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आमुख 

नवीन अनकु्रमण/ नेक्स्ट-जेनेरेशन सीक्सवेंसस िंग (एन.जी.एस.) और माइक्रोएरे जीन असिव्यक्क्सि (एक्स्रेशन) डटेा 
का एक लोकप्ररय स्रोि है। एन.जी.एस रौद्योगगकी में िजेी और लागि में पयााप्ि कमी ने जीन 
असिव्यक्क्सि डटेा के बडी मात्रा में उत्पादन की गति को िजे कर ददया है। जीन असिव्यक्क्सि डटेा की 
लगािार बढ़िी मात्रा ने वजै्ञातनकों और सािंक्ययकीप्रवदों पर ऐसी िकनीक और कायारणाली प्रवकससि करने 
पर जोर ददया है जो इस जदटल और बडी मात्रा में डटेा के प्रवश्लेषण का समर्ान करिी है। कई बार, इन 
डटेासेट में जीन की सिंयया नमनूों की सिंयया से बहुि अगिक होिी है। इसके अलावा, पररणाम से जडु े
रासिंगगक सचूनात्मक जीन आमिौर पर डटेा सेट में कम होि ेहैं। इसके अतिररक्सि, प्रवसिन्न जीनों के बीच 
जदटल सिंबिंि प्रवश्लेषण को और अगिक कदिन बनाि े हैं। सचूनात्मक जीन चयन अनावश्यक और 
अरासिंगगक जीन को हटाने में एक बडी िसूमका तनिािा है और पररणाम की गणुवत्ता में सिुार करिा है। 
प्रवसिन्न सचूनात्मक जीन चयन प्रवगियािं मौजदू हैं, और उनका व्यापक रूप स ेउपयोग ककया जा रहा है। 
इन सिी प्रवगियों का उद्देश्य तनरर्ाक और अरासिंगगक जीन को हटाना है, िाकक नए घटना (इिं्टान्स) का 
वगीकरण अगिक सटीक हो सके। 

 ओपन सोसा के सार्-सार् वाणणक्ययक कम्पप्यटेूशनल और सािंक्ययकीय टूल्स के प्रवकास में उच्च 
रदशान किं प्यदूटिंग, समानािंिर (परैलल) रोग्रासम िंग, बबग डटेा एनासलदटक्सस और डटेा प्रवजुअलाइजशेन का 
उपयोग करके जपै्रवक डटेा हैंडसल िंग और प्रवश्लेषण के सलए उन्नि िकनीकों से यकु्सि जैप्रवक जदटलिा को 
उजागर करने का आसान िरीका सक्षम ककया है। िारिीय कृप्रष अनसुिंिान पररषद (आई.सी.ए.आर.) ने 
2010 में िा.कृ.अन.ुप.-िारिीय कृप्रष सािंक्ययकी अनसुिंिान सि्ं र्ान, नई ददल्ली में जैव सचूना प्रवज्ञान और 
जैप्रवक डटेा सिंग्रह के प्रवकास में अनसुिंिान शरुू करने के सलए कृप्रष जैव सचूना प्रवज्ञान कें द्र (केबबन) की 
्र्ापना की है जो सि्ं र्ान में एक रिाग की हैससयि से है। कें द्र में किं प्यटूर अनरुयोग, सािंक्ययकी और जीव 
प्रवज्ञान के शोिकिाा हैं। कम्पप्यटेूशनल जीव प्रवज्ञान और कृप्रष जैव सचूना प्रवज्ञान के माध्यम से देश में 
जैव रौद्योगगकी अनसुिंिान को सहायिा रदान करने के सलए कें द्र को देश में नोडल एजेंसी के रूप में िी 
पहचाना जािा है। 
 इस पररयोजना में एक नई पद्िति प्रवकससि करने का रयास ककया गया है जो जीन असिव्यक्क्सि 
डटेा से अनमुातनि  (रेडडक्सटीव) मॉडल बनािा है और प्रवशषेिा (टे्रट) प्रवसशष्ट जीन (सचूनात्मक जीन) का 
चयन करिा है जो अत्यगिक रासिंगगक हैं। इस पद्िति को दो पारिंपररक मशीन लतनिंग एल्गोररदम, सपोटा 
वेक्सटर मशीन (एस.वी.एम.) और जेनेदटक एल्गोररदम (जी.ए.) के सिंयोजन का रयोग करके प्रवकससि ककया 
गया है। 
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PREFACE 
 

Next-generation sequencing (NGS) and microarrays are popular source of gene expression data. 

The rapid and substantial cost reduction in NGS technology has significantly accelerated the 

generation of huge amount of gene expression data. The ever increasing amount of gene 

expression data has put emphasize on the scientists and statisticians to develop techniques and 

methodology that supports the analysis of this complex and huge amount of data. Many times, the 

number of genes in these datasets are much larger than the number of samples. Furthermore, the 

relevant informative genes associated with the outcome are usually few in the data sets. In 

addition, the complicated relations among different genes make analysis more difficult. 

Informative gene selection plays a bigger role in removing redundant and irrelevant genes and 

improves the quality of result. Various informative gene selection methods exist, and they are 

being widely used. All these methods aim to remove redundant and irrelevant genes so that 

classification of new instances is more accurate.  

