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The ongoing COVID-19 pandemic, caused by SARS-CoV-2, has now spread across the
nations with high mortality rates and multifaceted impact on human life. The proper
treatment methods to overcome this contagious disease are still limited. The main
protease enzyme (Mpro, also called 3CLpro) is essential for viral replication and has
been considered as one of the potent drug targets for treating COVID-19. In this
study, virtual screening was performed to find out the molecular interactions between
36 natural compounds derived from sesame and the Mpro of COVID-19. Four natural
metabolites, namely, sesamin, sesaminol, sesamolin, and sesamolinol have been ranked
as the top interacting molecules to Mpro based on the affinity of molecular docking.
Moreover, stability of these four sesame-specific natural compounds has also been
evaluated using molecular dynamics (MD) simulations for 200 nanoseconds. The
molecular dynamics simulations and free energy calculations revealed that these
compounds have stable and favorable energies, causing strong binding with Mpro.
These screened natural metabolites also meet the essential conditions for drug
likeness such as absorption, distribution, metabolism, and excretion (ADME) properties
as well as Lipinski’s rule of five. Our finding suggests that these screened natural
compounds may be evolved as promising therapeutics against COVID-19.
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INTRODUCTION

The ongoing pandemic eruption due to the worldwide spread of coronavirus disease (COVID-19) is
caused by the novel virus strain severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2;
previously named 2019-nCoV) (Wu et al., 2020b). This viral disease is an unprecedented global
public health care threat (Jamwal et al., 2020). The first case of COVID-19 disease was originated
fromWuhan, Hubei Province, China, and quickly spread across 219 countries and territories around
the world with high mortality rates in immunocompromised patients (Enayatkhani et al., 2020;
Mackenzie and Smith, 2020; Xu et al., 2020). Based on the recommendations of the Emergency
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Committee, theWorld Health Organization (WHO) has declared
this respiratory infectious disease as a Public Health Emergency
of International Concern (PHEIC) on 30 January, 2020 and a
pandemic on 11 March, 2020 (Shi et al., 2020; Yu et al., 2020). As
on 10 July 2021, this contagious disease had led to more than
185,291,530 confirmed cases and 4,010,834 fatalities (https://
covid19.who.int/), with the number of cases increasing
abruptly across the globe. At present, India is fighting hard
against the second wave of COVID-19. The ongoing pandemic
has now initiated taking a toll on India’s economy. A large
population of India is facing disproportionately higher rates of
COVID-19 infection, morbidity, and mortality. As of 10 July
2021, the total COVID-19 caseload has now soared to 30,752,950
with 405,939 deaths (https://covid19.who.int/table). India is the
most severely affected Asian country. The ongoing pandemic has
been considered more dreadful than the previous global
outbreaks, namely, SARS-CoV (2002–2003) and Middle East
respiratory syndrome (MERS) (2012–present) (de Wit et al.,
2016; Gupta et al., 2020; Wang et al., 2020b; Wu and
McGoogan, 2020; Yuan et al., 2020). Based on previous
investigations, the fatality rate of SARS-CoV and MERS has
been calculated as 10 and 35%, respectively (Lee et al., 2004;
Cheng et al., 2007). It has been well-reported that COVID-19
affects the lower respiratory tract of the body, which causes
pneumonia and affects the gastrointestinal system, kidney,
heart, and central nervous system. Fever, cough, diarrhea, and
tiredness have been considered the most common symptoms
(Chen et al., 2020a; Tang et al., 2020), while aches and pains, sore
throat, conjunctivitis, headache, loss of taste or smell, a rash on
skin, or discoloration of fingers or toes are the less common
symptoms of this infectious disease (Backer et al., 2020; Rothe
et al., 2020; Russell et al., 2020; Verdoni et al., 2020; Yu and Yu,
2020).

The coronaviruses have been recognized as a large enveloped
positive-sense single-strand RNA viruses from Nidovirales
(order) of the Coronaviridae family and subfamily
Coronavirinae (Raj et al., 2021; Shamsi et al., 2021). This
subfamily is classified into four genera including alpha-, beta-,
gamma-, and deltacoronavirus (α-, β-, c-, and δ-CoV) based on
evolutionary methods (Hulswit et al., 2016). In view of previous
reports, coronaviruses have been considered as highly evolving
viruses, with a high rate of mutation and genomic recombination
(Chen et al., 2020b). In the past, six species of human coronavirus
associated with different respiratory tract diseases have been
reported, which include HCoV-NL63, HCoV-229E, HCoV-
OC34, HCoV-HKU1, SARS-CoV, and MERS-CoV (Arden
et al., 2005; Woo et al., 2005; Su et al., 2016). The novel strain
SARS-CoV-2 has been characterized as the seventh strain of the
human coronavirus. Based on the significant nucleotide sequence
similarity with SARS and MERS coronaviruses, the International
Committee on Taxonomy of Viruses (ICTV) coined the
nomenclature of SARS-COV-2 (Hasan et al., 2020). The ICTV
taxonomically placed the SARS-COV-2 in the genus
Betacoronavirus (Helmy et al., 2020; Wang et al., 2020b).

