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Water buffalo (Bubalus bubalis), belonging to the Bovidae family, is an economically
important animal as it is the major source of milk, meat, and drought in numerous
countries. It is mainly distributed in tropical and subtropical regions with a global
population of approximately 202 million. The advent of low cost and rapid sequencing
technologies has opened a new vista for global buffalo researchers. In this study, we
utilized the genomic data of five commercially important buffalo breeds, distributed
globally, namely, Mediterranean, Egyptian, Bangladesh, Jaffrarabadi, and Murrah.
Since there is no whole-genome sequence analysis of these five distinct buffalo
breeds, which represent a highly diverse ecosystem, we made an attempt for the
same. We report the first comprehensive, holistic, and user-friendly web genomic
resource of buffalo (BuffGR) accessible at http://backlin.cabgrid.res.in/buffgr/, that
catalogues 6028881 SNPs and 613403 InDels extracted from a set of 31 buffalo
tissues. We found a total of 7727122 SNPs and 634124 InDels distributed in four
breeds of buffalo (Murrah, Bangladesh, Jaffarabadi, and Egyptian) with reference to the
Mediterranean breed. It also houses 4504691 SSR markers from all the breeds along with
1458 unique circRNAs, 37712 lncRNAs, and 938 miRNAs. This comprehensive web
resource can be widely used by buffalo researchers across the globe for use of markers in
marker trait association, genetic diversity among the different breeds of buffalo, use of
ncRNAs as regulatory molecules, post-transcriptional regulations, and role in various
diseases/stresses. These SNPs and InDelscan also be used as biomarkers to address
adulteration and traceability. This resource can also be useful in buffalo improvement
programs and disease/breed management.
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INTRODUCTION

Water buffalo, scientifically known as Bubalus bubalis, is the major source of milk, meat, and
drought in various countries, making it an economically important animal. This livestock
species belonging to the Bovidae family is mainly distributed in tropical and subtropical
regions. Based on morphology and behavior, the two categories of domestic Asian water
buffalo are river buffalo (2n = 50) and swamp buffalo (2n = 48) (Iannuzzi, 1994). The global
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population of water buffalo is ~217 million in 34 countries
(FAOSTAT, 2020) with ~82% and ~18% river buffalo and
swamp buffalo, respectively. South Asia holds the majority of
water buffalo as India ranks first in buffalo breeding with a
share of 50.5%, followed by Pakistan and China (Taşcioğlu
et al., 2020). Buffalo are largely domesticated by small
farmers in Asia. This indicates the popularity and
dependence of water buffalo as compared to any other
species that are domesticated. India has the lion’s share
(69%) in river buffalo. Milk yield is more in buffalo than
cattle. Also, buffalo milk has a higher nutritional value than
cattle on account of higher fat content (8.0%), higher
unsaturated fatty acid levels, higher protein content (4.5%),
and lower phospholipid and cholesterol levels. It is a more
preferred milk for dairy products (Du et al., 2019).

The fast decline in DNA sequencing costs has paved the way
for researchers across the globe to revolutionize genome
analysis. Assembly and decoding of the genome of water
buffalo is in continuous progress. The following five
genome assemblies of water buffalo exist on the NCBI
database (https://www.ncbi.nlm.nih.gov/assembly/?term=
Bubalus) (Last accessed: July 2021): GCA_003121395.1 of
the Mediterranean breed from University of Adelaide,
Australia; GCA_019923935.1 of the Murrah breed from
National Dairy Development Board, India; GCA_004794615.
1 of the Bangladesh breed from BGI-Shenzhen, China; GCA_
002993835.1 of the Egyptian buffalo breed from Agriculture
Genetic Engineering Research Institute and Nile University,
Egypt, and GCA_000180995.3 of the Jafarabadi breed from
Anand Agricultural University, India. GCA_003121395.1 and
GCA_019923935.1 are chromosome level assemblies with 25
chromosomes, however, RefSeq annotation has not yet been
provided for GCA_019923935.1.

Whole-genome sequencing and transcriptome studies provide
insights on genetic makeup, numerous trait markers, and their
expression in organisms. Simple sequence repeats (SSR) are the
information source for genetic diversity among different breeds/
varieties of the same species (Patzak et al., 2012). There are 22
buffalo breeds (only river subspecies) distributed all over the
world with different characteristics like shape, size, color, weight,
and lactation period, etc. Genomic variation results in single
nucleotide polymorphisms (SNPs), insertions, and deletions
(Surya et al., 2018). These variations are stable and are
transferred from one generation to the next. These variations
impinge start codon gain or loss, stop codon gain or loss, or frame
shift. The presence of such variations in protein coding regions
culminates in synonymous or non-synonymous amino acid
replacement.