Advances and development of open source as well as commercial computational and statistical 

tools containing advance techniques for biological data handling and analysis using high 

performance computing, parallel programming, big data analytics and data visualization enabled 

the easy way to uncover the biological complexity. Indian Council of Agricultural Research 

(ICAR) has established a Centre for Agricultural Bioinformatics (CABin) at ICAR-Indian 

Agricultural Statistics Research Institute, New Delhi in 2010 with a status of a division in the 

institute to initiate the research in bioinformatics and development of biological data repository. 

Centre is having researchers from computer application, statistics and biology. Centre is also 

identified as nodal agency in the country to provide support to biotechnological research in the 

country through computational biology and agricultural bioinformatics.  

In this project, efforts were made to develop a new methodology that builds predictive model 

from gene expression data and select set of trait specific genes (informative genes) which are 

highly relevant. This methodology was developed by applying the combination of two 

conventional machine learning algorithms, support vector machine (SVM) and genetic algorithm 

(GA). 
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Chapter 1: Introduction 

 

Biological system is being comprehensively profiled by various expression data 

through high-throughput technologies, such as gene expression data (measured by the 

microarray or next generation sequencing technology), protein expression (measured 

by the mass spectrometry-based flow cytometer) and medical imaging (measured by 

functional magnetic resonance imaging or computerized tomography scan) [1, 2]. 

Owing to recent technological advances, it is possible nowadays to characterize 

patients or healthy controls at multiple omics levels. For example, expression of 

>20000 mRNA transcripts or the methylation status at >400 000 CpG sites in the 

genome can be measured using microarrays. Next-generation sequencing (NGS) 

technologies enable even larger numbers of molecules to be quantified. Although 

different technologies are used for different omics levels, the resulting data sets have 

several common characteristics making their analysis challenging. The number of 

variables is often much larger than the number of individuals. Furthermore, the data 

sets are usually sparse regarding relevant information, i.e. only a small set of variables 

is associated with the outcome. Additionally, complex correlation patterns are present 

between the variables. Computational and statistical methods for discovering 

functional roles of features from expression data are required to have the ability of 

handling large scale datasets. A straightforward analysis is to carry out statistical tests 

to identify differentially expressed features between groups of samples [3]. Functional 

analyses, such as the Gene Set Enrichment Analysis (GSEA) [4], can be followed to 

discover pathways or biological functions that are over-expressed in the differential 

feature list. Then the biological semantics of differential features can be explored. 

Besides differential feature discovery, another important type of analysis is sample 

classification, in which case samples are classified by characteristics such as disease 

subtypes and treatment strategies [5]. The classification model constructed from 

biological expression data can be used for disease diagnosis [6, 7] or clinical outcome 

prediction [8, 9]. 

Mutual Information is taken as the basic criterion to find the feature relevance and 

redundancy. The mutual information between a feature and class labels defines the 

relevance of that feature. Again, the mutual information among different features 

defines the correlation i.e., the redundancy among those features. Feature selection is 

one of the ways to reduce the dimensionality of the data. It is an essential step in 

successful data mining applications, which can efficiently reduce data dimensionality 

by removing the irrelevant and redundant features from the original data [10, 11]. At 

present, there are various kinds of methods to deal with the feature selection problem 

[12–18]. The feature selection can be supervised or unsupervised. In a supervised 

scenario [19], the correct class labels of all samples are additionally known and the 

feature evaluation criterion is based on the known class labels of the samples. In 

Unsupervised [20–24] case, the feature selection is performed on the basis of some 

distribution function or clustering in the absence of class label information.  

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189541#pone.0189541.ref001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189541#pone.0189541.ref002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189541#pone.0189541.ref003
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189541#pone.0189541.ref004
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189541#pone.0189541.ref005
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189541#pone.0189541.ref006
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189541#pone.0189541.ref007
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189541#pone.0189541.ref008
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189541#pone.0189541.ref009
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In another context, the feature selection technique can be divided into three categories 

namely filter, wrapper and embedded. Feature selection methods that make use of a 

proxy measure to estimate utility are termed as ‘filter’ approaches [16, 17, 24] and 

feature selection methods that assess feature utility with respect to a  given classifier 

or clustering method, are referred to as ‘wrapper’ [15, 19] approaches. Feature 

selection methods that select the important features while the model is being trained 

are termed as embedded methods [30, 31]. Filter-based approaches usually have good 

generalization properties, but may be less effective at decreasing the dimensionality of 

the feature space and boosting classification accuracy. Filter-based approaches are 

computationally cheaper than the wrapper approaches. The real-life data sets 

frequently contain attributes that are redundant or have a low information content for 

which the attributes introduce noise and may slow down the classification process 

gradually. Moreover, they also can introduce high cross-validation errors. Hence 

selecting the most discriminative attributes [25] may therefore yield significant gains 

in terms of classification performance. Whatever the way is, the focus of feature 

selection is to select the features that are most relevant to classification while 

minimizing the redundancy. But in most of the cases, it has been seen that the basic 

objective of these methods is either relevance or redundancy. 

