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Spike fertility and associated traits are key factors in deciding the grain yield potential
of wheat. Genome-wide association study (GWAS) interwoven with advanced post-
GWAS analysis such as a genotype-phenotype network (geno-pheno network) for spike
fertility, grain yield, and associated traits allow to identify of novel genomic regions and
represents attractive targets for future marker-assisted wheat improvement programs.
In this study, GWAS was performed on 200 diverse wheat genotypes using Breeders’
35K Axiom array that led to the identification of 255 significant marker-trait associations
(MTAs) (–log10P ≥ 3) for 15 metric traits phenotyped over three consecutive years. MTAs
detected on chromosomes 3A, 3D, 5B, and 6A were most promising for spike fertility,
grain yield, and associated traits. Furthermore, the geno-pheno network prioritised
11 significant MTAs that can be utilised as a minimal marker system for improving
spike fertility and yield traits. In total, 119 MTAs were linked to 81 candidate genes
encoding different types of functional proteins involved in various key pathways that
affect the studied traits either way. Twenty-two novel loci were identified in present
GWAS, twelve of which overlapped by candidate genes. These results were further
validated by the gene expression analysis, Knetminer, and protein modelling. MTAs
identified from this study hold promise for improving yield and related traits in wheat
for continued genetic gain and in rapidly evolving artificial intelligence (AI) tools to apply
in the breeding program.

Keywords: GWAS, 35K, MTAs, spike fertility, yield, wheat

INTRODUCTION

Wheat is an important cereal providing 20% of calories and protein for the human diet globally
(Shiferaw et al., 2013). With the predicted global population of approximately 9 billion in 2050, the
demand for wheat is expected to increase by close to 70% (Su et al., 2016). However, in contrast to
the required growth rate of 2.4% increase in grain yield per year, we are having merely a rate of.9%
and at this rate, we can achieve only a 38% increase in the present yield by 2050 (Ray et al., 2013).
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Moreover, adverse impacts of climate change, diminishing
natural resources, rapidly evolving new threats of pests and
pathotypes, and genetic erosion would further add obstacles to
the achievement of doubling the yield potential in the stipulated
time. Thus, there is a clear need to improve our understanding
of the genetic architecture of grain yield in our working gene
pool and to search for the efficient utilisation of available
genetic resources.

Grain yield has a complex underlying genetic architecture
that depends on several related traits. Furthermore, high
genotype x environment (GxE) interaction and low heritability of
this ultimate trait in most cases, make the selection process most
challenging. In such a situation, indirect selection of grain yield
via highly heritable (h2) correlated traits would be practically
more feasible. One of the key contributing traits for keeping the
high yields are spike-related traits such as spike fertility.

Spike fertility is an index defined by the number of grains
produced over the chaff weight which can be attributed to
siphoning assimilates to the grains in the florets than to the other
parts of the spike. Acreche et al. (2008) reported an increase
in grain number was related to improvement in both spike
weight and fruiting efficiency (SF). This becomes important in
the light of the observation that an increase in the number
of fertile florets per gram of spike was not at the cost of a
reduction in the grain weight in improved cultivars. It is also
well known that the number of grains per meter square directly
correlates with yield enhancement (Acreche et al., 2008). The
effect of various agronomic and physiological traits on grain
yield was recently reviewed by Tshikunde et al. (2019). These
traits affect grain yield through photosynthetic efficiency, input
use efficiency, grain filling rate, and dry matter translocation (Li
et al., 2019). Extensive use of limited genetic resources with semi-
dwarf stature and wheat-rye translocations (e.g., 1BL.1RS), in
global wheat breeding programs, have caused a near fixation of
these genes as well as significant genetic erosion (Girma, 2017;
Würschum et al., 2017). This indicates the need of improving our
knowledge on the genetic architecture of grain yield and other
attributing traits jointly with the exploration of causal variants in
genetic resources for their efficient utilisation in wheat grain yield
improvement programs.

High throughput genotyping using NGS-derived markers
such as single nucleotide polymorphisms (SNPs) leads to dense
and uniform coverage of all the chromosomes receiving impetus.
The future genetic gain is more likely from a genomics-driven
breeding program which requires an in-depth understanding of
all the major/minor quantitative trait loci (QTLs) segregating in
the elite germplasm pools. GWAS has been found a powerful
tool for dissecting complex traits by finding causative allelic
variation at individual SNP markers or associated with natural
phenotypic variation (Alqudah et al., 2020) which can be
used effectively to fine map these traits (Garcia et al., 2019;
Sheoran et al., 2019; Alqudah et al., 2020; Kumar et al., 2020;
O’Connor et al., 2020; Sehgal et al., 2020). This approach has
been widely used to predict phenotypically related candidate
genes in many crops (Si et al., 2016; Wang et al., 2016; Liu
et al., 2018). GWAS revealed common QTLs between floret
fertility, spike morphology, assimilate partitioning efficiency, and
yield, suggesting genetic association controlling these complex

traits (Guo et al., 2017). It overcomes the limitation of bi-
parental mapping by using a population of unrelated diverse
genotypes representing all possible recombination events. The
widespread availability of cost-effective genotyping techniques
such as genotyping by sequencing (GBS) and SNP arrays (35K
Breeder array, 90K iSelect gene chip, etc.) have further improved
the resolution of GWAS as well as accuracy and predictability of
candidate genes and QTL regions while accounting the causal
variants in the population. Now, the reference genomes of
hexaploid wheat (Triticum aestivum L., International Wheat
Genome Sequencing Consortium [IWGSC], 2018), wheat A
sub-genome (T. urartu, Ling et al., 2018), and D-subgenome
(Aegilops tauschii, Luo et al., 2017) have been made available
which facilitates the fine mapping, gene discovery and cloning in
wheat (Pang et al., 2020; Tura et al., 2020).

Keeping this in mind, GWAS was performed using Axiom
Wheat Breeder 35K Genotyping Array on a panel of 200
wheat genotypes consisting of indigenous collections, elite lines,
released varieties, genetic stocks, and exotic lines. Genotypes
were characterised for spike fertility, yield, and related traits for
three consecutive years. The objectives of the study were (i)
to identify novel MTAs linked to grain yield and yield-related
traits, (ii) to identify candidate genes of these MTAs and to
investigate their underlying functions, and (iii) to construct a
genotype-phenotype network (geno-pheno network) for yield
improvement to further narrow down the promising SNPs
associated with trait (Pradhan et al., 2019).

MATERIALS AND METHODS

The experiment was conducted at the ICAR-Indian Institute of
Wheat and Barley Research (IIWBR), Karnal (290 42

′

N, 770

2
′

E) over three consecutive years viz., 2016–2017, 2017–2018,
and 2018–2019 using the recommended agronomic practices. An
alpha-lattice design with three replications was followed where
the planting was done in plots using a handheld IIWBR dibbler
(Sharma et al., 2016) in four rows each. A subset of 200 diverse
bread wheat (T. aestivum L.) genotypes was chosen for the present
GWAS (Supplementary Table 1) from the plant material used
by Sheoran et al. (2019). Each year seeds were planted under
timely sown condition (1st week of November) in a plot size
of 1m2. Each genotype occupied a single plot of dimension
1.25 m ×0.8 m. In each locus, two seeds were planted and after
15 days of sowing, one plant was maintained per locus hence 48
plants were finally retained in each plot. Each plot had four rows
with 12 plants per row. Row to row spacing was 20 cm and plant
to plant spacing was 10 cm with seedling depth at 5 cm.