The genome size of SARS-CoV-2 is ∼29.9 kb (29,903
nucleotides) (Wu et al., 2020a). The first whole-genome
sequencing data for SARS-CoV-2 (∼30 kb) were submitted to

the Genbank with the accession number MN908947 and isolated
from Wuhan (Wu et al., 2020a). The genome of SARS-CoV-2
encodes approximately 13–15 open reading frames (ORFs) which
are flanked by 5′ and 3′ UTRs (Chen et al., 2020b; Elfiky and
Azzam, 2020; Gordon et al., 2020). These ORFs constitute a
replicase assembly during the replication process of the central
dogma of molecular biology and encode 27 distinct structural and
non-structural proteins (NSPs) (Liu et al., 2021; Shamsi et al.,
2021). The 5′ end of the SARS-CoV-2 genome encodes 16 NSPs
(Nsp1-16) and constitutes the replicase/transcriptase complex
(RTC). These 16 proteins are conserved in all SARS viruses and
play a critical role in a set of biological processes such as viral
replication, assembly, and immune response modulation (Shamsi
et al., 2021). The 3′ end of the viral genome encodes four conical
structural proteins including E (envelope protein), M (membrane
protein), N (nucleocapsid protein), and S (spike protein), and
nine putative accessory factors. The main protease enzyme (Mpro

also called 3CLpro) is essential for viral replication and has been
considered as one of the potent drug targets for treating COVID-
19 (Joshi et al., 2020; Khan et al., 2020; Kumar et al., 2020; Pant
et al., 2020; Wu et al., 2020a; Zhang et al., 2020). In cooperation
with other components, this important enzyme also helps in the
transcription of the viral RNA. Mpro is a key enzyme that
exclusively cleaves the polyproteins (pp1a and pp1ab) which is
essential for the assembly of virus drugs (Jin et al., 2020). The
molecular mass of Mpro is 33,797 Da with length of 306 amino
acid residues and structurally possesses the three functional
domains, namely, domain I (8–101 residues), domain II
(102–184 residues), and domain III (201–306 residues) (Jin
et al., 2020; Khan et al., 2020). Among them, domains I and II
have an antiparallel β-barrel structure, while domain III
represents a group of five α-helices organized as a large
antiparallel cluster. Domain III is connected to domain II by a
15-residue-long loop region (185–200 residues). The active site is
composed of a catalytic dyad having Cys145 and His41 residues
(Khan et al., 2020). The functional role of Mpro in the viral
replication highlights its importance that can be used to identify
the potential drug therapeutics against COVID-19 (Ullrich and
Nitsche, 2020). Solved crystal structures of Mpro provide a
platform to develop and design the antiviral drugs to combat
COVID-19 (Jin et al., 2020; Zhang et al., 2020). In response to the
COVID-19 outbreak, several studies have been performed using
integrated bioinformatics and molecular modeling approaches
for the screening of novel natural metabolites as potential drug
targets against Mpro (Chikhale et al., 2020a; Kumar et al., 2020;
Maurya and Sharma, 2020; Rout et al., 2020; Tripathi et al., 2020;
Mishra et al., 2021; Romeo et al., 2021; Tock et al., 2021). But no
effective method has been developed yet to prevent and treat the
COVID-19 disease in a significant manner. In addition to the
aforementioned approaches, several other viral protease
inhibitors like remdesivir, hydroxychloroquine, chloroquine,
lopinavir, ritonavir, oseltamivir, and fapilavir have been
explored as repurposed drugs for COVID-19 treatment
(Chang et al., 2016; Chang et al., 2020; Contini, 2020; Das
et al., 2020; Elfiky, 2020; Gonzalez–Paz et al., 2020; Islam
et al., 2020; Khan et al., 2020; Sinha et al., 2020; Wahedi et al.,
2020; Abdelli et al., 2021). The antimalarial drug named as
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chloroquine has been proposed as the potential inhibitor of Mpro

activity (Ou et al., 2021). In a recent follow-up study, Pathak et al.
(2021) explored the potential of rifampicin and letermovir as
repurposed drug candidates against COVID-19. On the contrary,
several studies reported the severe adverse effects of these repurposed
drugs in different countries (Sultana et al., 2020;Wang et al., 2020a).
Therefore, it is imperative to discover natural compound–based
drug targets that could serve as potential inhibitors of different
SARS-CoV-2 proteins and aid in controlling viral replication to
enhance efficacy in COVID-19 treatment.

Sesame (Sesamum indicum L.) is an herbaceous annual plant
cultivated for its edible seed, oil, and flavorsome value, belonging
to the order Tubiflorae, family Pedaliaceae with many common
names including gingelly, til, and benne seed (Bhat et al., 2014;
Pathak et al., 2019). This oil crop is regarded as “queen of
oilseeds” because of its property of resistance to oxidation and
rancidity (Dalibalta et al., 2020). Sesame is widely cultivated in the
tropical parts of Africa and Asia, India being one of the major
producers with Myanmar, China, and Sudan (Majdalawieh et al.,
2017). A plethora of nutrients including proteins, carbohydrates,
antioxidants, lignans, tocopherols, phytates, phytosterols, and
polyunsaturated fatty acids are exclusively found in sesame
(Nagendra Prasad et al., 2012; Kumar et al., 2018; Pathak et al.,
2019). These bioactive compounds possess certain medicinal
properties like hepatoprotective, hypoglycemic, antihypertensive,
anti-estrogenic, and anticancer (Kumar and Singh, 2014;
Majdalawieh et al., 2017). Active ingredients of sesame have also
been investigated as potential inhibitors of Parkinson’s disease (PD)
(Kappo et al., 2016). There are very few reports available for the
screening of sesame-derived compounds against main protease of
COVID-19. So far, only one compound of sesame, namely, sesamin
has been well-explored against COVID-19 using in silico approach.
Kodchakorn et al. (2020) investigated the potential of sesamin
along with other herbal medicines (andrographolide, anthocyanin-
b-D-glucoside, capsaicin, curcumin, cyanidin, cyanidin-3-O-
glucoside, and hesperidin) against the Mpro of SARS-CoV-2
using molecular docking. Docking complexes of these
nutraceuticals with Mpro were further validated for their atomic
stability using molecular dynamics (MD) simulations on 50 ns, and
suggested that the screened compounds may be considered for
coprotection and treatment against COVID-19. In a recent study,
Pandey and Verma (2020) also studied the potential of sesamin and
four other dietary components (galangin, ellagic acid, capsaicin,
and epicatechin) as structural inhibitors of SARS-CoV-2 Mpro