1.1 Knowledge Gap 

Dimensionality reduction transforms high-dimensional data into a meaningful 

representation of reduced dimensionality [26]. Ideally, the reduced representation 

should have a dimensionality that corresponds to the intrinsic dimensionality of the 

data. The intrinsic dimensionality of data is the minimum number of parameters 

needed to account for the observed properties of the data. In other words, the intrinsic 

dimensionality is the minimum number of dimensions that represent a manifold on 

which the original data is embedded. Dimensionality reduction reduces the amount of 

memory and time required by data mining algorithms and it allows the data to be 

easily visualized. It may also help to eliminate irrelevant features and noise out the 

data. Dimensionality reduction methods can be subdivided in two subgroups: feature 

selection when a subset of the original features set is selected or feature extraction 

when a new set of features is built based on the old feature set.  

Feature selection identifies subsets of data that are relevant to the parameters used and 

is normally called Maximum Relevance. These subsets often contain material which 

is relevant but redundant. The fundamental problem with redundancy is that the 

feature set is not a comprehensive representation of the characteristics of the targeted 

phenotypes. There are two aspects of this problem i.e., Efficiency and Broadness. In 

efficiency, if a feature set of 50 genes contains quite a number of mutually highly 

correlated genes, the true "independent" or "representative" genes are therefore much 

fewer, say 20, We can delete the 30 highly correlated genes without effectively 

reducing the performance of the prediction; this implies that 30 genes in the set are 

essentially "wasted". In Broadness, the features are selected according to their 

https://en.wikipedia.org/wiki/Feature_selection
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discriminative powers and they are not maximally representative of the original space 

covered by the entire dataset. 

As the dimensionality of the data rises, the amount of data required to provide a 

reliable analysis grows exponentially. Bellman referred to this phenomenon as the 

“curse of dimensionality” when considering problems in dynamic optimisation [27]. 

A popular approach to this problem of high-dimensional datasets is to search for a 

projection of the data onto a smaller number of variables (or features) which preserves 

the information as much as possible. Microarray and NGS data are typical of this type 

of small sample problems. Each data point (sample) can have large number of 

variables and processing a large number of data points involves high computational 

cost. When the dimensionality of a dataset grows significantly there is an increasing 

difficulty in proving the result statistically significant due to the sparsity of the 

meaningful data in the dataset in question. Large datasets with the so-called “large p, 

small n” problem (where p is the number of features and n is the number of samples) 

tend to be prone to over fitting. An over fitted model can mistake small fluctuations 

for important variance in the data which can lead to classification errors. 

NGS and microarrays are a popular source of data for gathering gene expressions. 

Analysing these can be difficult due to the size of the data. In addition, the 

complicated relations among the different genes make analysis more difficult and 

removing excess features can improve the quality of the results. Feature selection 

plays a bigger role in removing irrelevant features. Many different feature selection 

and feature extraction methods exist and they are being widely used. All these 

methods aim to remove redundant and irrelevant features so that classification of new 

instances will be more accurate.  

Many feature selection algorithms (FSA) are introduced in past decade but most of 

them do not perform well on high-dimensional datasets with a large number of 

redundant features. These algorithms focus only on the necessary features pertaining 

to build the efficient and accurate model [28]. There are three different types of 

feature selection methods named Filter, Embedded and Wrapper method. Apart from 

this, feature selection can be Univariate or Multivariate. When a Univariate method 

does not take into account the dependency among the features, a Multivariate method 

does it [29]. The drawbacks of wrapper and filter method are that the former suffer 

from high computational cost while the later does not interact with classifiers. 

Embedded methods can be a solution to this problem that uses classifiers to rank 

features. SVM was trained with the current set of features and the least performing 

feature indicated by SVM was removed using a new embedded method of SVM on 

Recursive Feature Elimination (SVM-RFE) [30]. Further, a new method called 

kernel-penalized SVM has also been proposed [31].  

A particularly well-suited method to tackle the presented challenge is random forest 

(RF) [32], an ensemble learning method based on decision trees. RF provide variable 
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importance measures, which can be used to rank variables based on their predictive 

importance. However, it is difficult to distinguish relevant from irrelevant variables 

based on their ranking only. Therefore, several variable selection procedures have 

been proposed that used different criteria and approaches to report the set of truly 

relevant variables. One popular approach that is also used in combination with other 

machine learning methods is recursive feature elimination (RFE) [33]. RFE uses the 

prediction error to select a minimal set of variables needed for a good prediction. 

Hence, only a limited number of variables need to be measured for further application 

of the prediction model. A popular alternative to the RF approach for variable 

selection is penalized regression methods (also called regularized or shrinkage 

regression methods) such as Least Absolute Shrinkage and Selection Operator [34] or 

elastic net [35], which have been applied to omics data sets [36, 37]. The general idea 

is to add a penalty to the loss function so that regression coefficients are shrunken 

toward zero resulting in a sparse model. The performance of different types of 

penalized regression methods has been evaluated in several studies, e.g. [38, 39]; 

however, to the best of our knowledge, no comprehensive and neutral study 

comparing RF and penalized regression methods has been performed regarding 

selection of all relevant variables, In a study [40], combined parametric (t test based p 

value) and non-parametric (fold change value) method with more predictive power 

has been developed for microarray data. In a similar way, we will apply different 

techniques and modify the existing methods. Once the dataset is reduced, it will be 

combined with a classifier to check for accuracy and the best combination will be 

determined. The ability of an FSA will be measured by testing the accuracy of the 

classifier trained by using the reduced subset. Different well-known classifiers, such 

as Random Forest (RF), Decision Tree (J48), k-nearest neighbours (k-NN), Naive 

Bayes (NB) and Support Vector Machine (SVM) etc. will be used for validating the 

output of FSAs. Reduced feature subset will be used to train the classifiers and 

thereby measure its classification ability. 