Long non-coding RNAs are a group of RNAs which are
greater than 200 nt and lack open reading frames or have <100
amino acids in length. lncRNAs regulate gene expression
through methylation and demethylation (Bhat and Jones
2016; Fernandes et al., 2019) and through chromatin
modifications by interfering with transcription factors
[binding with DNA and regulating transcription (Griffiths
et al., 2000)] and miRNAs. lncRNAs perform post-
translational regulation through capping, alternative

splicing, editing, transport, translation, degradation, and
stability of mRNA targets. Apart from their biological roles,
lncRNAs can also function as biomarkers. At the organism
level, lncRNAs are known to be abnormally expressed in many
diseases therefore playing a role in diagnosis (Kosinska-Selbi
et al., 2020).

miRNAs are 18–25 nucleotide-long regulatory sequences,
which play an important role in response reactions during
anorganism’s exposure to biotic or abiotic conditions (O’Brien
et al., 2018). They regulate gene expression by binding to the
target sequence with the help of AGO protein and make an
miRNA-induced silencing complex (mi-RISC) (Kawamata and
Tomari, 2010). Water buffalo are adapted to higher to
lower altitudes, hence they face a wide range of stresses
like low/high temperatures (Liu et al., 2019), pathogens
(Dhanoa et al., 2019; Lecchi et al., 2019), etc. Previously
known miRNAs specific to buffalo have been reported from
various transcriptome studies involving such stress
conditions (Dhanoa et al., 2019; Lecchi et al., 2019; Liu
et al., 2019).

Other regulatory non-coding RNAs, known as circular RNAs
(circRNAs), spawn through back-splicing of RNAs. They are
more stable than RNAs (Chen et al., 2017; Wang et al., 2017). The
functions of circRNAs are not well known but still it is reported
that they play a significant role in post-transcriptional regulation
of gene expression (Lukiw, 2013). CircRNAs function as a sponge
of miRNAs by sequestering them by binding and interacting with
lncRNAs (Lei et al., 2021). These are being employed as
biomarkers for controlling and treating diseases (Meng et al.,
2017; Lu, 2020).

Before release of the buffalo reference genome, most of the
studies related to buffalo involving omics analyses were based on
the Bos taurus reference genome. The available whole-genome
assemblies of five buffalo breeds represent a highly diverse
ecosystem. Their utilization in whole-genome sequence
analyses and in extraction of rapid polymorphic markers at
lower costs for the breeders is warranted. In 2018, a buffalo
reference genome with 24 chromosomes along with X and MT
chromosomes was released by the Italian Buffalo Genome
Consortium (https://www.ncbi.nlm.nih.gov/assembly/GCA_
003121395.1). For the current study, the different omics
studies in buffalo were performed using the GCA_003121395.1
buffalo reference genome to extract non-coding RNAs such as
miRNAs, lncRNAs, and circRNAs in the 31 buffalo tissues, which
had not been attempted earlier. Also, the various genetic markers
such as SSRs, SNPs, and InDels from five breeds of buffalo
(Mediterranean, Egyptian, Bangladesh, Jaffrarabadi and
Murrah) were mined. After extraction of the mentioned
molecular markers and non-coding RNAs, a web-based
genomic resource, BuffGR was developed to facilitate the
buffalo research community with user-friendly, single-window
retrieval of buffalo omics data to be utilized for further scientific
research and studies. This buffalo web resource is state-of-the-art,
holistic, and currently the largest collection related to buffalo
including the most important breed of India, i.e., Murrah from
the latest 2021 assembly as well as the world, i.e., Mediterranean
from the latest 2018 assembly.
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MATERIALS AND METHODS

Data Retrieval and Processing
In order to extract the breed-wise molecular markers and variants
like SSRs, SNPs, and InDels, in five buffalo breeds, namely,
Mediterranean, Egyptian, Bangladesh, Jaffrabadi, and Murrah,
their genome assemblies were retrieved from NCBI (Table 1).

For extraction of cirRNAs, SNPs, and InDels, RNA-seq data of
a total of 31 buffalo tissues were retrieved fromNCBI, which were
mapped with the GCF_003121435.1 genome assembly of the
Mediterranean breed using Bowtie2 (Langmead and Salzberg,
2012), while HISAT2 (Kim et al., 2019) was used in the case of
lncRNAs (Table 2). For the extraction of miRNAs, cirRNAs, and
lncRNAs, the genome assembly of the Mediterranean breed was
used (GCF_003121435.1).

Identification of SNPs and InDels
For extraction of variants, namely, SNPs and InDels, the four
buffalo breeds (Murrah, Jaffrabadi, Bangladesh, and Egyptian)
were mapped to the water buffalo reference genome of the
Mediterranean breed (GCA_003121395.1, the UOA_WB_1
assembly). These mapped reads of RNA-seq data were first

sorted and indexed using Samtools (Li et al., 2009; Li, 2011)
along with the indexed reference genome (GCA_003121395.1).
Then, coverage extraction of each nucleotide was performed
using Samtools mpileup. Further, SNPs and InDels were
extracted using bcftools (Danecek et al., 2021) call. Finally,
significant SNPs were filtered using bcftools view at p-value
<0.05, read depth >10, quality depth >30, minimum root
mean square mapping >40, and flanking sequence length =50.
This was followed by functional annotation of extracted SNPs and
InDels using Perl script utilizing the annotation file of the genome
of Mediterranean buffalo (GCA_003121395.1).