using the molecular docking approach. In a very recent study,
Allam et al. (2021) reported seven sesame-derived natural
compounds (sesamin, sesamolin, pinoresinol, hydroxymatairesinol,
spicatolignan, ferulic acid, and vanillic acid) as potential inhibitors
against three proteins of SARS-CoV-2 including Mpro, papain-like
protease (PLpro), and the RNA-dependent RNA polymerase
(RdRp) using the molecular docking analysis followed by MD
simulations on 50 ns for representative complexes. However, there
is no significant evidence of docking results evaluation available
for MD simulations on high nanosecond scale (up to 200 ns)
to understand the inhibitory mechanism of all sesame-derived
compounds against the SARS-CoV-2 proteins. Despite the
medicinal importance of sesame, all bioactive molecules derived

from this important medicinal plant have not been well-explored in
a significant manner yet for the treatment of COVID-19. With the
fruitful utilization of molecular modeling methods including
molecular docking and MD simulations, sesame-derived
bioactive compounds may be utilized to design the alternative
natural compound–based effective therapeutics against COVID-19.

Keeping this in view, in the present study, we have undertaken
a thorough attempt to investigate the inhibition potencies of 36
phytochemicals from sesame against Mpro of SARS-CoV-2 using
the molecular docking approach. Four natural metabolites,
namely, sesamin, sesaminol, sesamolin, and sesamolinol, were
further subjected to conformational stability using MD
simulations followed by free energy calculations. The
knowledge generated in the current study encourages and
suggests that the sesame-derived phytochemicals have enough
potential of being effective in treatment of COVID-19.

MATERIALS AND METHODS

A flowchart depicting the pipeline involved in the identification
of interaction between sesame-derived bioactive molecules and
Mpro is presented in Figure 1.

Ligand Selection
An extensive literature survey was conducted to prepare a library
of sesame-derived natural compounds reported with therapeutic
potential. Chemical structures of 36 phytochemicals
(Supplementary Table S1) were obtained from the PubChem
database (Kim et al., 2020) in a Spatial Data File (SDF) format. All
these molecules were optimized prior to molecular docking using
a set of AutoDock tools (Morris et al., 2009). Each and every
molecule embedded in thse library was prepared with the
addition of polar hydrogens and Gasteiger charges calculation.
For the docking purpose, the molecules were saved in a pdbqt
format using PyRx Open Babble tools (O’Boyle et al., 2011).

Preparation of Receptor
The crystal structure of the Mpro of SARS-CoV-2 in a complex
with Z45617795 (PDB ID: 5R7Y) was attained from the RCSB-
Protein Data Bank (Berman, 2000; Burley et al., 2018) for docking
purposes. This protein crystal structure was solved by the
PanDDA analysis group (https://www.rcsb.org/structure/
5R7Y). Preprocessing of the Mpro of SARS-CoV-2 was carried
out by removing water atoms and heteroatoms, and adding polar
hydrogen atoms and Kollman charges on it using AutoDockTools
version 1.5.6. Swiss-pdb Viewer (Guex and Peitsch, 1997) was
employed to structure optimization and energy minimization.
The clean geometry module available in the Discovery Studio
platform was utilized for the side chain correction.

Virtual Screening Based on Molecular
Docking
In a search for a drug against COVID-19, we performed a site-
specific docking screen for the Mpro of SARS-CoV-2 against
the prepared library of sesame-derived natural compounds
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containing 36 compounds. AutoDock Vina program was
employed for virtual screening. The grid box was created with
the size of 70 Å × 70 Å × 70 Å, with a total of 50 genetic run. For
the purpose of docking, amino acid residues such as Thr24,
Thr26, Asn119, Phe140, Gly143, Cys145, His163, His164,
Glu166, Gln189, and Thr190 were considered as active sites, as
earlier reported by Khan et al. (2020) and Kumar et al. (2020).
Other parameters were set as default while docking process. The
carmofur (CID_2577) compound was selected as the positive
control (Jin et al., 2020) for docking process. After docking, the
top ranked compounds (based on docking score, number of
hydrogen bonds, and specificity) (Table1) were chosen and
visually inspected using PyMol and Discovery Studio (DeLano,
2002).

Drug-Likeness and Absorption,
Distribution, Metabolism, and Excretion
Profiling
The automated Swiss ADME server (Daina et al., 2017) was
employed to calculate the drug-likeness attributes of screened
molecules. Different molecular properties such as molecular
weight, number of hydrogen bond accepters, number of
hydrogen bond donors, number of rotatable bonds, molar

refractivity, bioavailability score, synthetic accessibility, TPSA,
and solubility were calculated with utilizing Lipinski’s rule of five
(Lipinski, 2004) and Veber’s rule (Veber et al., 2002).

Molecular Dynamics Simulations
In order to assess the stabilities of docking conformation
complexes of the four bioactive compounds sesamin,
sesaminol, sesamolin, and sesamolinol with SARS-CoV-2 Mpro,
MD simulations were performed using GROMOS9643a1 force
field embedded in GROMACS 5.1.1 package installed on Linux-
based workstation (Abraham et al., 2015; Kutzner et al., 2019).
For the MD simulations, we followed the protocol previously
described by Gajula et al. (2016) and Jee et al. (2017). The
automatic PRODRG server was employed to prepare the
topology files of ligand molecules (Schüttelkopf and van
Aalten, 2004). The docking complexes were solvated in a
dodecahedron box. In order to make the whole system
neutral, the appropriate Na+ ions were added to the system.
The steepest descent algorithm was applied to perform the energy
minimization of the prepared system with 50,000 iteration steps
and cutoff up to 1,000 kjmol−1 with a primary goal of reducing the
steric clashes during simulations. The long-range electrostatic
interactions were calculated by using particle mesh Ewald (PME)
truncation method (Abraham and Gready, 2011). Prior to a