Phenotyping
In the phenotyping experiment, 200 genotypes were evaluated
for 15 agro-morphological traits including some less explored
traits viz., days to heading (DH), days to anthesis (DA), days
to maturity (DM) were recorded as number of days taken from
sowing to the days when 75% plants shown spike emergence,
anthers emergence, browning of spikes respectively. Plant height
(PH) was measured from the base of the plant to the tip of the
spike (excluding awns), and spike length (SL) was measured from
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the tip of the apical spikelet (excluding awns) to the base of the
spike at the time of physiological maturity. Other considered
traits were spike dry weight (SDW), grain number per spike
(GNS), grain weight per spike (GWS), thousand-grain weight
(TGW), grain yield (GY), spike chaff weight (CW), and spike
fertility (SF). Tillers per plant (TP) were calculated as the largest
number of tillers produced by a plant. Biomass (BM) was the total
weight of plants per plot and harvest index (HI) was calculated as
(GY/BM)∗100. All the observations were recorded on the main
tillers of nine plants per plot randomly tagged at the booting
stage, except for TGW, GY, and BM that were recorded on
a per plot basis.

Statistical Analysis
ANOVA and estimates of repeatability were calculated using the
mixed procedure in SAS 9.3 software, 20111. Best linear unbiased
predictions (BLUP) were made for each genotype for each
trait by combining data from three environments using mixed
linear models (MLM) fitted with restricted maximum likelihood
(REML) methods where the effect of blocks is considered
random. Heritability for each trait over the environments
was estimated using META-R (Alvarado et al., 2020). The
phenotypic data were later divided into four datasets each coming
from three environments viz., E1 (2016-17), E2 (2017-18), E3
(2018-19), and BLUP. The R software2 was used to calculate
descriptive statistics and summarisation of data for each data
set using command summary() and ggplot2 package, respectively
whereas, the correlation matrix among BLUP values of studied
traits was calculated using command cor() and visualised with
‘corrplot’ package.

Single Nucleotide Polymorphisms
Calling and Linkage Disequilibrium
Genotypic data with 35K Axiom Wheat Breeders Array were
obtained from the IIWBR database, details of which are
mentioned in Sheoran et al. (2019). Markers with minor allele
frequency (MAF) of less than 5%, more than 10% missing
values, and individuals with more than 15% missing SNP calls
were removed from the dataset. Markers with no chromosomal
position based on a high-density consensus map generated by
using the mapping population (Allen et al., 2017) were also
removed. For association analysis, three environments, namely
E1 (2016–2017), E2 (2017–2018), E3 (2018–2019) in three
replications and BLUP were considered. Linkage disequilibrium
(LD) analysis was performed across A, B, and D genomes. Intra-
chromosomal pairwise marker LD as squared allele-frequency
correlations (r2) values were calculated in TASSEL v5.2 (Bradbury
et al., 2007) using a sliding window approach with default
parameters. As a function of genetic distance, the estimated
r2 values for significant SNP marker pairs were plotted to
understand the extent of LD. A second-degree “loess” function
(Cleveland, 1981) in the R statistical program was fitted to
estimate the rate of LD decay over genetic distance (cM).

1http://www.sas.com
2https://www.R-project.org/

Population Structure
Population structure analysis was performed on 15,178 markers
from 200 genotypes. The input file was prepared using the
Perl script. Parallelisation of STRUCTURE 2.3.1 (Chhatre and
Emerson, 2017) run was done based on command line in-house
C++ MPI programming in Linux reducing the computation
load many-folds. The parameters used for running were 100,000
iterations of burn-in and 100,000 Monte Carlo Markov Chain
(MCMC) iterations. K values tested were from 2 to 10 with five
iterations run for each K. Number of subpopulations (K) that are
more likely, i.e., 1K statistics which relies on the rate of change in
log probability [LnP(D)] between successive K values were
analysed using STRUCTURE HARVESTER (Earl and vonHoldt,
2012). Based on the best K value bar plot and fixation index (Fst)
of each sub-population was generated using STRUCTURE run.

Genome-Wide Association Study and
Genotype-Phenotype Network
Association analysis was performed using a compressed mixed
linear model (CMLM) by the GAPIT package, which takes into
account the results of population stratification and kinship as a
covariate to minimize false positives (Lipka et al., 2012). GWAS
analysis was conducted between SNP markers and phenotypic
data in individual environments and BLUP values across all
environments. A threshold P-value of.001 (–log10P = 3) was used
to declare significant SNPs for GWAS results. VanRaden kinship
(K) matrix (VanRaden, 2008) for the 200 genotypes was also
generated using GAPIT.

To identify the key SNPs associated with one or more traits,
genotype-phenotype network analysis has been carried out
using the Network-Based Genome-Wide Association Studies
in (netgwas) R package (Behrouz et al., 2017). netphenogeno
reconstructs the conditional dependence network among
genetic markers, phenotypes, and between genetic markers and
phenotypes. The intra- and inter-chromosomal conditional
interactions among genetic loci were also calculated using the
‘netsnp’ of the ‘netgwas’ package.

Candidate Gene Prediction and
Homology Modeling
Genes associated with the stable loci detected in this study
were identified using the EnsemblPlants database3 and
the International Wheat Genome Sequencing Consortium
(IWGSC)4 RefSeq v1.1 annotations. Nearby regions (1.5 kb
upstream and downstream) of stable MTA were also selected
to find out candidate genes. Expression analysis has been
done using the RNA-seq expression database of polyploid
wheat5 which includes RNA-seq datasets of multiple tissues
and developmental time courses. Expression values are
represented in Fragments per kilobase of transcript per
million mapped reads (FPKM).

3http://plants.ensembl.org/Triticum_aestivum/
4https://urgi.versailles.inra.fr/blast_iwgsc/blast.php
5https://wheat.pw.usda.gov/WheatExp/
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Homology modeling was carried out to deduce the proteins
translated by candidate genes of selected SNPs. For this purpose,
query sequences were subjected to position-specific iterative
(PSI) BLAST against protein data bank database (PDB)6. The
top three templates showing minimum E-value and highest
similarity percentage were selected for 3D structure prediction
in the SwissModel server7. Values from ERRAT, Verify3D,
Ramachandran plots, and FATCAT tools were used to predict and
validate the best 3D structure.

