and non-numeric 

variables, such as isNew in the example, as factors. This can be changed if necessary. 

 

The function read.table() can then be used to read the data frame directly 

 
> HousePrice <- read.table("d:/houses.data", header = TRUE) 

 

Reading comma delimited data  

The following commands can be used for reading comma delimited data into R. 

read.csv(filename)  This command reads a .CSV file into R. You need to specify the 

exact filename with path.  

read.csv(file.choose())  This command reads a .CSV file but the file.choose() part opens up 

an explorer type window that allows you to select a file from your 

computer. By default, R will take the first row as the variable 

names.  

read.csv(file.choose(), header=T) 

This reads a .CSV file, allowing you to select the file, the header is 

set explicitly. If you change to header=F then the first row will be 

treated like the rest of the data and not as a label.  

Storing variable names 

Through read.csv() or read.table() functions, data along with variable labels is read into R 

memory. However, to read the variables‟ names directly into R, one should use attach(dataset) 

function. For example,  

 
>attach(HousePrice)  

 

causes R to directly read all the variables‟ names eg. Price, Floor, Area etc. it is a good practice to 

use the attach(datafile) function immediately after reading the datafile into R. 

 

Packages 

All R functions and datasets are stored in packages. The contents of a package are available only 

when the package is loaded. This is done to run the codes efficiently without much memory 

usage. To see which packages are installed at your machine, use the command 

 
> library() 

 

To load a particular package, use a command like 

 
> library(forecast) 



R Software: An Overview 

 

264 
 

Users connected to the Internet can use the install.packages() and update.packages() functions to 

install and update packages. Use search() to display the list of packages that are loaded.  

 

Standard packages 

The standard (or base) packages are considered part of the R source code. They contain the basic 

functions those allow R to work with the datasets and standard statistical and graphical functions. 

They should be automatically available in any R installation.  

 

Contributed packages and CRAN 

There are a number of contributed packages for R, written by many authors. Various packages 

deal with various analyses. Most of the packages are available for download from CRAN 

(https://cran.r-project.org/web/packages/), and other repositories such as Bioconductor 

(http://www.bioconductor.org/). The collection of available packages changes frequently. As on 

June 07, 2019, the CRAN package repository contains 14346 available packages. 

 

Getting Help 
Complete help files in HTML and PDF forms are available in R. To get help on a particular 

command/function etc., type help (command name). For example, to get help on function „mean‟, 

type help(mean) as shown below 

 
> help(mean) 

 

This will open the help file with the page containing the description of the function mean.  

Another way to get help is to use “?” followed by function name. For example, 

 
>?mean 

 

will open the same window again. 

 

In this lecture note, all R commands and corresponding outputs are given in Courier New font 

to differentiate from the normal texts. Since R is case-sensitive, i.e. typing Help(mean), would 

generate an error message,  

 
> Help(mean) 

 
Error in Help(mean) : could not find function "Help" 

 

Further Readings 

Various documents are available in https://cran.r-project.org/manuals.html from beginners‟ level 

to most advanced level. The following manuals are available in pdf form: 

1. An Introduction to R 

2. R Data Import/Export 

3. R Installation and Administration 

4. Writing R Extensions 

5. The R language definition 

6. R Internals 

7. The R Reference Index 

 

 

 



DESIGN RESOURCES SERVER 
 

 

1. Introduction 

Design Resources Server is developed to popularize and disseminate the research in Design of 

Experiments among the scientists of National Agricultural Research System (NARS) in particular 

and researchers all over the globe in general and is hosted at www.iasri.res.in/design. The home 

page of the server is  

 

 

Design Resources Server is matter-of-factly a virtual, mobile library on design of experiments 

created with an objective to advise and help the experimenters in agricultural sciences, biological 

sciences, animal sciences, social sciences and industry in planning and designing their 

experiments for making precise and valid inferences on the problems of their interest. This also 

provides support for analysis of data generated so as to meet the objectives of the study. The 

server also aims at providing a platform to the researchers in design of experiments for 

disseminating research and also strengthening research in newer emerging areas so as to meet the 

challenges of agricultural research.  The purpose of this server is to spread advances in 

theoretical, computational, and statistical aspects of Design of Experiments among the 

mathematicians and statisticians in academia and among the practicing statisticians involved in 

advisory and consultancy services.  