Identification of SSRs Markers
MIcroSAtellite (MISA) (Beier et al., 2017) was used to extract
SSRs from genome assemblies of all the five breeds utilizing
parameters such as ≥10, ≥6, ≥5, ≥4, and ≥4 repeats for mono, di,
tri, tetra, and penta nucleotide (nt) motifs, respectively along with
length of compound SSRs ≤100 nt and minimum distance
between two SSRs ≥50 nt (Zhao et al., 2017). The functional
annotation of mined SSR markers was performed using Perl
scripts utilizing the annotation of the Mediterranean buffalo
RefSeq genome (GCA_003121395.1). Finally, based on the

TABLE 1 | The list of assemblies of buffalo from public domain.

Accession Breed Submitter Assembly
level

Remarks

GCA_003121395.1 Mediterranean University of Adelaide Chromosome-
wise

UOA_WB_1 (https://www.ncbi.nlm.nih.gov/assembly/
GCF_003121395.1/)

GCA_019923935.1 Murrah National Dairy Development Board, India Chromosome-
wise

NDDB_SH_1 (https://www.ncbi.nlm.nih.gov/assembly/
GCF_019923935.1/)

GCA_004794615.1 Bangladesh BGI-Shenzhen Scaffold level Bubbub1.0 (https://www.ncbi.nlm.nih.gov/assembly/
GCA_004794615.1/)

GCA_002993835.1 Egyptian Egyptian Water Buffalo Genome Consortium
(Agriculture Genetic Engineering Research Institute
and Nile University)

Scaffold level ASM299383v1 (https://www.ncbi.nlm.nih.gov/
assembly/GCA_002993835.1/)

GCA_000180995.3 Jaffrabadi Anand Agricultural University, Anand, Gujarat, India Scaffold level Bubalus_bubalis_Jaffrabadi_v3.0 (https://www.ncbi.nlm.
nih.gov/assembly/GCA_000180995.3/)

TABLE 2 | The details of RNA-seq data from the International Water Buffalo Genome Project representing different buffalo tissues along with SRA IDs and mapping %.

Tissue SRA IDs Mapping % Tissue SRA IDs Mapping %

Tongue ERR315616 95.71 Ovary-corpus luteum ERR315632 94.30
Rumen ERR315617 93.69 Ovary follicle ERR315633 97.60
Abomasum ERR315618 95.91 Oviduct ERR315634 96.67
Small intestine ERR315619 93.88 Endometrium ERR315635 96.59
Large intestine ERR315620 96.03 Mammary gland ERR315636 95.18
Obex ERR315621 94.02 Embryo pool ERR315637 70.87
Hypophysis ERR315622 96.84 Embryo single ERR315638 73.61
Spinal Cord ERR315623 95.40 Thymus ERR315639 96.71
WBC ERR315624 97.04 Mesenteric lymph node ERR315640 96.47
Cerebellum ERR315625 90.61 Spleen ERR315641 96.07
Bone Marrow ERR315626 95.55 Liver ERR315642 96.57
Muscle longissimus dorsai ERR315627 96.21 Pancreas ERR315643 96.70
Muscle semitendinosus ERR315628 96.62 Kidney ERR315644 95.23
Testis ERR315629 97.40 Lung ERR315645 96.53
Thyroid ERR315630 96.19 Testis SRR527266-72 90.02
Heart ERR315631 94.68 Milk SRR7091387-98 94.88
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result of MISA, primer3 software (Untergasser et al., 2012) was
used to design the primer pairs at default parameters, taking the
flanking sequences of SSRs of the Mediterranean breed.

Identification of microRNAs
For the prediction of miRNAs, first-known miRNAs and pre-
miRNAs of Bos tauras frommiRBase (Griffiths-Jones et al., 2006)
were collected and duplicates were removed using CD-HIT
(Huang et al., 2010). The pre-miRNA sequences of non-
redundant Bos tauras miRNAs were aligned with the buffalo
RefSeq genome (GCA_003121395.1) using BLASTn and
sequences with 0 gap and ≤3 mismatches were taken along
with 500 nt up and downstream stretches, making these
>1000 nt length sequences (Altschul et al., 1990). Further,
200 nt fragments were taken from these sequences by using
25 nt sliding windows using the SegKit tool (Shen et al., 2016).
The obtained sequences were again clustered using CD-HIT to
obtain non-redundant sequences. Non-redundant sequences
were used to predict the secondary structure by RNAfold
(Lorenz et al., 2011) at minimum free energy (MFE) > −20.
Further, sequences with <60 nt, non-AUGC, and multi-loop in
structure, and pseudo pre-miRNAs were removed by Triplet-
SVM classifier (Xue et al., 2005). These putative pre-miRNAs
were used for further prediction of mature miRNAs using
MiRdup (Leclercq et al., 2013). Finally, psRANTarget (Dai and
Zhao, 2011) was used at an expectation value of 2 to predict
mRNA targets of predicted miRNAs.