RESULTS

Phenotypic Analysis and Population
Structure
The phenotypic performance of 200 genotypes based on
investigated traits in three environments and BLUP is
summarised in Figure 1A and Supplementary Table 2. The
coefficients of variation (CV) for these 15 traits ranged from 1.6
to 43.8%, showing broad phenotypic variation and considerable
improvement potential. Substantial phenotypic variations among
genotypes and datasets were reported for all the studied traits
excluding SL, CW, SDW, GWS, GNS, and BM for which the
mean sum of squares (MSS) for the environments and BLUP

6http://www.rcsb.org/pdb/home/home.do
7https://swissmodel.expasy.org/

was non-significant at P < 0.001 (Supplementary Table 3). GxE
interaction was also significant (at P < 0.001) for studied traits
except for TP. Heritability of all 15 traits ranged from 0.3 (BM)
to 0.97 (DH), indicating that both genetic and environmental
factors played important role in the phenotypic expression
of these measured traits (Supplementary Table 3). Besides,
broad-sense heritability estimates were found highest for CW
(0.92) followed by SDW (0.87) and GNS (0.86). Furthermore,
the genotype-trait biplot indicated sufficient contribution of
different genotypes from various sub-populations to the diversity
of studied traits (Figure 1C). Pearson’s correlation coefficients,
based on BLUP values of fifteen agronomical traits, ranged
from –0.83 (CW vs. SF) to 0.99 (DH vs. DA) at P < 0.05
(Figure 1B). GY showed a positive correlation with GWS, GNS,
SDW, SL, BM, TGW, and HI which ranged between 0.18 (SL) to
0.49 (GWS) besides HI (0.84). SF showed a significantly positive
correlation with HI and GNS whereas, a significant but negative
correlation with SDW, CW, and PH. The correlation between SF
and GY was positive but non-significant (Figure 1B).

Genomic Coverage, Population
Structure, and Linkage Disequilibrium
A total of 15,178 SNP markers covering 4529.51 cM map distance
with an average distance of 0.5 cM were found polymorphic after
filtering data according to Sheoran et al. (2019). No genotype
was removed for low genotypic data (MIND > 0.01). Among

FIGURE 1 | (A) Summary of data observed for 15 agro-phenological traits, (B) correlation among studied traits, and (C) genotype-trait biplot summarizing the
genetic variability. In figure, BLUP, Best Linear Unbiased Prediction; E1, the year 2016–2017; E2, the year 2017–2018; E3, the year 2018–2019; DH, days to
heading; DA, days to anthesis; DM, days to maturity; PH, plant height; SF, spike fertility; CW, chaff weight; SDW, spike dry weight; SL, spike length; GNS, grain
number per spike; GWS, grain weight per spike; TGW, thousand grains weight; GY, grain yield; TP, tiller per plant; HI, harvest index; BM, biomass.
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polymorphic markers, 39.45, 50.2, and 10.2% were reported
on the A, B, and D genomes, respectively (Supplementary
Table 4). Chromosome 2B had the highest number of markers
(1412) while the 4D chromosome spanned the lowest number
of markers (58). The average genetic diversity (GD) and the
polymorphism information content (PIC) for the whole genome
were found at 0.35 and 0.28, respectively. The average GD and
PIC across the genome were observed highest for the B genome
(0.36 and 0.29) and lowest for the D genome (0.34 and 0.27)
(Supplementary Table 4). Population STRUCTURE analysis
stratified the present GWAS panel into four optimum sub-
populations comprising 67, 30, 48, and 55 genotypes respectively
falling in subgroups I, II, III, and IV with admixture (Figures 2A–
C). The first subgroup (I) has predominantly released varieties
and improved genotypes (∼80%), mostly post-green revolution
high-yielding varieties with complex pedigree. Subgroup II
consists of the indigenous collection and tall traditional type
genotypes possessing tolerance to heat and drought conditions.
Subgroup III has major components as genotypes suited for
hills, warmer areas, and disease-resistant lines while subgroup
IV has genotypes adapted to varying environments. Principal
component and kinship analyses also showed four groups, which
corresponded to the four sub-populations revealed by Structure
(Figures 2A–C). LD was estimated by calculating the squared
allele frequency correlation (r2) among all possible pairs of
markers for each of the 21 chromosomes. Obtained r2 values were
then plotted against genetic distance (cM) for each of the three

genomes separately and across the whole genome (Figure 2D).
LD decayed at 1, 1.3, and 5.8 cM for A, B, and D genomes,
respectively at cut-off r2 = 0.2, while for the whole genome, decay
was observed at 1.3 cM. Based on this average LD decay, the size
of QTL was estimated, i.e., all significant SNPs within 1.3 cM were
considered as part of the same QTL.

Significant Loci Associated With the
Traits
The main objective of this study was to identify the major MTAs
for the traits associated to improve grain yield and adaptability
in wheat. Accordingly, for all 15 traits, a total of 255 significant
MTAs were identified across three environments (E1, E2, and E3)
and BLUP in the present study (Figure 3). False discovery rate
(FDR) was significantly controlled with MLM statistics as seen in
Q-Q plots (Supplementary Figure 1). A maximum of 52 MTAs
was reported on chromosome 6A for eight traits viz., DA, DH,
PH, SDW, GWS, GY, BM, and HI whereas, only one MTA each
was reported on chromosome 4D and 6B for TGW and CW,
respectively. The distribution of MTAs on three subgenomes was
154 (A), 75 (B), and 25 (D). Significant loci from chromosome
1D and 6B from this study were exclusively associated with SL
and CW, respectively. Likewise, loci reported on chromosomes
4D and 5D were associated with TGW. All the MTAs consistently
associated with the trait in at least one environment and BLUP
were considered stable loci for the respective trait. Among traits,

FIGURE 2 | Population structure of genome-wide association study (GWAS) panel consisted of 200 bread wheat genotypes (A) PCA plot, (B) Bar plot showing the
number of optimum sub-population in GWAS panel, (C) Van Raden kinship matrix, and (D) Scatter plot showing LD decay in three sub-genomes and whole genome.
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FIGURE 3 | Manhattan plot summarizing the significant MTAs reported for fifteen traits in four datasets. In figure, BLUP, Best Linear Unbiased Prediction; E1, the
year 2016–2017; E2, the year 2017–2018; E3, the year 2018–2019; DH, days to heading; DA, days to anthesis; DM, days to maturity; PH, plant height; SF, spike
fertility; CW, chaff weight; SDW, spike dry weight; SL, spike length; GNS, grain number per spike; GWS, grain weight per spike; TGW, thousand grains weight; GY,
grain yield; TP, tiller per plant; HI, harvest index; BM, biomass.

a maximum of 36 MTAs was detected for DH and a minimum of
6 for BM. Phenotypic variations explained by these traits ranged
from 5% (DM) to 45% (PH). The highest –log10P value 7.25 was
reported for the marker AX-94407346 (3A: 74.06 cM) associated
with PH having a negative allelic effect of –12.69. Detailed results
on MTAs are given in Supplementary Table 5.

Phenological Traits
A total of 98 loci were found associated with four phenological
traits (DH, DA, DM, and PH) (Supplementary Table 5). For DH,
36 significant MTAs were detected on chromosomes 1A (1), 2B
(4), 3A (3), 5A (6), 6A (19), 7B (2), and 7D (1). Three MTAs (AX-
94712794, AX-94805904, AX-94842717) on chromosome 3A
and two MTAs (AX-94724484, AX-95136668) on chromosome
6A for DH were found stable across the three environments
and BLUP explaining phenotypic variation ranging from 26.2
to 33.4%. For DA, 26 significant MTAs were observed on
chromosomes 1A (1), 2B (4), 3A (3), 5A (6), 6A (10), and
7B (2) accounting for 23.0–33.0%. However, two stable and
consistent MTAs were found on chromosome 3A (AX-94842717,
209.17 cM) and chromosome 6A (AX-94724484, 47.56 cM) for
DA (Supplementary Table 5). Out of 16 MTAs associated with
DM, only 2 MTAs on chromosome 1B (AX-95161998) and 2B
(AX-94853276) were observed in an environment and BLUP
explaining 5–10.2% of the phenotypic variations. A total of 20
MTAs for PH on chromosomes 1A (14), 2B (1), 3A(2), 3B (2),
and 6A (1) were detected. Interestingly, 14 SNPs were mapped
on chromosome 1A within the map position of 74.11–74.86 cM
that collectively explained 43% of phenotypic variation for PH.