This server works as an e-advisory resource for the experimenters. The actual layout of the 

designs is available to the experimenters online and the experimenter can use these designs for 

their experimentation. It is expected that the material provided at this server would help the 

experimenters in general and agricultural scientists in particular in improving the quality of 

research in their respective sciences and making their research globally competitive.  

 

Design Server is open to everyone from all over the globe. Anyone can join this and add 

information to the site to strengthen it further with the permission of the developers. The Server 

http://www.iasri.res.in/design
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contains a lot of useful information for scientists of NARS. The material available on the server 

has been partitioned into 4 components: 

- Useful for Experimenters: Electronic Books, online generation of randomized layout of 

designs, online analysis of data, analysis of data using various softwares, statistical genomics. 

- Useful for Statisticians: Literature and catalogues of BBB designs, designs for making test 

treatments-control treatment comparisons, designs for bioassays, designs for factorial 

experiments (supersaturated designs, block designs with factorial treatment structure), 

experiments with mixtures, Online generation of Hadamard matrices, MOLS and orthogonal 

arrays. 

- Other Useful Links: Discussion Board, Ask a Question, Who-is-where, important links. 

- Site Information: Feedback, How to Quote Design Resources Server, Copyright, disclaimer, 

contact us and site map. 
 

The major components are Useful for Experimenters and Research Statisticians. The scientists, 

however, can use either of the parts or parts of their choice. A brief description of all the above 

four components is given in the sequel. 
 

2. Useful for Experimenters 

This link has been designed essentially to meet the requirements of the experimenters whose 

prime interest is in designing the experiment and then subsequently analyzing the data generated 

so as to draw statistically valid inferences. To meet this end, the link contains the following sub-

links:  
 

2.1 E-Learning 

This is an important link that provides useful and important reading material on use of some 

statistical software packages, designing experiments, statistical analysis of data and other useful 

topics in statistics in the form of two electronic books viz. 

 

1. Design and Analysis of Agricultural Experiments 

      www.iasri.res.in/design/Electronic-Book/index.htm 

2. Advances in Data Analytical Techniques 

www.iasri.res.in/design/ebook/EBADAT/index.htm 
 

The screen shots of cover pages of these books are shown below: 
 
 

  
 

The coverage of topics in these electronic books is very wide and almost all the aspects of 

designing an experiment and analysis of data are covered.  The chapters are decorated with 

solved examples giving the steps of analysis. The users can have online access to these electronic 

books. This provides good theoretical support and also reading material to the users. 
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2.2 Online Design Generation-I 

This link is very useful for experimenters because it helps in generation of randomized layout of 

the following designs: 

 

Basic Designs: Generates of randomized layout of completely randomized design and 

randomized complete block design both for single factor and multifactor experiments and Latin 

square designs for single factor experiments.  The field book can be created as a .csv file or a text 

file. This is available at  

   www.iasri.res.in/design/Basic Designs/generate_designs.htm. 
 

Augmented Designs: A large number of germplasm evaluation trials are conducted using 

augmented designs. The experimenters generally compromise with the randomization of 

treatments in the design. Further, experimenters also need to know the optimum replication 

number of controls in each block so as to maximize the efficiency per observation. Online 

software for generation of randomized layout of an augmented randomized complete block 

design for given number of test treatments, control treatments and number of blocks with given 

block sizes, not necessarily equal, is developed and is available at 

        www.iasri.res.in/design/Augmented Designs/home.htm. 

 

The design can be generated with optimum replication of control treatments in each block so as 

to maximize efficiency per observation.  

 
Resolvable Block Designs: Resolvable block designs are an important class of incomplete block 

designs wherein the blocks can be formed together into sets with the blocks within each set 

constituting a complete replication. In the class of resolvable block designs, square lattice designs 

are very popular among experimenters. One can generate square lattice designs with three 

replications using 

       www.iasri.res.in/WebHadamard/square lattice.htm.  
 

Another important class of resolvable block designs is the alpha designs. These designs are 

available when the number of treatments is a composite number. Literature on alpha designs is 

available at  

       www.iasri.res.in/design/Alpha/Home.htm.  