Identification of Circular RNAs
For the identification of circRNAs from the mapped RNA-seq
reads of 31 buffalo tissues, CIRI v2.0.4 (Gao et al., 2015) was
used. As circRNA-looping sites cannot be aligned directly to
the genome, find_circ (Memczak et al., 2013) was used for the
first 20 base pairs of each read end that were incompatible with
the genome to anchor independent reads, thus map them with
the buffalo reference genome (GCA_003121395.1), and finally
to find only the mapped site. If the two anchors aligned in the
linear region were in the reverse direction, anchor reads were
extended until circRNA junctions were found. The sequence
was considered a circRNA if the two sides of sequences
corresponded to GT/AG splicing signals as mentioned by
Fu et al. (2018). CIRI was also used to annotate circRNAs
by using the annotation file of the GCF_003121395.1 genome
assembly.

Identification of Long Non-Coding RNAs
For the identification of lncRNAs, from RNA-seq data of 31
buffalo tissues, first, mapping was performed using HISAT2 (Kim
et al., 2019), followed by assembly using Stringtie v1.3.5 (Pertea
et al., 2015). Then, putative lncRNAs were predicted from
assembled reads using CPC2 (Kang et al., 2017) and passed
through subsequent steps (a and b) for further validation as
non-coding transcripts, i.e., 1) the transcripts with length ≥200bp,
open reading frame (ORF) ≤100 aa, strand information (+/-
strand), and CPC2 score <0.5 were selected using OrfPredictor
(Min et al., 2005) and passed through annotation using the
annotation file of the GCF_003121395.1 genome assembly by

GffCompare (Burset and Guigo, 1996). 2) These were then
searched against the NCBI-nr protein database through blastx
(E value 0.01, coverage >80%, and identity >90%) and the Pfam
protein database through HMMER (Finn et al., 2011). Finally, the
validated lncRNAs were classified based on origin of lncRNAs as i
(within a reference intron), j (alternative lncRNAs isoforms of
known genes), o (lncRNAs with exonic overlap with a known
transcript), u (intergenic lncRNAs), and x (exonic overlap on the
opposite stand) as classified by Roberts et al. (2011). Transcripts
with FPKM ≥0.5 for multi-exon transcripts and FPKM ≥1 for
single-exon transcripts were selected as lncRNAs.

Development of Buffalo Web Genomic
Resource, BuffGR
The Buffalo Genomic Resource Database, BuffGR is a ‘three tier
architecture’ relational database developed using client, server,
and database tiers. The analyzed datasets were catalogued in
BuffGR on a Linux server. The following steps were involved in
the development of BuffGR (Figure 1A): 1) Extraction of SNPs/
InDels, SSR markers, lncRNAs, miRNAs, and circRNAs from the
reference genomes of different breeds of buffalo and SRA data of
31 tissues of buffalo. These data are absolute, rather than having
relative quantification. 2) Development of relational database in
MySQL version 10.4.17, which includes 11 tables for all the fields,
namely, for SNPs/InDels, SSR markers, lncRNAs, miRNAs, and
circRNAs (Figure 1B); 3) development of web interface in PHP,
HTML, and Java. Web hosting of this interface was done by
Apache2 server version 3.2.4. A request was sent to the web server
from the user’s system in PHP. A query was generated following
the request of the user on the web server and sent to MySQL. The
database response was prepared in MySQL and sent back to the
web server. Finally, a response prepared in PHP was displayed in
the user’s system.

RESULTS

Identification of SNPs and InDels
A total of 6028881 SNPs and 613403 InDels were extracted from
the set of 31 buffalo tissues. The highest number of SNPs and
InDels was extracted from milk tissue (1625901 SNPs/174256
InDels) followed by testis (448640 SNPs/46172 InDels) and large
intestine (152608 SNPs/17552 InDels) (Figure 2A). However, the
variants detected breed-wise showed a maximum number of
SNPs and InDels in the Murrah breed (6313245 SNPs/510515
InDels), followed by Bangladesh (906446 SNPs/114319 InDels)
and Egyptian (447224 SNPs/5920 InDels), while the least was
seen in Jaffarabadi (60207 SNPs/3370 InDels) (Figure 2B).
Table 3 represents the extracted tissue-wise genes showing
abundance of SNPs and InDels by functional annotation. A
total of 7727122 SNPs and 634124 InDels were collectively
distributed in the four breeds of buffalo (Murrah, Bangladesh,
Jaffarabadi, and Egyptian) with reference to the Mediterranean
breed. From functional annotation of breed-wise SNP/InDels,
12326/8469, 15152/2044, 4798/1100, and 21762/17222 genes
were found to have abundance of SNPs/InDels in Bangladesh,
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Egyptian, Jaffrabadi, and Murrah breeds, respectively (Figure 2C
for SNPs and Figure 2D for InDels). SNP discovery plays an
important role in obtaining varying alleles associated with
different traits of interest (Mishra et al., 2020). This can be
useful in marker trait association studies for various traits
(Pareek et al., 2008).