Another most stable region for PH was observed on chromosome
3A at an interval of 0.75 cM and was found consistent explaining
phenotypic variation ranging from 36.8 to 45.4%.

Yield Contributing Traits
For TP, 21 loci were reported on chromosomes 1A (16), 2B (1),
5A (1), 7A (2), and 7B (1). Two MTAs, AX-94757176 (1A) and
AX-94446620 (7A) were consistent in E2 and BLUP whereas,
the rest was reported only with BLUP values (Supplementary
Table 5). These SNPs accounted for 8–11% variation for TP. All
the markers reported on chromosome 1A and 7A belong to the
same genetic position 74.11 and 201.13 cM, respectively. For SL,
10 loci accounting for the phenotypic variation of range between
7 and 28% were found on chromosomes 1B (2), 1D (3), 3B (1), 5B
(2), and 7A (2). Marker AX-94629635 (95.7 cM) on chromosome
1D was found to be most stable for SL among all due to its
consistency over two environments (E2, E3) and BLUP with a
negative allelic effect (–0.48).

For GWS, a total of 15 significant MTAs were identified on
chromosome 1A (5), 3B (3), and 6A (2), and one each on 1B,
2B, 3D, 4B, and 5A accounting for 12–19.4% of the phenotypic
variance (Supplementary Table 5). Five MTAs were detected
at position 54.04 cM on chromosome 1A in an environment
and BLUP. A stable locus on chromosome 3B for GWS was
identified in this study and had a pleiotropic effect on GY in
an environment and BLUP. Two important and stable loci for
GWS, one on chromosome 5A (AX-95001743 at 12.25 cM) and
another on chromosome 6A (AX-94544731 at 6.84 cM) were
identified in the present investigation in an environment and
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BLUP. Ten significant MTAs were detected for the trait GNS
on chromosomes 1B (2), 3B (4), and one each on 1A, 2A, 3D,
and 5A which explained phenotypic variation of 15.5–24.9%.
Marker AX-94494277 (29.49 cM) on chromosome 3D was found
consistent for GNS over two environments (E1 and E2) and
BLUP in contrast to other markers which were reported in an
environment and BLUP. For TGW, 24 MTAs were identified on
chromosomes 2A (1), 3A (4), 3B (3), 4A (1), 4B (1), 4D (1),
5A (1), 5D (8), 7A (2), and 7B (2). A stable QTL region on
chromosome 5D at 4.8 cM (554.47–555.92 Mb) was associated
with TGW in E1 and BLUP. These loci were accountable for
5–15% phenotypic variations for TGW in the present GWAS
panel. Marker AX-94732225 (45.96 cM) on chromosome 3B
showed maximum positive allelic effect (2.86) and marker AX-
94823297 (45.84 cM) on chromosome 3A showed maximum
negative allelic effect (–2.42). These two loci explained 7–12 and
8–14% phenotypic variations.

We identified a total of 21 MTAs associated with GY,
distributed on chromosome 2B (2), 3D (5), 4B (2), 6A (8), and one
each on 1B, 2A, 3A, and 5A (Supplementary Table 5). Two MTAs
AX-94784245 (1B) and AX-94407346 (3A) were more significant
as these were consistent across two environments and BLUP
explaining the phenotypic variation of 22.23–30.51%. A QTL on
chromosome 3D was detected for yield spanning an interval of
191.16–203.34 cM. The MTA, AX-94407346 on chromosome 3A
was found most promising for GY while showing the highest
phenotypic variation of 30.19% across two environments and
BLUP. Another important MTA (AX-94761935) associated with
yield was observed on chromosome 2B accounting for 30.15%
phenotypic variance including BLUP. For HI, 18 MTAs were
detected on chromosomes 3A (2), 3B (2), 4B (2), 6A (10), and one
each on 1B, and 5B in an environment and BLUP. A stable QTL
consisting of 10 MTAs was detected for HI on chromosome 6A
(103.98 cM, 535.89–538.05 Mb) showing the phenotypic variance
ranging from 29.1 to 40.9% in environment E3 and BLUP. AX-
94407346 on chromosome 3A was observed with a maximum
phenotypic effect of 41.0% in environment E2 and BLUP for HI.
Six MTAs were detected for BM on chromosome 2A (1), 3D (4),
and 6A (1) explaining phenotypic variation ranging from 6.0 to
9.0%. The genomic region reported on chromosome 3D covered
all four markers and was consistent in two environments and
BLUP whereas the other two markers from chromosome 2A and
6A were reported with BLUP only. Furthermore, the allelic effect
of these markers ranged between –0.09 and 0.09.

Spike Fertility-Related Traits
A GWAS was performed for SF-related traits (SF, CW, and SDW)
(Supplementary Table 5). For SF, 14 MTAs were identified on
chromosomes 3A (3), 3B (3), 4A (2), 5A (1), and 5B (5) in an
environment (either E2 or E3) and BLUP explaining 7.1–11.6%
of phenotypic variance. For SDW, nine MTAs were detected on
chromosomes 1A (2), 3A (3), and one each on 2A, 2B, 3B, and
6A in two environments along with BLUP which explained 8.0–
11.0% phenotypic variation. A total of nine MTAs were identified
for CW on chromosomes 3A (3), 5B (5) and one on 6B in two or
more environments and BLUP explaining 4.2–9.9% phenotypic
variation. Three SNPs on chromosome 3A and two SNPs on

chromosome 5B were found most stable as detected across three
environments and BLUP.

Pleiotropic Loci
A total of 56 pleiotropic markers were identified, common
for highly correlated traits in one or more environments
(Supplementary Table 6). Twenty-three loci were found
associated with both DH and DA whereas, only one locus AX-
94508292 (127.78 cM) on chromosome 7D was found common
for DH and DM. Two common SNPs for three phenological
traits (DH, DA, and DM) were reported on chromosome 5A
at 11.38cM. One marker each on chromosome 1A, 1B, 3B, and
3D showed an association for GWS and GNS. A region between
markers AX-94473921 (73.31 cM) and AX-94407346 (74.06 cM)
on chromosome 3A was found associated with PH, GY, and
HI. Two stable markers viz., AX-94544731 on chromosome 6A
(6.84 cM), and AX-94475572 on chromosome 2B (102.12 cM)
showed a pleiotropic effect on SDW and GWS whereas, another
marker AX-94452286 (3B: 83.69 cM) was associated with SDW,
GWS, and GNS. Four markers on chromosome 5B anchored
at 46.94 cM (AX-94706906 and AX-95632529), 51.91 cM (AX-
95131153), and 55.29 cM (AX-94439232) were associated with SF
and CW. Marker, AX-94823192 (4A: 45.84 cM) was controlling
SF and TGW. Two markers (AX-94823297 and AX-94526152)
anchored at 209.17 cM of chromosome 3A were consistently
associated with SF, SDW, CW, and TGW. Another marker AX-
94842717, anchored to the same position was found associated
with DH and DA including SF, CW, and TGW. Likewise, AX-
94732225 (3B: 45.96 cM) was found common for SF, GNS, and
TGW. One marker on chromosome 1B (AX-94784245), two
markers on 4B (AX-94589857 and AX-94461604), and 7 markers
anchored at 103.98 cM of chromosome 6A were associated
with GY and HI. Three markers from chromosome 3D one at
194.61cM (AX-94598770) and two at 203.07cM (AX-94493158
and AX-94464974) were consistently associated with GY and BM.