FIGURE 1 | Representation of pipeline utilized in the present study to identify the inhibitors of Mpro of SARS-CoV-2 using an extensive molecular modeling
approach.
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production run, the process of equilibrium was completed in two
phases. In the first phase, equilibration was established with a
constant number of particles, volume, and temperature (NVT),
with each step 2 femtosecond (fs). The second phase was
performed with a constant number of particles, pressure, and
temperature NPT, with the ensemble at 300 K. After determining
the coordinates, LINCS algorithm was considered to constrain
the covalent bonds involving hydrogen atoms (Hess et al., 1997;
Hess, 2007). Temperature was regulated inside the box using
V-rescale, a popular Berendsen temperature coupling method.
Finally, a production run of 200 ns was run with each step of 2 fs.

Trajectory Analysis
After the successful completion of MD simulations, trajectories
were analyzed using a set of tools implemented in GROMACS
package. The gRMS tool of GROMACS was utilized to calculate
the root-mean-square deviation (RMSD) variation in protein
backbone, while the overall root-mean-square fluctuation (RMSF)
in the atomic positions of protein C backbone was generated by using
the grmsf module. The gyrate, gmxsasa, and g h bond tools were
employed to estimate the radius of gyration (Rg), solvent accessible
surface area (SASA), and hydrogen bonds, respectively.

Molecular Mechanic/Poisson–Boltzmann
Surface Area Binding Free Energy
Calculations
The Molecular Mechanic/Poisson–Boltzmann Surface Area
(MM/PBSA) was performed on g mmpbsa script program to
calculate the binding free energy of interactions between the

docking complexes (Kumari et al., 2014; Aldeghi et al., 2017).
After the simulation of docking complexes, all the trajectories of
200 ns were used for MM/PBSA-based binding free energy analysis.
The major energy components such as binding energy (kJ/mol), van
der Waals energy (DEvdW), electrostatic energy, polar solvation
energy, and SASA energy all together contributed to calculate the
MM/PBSA relative binding affinity. The MM/PBSA method–based
binding free energy of the protein–ligand systems were calculated
using the following equation:

ΔGMMPBSA � 〈Gcomplex − Gprotein − Gligand〉complex,

where Gcomplex represents the total free energy of the docking
complex, and Gprotein and Gligand depict the total free energies of
the isolated protein and ligand in the solvent, respectively.

RESULTS AND DISCUSSION

Molecular Docking
Molecular docking is one of the most applied methods in the
process of computer-aided drug design (CADD) to identify potential
inhibitors against various pathogens. With this revolutionary method,
an immense amount of energy, time, and costs of the drug discovery
process can be saved to screen the large drug libraries for the discovery
of potential drug compounds (Wadood et al., 2013; Yu andMacKerell,
2016). There is no effective cure for COVID-19 so far; therefore,
identification of potential drug compounds is required on an urgent
basis. In the present study, we screened an in-house library of sesame-
derived bioactive molecules against Mpro of SARS-CoV-2 using a
molecular docking approach. In total, 36 natural compounds

TABLE 1 | List of top four natural compounds shortlisted based on binding energy score as a result of virtual screening.

S.
No.

Compound 2D structure Binding energy
(kcal/mol)

Molecular interactions

1 Mpro (active site residues) Thr24, Thr26, Asn119, Phe140, Gly143, Cys145, His163, His164, Glu166, Gln189, and Thr190

2 Sesamin (CID_72307) −6.7 Hydrogen bond: ASN151 (5.46 Å), SER158 (4.38 Å), and
ARG298 (6.05 Å)
Carbon–hydrogen bond: ASP295 (5.38 Å)
Alkyl: VAL104 (5.27 Å)
Pi–sigma: VAL104 (4.29 Å)

3 Sesaminol (CID_94672) −6.6 Hydrogen bond: ARG105 (6.59 Å), ASN151 (5.39 Å), and
ARG298 (6.05 Å)
Carbon–hydrogen bond: ASP295 (5.27 Å)
Pi-Sigma: VAL104 (4.30 Å)

4 Sesamolin
(CID_131801617)

−6.4 Hydrogen bond: ARG105 (6.03 Å), GLN110 (4.52 Å), and
SER158 (4.08 Å)
Pi–sigma: VAL104 (4.89 Å)

5 Sesamolinol (CID_443019) −6.1 Hydrogen bond: SER158 (4.10 Å)
Carbon–hydrogen bond: ILE106 (4.45 Å), and GLN110 (5.21 Å)
Pi–sigma: VAL104 (5.04 Å)
Alkyl: VAL202 (5.45 Å), and ILE249 (5.21 Å)
Pi-Alkyl: HIS246 (5.26 Å)
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(Supplementary Table S1) were docked into the binding pocket of
Mpro. The docking results demonstrated that out of 36 selected natural
compounds used in the present study, four bioactive molecules,
namely, sesamin, sesaminol, sesamolin, and sesamolinol were
found to have a higher binding energy of −6.7, −6.6, −6.4, and
−6.1 kcal/mol−1, respectively, than the positive control compound
carmofur whose binding energy was determined to be −5.2 kcal/
mol−1. These four natural compounds (sesamin, sesaminol, sesamolin,
and sesamolinol) ranked as top interacting with Mpro based on the
affinity of molecular docking, number of hydrogen bonds and
compound specificity.