 

This link also provides randomized layout of alpha designs for 6 ≤ v (=sk, the number of 

treatments) ≤ 150, 2 ≤ r (number of replications) ≤ 5, 3≤ k (block size) ≤10 and 2 ≤ s ≤ 15 along 

with the lower bounds to A- and D- efficiencies of the designs.  

 

The screen shots for generation of randomized layout of basic designs, augmented designs, 

square lattice designs and alpha designs are 
 

http://www.iasri.res.in/design/Basic
http://www.iasri.res.in/design/Augmented%20Designs/home.htm
http://www.iasri.res.in/WebHadamard/square
http://www.iasri.res.in/design/Alpha/Home.htm
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2.3 Online Analysis of Data 

This link together with Analysis of Data forms the backbone of the Design Resources Server. 

This particular link targets at providing online analysis of data generated to the experimenter. At 

present an experimenter can perform online analysis of data generated from augmented 

randomized block designs. This is available at www.iasri.res.in/spadweb/index.htm. 

 
 

2.4 Analysis of Data 

This is the most important link of the server because it targets at providing steps of analysis of 

data generated from designed experiments using several statistical packages like SAS, SPSS, 

GenStat, MINITAB, SYSTAT, SPAD, SPFE, SPAR 2.0, MS-Excel, etc. Some real life examples 

http://www.iasri.res.in/spadweb/index.htm
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of experiments are given and the questions to be answered are listed. Steps for preparation of data 

files, the commands and macros to be used for analysis of data and the treatment contrasts to be 

used for answering specific questions, etc. are given, which the user can use without any 

difficulty. The data files and result files can also be downloaded. This is available at  

www.iasri.res.in/design/Analysis of data/Analysis of Data.html.  

 

The following analysis can be performed using this link:  

- Analysis of data generated from completely randomized designs, randomized complete block 

design; incomplete block design; resolvable incomplete block design; Latin square design; 

factorial experiments both without and with confounding; factorial experiments with extra 

treatments; split and strip plot designs; cross over designs using SAS and SPSS; steps of 

analysis of augmented design using SAS, SPSS and SPAD  

- Response surface design using SAS and SPSS 

- SAS code for analysis of groups of experiments conducted in different environments 

(locations or season / year), each experiment conducted as a complete block or an incomplete 

block design. Using this code, one can analyze the data for each of the environments 

separately, test the homogeneity of error variances using Bartlett’s 
2
-test, perform combined 

analysis of data considering both environment effects as fixed and environment effects as 

random (both through PROC GLM and PROC MIXED) and prepare site regression or GGE 

biplots 

- SAS Macro for performing diagnostics (normality and homogeneity of errors) in 

experimental data generated through randomized complete block designs and then applying 

remedial measures such as Box-Cox transformation and applying the non-parametric tests if 

the errors remain non-normal and / or heterogeneous even after transformation 

- SAS codes are also available for obtaining descriptive statistics, generating discrete frequency 

distribution, grouped frequency distribution, histogram, testing the normality of a given 

variable (overall groups or for each of the groups separately) 

- correlation and regression using SAS and SPSS 

- Tests of significance based on Student’s t-distribution using SAS, SPSS and MS-EXCEL  

- SAS and SPSS codes for performing principal component analysis, cluster analysis and 

analysis of covariance 

- SAS and SPSS codes for fitting non-linear models 
 

The screens shots for analysis of data appear like 

  
 

2.6 Statistical Genomics 

A link on Statistical Genomics has been initiated essentially as an e-learning platform which can 

be useful to the researchers particularly the geneticists, the biologists, the statisticians and the 

computational biology experts. It contains the information on some public domain softwares that 

can be downloaded free of cost. A bibliography on design and analysis of microarray experiments 

http://www.iasri.res.in/design/Analysis


Design Resources Server 

 270  

is also given. These are hosted at http://iasri.res.in/design/Statistical_Genomics/default.htm. A 

screen shot of this link is 

 

 
 

3.   Useful for Research Statisticians 

This link is useful for researchers engaged in conducting research in design of experiments and 

can be used for class room teaching also. The material on this link is divided into the following 

sub-links: 

 

3.1 Block Designs 

This link provides some theoretical considerations of balanced incomplete block (BIB) designs, 

binary variance balanced block (BBB) designs with 2 and 3 distinct block sizes, partially 

balanced incomplete block (PBIB) designs, designs for test treatments-control treatment(s) 

comparisons, etc. for research statisticians. The link also gives a catalogue of designs and a 

bibliography on the subject for use of researchers. At present the following material is available 

on this link: 

- General method of construction of BBB designs; general methods of construction of block 

designs for making test treatments - control treatment(s) comparisons;  bibliography 

- Catalogue of BIB designs for number of replications r  30 for symmetric BIB designs and r 

 20 for asymmetric BIB designs 

- Catalogue of BBB designs with 2 and 3 distinct block sizes for number of replications r  30. 