Genotype-Phenotype Network
The ‘netgwas’ efficiently estimate pairwise interactions between
different loci in a genome while adjusting for the effect of
other loci. Network analyses due to the conditional dependence
feature reduce the number of possible SNPs and provide an
interaction network of key SNPs associated with studied traits.
Development of the geno-pheno network (Figure 4A) with
77 key SNPs, associated with 10 traits (SF, SL, CW, SDW,
TGW, GNS, GWS, GY, BM, and HI) indicated the inter-
and intra- chromosomal genetic control of these traits. Inter-
chromosomal connections were identified between 26 SNPs
belonging to chromosomes 1A, 1B, 2A, 3A, 3B, 3D, 5A, and
6A (Supplementary Table 8) indicating the importance of these
chromosomes in the phenotypic variation of the studied traits.
Here, we identified 11 key SNPs (SNP 3, SNP 10, SNP 11,
SNP 13, SNP 14, SNP 16, SNP 23, SNP 24, SNP 25, SNP 29,
SNP 35) distributed across 5 chromosomes (1A, 2A, 3A, 3D,
and 6A) interacting with multiple traits (Figure 4B). The geno-
pheno network describes the complex genetics of phenotypic
correlations between studied traits. Furthermore, these SNPs
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FIGURE 4 | (A) Intra- and inter-chromosomal conditional interaction network among 77 significant SNP markers across bread wheat genome where each colour
represents a different chromosome and (B) a genotype-phenotype network showing interaction among traits and associated SNPs where traits are highlighted in
green and other colours designates different chromosomes.

can be used as a minimal marker system for the simultaneous
improvement of the studied traits.

Favourable Alleles
Increasing numbers of favourable alleles showed a significant
effect on the increase in phenotypic values of SF, GNS, GWS,
SDW, TGW, HI, and GY whereas, a decrease in CW and PH
(Supplementary Figure 2). In the above-mentioned traits, the
number of favourable alleles ranged between 5 (SDW) and 16
(PH). The r2 further ranged between 0.02 (CW) and 0.22 (GNS).
These results indicated that the increase in GY depends on the
increasing number of favourable alleles associated with GY and
other correlated traits. The genotype WH1080 carried the highest
12 favourable alleles for GY. Likewise, for SF maximum of 12
favourable alleles were carried by HD3086, MACS6222, MP1201,
MP3211, and VL738, each. Furthermore, genotype PBW373
contained the maximum number (63) of favourable alleles for the
traits PH, GY, HI, GNS, GWS, TGW, SDW, and CW whereas,
L25AMB carried the least numbers (8) of favourable alleles for
traits SDW and CW. The genotype with the highest overall grain
yield of 117.56 g, PBW396 carried 37 favourable alleles for the
traits PH, GY, HI, GNS, GWS, TGW, and SDW. Thus, these
genotypes can prove as efficient sources of favourable alleles for
improving the desirable traits.

Candidate Gene Prediction and
Homology Modeling
In total, 102 SNPs were physically mapped to IWGSC RefSeq
v1.1 with high confidence. To identify the putative candidate
genes, 1.5 kb upstream and downstream regions of the mapped
SNPs were annotated using EnsemblPlant biomart. It led to
the identification of 81 putative candidate genes. Among these,
69 were overlapping, and 11 were within 1.5 kb window
(Supplementary Table 5). Furthermore, in silico expression
analysis was carried out using a publically available RNA-seq
expression database of polyploid wheat (see footnote 3). Of

81 putative candidate genes, 61 showed growth stage-specific
differential expression reported in the Chinese Spring cultivar’s
spikes, grains, stem, and leaf tissues (Supplementary Table 7).
The range FPKM value was between 0.68 (TraesCS3B02G105100)
and 301.43 (TraesCS1B02G380800). Detection of the underlying
genes related to the trait provides further reliability of the
identified MTAs.

Based on the literature survey and to the best of our
knowledge, 22 novel SNPs were identified in the present
investigation (Supplementary Table 9) that were associated
with GY, GNS, GWS, SDW, SF, TGW, and CW. However,
18 of these SNPs physically mapped to IWGSC RefSeqv1.1
with high confidence; 11 SNPs overlapped by candidate genes
for which no reliable GO term was found in the database.
Therefore, protein modeling was carried out with the translated
amino acid sequences. Excellent 3D structures of translated
proteins were projected using a template searched by PSI-
BLAST (Supplementary Figure 3 and Table 1). For gene
TraesCS5D02G545100 no suitable template was obtained within
our cutoff value of identity percentage (≥25%). Identity between
query sequences and their respective templates ranged from
26.26 to 47.94% whereas, GMEQ ranged between 0.27 and

0.6. A range of 349.03–1978.18 and 0.26–1.72
◦

A was reported
for FATCAT and root to mean square deviation (RMSD)
respectively. Furthermore, values from ERRAT and Verify3D
ranged from 58.93 to 95.83% and 64.18 to 95.22%, respectively
(Supplementary Table 9). Ramachandran plots indicated that
among the predicted 3D models 81–95% amino acids were in
favoured regions.

DISCUSSION

Adaptation Related Traits
Considering the diversity of agro-climatic zones in India, DH
plays a major role in the wider adaptability of the wheat
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TABLE 1 | A list of predicted proteins translated by the IWGSC genes overlapping 10 novel SNPs.

SNP Trait Gene stable ID Predicted protein Function References

AX-94452286 GNS, GWS,
SDW

TraesCS3B02G104700 Xylan O-acetyltransferase Polysaccharide acetylation
and improved water use
efficiency

Shang et al., 2020

AX-94493158 GY TraesCS3D02G538400 Pectinacetylesterase/NOTUM Catalyses the deacetylation
of pectin, cell elongation,
pollen formation

Gou et al., 2012;
Kakugawa et al.,

2015

AX-94464974 GY TraesCS3D02G538500

AX-94747224 TGW TraesCS5A02G428800 Coat protein complex II
(COPII) of type Sec23a/24a c

Integrity of cell organelles Wang et al., 2016

AX-95632529 CW, SF TraesCS5B02G104300 Dipeptidyl Aminopeptidase IV Remobilisation and
utilisation of storage
proteins

Simpson, 2001

AX-94484139 SF TraesCS5B02G156900 MFAP1 and Snu23 complex Contact with Prp38 via
ER/K motif-stabilizers single
α helices