Selection of informative genes from high dimensional gene expression data has 

emerged as an important research area in transcriptomic. One of the major issues with 

the RNA-Seq approach in whole genome transcriptome analysis is that, the expression 

dynamics of various different genes are captured. This result in very high 

dimensionality in the data, which means the number of genes, is much larger than the 

number of samples. Therefore, it is important to select most relevant genes related to 

condition class from thousands of genes with the help of appropriate computational 

approaches. Most of the existing gene selection methods either fail to identify a list of 

predictive genes or ignores the spurious relations between genes and trait under study. 

In this project a new methodology had been developed that builds predictive model 

from gene expression data and select set of trait specific genes (informative genes ) 

which are highly relevant. This methodology was developed by applying the 

combination of two conventional machine learning algorithms, support vector 

machine (SVM) and a genetic algorithm (GA). They are integrated effectively based 
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on a wrapper approach. GA was used to control and optimize the subset of genes sent 

to the SVM for classification and evaluation. Using SVM as the classifier 

performance and the Genetic algorithm for feature selection, a set of informative 

genes set was obtained. The classification accuracy of the obtained genes set from the 

developed methodology was compared with the genes set obtained from methods 

such as Boot-MRMR, MRMR, t-score and F-score of R- package “GSAQ” [81]. 

1.2 Objectives  

To develop the methodology for trait specific genes identification based on gene 

expression data 

To evaluate the developed methodology with the existing methods 

To develop R package/web server of developed methodology 

 

This project report is organized into five chapters, as follows 

Chapter 1 gives the introduction, problem definition including knowledge gap and it 

also specifies the objectives of the project. 

Chapter 2 provides the review of literature in the area and specify the scope of work. 

Chapter 3 in this chapter, the methodology and tools used to develop the algorithm for 

informative gene selection from gene expression data has been discussed.  

Chapter 4 provides the result of data analysis and comparative evaluation of the 

developed methodology, It also shows the sample report obtained using the developed 

web tool TSGS. 

Finally, the report is concluded in chapter 5 followed by references. 
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Chapter 2: Review of Literature 

Features can be selected in many ways. One scheme is to select features that correlate 

strongest to the classification variable. This has been called maximum-relevance 

selection [65, 66]. Many heuristic algorithms can be used, such as the sequential forward, 

backward, or floating selections. On the other hand, features can also be selected to be 

mutually far away from each other while still having "high" correlation to the 

classification variable. This scheme, termed as Minimum Redundancy Maximum 

Relevance (mRMR) selection has been found to be more powerful than the maximum 

relevance selection. As a special case, the "correlation" can be replaced by the statistical 

dependency between variables. Mutual information can be used to quantify the 

dependency. Minimum redundancy feature selection is an algorithm frequently used in a 

method to accurately identify characteristics of genes and phenotypes and narrow down 

their relevance and is usually described in its pairing with relevant feature selection as 

Minimum Redundancy Maximum Relevance [67, 68 ]. There are some examples of 

embedded feature selection methods which achieve the feature selection by imposing 

regularisation on existing classification methods, such as regularised SVM [41] and 

sparse logistic regression [42, 43]. The work in [44] develops a Bayesian approach based 

on a probit regression model with a generalised singular g-prior distribution for 

regression coefficients.  

Traditional feature selection methods include statistics tests to reduce feature space by 

examining whether the significant values of features of a test pass the predefined 

threshold. For biological data, there are many advanced feature selection methods being 

proposed. For example, the binary particle swarm optimisation (BPSO) based model is 

proposed in [45] for the gene selection of Microarray data. To improve the performance 

of feature selection, BPSO uses gene-to-class sensitivity (GCS) information in the 

feature selection process. GCS information is obtained from gene expression data 

indicating whether a gene is sensitive to sample classes. To evaluate candidate gene 

subsets selected from BPSO, extreme learning machine (ELM) is used for classification 

model construction.  

There are a large range of machine learning methods to construct classification models. 

Examples of such methods include deep learning [46, 47], graphical models [48, 49], 

nonparametric Bayesian models [50, 51], linear discriminant analysis [52], and Naive 

Bayes [53]. Many tools are particularly designed for biological data. For example, a 

Python package called Pse-Analysis [54], is developed to automatically generate 

classifiers for genomics and proteomics datasets. It is based on the framework of 

LIBSVM [55] and inherits the characteristics of the SVM method. Another classification 

method, Sparse Bayesian Learning (SBL) [56, 57, 58] is featured in overcoming the 

dimensionality problem. SBL only uses a small subset of input features for prediction, 

based on the observation that relevant features are sparse compared to the dimension of 

whole feature space. Bayesian inference is adopted to obtain solutions for probabilistic 

classification. SBL is in the same functional form of SVM, but provides probabilistic 
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classification. SBL uses a fully probabilistic framework and introduces a prior over the 

model weights governed by a set of hyper parameters. The feature set returned from 

these methods cannot be easily used to discover predictive pathways or biological 

functions. Random Forest has been successfully applied in genetic [59], gene expression 

[60, 61], methylation [62], proteomics [63] and metabolomics studies [64]. It is a flexible 

approach that can be used to both perform classification, i.e. predicting case-control 

status, and regression, i.e. predicting quantitative traits. 