The catalogue also gives the resolvability status of the designs along with the efficiency 

factor of the designs   

- 6574 block designs for making all possible pair wise treatment comparisons for v  35 

(number of treatments), b  64 (number of blocks), k  34 (block size) 

 

Some screen shots on block designs are given below: 
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3.2 Designs for Bioassays 

Designs for biological assays help in estimation of relative potency of the test preparation with 

respect to the standard one. The material uploaded includes contrasts of interest in parallel line 

assays and slope ratio assays. This link provides some theoretical considerations of designs for 

bioassays along with a catalogue of designs and a bibliography on the subject for use of 

researchers. Literature on bioassays is available at 

www.iasri.res.in/design/BioAssays/bioassay.html.  

 

Some screen shots of this link are displayed below: 

 

  
 

3.3 Designs for Factorial Experiments 

Factorial experiments are most popular among agricultural scientists. To begin with, material on 

block designs with factorial treatment structure and supersaturated designs is available on this 

link.  

 Supersaturated Designs 

Supersaturated designs are fractional factorial designs in which the degrees of freedom for all its 

main effects and the intercept term exceed the total number of distinct factor level combinations 

of the design. These designs are useful when the experimenter is interested in identifying the 

active factors through the experiment and experimental resources are scarce. Definition of 

supersaturated designs, experimental situations in which supersaturated designs are useful, 

http://www.iasri.res.in/design/BioAssays/bioassay.html
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efficiency criteria for evaluation of supersaturated designs, catalogue of supersaturated designs 

for 2-level factorial experiments and asymmetrical factorial experiments and bibliography on 

supersaturated designs has been uploaded on the Server. The complete details of the runs can be 

obtained by clicking on the required design in the catalogue. 

  www.iasri.res.in/design/Supersaturated_Design/Supersaturated.html.  

 

Some screen shots of supersaturated designs are 
 

  
 

 Block Designs with Factorial Treatment Structure 

Block designs with factorial treatment structure have useful applications in designs for crop 

sequence experiments. Th link on block designs with factorial Treatment Structure provides a 

bibliography with 232 references on the subject. Catalogues of block designs with factorial 

treatment structure in 3-replications for number of levels for any factor at most 12 permitting 

estimation of main effects with full efficiency and controlling efficiency for interaction effects 

are also given at this link. URL for this link is www.iasri.res.in/design/factorial/factorial.htm.  

Some screen shots for block designs with factorial treatment structure are 

 
 

 

 Mixed Orthogonal arrays 

Definitions of Orthogonal arrays(OAs), mixed OA, Resolvable OA, -resolvable OA, resolvable 

MOA, construction of OAs, blocking in OAs, generation of orthogonal arrays of strength two, 

resolvable orthogonal arrays of strength two and the orthogonal blocking of the resolvable 

orthogonal array for 4 ≤ n(# Runs) ≤ 144, and bibliography on OAs.  

 

http://www.iasri.res.in/design/Supersaturated_Design/Supersaturated.html
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3.4 Experiments with Mixtures 

Experiments with mixtures are quite useful for the experiments where a fixed quantity of inputs 

(may be same dose of fertilizer, same quantity of irrigation water or same dose of insecticide or 

pesticide etc.) are applied as a combination of two or more ingredients. In these experiments the 

response is a function of the proportion of the ingredients in the mixture rather than the actual 

amount of the mixture.  A bibliography of experiments with mixtures and online generation of 

simplex centroid designs are available on this page http://www.iasri.res.in/mixture/mixtures.aspx. 