A total of 12 genes (SPP1: chr7, SCD: chr23, SREBF1: chr3,
STAT1: chr2, TG: chr15, LALBA: chr4, INSIG2: chr2, GHRL:
chr21, DGAT1: chr15, CSN1S1: chr7, BTN1A1: chr2, ADRA1A:
chr3) with abundance of milk tissue SNPs from the present study

were found to be common out of 19 candidate genes reported to
be associated with milk production trait by Du et al. (2019)
(Table 4). We also found 10 genes (COL1A2, APOB, GDF7,
KLHL29, NRXN1, RGS22, VPS13B, MFSD14A, SLC35A3,
PALMD) with abundance of SNPs of different breeds from
the present study to be common out of 12 candidate genes for
different QTL traits such as milk yield, fat yield, protein yield, fat
%, and protein % identified from GWAS analysis of Italian
Mediterranean buffalo using the SNP-ChIP technique by
Iamartino et al. (2017) and Liu et al. (2017) (Table 4).

FIGURE 1 | (A) Database preparation and data retrieval for BuffGR; (B) Layout of data, data options, and data tables of BuffGR.

FIGURE 2 | Frequencies of SNP/InDels in (A) 31 different buffalo tissues (B) different breeds of buffalo: Common and unique genes with abundance of (C) SNPs
and (D) InDels in different breeds of buffalo.
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Identification of SSR Markers
Maximum number of SSRs were observed in Jaffrabadi
(1028180), followed by Bangladesh (9463410) and
Mediterranean (908402), while the least was found in Egyptian
(726405) (Figure 3A). The number of SSRs based on repeat types
(mono, di, tri, tetra, penta, hexa-nucleotide repeats) along with
their proportions, frequency of SSRs per Mb, and distance
between the two SSRs are listed in Table 5. In all the breeds,
abundance of mononucleotides was observed which might be
because of the inherent limitation of the chemistry employed in
next-generation sequencing for data generation (Haseneyer et al.,
2011) (Figure 3B). A similar higher proportion of mono repeats
has been found in other animals like cattle, horse, and camel (Ma,
2016; Khalkhali-Evrigh et al., 2019). The relative distributions of
various SSR motif lengths in genomes differ from species to
species (Sharma et al., 2007). A total of 4329, 4284, 1435, 29822,
and 4326 putative genes with an abundance of SSRs in
Bangladesh, Egyptian, Jaffrabadi, Mediterranean, and Murrah

breeds, respectively, were annotated. Figure 3C shows the
common genes with abundance of SSRs in different breeds.
The reported putative molecular markers can be used in
marker trait association studies for buffalo genetic
improvement programs (Sikka and Sethi, 2008; Bhuyan et al.,
2010; Kannur et al., 2017).

Identification of microRNAs
We identified a total of 938 miRNAs from the genome assembly
of the Mediterranean breed. The pre-miRNA sequences,
secondary structure, target information, and location of origin
were extracted for each miRNA along with mature miRNA
sequence and anti-miRNA star sequence. It was observed that
chromosome 11 had the maximum frequency of miRNAs (132
miRNAs) followed by chromosomes 23 (81 miRNAs) and 13 (80
miRNAs) (Figure 4B). A target search for 938 miRNAs was
performed, out of which 88 miRNAs were found to have 3451
mRNA targets (predicted mode of action of miRNAs was

TABLE 3 | Annotated genes with abundance of extracted SNP/InDels from buffalo tissues.

Tissue Genes with
SNPs

Genes with
InDels

Tissue Genes with
SNPs

Genes with
InDels

Tongue 14392 6944 Muscle longissimus dorsai 12381 5149
Rumen 13503 5751 Muscle semitendinosus 12428 5038
Obex 15038 7404 Small intestine 14322 6867
WBC 13422 6813 Large intestine 15438 7879
Testis 16121 8588 Ovary-corpus luteum 13538 5821
Thyroid 14227 6429 Ovary follicle 14208 6751
Heart 13279 6125 Cerebellum 14711 7385
Thymus 14602 7179 Endometrium 14882 7376
Oviduct 14728 7109 Mesenteric lymph node 14445 7189
Spleen 14629 7479 Mammary gland 14674 7052
Liver 13969 6593 Spinal cord 14583 7229
Pancreas 14620 7128 Bone marrow 13376 6252
Kidney 14726 7303 Embryo pool 9531 3510
Lung 14989 7600 Embryo single 6008 1338
Testis 16121 8588 Hypophysis 14763 7144
Milk 16090 9308 Abomasum 14877 7514

TABLE 4 | Genes with abundance of extracted tissue/breed SNPs found to be common within the reported candidate genes of QTL traits.