Ulrich et al., 2016

AX-95097548 TGW TraesCS5D02G547200 Recognition of Peronospora
Parasitica 13

Host pathogen interaction Bittner-Eddy et al.,
2000

AX-94542611 TGW TraesCS5D02G548200

AX-94610590 TGW TraesCS5D02G548300

AX-94389673 TGW TraesCS7A02G512300 Indole-3-glycerol phosphate
synthase

Indole acetic acid (IAA)
biosynthesis

Ouyang et al., 2000

genotypes. Earlier findings reported that genes associated with
flowering are mainly located on chromosomes 1A, 2B, 3A, 3B,
5A, 6A, 6B, 7A, 7B, and 7D (Kobayashi et al., 2016; Lozada
et al., 2017; Ogbonnaya et al., 2017; Hassouni et al., 2019;
Sheoran et al., 2019). In the present study, two stable clusters
associated with DH, DA, and DM were identified on chromosome
3A at locus 127.08–127.87 cM and the other at 209.17 cM
across all the studied environments. However, on chromosome
5A, we obtained two highly stable regions associated with
phenological traits (DH, DA, and DM) one at locus 11.38 cM
(586.60–588.37 Mb) that may be marked within the boundaries
of gene TraesCS5A02G391400 and TraesCS5A02G392000 and
the second, at an interval of 89.02–92.18 cM (533.27–
546.30 Mb) which can be marked in the limits of three
genes, namely TraesCS5A02G320100, TraesCS5A02G320300, and
TraesCS5A02G392000. Pleiotropic SNP AX-94796479 of the first
region (588.37 Mb) on chromosome 5A identified within gene
TraesCS5A02G392000 at 3′ UTR encodes COBRA-like protein.
This protein is involved in the cellulose deposition in mucilage
secretory cells in Arabidopsis (Ben-Tov et al., 2015). The region
(586.60-588.37Mb) identified in this study, overlapped with the
vernalisation gene Vrn-A1 (587.4 Mb) and TaAGLG-5A gene
(588.0 Mb) on chromosome 5A, the core regulators in the
vernalisation pathway which regulates plant development (Yan
et al., 2003; Wang et al., 2017). Another promising region on
chromosome 6A in an interval of 33.79–47.56 cM was detected
associated with DH and DA.

In the case of PH, significant MTAs were identified on
chromosomes 1A, 2B, 3A, 3B, and 6A. The marker AX-95099974
mapped at 104.59cM on chromosome 2B is in close proximity
to Rht4 (Ellis et al., 2005; Sheoran et al., 2019). On chromosome
1A, we detected a stable genomic region for PH spanning in
an interval of 74.11–74.86 cM (320.22–439.07 Mb) within two

genes is likely to be a new region for the trait. Another stable
region for PH was identified on chromosome 3A spanning the
region between 73.31 and 74.06 cM (435.80–457.79 Mb) within
TraesCS3A02G233300 gene annotating ADP, ATP carrier protein
(Figures 5A,B). This protein is responsible for the lower shoot
weight and less tolerant to high light conditions in Arabidopsis
(Yin et al., 2010). The gene,TraesCS3A02G233300 further showed
the significant (p< 0.05) regulatory association (Figure 5D) with
phenotypes that closely affect the PH and HI such as sensitivity to
growth inhibitors, primary and lateral root development, turgor
pressure, and leaf, flower, and fruit development, in Knetminer
network that further validates the results (Figure 5C,E).

Spike Fertility and Related Traits
Hotspots for SF were identified on chromosomes 3A, 3B,
4A, 5A, and 5B harbouring genomic regions with multiple
traits. A potential genomic region for SF was identified at
209.17 cM (721.66 Mb) on chromosome 3A within gene
TraesCS3A02G496200 co-located with additional three traits,
namely, CW, SDW, and TGW. This region aligned with the
reported region (714.4–725.8 Mb) on chromosome 3A by Li
et al. (2019), significantly associated with GY, kernel number
per spike (KNS), kernel width (KW), SDW, PH, uppermost
internode length (UIL), and flag leaf length (FLL) showing a
significant effect on GY. It is also co-localised with thousand
kernel weight (TKW) QTL, namely QGw.nau-3A (720.59 Mb)
and QTgw-3A1 (721.22 Mb) (Jia et al., 2013; Liu et al., 2014)
and AX-108992368 (721.32 Mb) for GNS (Li et al., 2019).
Here, it is noteworthy that the discovery of a stable genomic
region for SF with a significant pleiotropic effect on SDW, CW,
and TGW might be valuable for breeding purposes. Recently,
Pretini et al., 2020 also identified and validated a promising
QTL (QFE.perg-3A, 51.6 cM, 685.12 Mb) associated with FEm
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FIGURE 5 | (A) Local Manhattan plot and linkage disequilibrium (LD) heatmap of stable SNPs associated with grain yield (GY), harvest index (HI), plant height (PH),
spike fertility (SF), chaff weight (CW), spike dry weight (SDW), and thousand-grain weight (TGW) on chromosome 3A. (B) Effect of different alleles of associated SNP
markers on the phenotypic values of GY, HI, and PH. (C) Effect of different alleles of marker AX-94526152 on phenotypic values of SF, SDW, CW, and TGW.
(D) Network generated for gene TraesCS3A02G233300 (AATP2). (E) Structure of two candidate genes and their in silico tissue and growth specific expression
profile.

(Fruiting efficiency at maturity) on chromosome 3A which is
about 36.55 Mb apart from SNP reported in this study. Therefore,
this region could be a promising breeding target for genetic
improvement of sink strength. PC biplot analysis also supported
these findings which showed clustering of SF with SDW, CW, and
TGW. We detected a co-localised locus AX-94732225 (45.96 cM,
29.61 Mb) on chromosome 3B for SF, GNS, and TGW within
gene TraesCS3B02G056100 near the same position as a FEh
haplotype/SNP reported by Basile et al. (2019).

Furthermore, a stable genomic region for SF was observed
on chromosome 4A (45.84 cM, 29.07 Mb) within gene

TraesCS4A02G036600. On chromosome 4A, we identified
an MTA AX-94582600 at locus 66.89 cM (41.91 Mb) that
was not considered significant as it was detected in only one
environment. It was found within the gene TraesCS4A02G050800
encoding Gibberellin_3-beta-dioxygenase_4 plays a pivotal role
in controlling growth and development especially known for
its importance in spikelet fertility of crops (Kwon and Paek,
2016; Alqudah et al., 2020). Another MTA (AX-94950716) at
locus 210.24 cM (726.44 Mb) was detected in environment
E2 and BLUP within gene TraesCS4A02G462300 which was
located near the reported position by Pradhan et al. (2019)
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annotating Haloacid dehalogenase-like hydrolase domain-
containing protein Sgpp which enhanced phosphatase activity
and biomass in rice (Pandey et al., 2017). It is noteworthy, that
these genes were also strongly expressed in the grain (Grain_Z71,
FPKM-49.49) and spike (Spike_Z39, FPKM-13.61) revealing the
importance of these regions which could further be dissected
to prove their role in trait improvement. Comparing with the
previously reported region for SF on chromosomes 1A, 2A,
3B, 4A, 5A, 6A, 6B, 7A, and 7D (Basile et al., 2019; Pradhan
et al., 2019; Pretini et al., 2020), we discovered five MTAs for
SF co-located with CW on chromosome 5B which might be
considered as a novel region indicating the significance of
assimilate distribution in CW in the improvement of SF.