Some screen shots of experiments with mixtures are:  
 

  

 

3.5 Online Design Generation- II 

This link is helpful in generation of the following:  

 

Hadamard Matrix 

Hadamard matrices have a tremendous potential for applications in many fields particularly in 

fractional factorial plans, supersaturated designs, variance estimation from large scale complex 

survey data, generation of incomplete block designs, coding theory, etc. One can generate 

Hadamard matrices for all permissible orders up to 1000 except 668, 716, 876 and 892 using the 

URL www.iasri.res.in/WebHadamard/WebHadamard.htm. Methods implemented produce 

Hadamard matrices in semi-normalized or normalized form. “None” option is also available. 

Hadamard matrix can be generated in (0,1); (+1,-1); or (+,-) form. The method of generation of 

Hadamard matrix is also given. The screen shots for generation of Hadamard matrices are    
 

http://www.iasri.res.in/mixture/mixtures.aspx
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Mutually Orthogonal Latin Squares and Orthogonal arrays 

Using this link one can generate complete set of mutually orthogonal Latin squares of order s, s 

being a prime or prime power less than 1000. One can also generate an orthogonal array with 

parameters (s
s+1

, s
2
, s, 2) by choosing the output option as orthogonal arrays. The URL of this 

link is www.iasri.res.in/WebHadamard/mols.htm. Some screen shots of mutually orthogonal 

Latin squares and orthogonal arrays are 

 
 

  

 

3.6 Workshop Proceedings 

Proceedings of 3 dissemination workshops are available for the stakeholders 

1. Design and Analysis of On-Station and On-Farm Agricultural Experiments 

2. Design and Analysis of Bioassays 

3. Outliers in Designed Experiments 

 

4.   Other Useful Links 

The purpose of this component is to develop a network of scientists in general and a network of 

statisticians in particular around the globe so that interesting and useful information can be shared 

among the peers. It also attempts to provide a sort of advisory to the scientists. Some other useful 

and important links available on world wide web are also provided.  
 

 

4.1 Discussion Board 

The purpose of discussion board is to create a network of scientists and also to provide a platform 

for sharing any useful piece of research or idea with scientists over the globe. The user can use 

this board for learning and disseminating information after registering on the discussion board. 

http://www.iasri.res.in/WebHadamard/mols.htm
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The information can be viewed by anybody over the globe. In case there are some queries or 

some researchable issues, then other peers can also respond to these queries. This helps in 

creating a network of scientists. Number of registered participants so far is 78 (23: Agricultural 

Research Statisticians; 37: Experimenters; One Vice-Chancellor and 17 ISS Officers).  

(www.iasri.res.in/design/MessageBoard/MessageBoard.asp). 

 

 
 

4.2 Ask a Question 

The ultimate objective of this server is to provide e-learning and e-advisory services. At present 

this is being achieved through the link “Ask a Question”. Once a user submits a question, a mail 

is automatically generated for Dr. Rajender Parsad, Dr. V.K. Gupta and Mrs. Alka Arora, who 

answer the question on receiving the mail. 

 

 
 

4.3 Who-is-where 

Addresses of important contributors in Design of Experiments including their E-mail addresses 

have been linked to Design Resources Server. The list includes experts from USA, Canada, 

Australia, UK, China, Japan, Mexico, New Zealand, Oman, Syria, Taiwan, Vietnam and India. 

http://(www.iasri.res.in/design/MessageBoard/MessageBoard.asp


Design Resources Server 

 276  

This information is useful for all the researchers in Design of Experiments in establishing 

linkages with their counterparts over the globe. 
 

 
 

4.4 Important Links 

This gives links to other important sites that provide useful material on statistical learning in 

general and Design of Experiments in particular. Some links are as given below: 

  

 