Genes with abundance
of SNPs: Chromosome
(reported candidate genes)

Total SNPs (within
respective genes)

Tissue/breed of extracted
SNPs

QTL trait Reference

SPP1: chr7, SCD: chr23, SREBF1: chr3, STAT1: chr2, TG:
chr15, LALBA: chr4, INSIG2: chr2, GHRL: chr21, DGAT1:
chr15, CSN1S1: chr7, BTN1A1: chr2, ADRA1A: chr3

15, 22, 17, 53, 122, 04, 18,
03, 19, 13, 05, 01

Milk tissue Milk production Du et al. (2019)

COL1A2: chr8, APOB: chr12 112, 193 Murrah, Bangladesh, Egyptian,
Mediterranean

Milk yield Iamartino et al.
(2017)

GDF7: chr12 1598 Murrah, Bangladesh,
Mediterranean

Milk yield Iamartino et al.
(2017)

KLHL29: chr12 1458 Murrah, Bangladesh, Egyptian,
Jaffrabadi, Mediterranean

Milk yield Iamartino et al.
(2017)

RGS22: chr15, VPS13B: chr15 3249 Murrah, Bangladesh, Egyptian,
Jaffrabadi, Mediterranean

Milk yield, fat yield,
protein yield

Liu et al. (2017)
344

MFSD14A: chr6, SLC35A3: chr6, PALMD: chr6 60, 41, 215 Murrah, Bangladesh, Egyptian,
Mediterranean

Fat %, protein % Liu et al. (2017)
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cleavage of mRNA targets to destroy them or binding with
mRNA targets to sequester them) and included in the web
resource. Protein encoded by target mRNA, aligned as paired-
unpaired sequences of the binding site between mRNA target and
miRNA, were also mentioned in the web resource. The miRNAs
have the future prospective to be used as biomarkers and for
disease management and treatment. miRNAs can be used as a
powerful tool to understand the regulatory mechanisms related to
disease pathogenesis (Singh et al., 2020; Do et al., 2021).

Identification of Circular RNAs
Out of the total 1702 circRNAs extracted from the 31 buffalo
tissues, 1458 were unique circRNAs. Figure 4A shows that the
maximum number of circRNAs was found in milk (833) tissues
followed by embryo pool (153), testis (88), and tongue (52)
tissues. Information of genomic localization into intron, exon,
and intergenic regions of circRNAs along with genes of origin and
strand of origin was extracted by functional annotation of

circRNAs from different tissues which were catalogued in the
web resource. The chromosome-wise distribution of circRNAs
showed that most of the circRNAs originated from chromosome
2 (227), followed by chromosomes 3 (160) and 4 (155)
(Figure 4B). circRNAs have multiple regulatory roles which
can enrich breeding and improve economic traits related to
buffalo (Fu et al., 2018; He et al., 2021; Yang et al., 2021).

Identification of Long Non-Coding RNAs
A total of 44221 lncRNAs were identified in the 31 buffalo tissues.
Abundance of lncRNAs was observed in milk tissue 17387)
followed by testis (5048) and pooled embryo 4419)
(Figure 4A). Genomic annotation based on the site of origin
of lncRNAs found distribution of 37712 unique lncRNAs into five
classes such as intron (14252), isoform/pseudogene (1308), exon
(1358), intergenic (17134), and antisense exon (3659) regions.
Protein and transcript information was also included for genic
origin of lncRNAs. Genomic annotation of unique lncRNAs from

TABLE 5 | Breed-wise frequencies of SSRs, their proportions, SSR density, and distance between two SSRs in different repeat motifs.

Breeds Repeats Number Proportion % Frequency of
SSRs per Mb

Distance between
two SSRs

in Kb

Mediterranean Mono 515343 57.01 191.64 5.22
Di 176276 19.24 65.55 15.25
Tri 113425 12.40 42.18 23.71
Tetra 10120 1.10 3.76 265.72
Penta 13514 1.48 5.03 198.98
Hexa 289 0.03 0.11 9304.68
Compound 79435 8.75 29.54 33.85

Egyptian Mono 436413 60.08 145.18 6.89
Di 152723 21.02 50.81 19.68
Tri 71979 9.91 23.95 41.76
Tetra 6521 0.90 2.17 460.96
Penta 5122 0.71 1.70 586.87
Hexa 107 0.01 0.04 28092.99
Compound 53541 7.37 17.81 56.14

Jaffrabadi Mono 580010 56.41 154.26 6.48
Di 209586 20.38 55.74 17.94
Tri 127585 12.41 33.93 29.47
Tetra 11688 1.14 3.11 321.70
Penta 14154 1.38 3.76 265.65
Hexa 343 0.03 0.09 10962.04
Compound 84815 8.25 22.56 44.33

Murrah Mono 516017 57.63 196.77 5.08
Di 174481 19.49 66.53 15.03
Tri 112283 12.54 42.82 23.36
Tetra 10097 1.13 3.85 259.73
Penta 13527 1.51 5.16 193.87
Hexa 300 0.03 0.11 8741.53
Compound 68658 7.67 26.18 38.20