Yield and Component Traits
In the present study, a significant genomic region associated with
GY, SL, and HI has been identified on chromosome 1B at loci
8.24 cM, which is in proximity to yield QTL (QYld.aww-1B.1)
from RAC875/Kukri and QTL for yield components and relative
leaf expansion rate from Drysdale/Gladius8. This validates the
stability of the genomic region for use as potential QTLs for
marker-assisted selection aiming high yielding wheat lines. In
previous studies, chromosome 3A is known to be a hotspot
that contains valuable QTLs for GY and yield-related traits in
wheat9 (Mengistu et al., 2012; Rustgi et al., 2013). Many cloned
yield and component-related genes viz., TaTAR2.1-3A, TaGS5-
A1/3A, TaTGW6-A1 are mapped on chromosome 3A (Wang
et al., 2015; Hanif et al., 2016; Ma et al., 2016; Shao et al.,
2017). The present study also reports important clusters on
chromosome 3A, most stable on position 457.79 Mb (SNP AX-
94407346, 74.06 cM) for GY observed in two environments
and BLUP. However, this region is 75.64 Mb away from the
gene Ta-TGW6-A1 associated with TGW (Hanif et al., 2016).
This SNP also had a pleiotropic effect with PH and HI, thus
could be considered as a potential genomic region for future
functional validation studies. Recently, Martinez et al. (2021)
also reported that PH, DH, and GY are interrelated traits in
wheat. Another potential genomic region identified in this study
for GY was on chromosome 5A at locus AX-94472479 located
at 417.88 Mb (72.2 cM). This is within the intron variant of
the gene TraesCS5A02G207000 which falls within the confidence
interval of Q.Gnu.uwa-5A-1 detected in the Synthetic W7984 x
Opata M85 population by Onyemaobi et al. (2018). This gene
encodes for the Transcription Initiation factor TFIID subunit
2. This protein along with POW1 (put on weight 1) is involved
in the functioning of grain size regulation by repressing the
transcription activity of the interacting protein TAF2, a highly
conserved member of the transcription initiation complex TFIID
in rice (Zhang et al., 2019). Two potential genomic regions were
identified in this study on chromosome 3D, one at 29.49 cM
governing GWS and GNS and the other at locus 203.07 cM
(611.14–611.16 Mb) associated with GY and BM within two genes
TraesCS3D02G538400 and TraesCS3D02G538500 respectively
are likely to be new. Moreover, TraesCS3D02G538400 showed

8http://hdl.handle.net/2440/127107
9https://archive.gramene.org/db/qtl

high expression in spike (FPKM-9.9 at Zadok stage 39) and
both the genes encode a protein pectin acetylesterase (PAE)
which has an important role in plant tissue development (reduce
inflorescence, stem height) in Arabidopsis (de Souza et al., 2014).
Thus, it can be hypothesised that in the present study these two
PAE genes (TraesCS3D02G538500 and TraesCS3D02G538400)
might have affected GY by affecting SF, GNS, and TGW.

On the genetic map, a genomic region at 103.98 cM
(536.25–538.05 Mb) on chromosome 6A associated with GY
and HI appeared to be another important region in the
current study (Supplementary Table 6 and Figures 6A–D).
This region harboured three candidate genes viz., the first gene
TraesCS6A02G303000 encodes a membrane-anchored ubiquitin-
fold protein, second candidate gene, TraesCS6A02G303100,
located at 536.25 Mb encodes a protein tRNA [(carboxymethyl
uridine(34)-5-O)-methyltransferase] which plays a role in stress-
response and a third candidate gene TraesCS6A02G302500
associated with GY and HI annotates a protein Peptidylprolyl
cis-trans isomerase (PPIases). PPIase is reported essential for
stabilisation of photosystem II and their upegulation leads to
a higher photosynthesis rate in wheat (Wang et al., 2014). In
an earlier report, Lee et al. (2014) identified a QTL QTKW-
6A.1 in the same region for TGW indicating that this should
be the potential novel locus for determining GY and its
component. Furthermore, the Knetminer network (Figure 6C)
revealed that homologues of these genes in Arabidopsis have
a regulatory association with the similar traits for which these
genes have been found associated in this study. For instance, the
gene Traes6A02G305400 that overlapped the SNP AX-94663736
associated with GY and HI showed a regulatory association with
traits seed length and seed weight, at p < 0.05, which are the key
factors for deciding GY and HI in any cereal crop.

Spike length plays a significant role in improving wheat
yield (Guo et al., 2017). Earlier studies have reported stable
QTLs/MTAs for SL on chromosomes 1A, 1B, 3A, 3B, 4A, 4B, 4D,
5A, 5B, 6A, 6B, 6D, and 7A (Liu et al., 2018; Hu et al., 2020; Pretini
et al., 2020). The three stable MTAs associated with SL, one on
chromosome 1D at locus 95.7 cM within TraesCS1D02G147600
and the other two at locus 209.9cM (634.27 Mb) on chromosome
5B have not been reported earlier and are potentially novel MTAs
responsible for SL (Supplementary Table 5).

For TGW, we observed a stable MTA AX-94747224
(13.4, 613.47 Mb) on chromosome 5A within gene
TraesCS5A02G428800 located 32.2 Mb away from the reported
gene TaNAC2-5A associated with yield (He et al., 2015) and
8.06 Mb distal from QTKW.ndsu.5A.2 for TGW (Kumar et al.,
2016) indicating this region is highly significant for TGW
and has the potential for improving GY. We detected a stable
genomic region for TGW on chromosome 5D harbouring seven
MTAs spanning an interval of 554.47–555.92 Mb. This region
is very near to the candidate gene TaCWI-5D (557.9 Mb) for
TGW (Jiang et al., 2015). Notably, the MTA AX-94389673 within
gene TraesCS7A02G512300 on chromosome 7A (163.4 cM,
699.74 Mb) associated with TGW lies in close vicinity to the
gene TaAPO-A1 (673.1–868.2 Mb) and overlapped with the QTL
QTKW-7AL-AN for TGW reported by Quarrie et al. (2005)
and Muqaddasi et al. (2019), respectively, which reveals the
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FIGURE 6 | (A) Local Manhattan plot and linkage disequilibrium (LD) heatmap of stable SNPs associated with grain yield (GY) and harvest index (HI) on chromosome
6A. (B) Effect of different alleles of associated SNP markers on the phenotypic values of GY and HI. (C) Network generated for three candidate genes. (D) Structure
of three candidate genes and their in silico tissue and growth specific expression profile.

importance of this genomic region in wheat improvement.
Similarly, in the present study, significant MTA for TGW on
chromosome 7B was detected at locus 643.29 Mb (96.68 cM)
within the gene TraesCS7B02G378700 which is only 4.0 Mb
proximal to QTL qSn-7B.2 for spike number (Fan et al.,
2019) and 42.2 Mb distal to QTL QTKW.caas-7BL for TGW
(Gao et al., 2015).