S No. Important Links 

1.    Design Resources: www.designtheory.org 

2.    Statistics Glossary http://www.cas.lancs.ac.uk/glossary_v1.1/main.html 

3.    Free Encyclopedia on Design of Experiments: 

http://en.wikipedia.org/wiki/Design_of_experiments 

4.    Important Contributors to Statistics: 

http://en.wikipedia.org/wiki/Statistics#Important_contributors_to_statistics 

5.    Electronic Statistics Text Book: http://www.statsoft.com/textbook/stathome.html 

6.    On-line construction of Designs: 

http://biometrics.hri.ac.uk/experimentaldesigns/website/hri.htm 

7.    GENDEX: http://www.designcomputing.net/gendex/ 

8.    Hadamard Matrices  

1. http://www.research.att.com/~njas/hadamard  

2. http://www.uow.edu.au/~jennie/WILLIAMSON/williamson.html  

9.    Biplots :http://www.ggebiplot.com  

10.    Free Statistical Softwares: http://freestatistics.altervista.org/en/stat.php  

11.    Learning Statistics: http://freestatistics.altervista.org/en/learning.php  

12.    Statistical Calculators: http://www.graphpad.com/quickcalcs/index.cfm  

13.    SAS Online Doc 9.1.3: http://support.sas.com/onlinedoc/913/docMainpage.jsp  

14.    University of South California: Courses in Statistics: 

http://www.stat.sc.edu/curricula/courses/  

http://www.designtheory.org/
http://www.cas.lancs.ac.uk/glossary_v1.1/dexanova.html
http://en.wikipedia.org/wiki/Design_of_experiments
http://en.wikipedia.org/wiki/Statistics#Important_contributors_to_statistics
http://www.statsoft.com/textbook/stathome.html
http://biometrics.hri.ac.uk/experimentaldesigns/website/hri.htm
http://www.designcomputing.net/gendex/
http://www.research.att.com/~njas/hadamard
http://www.research.att.com/~njas/hadamard
http://www.uow.edu.au/~jennie/WILLIAMSON/williamson.html
http://www.ggebiplot.com/
http://freestatistics.altervista.org/en/stat.php
http://freestatistics.altervista.org/en/learning.php
http://www.graphpad.com/quickcalcs/index.cfm
http://support.sas.com/onlinedoc/913/docMainpage.jsp
http://www.stat.sc.edu/curricula/courses/
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15.    Course on Introduction to Experimental Design: 

http://www.stat.sc.edu/~grego/courses/stat506  

16.    Course on Experimental design: http://www.stat.sc.edu/~grego/courses/stat706 

 

5. Site Information 

This link provides information about the site on the following aspects (i) Feedback from 

stakeholders, (ii) How to Quote Design Resources Server, (iii) Copyright, (iv) Disclaimer, (v) 

Contact us, and (vi) Sitemap.  

 

5.1 Feedback/ Comments 

The feedback / comments received from the users visiting the site have been put on the server so 

that every user can benefit from the experience of other users. More importantly, the feedback 

helps in improving the contents of the site and their presentation too.  We have received feedback 

from 19 researchers (6: Design Experts from India; 7: Experts from abroad; 4: Experimenters and 

2: Agricultural Research Statisticians). The first feedback was received from Dr K Rameash, 

Entomologist working at ICAR Research Complex for NEH Region, Sikkim Centre, Tadong, 

Gangtok.  

 

5.2 How to quote Design Resources Server 

To Quote Design Resources Server, use: 

Design Resources Server. Indian Agricultural Statistics Research Institute (ICAR), New Delhi 

110 012, India. www.iasri.res.in/design (accessed last on <date>). 

If referring to a particular page, then the site may be quoted as  

Authors' name in 'Contact Us' list on that page. Title of page: Design Resources Server. Indian 

Agricultural Statistics Research Institute (ICAR), New Delhi 110 012, India. 

www.iasri.res.in/design (accessed last on <date>). 

For example, page on alpha designs may be cited as  

Parsad, R., Gupta, V.K. and Dhandapani, A. Alpha Designs: Design Resources Server. Indian 

Agricultural Statistics Research Institute (ICAR), New Delhi 110 012, India. 

www.iasri.res.in/design (accessed last on 21.03.2009). 

 

5.3 Copyright 

This website and its contents are copyright of "IASRI (ICAR)" - © "ICAR" 2008. All rights 

reserved. Any redistribution or reproduction of part or all of the contents in any form, other than 

the following, is prohibited: 

 print or download to a local hard disk extracts for personal and non-commercial use only.  

 transmit it or store it in any other website or other form of electronic retrieval system.  

 except with express written permission of the authors, distribution or commercial 

exploitation of  the contents.  