Wrapper method tend to perform better in selecting features since they take the model 

hypothesis into account by training and testing in the feature space. This leads to the big 

disadvantage of wrappers, the computational inefficiency which is more apparent as the 

feature space grows. Unlike filters, they can detect feature dependencies. They are 

generally categorised into two types randomised and deterministic. Randomized 

Wrappers use genetic algorithms (GA). Best Incremental Ranked Subset (BIRS) [70] is 

an algorithm that scores genes based on their value and class label and then uses 

incremental ranked usefulness based on the Markov blanket to identify redundant genes. 

Linear discriminant analysis was used in combination with genetic algorithms. Subsets of 

genes are used as chromosomes and the best 10% of each generation is merged with the 

previous ones. Part of the chromosome is the discriminant coefficient which indicates the 

importance of a gene for a class label [71]. Genetic Algorithm-Support Vector Machine 

(GA-SVM) [72] creates a population of chromosomes as binary strings that represent the 

subset of features that are evaluated using SVMs.  

Next chapter describes the materials used and methodology adopted for obtaining trait 

specific genes based on feature selection data.  
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Chapter 3:  Materials and Methods 

In this study an improvised gene selection approach has been proposed, i.e. SVM-GA 

wrapper method for selection of informative genes from high dimensional genome 

expression data. The proposed approach can select informative gene through an 

optimization procedure that is modelled on the principles of evolution via natural 

selection, employing a population of individuals that undergo selection in the presence 

of operators such as mutation and crossover. A genetic algorithm works with a 

population of individual strings called chromosomes, each representing a possible 

solution to a given problem. In this case we are using binary chromosomes. In genetic 

algorithm a fitness value is used to evaluate individual chromosome present in the 

population. Those chromosomes with the highest fitness values are given more 

opportunities to reproduce and the offspring share features taken from their parents. 

This ensures that the selected genes are carried to the next generation. In genetic 

algorithm a fitness function is used to assign the fitness values to each chromosome. 

Here we used SVM to define a fitness function. 

The process flow representation of the developed methodology is shown in following 

diagram. 

 
 

The following steps were used to carry out the proposed work  

 Select and extract trait specific suitable NGS Data from NCBI 

 Simulation of gene expression NGS Data  

 Pre-processing of the real data 

 Obtaining differentially expressed genes 

 Relevant Gene’s selection using wrapper methods  
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Wrapper Methods: Wrapper methods consider the selection of a set of features as a 

search problem, where different combinations are prepared, evaluated and compared 

to other combinations. A predictive model is used to evaluate a combination of 

features and assign a score based on model accuracy. An example of a wrapper 

method is the recursive feature elimination algorithm. 

 

 

All the steps to develop the methodology were implemented in R. The major steps of 

the developed methodology to obtain optimal number of informative genes are as 

follows: 

3.1 Filtering to remove lowly expressed genes 

Genes with very low read counts were filtered out across all the samples prior to 

further steps as these genes provide little evidence and impose problems for 

differential expression analysis [74]. Further, the removal of genes will reduce the 

dimension of data, thereby making the program more efficient in terms of time. We 

selected the genes with at least 10 counts in 2 samples. Then, the genes having the 

counts per million (cpm) values above a threshold value were retained for next step. 

3.2  Data normalization 

Data normalization is required to account for the within library and between library 

variability. For further downstream analysis, normalization by trimmed mean of M-

values (TMM) has been used to obtain the effective library sizes [76]. The 

“calcNormFactors” function normalizes the library sizes by finding a set of scaling 

factors for the library sizes that minimizes the log fold changes between the samples 

for most genes. These scale factors use TMM values between each pair of samples. 

3.3  Identification of significantly differentially expressed genes 

The biological coefficient of variation (BCV) is estimated by using a negative 

binomial model [77]. We fit a quasi-likelihood negative binomial generalized log-

linear model to the count data. Then, we perform statistical test for each gene at a 

desired level of significance (e.g., α = 0.05). Further, we adjust the p-values for 

multiple testing of genes. We have provided various options of adjusting p-values 
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such as "bonferroni" (default option), "BH", "holm", "hochberg", "hommel" and 

"BY". The significantly differentially expressed genes are identified and the count 

data corresponding to these genes are used for further steps. R Package “edgeR” [75] 

was used for above steps. 

3.4 Obtaining optimal set of informative genes using SVM as the classifier performance 

and genetic algorithm for gene selection 

 Primary screening of the genes was done by identifying the differentially 

expressed genes. The proposed algorithm consists of a Support Vector 

Machine (SVM) and a Genetic Algorithm (GA). GA was used to control and 

optimize the subset of genes sent to the SVM for classification and evaluation.  

 Initially, the dataset was split randomly into test and training data.  

 To initialize GA, first generation of individuals were created by picking 

random subsets of genes and training the SVM on those genes.  

 The fitness of an individual was then determined by the performance of the 

SVM on the test data  

 Once an initial population of individuals is generated, the GA procedure was 

then used to evolve a new generation of individuals and the process was 

repeated for several generations. In this way GA progressively iterates onto a 

near optimal set of genes. 