Bangladesh Mono 533868 56.41 192.71 5.19
Di 190507 20.13 68.77 14.54
Tri 113377 11.98 40.93 24.43
Tetra 10575 1.12 3.82 261.96
Penta 12246 1.29 4.42 226.22
Hexa 268 0.03 0.10 10336.79
Compound 85501 9.03 30.86 32.40
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all tissues depicted abundance in the intergenic (17134), followed
by intron 14252) regions in our study. The graphical
representation of lncRNA frequencies based on their length

showed that most lncRNAs had a length of 200–399 bps and
had a decreasing trend in frequency with increase in lncRNA
length (Figure 4C). The role of lncRNAs in genomic studies has

FIGURE 3 | (A)Breed-wise frequencies of SSRs. (B)Breed-wise representation of different repeat motifs. (C)Common and unique genes with abundance of SSRs
in the five breeds of buffalo.

FIGURE 4 | (A) Tissue-wise frequencies of circRNAs and lncRNAs (B) chromosome-wise frequencies of miRNAs and circRNAs; (C) length-wise frequencies of
lncRNAs in buffalo.
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been found to be critical in linking the gap between livestock
genotype and phenotype (Kosinska-Selbi et al., 2020).

Development of Buffalo Web Genomic
Resource
BuffGR is a comprehensive, first-of-its-kind web resource, with a
holistic collection of buffalo molecular markers and variants of
five buffalo breeds (Murrah, Mediterranean, Jaffarabadi,
Bangladesh, and Egyptian). It is a user-friendly web
resource, which catalogues SNPs, InDels, and SSRs along
with ncRNAs such as mircoRNAs, lncRNAs, and
circRNAs from the five buffalo breeds and 31 tissues. It has
a left vertical section which provides access to varying sections
of the web page including Home, Statistics, Data, and Team.
The Home page includes the brief introduction of the buffalo
web genomic resource along with a description about RNA/
transcripts and molecular markers of buffalo. The
Statistics section provides the statistics of extracted buffalo
genomic data represented in the form of various graphs and pie
charts.

The Data section includes hyperlinked images of each data
point included in the web resource, and by clicking on the image,
the user navigates to the next page of the respective data which
provides the user varying options including type of tissue or
chromosome number or breed, etc. (as shown in detail in
Figure 1B). After selecting the combination of options, the
user gets a complete table of the related data. The last
column of each table provides a hyperlink to the genome

browser, which navigates to the genomic location of the
respective marker or ncRNA. In the case of miRNAs, each
miRNA sequence is hyperlinked, which navigates to its mRNA
target/s wherever available; the Team page includes the name
of the team members with their profile. The Tutorial page
guides users regarding the use of this web genomic resource
(Figure 5).

Utility of Buffalo Web Genomic Resource
The computational approach of discovery of SSR markers, SNPs,
and InDels along with miRNAs, lncRNAs, and circRNAs
utilizing the available genomic data of different breeds
resulted in a ready-to-use, user-friendly, rapid, and
economical approach for genomic resource development. The
developed web resource, BuffGR can be of immense use to the
international buffalo research community, which can utilize the
information of genomic attributes from five breeds from India
(Murrah and Jaffrabadi), Italy (Mediterranean),
Bangladesh (Bangladesh), and Egypt (Egyptian). The
catalogued SNP/InDel markers from different breeds could
be used to study genetic diversity among different breeds of
buffalo (Camargo et al., 2015; Deng et al., 2016; El-Halawany
et al., 2017; Iamartino et al., 2017; Liu et al., 2017; Dutta et al.,
2020). Highly variable SSR markers extracted in the present
study could be utilized to find genetic diversity (Barker et al.,
1997; Zhang et al., 2020). The SSRmarkers from different breeds
could be used to find polymorphic SSRs (Moore et al., 1995) and
their utilization in the study of genetic diversity of respective
breeds (Moioli et al., 2001; Merdan et al., 2019; Vohra et al.,

FIGURE 5 | Web interface of BuffGR.
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2021; Ünal et al., 2021). We also extracted ~270000 polymorphic
SSRs in theMediterranean buffalo breed with respect toMurrah,
Bangladesh, Jaffrabadi, and Egyptian breeds. The species-
specific genetic markers (SNP/InDels and SSRs) can also be
used as biomarkers of species to be used in the meat industry to
trace adulteration or trafficking/traceability (Kannur et al.,
2017).

Two coding variants were detected in the ASIP gene by Dutta
et al. (2020), one synonymous variant at chr14:19947421 and
another non-synonymous variant at chr14:19947429. Dutta
et al. (2020) also reported that the alternative allele at the
synonymous variant was not observed in Murrah, Surti, or
Mediterranean breeds. The potential of extracted SNPs from
this study as biomarkers can be seen from the example that the
Murrah andMediterranean breeds in the present study only had
one non-synonymous SNP at 19947429 in the ASIP gene on
chr14 as reported by Dutta et al. (2020). Significant SNPs could
be utilized to find candidate genes specific to a certain function.
The variants and SSRs can also be utilized in GWAS
(El–Halawany et al., 2017) and later in MTA (marker trait
association) analysis and QTL analysis by interval mapping
(Deng et al., 2016; Mishra et al., 2020). The present study
also shows the potential utilization of extracted markers in
marker trait association as few of the genes with abundance
of extracted tissue/breed SNPs were found in common with the
candidate genes of the few reported QTL traits determined from
GWAS studies. We found 12 genes with abundance of milk
tissue SNPs to be in common with candidate genes of milk trait,
and 10 genes with abundance of SNPs from different breeds to
be in common with candidate genes of QTL traits such as milk
yield, fat yield, protein yield, fat %, and protein % from other
GWAS analyses (Iamartino et al., 2017; Liu et al., 2017; Du et al.,
2020).