The 2D structures, binding score, and details of interactions of
the top four screened compounds are displayed in Table 1.
Docking complexes of these natural metabolites with Mpro

have been considered for further evaluation using MD
simulations and MM/PBSA energy calculations. Discovery

studio and PyMOL programs were employed to prepare the
two- and three-dimensional plots of molecular interaction
networks, respectively. After visualizing the 2D and 3D
interaction plots, it was observed that the sesamin compound
formed hydrogen bonds with three residues, namely, Asn151
(5.46 Å), Ser158 (4.38 Å), and Arg298 (6.05 Å). This compound
was found to have one carbon–hydrogen (C–H) bond with
Asp295 (5.38 Å), alkyl bond with Val104 (5.27 Å), and
Pi–sigma bond with Val104 (4.29 Å) residue. It also manifests
van der Waals (VdW) interaction with six residues including
Arg105, Ile106, Gln110, Thr111, Thr292, and Phe294 (Figure 2).

In the case of sesaminol, three residues, namely, Arg105
(6.59 Å), Asn151 (5.39 Å), and Arg298 (6.05 Å), formed the
hydrogen bonds. Residues Asp295 (5.27 Å) and Val104
(4.30 Å) interacted via C–H bond and Pi–sigma, respectively.
Five residues including Ile106, Gln110, Thr111, Thr292, and

FIGURE 2 | 2D and 3D representation of molecular interaction between the Mpro of COVID-19 (PDB ID: 5R7Y) and sesamin compound (CID_72307): (A) 3D
structure presentation of sesamin; (B) Molecular docking complex of a crystal structure of Mpro with sesamin molecule, docked using AutoDock implemented in PyRx
package; (C) close view of pocket with sesamin structure in the stick model colored by atom types, yellow dashed lines represent the hydrogen bond networks; (D) 2D
representation of different types of interactions with sesamin including van derWaals, conventional hydrogen bond, carbon hydrogen bond, Pi–sigma, and alkyl; (E)
hydrophobicity surface representation of the overall structure of Mpro in complex with Sesamin; and (F) pocket view of sesamin binding with Mpro and the representation
of residues involved in hydrogen bond donor acceptor. The docking complex of Mpro with sesamin was rendered in different CPK using UCSF Chimera, Discovery
Studio, and PyMol.
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Phe294 manifest VdW interaction (Figure 3A). As shown in
Figure 3B, sesamolin molecule exhibits the hydrogen bond with
three residues, namely, Arg105 (6.03 Å), Gln110 (4.52 Å), and
Ser158 (4.08 Å), and one Pi–sigma with Val104 (4.89 Å). VdW
interaction with residues Phe8, Lys102, Phe103, Thr111, Asn151,
Thr292, and Phe294 was also formed. In the sesamolinol
molecule, one residue Ser158 (4.10 Å) formed hydrogen bond
(Figure 3C). Several other residues formed other types of
molecular interactions such as Ile106 (4.45 Å), Gln110 (5.21 Å)
(C–H bond), Val104 (5.04 Å) (Pi–sigma), Val202 (5.45 Å), Ile249
(5.21 Å) (alkyl), His246 (5.26 Å) (Pi–alkyl), and residues Arg105,
Gln107, Asn151, Asp245 demonstrated VdW interactions.

Consistent with previous studies which reported the potential
inhibitors of Mpro (Park et al., 2015; Aanouz et al., 2020; Bello
et al., 2020; Chikhale et al., 2020b; Krupanidhi et al., 2020;
Matveeva et al., 2020; Muhammad et al., 2020; Tripathi et al.,
2020; Mitra et al., 2021; Prasanth et al., 2021; Varadharajan et al.,
2021), in our study, screened four compounds (sesamin,

sesaminol, sesamolin, and sesamolinol) were found to be
tightly fit into the binding pocket of the Mpro of COVID-19.
In previous studies, the potential of herb-derived natural
compounds have been explored to inhibit the Mpro of
COVID-19 using integrated bioinformatics and molecular
modeling approaches (Kumar et al., 2020; Suravajhala et al.,
2020; Gunda et al., 2021; Mishra et al., 2021). Three natural
metabolites, namely, ursolic acid, carvacrol, and oleanolic acid
have been reported as the potential inhibitors of Mpro of COVID-
19. The molecular docking study of ursolic acid, carvacrol, and
oleanolic acid with the Mpro protein demonstrated the binding
energy of −5.9, −4.0, and −6.0 kcal/mol, respectively (Kumar
et al., 2020). The ursolic acid formed a strong hydrogen bond
with Ser46 residues, while the docking study of carvacrol and
oleanolic acid with the Mpro protein exhibits hydrogen bonding
with Gly143 and Gln189 residues of the active site, respectively. In
a recent study, Gunda et al. (2021) proposed the natural xanthone
compounds as promising drug inhibitors against the Mpro of

FIGURE 3 | 2D and 3D representation of docking complexes: (A) Mpro and sesaminol complex; (B) Mpro and sesamolin complex; (C) Mpro and sesamolinol
complex visualized using UCSF Chimera and Discovery Studio.
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COVID-19 based on their significant antiviral power, which is
well-documented in literatures. In a recent follow-up study,
Mishra et al. (2021) explored a set of natural compounds to
investigate their binding potential to the Mpro of COVID-19.
Based on the docking and MD simulations, the four natural
compounds, namely, amentoflavone, guggulsterone, puerarin, and
piperine have been reported as antiviral compounds against the
Mpro of COVID-19. The binding affinity of these natural metabolites
with Mpro protein confirms the results of the present study.