For GNS, 10 significant MTAs distributed on chromosomes
1A, 1B, 2A, 3B, 3D, and 5A were found consistent in two
environments and BLUP. A genomic region identified on
chromosome 1B at 555.29 Mb (35.34 cM) was almost at the
same position as QTL QKNS.caas-1BL.2 reported by Li et al.
(2018). A GNS QTL (KNS-gwm312) mapped on chromosome
2A reported by Wang et al. (2012) is near to the position
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of MTA AX-94463225 within the synonymous variant of gene
TraesCS2A02G563400. This locus is close to the gene TaFlo2-A1
(23.73 Mb) (Sajjad et al., 2017) associated with TGW showing the
causal effect of the gene. It is also noticeable that an important
genomic region at 83.69 cM (70.27–71.14 Mb) within gene
TraesCS3B02G104700 co-localised for SDW, GNS, and GWS on
chromosome 3B is likely to be novel. Literature survey suggests
that another consistent loci identified in the study for GNS and
GWS on chromosome 3D at 29.49 cM across environments and
BLUP have no previous reference. Therefore, these two regions
on chromosomes 3B and 3D represent two novel loci governing
GNS and GWS in wheat.

Little information is available in various databases on the
functionality of candidate genes associated with novel SNPs
identified in the present GWAS. Therefore, homology modeling
was opted to identify proteins translated by these candidate
genes and their role in the expression of associated traits.
For this purpose, we searched for a homologous template
across the NCBI database and selected the top three hits for
modeling purposes. Templates that showed high similarity with
our protein sequences belonged to A. thaliana, Homo sapiens,
Chaetomium thermophilum (a thermophilic filamentous fungus),
Stenotrophomonas maltophilia (an aerobic, non-fermentable,
Gram-negative bacterium), and Staphylococcus aureus (a Gram-
positive, round-shaped bacterium). Values of FATCAT and
RMSD indicated significant similarity between query sequences
and corresponding PDB templates at p < 0.05. The accuracy
of predicted models was evaluated on the basis of ERRAT,
Verify3D, and Ramachandran plot. In all the predicted structures
we reported that >80% of amino acids were in favoured
regions of the Ramachandran plot which is an acceptable
range for an accurate model (Gautam et al., 2019). However,
for gene TraesCS5D02G545100 values of ERRAT and 3D
were not in the acceptable range hence the structure of this
gene was not considered accurate. Thus, we rebuilt accurate
models for the rest ten IWGSC high confidence genes and
submitted them to the protein model database (PMDB).
Three genes TraesCS5D02G548200, TraesCS5D02G548300 and
TraesCS5D02G547200 were translated into Recognition of
Peronospora parasitica 13 (RPP-13)- like gene. This protein
has been found to be crucial for host-pathogen interaction
in various plant diseases and subjects to defence mechanisms
mainly in the case of downy mildew (Bittner-Eddy et al., 2000).
Bouchabke-Coussa et al. (2008) demonstrated the association
between ESKIMO-1 protein and improved water use efficiency
(WUE) speculating that GY can be improved through allele
selection or manipulation of the ESKIMO-1 gene. In our
study, SNP AX-94452286 producing a significant association
with three traits GWS, GNS, and SDW was reported in a
gene (TraesCS3B02G104700) encoding ESKIMO-1 protein. All
of these traits are highly correlated with WUE (Shang et al.,
2020). Trait TGW was found to be associated with SNP AX-
94747224 of gene TraesCS5A02G428800 encoding Coat protein
complex II (COPII) of type Sec23a/24a complexed with SNARE.
COPII proteins are crucial in maintaining the integrity of
the Golgi complex and endoplasmic reticulum, and vacuolar
transportation of storage proteins. Storage proteins play an

important role in the development of grain and its final weight.
Mutation in the COPII type gene has been found responsible
for reduced TGW in rice due to defects in vacuolar protein
(Wang et al., 2016). An SNP AX-94389673 affecting the TGW
in our study was found in a gene TraesCS7A02G512300. This
gene translates into Indole-3-glycerol phosphate synthase (IGPS)
which is a key enzyme in the pathway of indole acetic acid (IAA)
biosynthesis (Ouyang et al., 2000) and plays an important role
in determining grain weight by affecting grain size (Nadolska-
Orczyk et al., 2017). Two genes (TraesCS3D02G538500 and
TraesCS3D02G538400) encoding Notum protein are found to
be associated with GY. Instead, it is well-known that notum
deacylates Wnts to suppress signalling activities (Kakugawa et al.,
2015). Wnt is a family of highly conserved signalling proteins
regulating various developmental processes. The existence of
Wnt protein-mediated signalling in plants is still less explored.
These two genes further showed more than 65% similarity
with Pectinacetylesterase/NOTUM (PAE/NOTUM: IPR004963)
genes of A. thaliana (AT3G09405 and AT4G19420) and
Oryza sativa indica (BGIOSGA000013 and BGIOSGA003380) in
EnsmblePlant PBLAST search. PAE catalyses the deacetylation
of pectin which is a key component of the primary cell wall
in plants. Previously, Gou et al. (2012) demonstrated reduced
cell elongation, pollen formation, and increased sterility due to
overexpression of the PAE gene in tobacco. Thus, it can be
hypothesised that in the present study these two PAE genes
(TraesCS3D02G538500 and TraesCS3D02G538400) might have
affected GY by means of affecting SF, GNS, and TGW.

Thus, we identified 22 novel loci in the present GWAS that
produce 32 MTAs, 11 of which overlapped by high-confidence
IWGSC genes (Supplementary Table 9). Furthermore, with
the help of a stringent modelling framework of ‘netgwas,’
which provides a discrete and complex graphical network, we
studied the complex interaction between the: (1) significant
SNPs, (2) phenotypes, and (3) SNPs and phenotype. As a
result, the ‘netgwas’ empowered us to narrow down the number
of significant markers to the eleven most promising SNPs
(Supplementary Table 8) for the simultaneous improvement of
SF, GY, and closely related traits. Previously, Alqudah et al. (2020)
also adopted a similar strategy to identify the most promising
SNPs for the simultaneous improvement in SF and associated
traits. However, the information available on various databases
was insufficient to confirm the functionality of these genes. In
this situation, the homology modeling of these genes proved to
be a potential tool not only for validation of the function of these
genes but also for identifying their importance in future wheat
improvement programs.

CONCLUSION

Spike fertility and GY are closely associated therefore, improving
spikelet fertility can be a possible way of improving the yield
potential of a genotype. Although these traits are normally
sensitive to the environment and show high GxE interaction,
their considerable heritability across the environments in
this study indicates possibilities of their exploitation toward
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improving grain yield. Based on the GWAS result, 255 MTAs
identified for 15 traits were further narrowed down to 11 key
MTAs using the geno-pheno network. In total, 22 novel MTAs
were detected that have been validated with gene expression
analysis and homology modelling. MTAs found in the study
with the corresponding favourable allele shall be converted into
breeder friendly marker system such as KASP (Kompetitive
Allele-Specific PCR). A panel of the selected KASP markers
shall be utilised to screen the crossing block genotypes. This
will not only help in prioritizing the identified genotypes in
the crossing program but also for early generation screening
of the segregating lines. These loci will add on precision in
future breeding programs through marker-assisted selection.
Additionally, functional annotation of the genomic region within
the 1.5 Kb window of each identified SNP allows us to recognize
candidate genes. Upstream analysis of these genes will help to
improve the understanding of key regulatory networks and the
underlying mechanism of the studied traits.
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