 

5.4 Disclaimer 

The information contained in this website is for general information purposes only. The 

information is provided by “IASRI” and whilst “IASRI” endeavours to keep the information up-

to-date and correct, no representations or warranties of any kind, express or implied, about the 

completeness, accuracy, reliability, suitability or availability with respect to the website or the 

http://www.stat.sc.edu/~grego/courses/stat506
http://www.stat.sc.edu/~grego/courses/stat706/
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information, products, services, or related graphics contained on the website are made for any 

purpose. Any reliance placed on such information is, therefore, strictly at user’s own risk. 

In no event will “IASRI” be liable for any loss or damage including without limitation, indirect 

or consequential loss or damage, or any loss or damage whatsoever arising from loss of data or 

profits arising out of or in connection with the use of this website. 

Through this website users are able to link to other websites which are not under the control of 

“IASRI”. The inclusion of any links does not necessarily imply a recommendation or 

endorsement the views expressed within them. 

Every effort is made to keep the website running smoothly. However, “IASRI” takes no 

responsibility for and will not be liable for the website being temporarily unavailable due to 

technical issues beyond our control. 

5.5 Site Map 

This link gives a map of the various links available on the server. A user can access any of the 

links through this map also. A snap shot of the site map is given below:  
 

 
 

6.   Some Information on the Usage of the Server 

 Design Resources Server is a copyright of IASRI (ICAR). The Server was registered under 

Google Analytics on May 26, 2008. For the period May 26- October 31, 2011, it has been 

used through 1102 cities in 113 countries spread over 6 continents. The average time on the 

page is 2.59 minutes.  

 External links of the server are also available at: 

- http://en.wikipedia.org/wiki/Design_of_experiments 

- http://en.wikipedia.org/wiki/Hadamard_matrix 

 The server has been cited at: 

- https://dspace.ist.utl.pt/bitstream/2295/145675/1/licao_21.pdf 

for lecture presentation on Unitary operators. 

- Chiarandini, Marco (2008). DM811-Heuristics for Combinatorial Optimization. 

Laboratory Assignment, Fall 2008. Department of Mathematics and Computer Science, 

University of Southern Denmark, Odense.  

- http://support.sas.com/techsup/technote/ts723.html 

http://en.wikipedia.org/wiki/Design_of_experiments
http://en.wikipedia.org/wiki/Hadamard_matrix
https://dspace.ist.utl.pt/bitstream/2295/145675/1/licao_21.pdf
http://support.sas.com/techsup/technote/ts723.html
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- Warren F. Kuhfeld. Orthogonal Arrays. Analytics Division SAS, Document No. 273 

(http:// support.sas.com/techsup/technote/ts723.html). 

- Electronic text material in “New and Restructured Post-Graduate Curricula & Syllabi 

on Statistical Sciences (Statistics/Agricultural Statistics; Bio-Statistics, Computer 

Application) of Education Division, Indian Council of Agricultural Research, New 

Delhi, 2008. 

- Jingbo Gao, Xu Zhu, Nandi, A.K. (2009). Nonredundant precoding and PARR 

reduction in MIMO OFDM systems with ICA based blind equalization. IEEE 

transactions on Wireless Communications, 8(6), 3038-3049. 

 Server is also linked at 

- ICARDA Intranet: Biometric Services 

- CG Online learning resources- http://learning.cgiar.org/moodle/Experimental Designs 

and Data Analysis 
 

7.   Future Directions 

The Design Resources Server created and being strengthened at IASRI aims to culminate into an 

expert system on design of experiments. To achieve this end, the materials available on various 

links need to be strengthened dynamically. Besides this, the following additions need to be made 

to the server in the near future:  

- Online generation of  

 balanced incomplete block designs, binary balanced block designs and 

partially balanced incomplete block designs  

 block designs with nested factors 

 designs for crop sequence experiments 

 efficient designs for correlated error structures 

 online generation of row-column designs  

 designs for factorial experiments; fractional factorial plans 

- designs for microarray experiments 

- designs for computer experiments  

- designs for fitting response surfaces; designs for experiments with mixtures 

- split and strip plot designs 

- field book of all the designs generated 

- labels generation for preparing seed packets 

- online analysis of data 
 

The success of the server lies in the hands of users. It is requested that the scientists in NARS use 

this server rigorously and send their comments for further improvements to Dr. Rajender Parsad 

(Rajender.Parsad@icar.gov.in). The comments/ suggestions would be helpful in making this 

server more meaningful and useful.  

mailto:Rajender.Parsad@icar.gov.in