Several compounds of sesame possess the natural antibacterial,
antifungal, antiviral, and anti-inflammatory properties, and lignans
such as sesamin, sesaminol, sesamolin, and sesamolinol are good
examples (Uncu et al., 2015; Dravie et al., 2020). Sesamin is
exclusively found in the sesame plant, and its antioxidant,
antibacterial, antiviral, and antifungal activities are well-
reported. Kodchakorn et al. (2020) identified that sesamin
interacts with the Mpro of SARS-CoV-2 and affects the thermal
stability of Mpro using in silico methods, providing evidence for
sesamin as a structural inhibitor against the Mpro of SARS-CoV-2.
Other studies also indicated that the sesamin compound might
interact with amino acid residues Ser144, Cys145, Gln189, and
Gln192 and showed significant interactions with effective residues
His41, Met49, and Met165 of the Mpro of COVID-19 (Pandey and
Verma, 2020). In a follow-up study, Allam et al. (2021) explored
the sesamin and sesamolin compounds along with other natural
compounds against Mpro, PLpro, and RdRp proteins. Sesamin was
found to be interacted with Mpro with three residues including
Gln189, Thr190, and His41, while the sesamolin molecule was
reported to interact with two amino acid residues, namely, Gln189
and Thr190. Our results may support the previous findings on the
inhibitory effect of sesamin and sesamolin against the Mpro of
COVID-19. Previous reports demonstrated the docking results
only for few compounds including sesamin and sesamolin but did
not consider all compounds of sesame reported in the literature,
which have significant medicinal properties as well. In the present
study, we explored the potential of 36 sesame-derived natural
compounds against the Mpro of COVID-19, and based on the
docking results, the four natural compounds were selected, namely,
sesamin, sesaminol, sesamolin, and sesamolinol for further
evaluation using MD simulations on 200 ns. The previous
studies lack the evidence of docking results evaluated using MD
simulations on high ns scale. The screened natural compounds
based on the present study were also well-studied for their central
role in different biological activities. Several in vitro and in vivo
studies illustrate the neuroprotective role of sesamin against
cerebral ischemia (Chung et al., 2010; Dar and Arumugam,
2013). Also, this major lignin compound has demonstrated other
biological activities such as antihypertensive, atherosclerosis,
thrombosis, antidiabetic, anticancer, cardiovascular, and anti-
inflammatory (Kumar et al., 2018; Dalibalta et al., 2020). Of
note, sesamin has been previously shown to be effective against
swine flu (influenza type A H1N1) through in silico and in vitro
studies (Fanhchaksai et al., 2015). This compound was established
as a novel inhibitor of pro-inflammatory cytokines, IL-1β and TNF-
α. Sesaminol is one type of sesame lignan compound commonly
found in sesame seeds andwell known for its strong antioxidant and
anticancer properties (Miyahara et al., 2001; Watanabe et al., 2017). T
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Using in vitro and in vivo models, Kaji et al. (2020) reported the
preventive effect of sesaminol on a neurodegenerative disease
named as Parkinson’s disease (PD). Sesamolin, the second major
lignan, found in sesame oil has been regarded as a natural
therapeutic agent because of its various therapeutic properties
(Michailidis et al., 2019). Free radical scavenging activity of
sesamolin provides protection to neuronal hypoxia (Park et al.,
2010). Sesamolinol has also been considered the important lignin
compound due to its various biological activities (Grougnet et al.,
2011). The present study reported bioactive molecules (sesaminol,
sesamolin, and sesamolinol) which are established as potential
inhibitors of Mpro having enough bibliographical research support.

Evaluation of Drug Likeness
Prior to conducting MD simulation analysis, we evaluated the
pharmacokinetic properties of the screened compounds of sesame.
The ADME results of the shortlisted molecules calculated using
SWISSADME server are shown in Table 2. Sesamin, sesaminol,
sesamolin, and sesamolinol have the following molecular weights,
respectively: 354.35, 370.35, 370.35, and 372.37 g/mol; these four
natural compounds have a molecular weight ≤500 g/mol, which
indicated that these screened natural compounds may easily be
transported, diffused, and absorbed by the body (Lipinski et al.,
2001; Lipinski, 2004).The LogP values of sesamin, sesaminol,
sesamolin, and sesamolinol molecules were found to have 2.79,
2.37, 2.74, and 2.56, respectively, which are in accordance with
Lipinski’s rule of five. For these four compounds, the number of
hydrogen bond donors was less than five, which meets the criteria of
ADME as the number of H bond donors should be ≤5. The ADME
analysis revealed that sesamin, sesaminol, sesamolin, and sesamolinol
molecules present the following values of the topological polar surface
(TPSA): 55.38, 75.61, 64.61, and 75.61 Å2. The range of lower TPSA
values represents the acceptable results, as described by Ahuja et al.
(2021) and Singh et al. (2021) in previous studies. It has been noted
that the natural compounds derived from sesame are better behaved
than the co-crystallized molecule. These screened molecules also
validate Veber’s rule which state the oral bioavailability of drug-like
compounds. These four metabolites, namely, sesamin, sesaminol,
sesamolin, and sesamolinol have the molar refractivity values 90,
92.02, 91.52, and 93.98, respectively; these compounds also present
the scores of the synthetic accessibility (SA): 4.12, 4.31, 4.43, and
4.50, respectively. SA is one of the important parameters of
synthesis during the process of drug designing (Ertl and
Schuffenhauer, 2009). The predicted SA score of these screened
compounds was <10, which suggested that these compounds can
be easily synthesized. Taken together, the drug-likeness analysis
indicated that these sesame-derived natural metabolites possess
favorable pharmacokinetic properties, and thus can be considered
drug-like molecules.

Conformation of Stability of Docking
Complexes for Natural Compounds and
SARS-CoV-2 Mpro by Molecular Dynamics
Simulations
In order to determine the structural stability of docking
complexes, MD simulations were run with the most stable

docked models on 200 ns. Based on docking scores, hydrogen
bonds, and compound specificity, four docking complexes,
namely, sesamin, sesaminol, sesamolin, and sesamolinol were
subjected to MD simulations. High binding energy scores of
docking complexes allowed for the estimation of the amino acid
residue interactions over time. The RMSD, RMSF, SASA, and Rg
plots were calculated to evaluate the stability of simulated
systems.