 Best Individual of each generation was selected and frequency of occurrence 

of each genes was computed across all the generation. 

 To obtain the final subset of genes, the genes that are selected the most often 

were collected to form the optimal set of genes. 

 R package/web server was developed to obtain trait specific genes from gene 

expression data through developed methodology. 

 

3. 4.1 Genetic Algorithm 

Each possible subset of genes corresponds to an “individual” or “chromosome” in the 

GA algorithm and is represented by a string of bits of length N ; suppose there are 

50000 genes ,  so N = 50000 in each case. Each chromosome is a bit-string of length 

50000 with binary representation 1 or 0; 1 means that particular gene is included in 

the subset of genes to be supplied to the SVM while 0 means that it is excluded.  

The initial set of individuals is generated randomly with the restriction that each gene 

is required to be represented at least once in the initial pool. The pool of individuals 

which constitutes the first generation is then evolved using the GA which consists of a 

number of operations. 

Each individual is used to train a SVM. Then a fitness score is assigned to each 

individual based on how well the corresponding SVM classifier classifies the test 

dataset. The fitness function, f, is as follows; 

f = 1/(X–X0) + 1/ X1 
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 where X0 is the number of samples known to be classified correctly as 0 

(control class) and X1 is the number of samples known to be classified correctly as 

1(treatment class) in the test dataset.  

Once the fitness has been calculated for all individuals, parent individuals are selected 

to undergo crossover with a probability proportional to their fitness. 

To produce the next generation of individuals, crossover will be performed on two 

parent individuals. One-point crossover will be used with the crossover point selected 

at random. To generate a child, data from the two parent-individuals will be swapped, 

suitable number of individuals will be produced for the next generation. Elitism will 

be employed which means the best solution from each generation will be copied 

unchanged to the next generation. 

PROCESS Flow of Informative Gene Selection consists of eight step procedure. 

 

 

3.5 Performance Evaluation of gene selection techniques based on classification 

The performance of the proposed and existing gene selection techniques was 

evaluated based on subject classification accuracy, the number of top ranked genes 

selected through the proposed and other existing techniques were then used in SVM 

classifier to discriminate the class labels of samples between samples (stress; +1/ 

control; -1) on different datasets (real and simulated data). 

An SVM learn to discriminate between the members and non-members of a given 

functional class based on expression data. Having learned the expression features of 

the class, the SVM could recognize new genes as members or non-members of the 

class based on their expression data. Leave-One-Out Cross-Validation (LOOCV) 

method was used to assess the classifying ability of the developed system. The 

LOOCV procedure works as by dividing all samples into K subsets randomly, where 

K is the total number of samples. Then K - 1 subsets are used to train the model and 

the remaining Kth sample is used for testing and the same is repeated for K times such 

that each sample is given a chance for testing the performance. 
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 In the SVM classifier, three basic kernel functions, i.e. linear (SVM-LBF), radial 

(SVM-RBF) and polynomial (SVM-PBF) were used to compute the classification 

accuracy. Further, the techniques which provide maximum discrimination between 

the two groups through classification will be the better technique for informative gene 

selection and vice-versa. The performance of these techniques was adjudged on the 

basis of classification accuracy. 

The other criteria viz. sensitivity, specificity, False Discovery Rate (FDR), False 

Positive Rate (FPR), False Negative Rate (FNR), Accuracy (ACC), and F1-Score 

were also used in this performance evaluation. 

3.6 R programming and R packages 

R is a programming language and free software environment for statistical computing 

and graphics supported by the R Foundation for Statistical Computing. The R language is 

widely used for statistics and data mining for developing statistical software. R and its 

libraries implement a wide variety of statistical and graphical techniques, including linear 

and nonlinear modelling, classical statistical tests, time-series analysis, classification, 

clustering, and others. R is easily extensible through functions and extensions, and the R 

community is noted for its active contributions in terms of packages. The packages used 

for this study are as follows: 

CARET 

The caret package short for Classification And REgression Training (CARET) contains 

functions to streamline the model training process for complex regression and 

classification problems. The package utilizes a number of R packages but tries not to 

load them all at package start-up by removing formal package dependencies, the package 

startu33p time can be greatly decreased. The package “suggests” field includes 30 

packages. caret loads packages as needed and assumes that they are installed. 

Caret has several functions that attempt to streamline the model building and evaluation 

process, as well as feature selection and other techniques. One of the primary tools in the 

package is the "train" function which is used to• evaluate, using resampling, the effect of 

model tuning parameters on performance• choose the optimal model across these 

parameters• estimate model performance from a training set 

The functions used from this package are "createDataPartition" which is used to divide 

the data into training and testing subsets. The model was trained on the training dataset 

using the "train" function. The "predict" function was used to predict the classes of the 

testing datasets. Calculation a cross-tabulation of observed and predicted classes with 

associated statistics was done by “confusionMatrix" function from where we obtain the 

accuracy of the model.  

edgeR  
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This R package is available for Differential expression analysis of RNA-seq expression 

profiles with biological replication. Implements a range of statistical methodology based 

on the negative binomial distributions, including empirical Bayes estimation, exact tests, 

generalized linear models and quasi-likelihood tests. This package was applied in our 

work for primary screening of genes, normalization of gene expression data and 

obtaining differentially expressed genes which were used with SVM and GA to obtain 

the informative genes. 