Tissue-specific lncRNAs could be helpful in studying post-
transcriptional regulation by targeting certain mRNAs by
cleaving or binding (Zhang et al., 2021) with target mRNAs.
lncRNAs could be competitors of miRNAs, which targeted
certain mRNAs, where lncRNAs sequestered miRNAs
by binding to them and preventing miRNA from cleaving
the respective mRNA (Li et al., 2020). Also, tissue-
specific lncRNAs could be helpful in utilization in
transcriptional regulation by targeting or modulating
transcription regulatory proteins by facilitating their
binding to a certain site or blocking binding at their target
site (Cai et al., 2019; Pan et al., 2021). Another important fact is
that the provided tissue-wise lncRNAs are the largest reported
group of annotated lncRNAs of buffalo in a single study while
several studies report tissue-specific lncRNAs in various
species of livestock such as Bos taurus, Gallus gallus, Sus
scrofa (Kosinska-Selbi et al., 2020), and Bos indicus
(Alexandre et al., 2020). The TCONS_00011978 lncRNA,
identified from muscle tissue in the present study, was
reported to have regulatory potential in muscle with the
highest degree of connectivity within the muscle network by
Alexandre et al. (2020), reaffirming the potential of our
extracted lncRNAs to be utilized in various future studies of
buffalo. The buffalo miRNAs and their target mRNAs

extracted in the present study can be utilized in post-
transcriptional regulation of certain mRNAs and their
encoding proteins by cleaving or binding with their target
mRNAs (MacFarlane and Murphy, 2010; Hammond, 2015;
Chen et al., 2020; Singh et al., 2020) along with recognition, de-
capping, and degradation of 3′ UTR, and de-adenylation and
adenylation of 3’ UTR of mRNAs (Shukla et al., 2011). The
miRNAs could be used to find their lncRNAs target; action of
miRNAs on lncRNAs could be sequestering them by binding
or destroying them by cleaving (Assmann et al., 2019; Xie et al.,
2020). The tissue-wise extracted circRNAs in the present study
could be utilized in the studies of tissue-specific post-
transcriptional regulation involving circRNAs and their role
in various buffalo diseases (Gao et al., 2018; He et al., 2021; Lei
et al., 2021; Yang et al., 2021).

SNP and SSR markers can also be used in parentage and
relatedness testing required in breeding and conservation
programs (Labuschagne et al., 2015). SNP markers can also be
used in estimating inbreeding and effective population sizes
required in conservation management monitoring genetic
diversity (Panetta et al., 2017). They can be used to compute
global co-ancestries of un-pedigreed populations. Such an
approach can be of immense use in formulation of selective
mating plans based on minimum co-ancestry mating and
minimizing inbreeding (Fernández et al., 2005). Both SSR and
SNP markers can be used in individual animal identification and
breed traceability (Zhao et al., 2020). Water buffalo miRNAs and
SNPs can be further used as genomic resources. Such use has been
reported in cattle where SNPs and miRNAs have been found
associated with bovine phenotypes to be used in breed
improvement (Sousa et al., 2021).

CONCLUSION

Through this study, we report the first comprehensive and user-
friendly web genomic resource for buffalo (BuffGR) including
genomic findings of five commercially important buffalo breeds,
namely Mediterranean, Egyptian, Bangladesh, Jaffrarabadi, and
Murrah. BuffGR catalogues a total of 6028881 SNPs and 613403
InDeLs extracted from the set of 31 buffalo tissues. Collectively, a
total of 7727122 SNPs and 634124 InDels were distributed in the
four breeds of buffalo (Murrah, Bangladesh, Jaffarabadi, and
Egyptian) with reference to the Mediterranean breed. The web
resource has 4504691 SSR markers from all the breeds, 1458
unique circRNAs and 37712 lncRNAs from 31 buffalo tissues,
and 938 miRNAs from the genome assembly of the
Mediterranean breed. This information can be widely used by
the buffalo researchers across the globe for studying the genetic
diversity among the different breeds of buffalo, studies involving
post-transcriptional regulation, and their role in various buffalo
diseases. The provided markers can be used as biomarkers in the
meat industry to trace adulteration, trafficking, and breed
traceability. These can be used not only for knowledge
discovery research but also for marker trait association, which
will be helpful in the improvement and management of buffalo
breeds.
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