Root-Mean-Square Deviation
The RMSD is a most commonly used quantitative method to
evaluate the stability of the docking complexes and measures the
conformational stability perturbations within the protein
backbone during MD simulations on different nanosecond
scales (Sargsyan et al., 2017). In order to investigate the
stability of the ligand molecules to the protein, all the ligand
and backbone RMSDs were graphically measured. As evident
from Figure 4A, the protein backbone of Mpro showed constant
stability throughout the simulation with a range between 0.37 and
0.47 nm. The average RMSD values for complexes with sesamin,
sesaminol, sesamolin, and sesamolinol were ∼0.37, ∼ 0.38, ∼ 0.31,
and ∼0.38 nm, respectively. Likewise, the control (blue) element
also showed the average value of RMSD to be around 0.47 nm.
The complex with sesaminol (yellow) and sesamolinol (cyan)
displayed higher simulation trajectory after ∼50 ns than the
complex with sesamin (red) and sesamolin (green). The
compound sesamolin has shown two fluctuations throughout
the simulations on 200 ns time scale. The first stable
conformation was noted between 25 and 100 ns, and the
second stable conformation was found between 110 and
200 ns. The RMSD constant was at ∼0.25, and a large
fluctuation was observed between 10 and 25 ns. However,
there was no significant effect of this fluctuation was found on
the protein structure. Sesamolinol showed slight changes in the
starting period of simulation between 2 and 25 ns. After 25 ns,
sesamolinol was found to be constant at ∼0.35 throughout the
simulations. It may be because of the binding region size and loop
presence at the pocket site. All the four ligand molecules shared
the almost similar trend of stability and RMSD values with small
conformational changes. As depicted in Figure 4B, the calculated
ligand RMSD plot is the conformation of the measured protein
backbone; RMSD plot shows the stability of target compounds
throughout the simulation with fluctuation in sesamolinol at
starting point between 5 and 15 ns on ∼0.50 nm. In the same
plot, the sesamolin compound also showed the fluctuation
between 160 and 170 ns on ∼0.25 nm. Based on the minimal
fluctuations and low difference in values depicted in the protein
backbone and ligand RMSD plots, it can be predicted that
protein–ligand complexes were stable and comparable to
solved structures. The docked pose of our ligands is fixed in
the active region, same as the crystal structure ligand Z45617795,
which is quite acceptable in protein–ligand interaction (Table 1).
The RMSDs of our ligands with heavy atoms are similar to crystal
structure resolution which is higher than 1.65 Å and is accurately
ordered and exactly fitted in the electron density map. Therefore,
RMSDs obtained from MD simulation also showed the structure
stability during simulation (each ligand has remained constant
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FIGURE 4 | RMSD analysis. (A) Backbone RMSD plot of docking complexes; and (B) ligand RMSD plot of complexes [Mpro
– sesamin complex (red), Mpro

–

sesamolin complex (green), Mpro
– sesaminol complex (yellow), Mpro

– sesamolinol complex (cyan), and control (blue)].

FIGURE 5 |Calculated RMSF plot of docking complexes[Mpro
– sesamin complex (red), Mpro

– sesamolin complex (green), Mpro
– sesaminol complex (yellow), Mpro

– sesamolinol complex (cyan), and control (blue)].
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and has a constant range of RMSDs). From these observations, we
assume that our ligand RMSDs (0.25–1 nm) showed similar
stability as crystal ligand pose has in resolutions.

Root-Mean-Square Fluctuation
In order to determine the individual residue flexibility of the
system with the time, RMSF was calculated, in which high
fluctuation score indicates more flexibility and unstable bonds,
while a low score reflects well-structured regions in the
protein–ligand complexes (Gajula et al., 2016). The RMSF of
alpha-carbon atoms of all system was investigated and is given in
Figure 5. All the five systems (control, Mpro–sesamin,
Mpro–sesaminol, Mpro–sesamolin, and Mpro–sesamolinol
complexes) demonstrated almost a similar pattern of
fluctuation across the whole structure during simulation. The
average RMSF values of control, Mpro– sesamin, Mpro– sesaminol,
Mpro– sesamolin, and Mpro– sesamolinol complexes were ∼0.25,
∼0.20, ∼0.23, ∼0.21, and ∼0.35 nm, respectively. These values
revealed that all the subjected docking complexes exhibit
relatively less conformation fluctuation than the control
system. These less fluctuations of the docking complexes
suggested that the residues distributed across the active site of
Mpro interact with sesamin, sesaminol, sesamolin, and
sesamolinol in a significant manner.

Hydrogen Bond Analysis
Hydrogen bonds play an essential role in establishing molecular
interactions of biological systems. The molecular interaction
between Mpro and sesame-derived bioactive molecules was
explored by the secondary structure changes, which is, in turn,
regulated by a number of hydrogen bonds. For selected
complexes (Mpro– sesamin, Mpro– sesaminol, Mpro– sesamolin,
and Mpro– sesamolinol), a number of formed hydrogen bonds
were calculated throughout the MD simulation on the scale of
200 ns. The number of hydrogen bonds and hydrogen bond
distribution is represented in Figure 6. In complex with
sesaminol (yellow) and sesamolinol (cyan), the numbers of

hydrogen bonds were three, with few conformations showing
up to 4 hydrogen bonds throughout the simulations. Sesamin
(red) and sesamolin (green) have a constant range of hydrogen
bonds between two and three in whole simulation. These results
showed that the screened natural metabolites were able to
maintain a strong interaction with a pocket site and suggested
that all four docking complexes were stable throughout the
simulation.