Genalg 

The package has R based genetic algorithm for binary and floating point chromosomes. 

In this package we use "rbga.bin" which is a R based genetic algorithm that optimizes, 

using a user set evaluation function and a binary chromosome which can be used for 

variable selection. The optimum is the chromosome for which the evaluation value is 

minimal. It requires a "evalFunc" method to be supplied that takes as argument the 

binary chromosome, a vector of zeros and ones. Additionally, the GA optimization can 

be monitored by setting a "monitorFunc" that takes a rbga object as argument. Results 

can be visualized with "plot.rbga" . 

SimSeq  

SimSeq performs data based simulation of RNA-Seq data creating a dataset with a 

known list of DE and EE genes. The core function that implements of the methodology 

of SimSeq is the SimData function. The vector of read counts simulated for a given 

experimental unit has a joint distribution that closely matches the distribution of a source 

RNA-seq dataset provided by the user. Users control the proportion of genes simulated to 

be differentially expressed (DE) and can provide a vector of weights to control the 

distribution of effect sizes. The algorithm requires a matrix of RNA-seq read counts with 

large sample sizes in at least two treatment groups. 

CompcodeR  

It is an R package that provides extensive functionality for comparing results obtained by 

different methods for differential expression analysis of (mainly) RNAseq data. It also 

contains functions for simulating count data and interfaces to several packages for 

performing the differential expression analysis. 

3.7 Data collection 

For real balanced dataset, we used KIRC RNA-seq dataset (The version of the KIRC 

dataset unc.edu_KIRC.IlluminaHiSeq_RNASeqV2.Level_3.1.5.0 accessed from Simseq 

package of R) containing 20,531 genes and 72 paired columns of data with rows 

corresponding to genes and columns corresponding to replicates; replic vector specifies 

replicates and treatment vector specifies non-tumour and tumour group samples 

respectively within replicate (The Cancer Genome Atlas Research Network, 2013). The 
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GE experimental datasets [73] of UV stress on Arabidopsis thaliana were collected from 

Gene Expression Omnibus database of NCBI 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL19290). GEO series file 

GSE64870, the response of Arabidopsis thaliana accessions to UV radiation stress was 

obtained and analysed. The data was for the platform GPL17639. 

For real unbalanced dataset, we used TCGA re-processed RNA-Seq data from 9264 

tumor samples and 741 normal samples across 24 cancer types available 

via GSE62944 from GEO. We have used an R package “ExperimentHub” (82) to obtain 

the count data of TCGA’s Low Grade Glioma (LGG) samples. There are total 97 

samples corresponding to two groups: (i) IDH1 mutant (70 samples) and (ii) IDH1 wild 

(27 samples). The total number of genes is 23368. The data is unbalanced as it has 

unequal number of samples in each group 

Further R codes were also written for generating simulated dataset and testing model 

accuracy and classification. We used synthetic and real RNA-Seq datasets. The synthetic 

dataset following parametric distribution was generated using compcodeR() package 

(Soneson, 2014). The simulation was performed following the description by Soneson 

and Delorenzi (2013). The count dataset contained 15,000 genes for two groups of 15 

samples each, where 10% of the genes are simulated to be deferentially expressed 

between the two groups (equally distributed between up- and down regulated in group 2 

compared to group 1). Furthermore, the counts for all genes were simulated from a 

Negative Binomial distribution with the same dispersion in the two sample groups. For 

simulating dataset following non parametric distribution, we used package SimSeq 

(Benidt and Nettleton, 2015), the generated count dataset contained 15,000 genes for two 

groups of 35 samples each, where 10% of the genes were simulated to be deferentially 

expressed between the two groups.  

Sl. 

No. 
Description Source Genes Samples Class 

1 KIRC RNA-

seq dataset  

unc.edu_KIRC.IlluminaHiSeq_RNAS

eqV2.Level_3.1.5.0 
20531 144 2 

2 UV stress on 

Arabidopsis 

thaliana 

GSE64870 24185 

 
22 

 
2 

 

3 TCGA (LGG) 

RNA-Seq data 

GSE62944 23368 97 2 

4 Simulated 

Data 1 

SimSeq package of R 15000 70 2 

5 Simulated 

Data 2 
compcodeR package 

 
15000 30 2 

 

Table 3.1: Gene expression data used 

  

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62944
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62944
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3.8  R Codes 

a. Code for the GA-SVM feature selection 

  featureSelect <- function(X, y, p = 20, n.iter = 5, alpha = 0.05, p.adj.method = 

"bonferroni"){ 

  countData1 <- X 

  geneNames1 <- rownames(X) 

  Labels <- as.numeric(y) 

  group <- unique(y) 

  z <- factor(Labels, levels = group, labels = group) 

  n1 <- length(which(z == group[1])) 

  n2 <- length(which(z == group[2])) 

  n <- n1+n2 

  ## Filtering to remove low count reads: [74]. 

  LS <- colSums(countData1) 