Radius of Gyration, and Solvent Accessible
Surface Area Analysis
MD trajectories corresponding to four complexes (Mpro–
sesamin, Mpro– sesaminol, Mpro– sesamolin, and Mpro–
sesamolinol) were further investigated with the aid of Rg and
SASA analysis. Rg was calculated with a primary goal to
determine the compactness of the system with the time. As
depicted in Figure 7A, the Rg values of all four systems with
control were reported as 2.08–2.15 nm throughout the
simulation. Rg value analysis affirms the stability of each
system and suggested that the binding of screened natural
phytochemicals does not induce structural changes during
whole simulation. During simulation, SASA values were
calculated to measure the receptor exposed to the solvents. It
is well-documented that a higher SASA value reflects the
expansion of protein volume during MD simulation (Kumar
et al., 2020). Always, a low fluctuation is expected during
whole simulation. Interaction with ligand compounds may
influence SASA and sometimes affect the protein structure in
a significant manner. The calculated SASA values showed
between 130 and 148 nm2, reflecting that the binding of
sesamin, sesaminol, sesamolin, and sesamolinol does not affect
the folding of protein (Figure 7B). The calculated SASA values
for these ligand compounds are the consent of previous reports
(Kumar et al., 2020; Mishra et al., 2021) and suggested that all of
the four complexes were stable after the binding of sesamin,
sesaminol, sesamolin, and sesamolinol to the Mpro active site.

FIGURE 6 | Hydrogen bond analysis of docking complexes [Mpro
– sesamin complex (red), Mpro

– sesamolin complex (green), Mpro
– sesaminol complex (yellow),

and Mpro
– sesamolinol complex (cyan)].
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Estimation of Binding Free Energy
The average free binding energy of selected complexes (Mpro–
sesamin, Mpro– sesaminol, Mpro– sesamolin, and Mpro–
sesamolinol) was calculated by using a python script
MmPbSaStat.py embedded in g_mmpbsa package. The
molecular mechanic/Poisson–Boltzmann surface area (MM/
PBSA) is one of the popular and accurate methods to estimate
the ligand binding affinities in the protein system. To calculate the
binding free energy, we have utilized the steps previously
described (Gajula et al., 2016; Jee et al., 2017). The MM/
PBSA-based binding energy score extracted after the
systematical calculation is provided in Table 3. The

cumulative sum of different energies such as van der Walls,
electrostatic, polar solvation, and SASA is presented as the
final binding energy. All types of the energy significantly
contributed to the molecular interaction between the ligand
compounds and Mpro. The evaluated binding free energy of
screened molecules exhibited as sesamin (−145.511 ± 17.054 kJ/
mol), sesamolin (−211.240 ± 14.034 kJ/mol), sesaminol (−149.078 ±
9.043 kJ/mol) and sesamolinol (−199.110 ± 15.881 kJ/mol). The
negative values of the binding energy reflect that the targeted
compound favorably interact with the receptor protein. As
compared with other screened compounds, the sesamolin
(−211.240 ± 14.034 kJ/mol) showed the maximum negative

FIGURE 7 | Rg and SASA analysis. (A) Predicted Rg plot of docking complexes; and (B) SASA plot of selected complexes [Mpro
– sesamin complex (red), Mpro

–

sesamolin complex (green), Mpro
– sesaminol complex (yellow), Mpro

– sesamolinol complex (cyan), and control (blue)].

TABLE 3 | Calculated total binding energy, van der Waals energy, electrostatic energy, polar solvation energy, and SASA energy of the docking complexes.

Complex Binding energy
(kJ/mol)

van der
Waals energy

(ΔEvdW) (kJ/mol)

Electrostatic energy
(ΔElec), (kJ/mol)

Polar solvation
energy (ΔG

polar) (kJ/mol)

SASA energy
(kJ/mol)

Sesamin −145.511 ± 17.054 −185.239 ± 12.497 −1.331 ± 2.720 56.328 ± 10.084 −15.269 ± 0.859
Sesamolin −211.240 ± 14.034 −244.688 ± 13.232 −2.394 ± 2.452 53.429 ± 6.865 −17.587 ± 0.839
Sesaminol −149.078 ± 9.043 −158.179 ± 8.593 −1.087 ± 1.785 24.598 ± 4.487 −14.410 ± 0.870
Sesamolinol −199.110 ± 15.881 −233.811 ± 13.828 2.162 ± 2.619 51.381 ± 7.632 −18.842 ± 0.954
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binding energy. The MM/PBSA results clearly suggest that
sesamolinol (−199.110 ± 15.881 kJ/mol) possessed the second least
binding energy. These natural compounds with the maximum
negative binding energy and better binding affinity could be
utilized as potential inhibitors against the Mpro of COVID-19.

CONCLUSION

The inhibition of Mpro protein represents a promising strategy
for controlling viral replication leading to discovery of potential
drug candidates. The current extensive study concludes four
phytochemicals, namely, sesamin, sesaminol, sesamolin, and
sesamolinol as potential inhibitors against the Mpro of SARS-
CoV-2. The integrated molecular docking and MD simulation
study revealed that these bioactive molecules form a very stable
complex with Mpro that shows excellent binding affinities higher
than other sesame-derived molecules. Docking complexes of these
natural metabolites with Mpro showed a stable conformation on
200 ns, which is further supported by the results of binding
free energy. Moreover, the proposed potential inhibitors also
meet the criteria of drug likeness based on Lipinski’s rule of five
and ADME properties. The inhibitory effect of these sesame-
derived natural compounds against the Mpro of SARS-CoV-2
may also be further validated using a plethora of in vitro and in
vivo experiments. The current study suggested that the screened
phytochemicals (sesamin, sesaminol, sesamolin, and sesamolinol)
have shown enough potential to inhibit the Mpro and may be
utilized as effective drug candidates for the development of new
treatment against COVID-19 infection.
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