  LS.CPM <- LS/10^6 

  t <- round(10/min(LS.CPM), 1) # Threshold 

  y <- DGEList(counts = countData1, genes = geneNames1) 

  keep <- rowSums(cpm(y) > t) >=2 

  y <- y[keep, , keep.lib.sizes=FALSE] 

  countData <- y$counts 

  geneNames <- y$genes 

  nGenes <- nrow(countData) 

  y <- calcNormFactors(y) 

  design <- model.matrix(~z) 

  y <- estimateDisp(y, design = design) 
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  fit <- glmQLFit(y, design) 

  qlf <- glmQLFTest(fit, coef=2) 

  res2 <- topTags(qlf, n=nGenes) 

  res.tab <- res2$table 

  ind1 <- which(res.tab$PValue < alpha) 

  adj.pval <- p.adjust(res.tab$PValue, method = p.adj.method) 

  res.tab$`Adjusted PValue` <- adj.pval 

  ind <- which(adj.pval < alpha) 

  geneNames.sel <- res.tab$genes[ind] 

 

  res.f <- res.tab[ind,] 

  log.counts <- cpm(y$counts, log = TRUE) 

  countData.f <- log.counts[ind,] # Final log cpm data for feature selection 

  data <- t(countData.f) 

  s <- data.frame(data) 

  t <- z 

  eval_funct <- function(indices){ 

    evl_df <- cbind(s[,indices==1],t) 

    evl_trng <- createDataPartition(evl_df$t, p=0.60,list = FALSE) 

    evl_test <- evl_df[-evl_trng,] 

    evl_train <- evl_df[evl_trng,] 

    evl_svm <- train(t~.,data=evl_train,method="svmRadial",preProc=c("zv"), 

                     trControl=trainControl(method = "cv",number = 5),savePredictions = "all") 

    evl_cls <- predict(evl_svm,newdata=evl_test) 
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    evl_tbl <- confusionMatrix(evl_cls,evl_test$t) 

    tbl <- evl_tbl$table 

    tp <- tbl[1,1] 

    tn <- tbl[2,2] 

    t <- tbl[1,1]+tbl[1,2]+tbl[2,1]+tbl[2,2] 

    result <- -(tn+t-tp)/((tn*t)-(tp*tn)) 

    return(result) 

  } 

  monitor <- function(obj) { 

    minEval = min(obj$evaluations); 

    filter = obj$evaluations == minEval; 

    bestObjectCount = sum(rep(1, obj$popSize)[filter]); 

    # ok, deal with the situation that more than one object is best 

    if (bestObjectCount > 1) { 

      bestSolution = obj$population[filter,][1,]; 

    } else { 

      bestSolution = obj$population[filter,]; 

    } 

    outputBest = paste(obj$iter, " #selected=", sum(bestSolution), 

                       " Best (Error=", minEval, "): ", sep=""); 

    for (var in 1:length(bestSolution)) { 

      outputBest = paste(outputBest, 

                         bestSolution[var], " ", 

                         sep=""); 
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    } 

    outputBest = paste(outputBest, "\n", sep=""); 

    cat(outputBest); 

  } 

 

  woppa <- rbga.bin(size=ncol(s),popSize=p,iters=n.iter, mutationChance=0.30, 

zeroToOneRatio=20, 

                    evalFunc=eval_funct, verbose=TRUE, monitorFunc=monitor) 

  bestSolution <- woppa$population[which.min(woppa$evaluations),] 

  result <- cbind(data[,bestSolution==1],z) 

  feature.selected <- res.f[bestSolution ==1,1] 

  logcpm.feature.selected <- t(result) 

  ind.m <- fmatch(as.character(feature.selected), as.character(res.f[,1])) 

  result.pval <- res.f[ind.m, ] 

  list(`InformativeGenes` = feature.selected, 

       `LogCPM` = logcpm.feature.selected, 

       `DEA_Result` = result.pval) 

} 

b. R function for evaluation of classification method:  

We used “svmRadial” method and “LOOCV” resampling method for building the 

training model and validation using “caret” R package. 

eval_funct<- function(data){ 

  s<-data[,-ncol(data)] 

  t<-data[,ncol(data)] 

    evl_df<-cbind(s,t) 

    evl_svm<-train(t~.,data=evl_df,method="svmRadial", 
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                   trControl=trainControl(method = "LOOCV" ),savePredictions = "all") 

    evl_cls<-predict(evl_svm,newdata=evl_df) 

    evl_tbl<-confusionMatrix(as.factor(evl_cls), as.factor(evl_df$t)) 

    return(evl_tbl) 

  } 

c. Code for generating simulated data following parametric distribution 

 

library(compcodeR) 

simdata <- generateSyntheticData(dataset = "B_625_625", n.vars = 15000,  

samples.per.cond = 15, n.diffexp = 1500, 

relmeans = "auto", dispersions = "auto",  

repl.id = 1, seqdepth = 1e7, 

fraction.upregulated = 0.5, 

between.group.diffdisp = TRUE, 

filter.threshold.total = 1, 

filter.threshold.mediancpm = 0, 

fraction.non.overdispersed = 0, 

random.outlier.high.prob = 0, random.outlier.low.prob =0, 

single.outlier.high.prob = 0, single.outlier.low.prob = 0, 

output.file = "B_625_625_5spc_repl1.rds") 

write.csv(simdata@count.matrix, file=”filepath”) 

 

d.  Code for generating simulated data following non parametric distribution 

 

library(SimSeq) 

data(kidney) 
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counts <- kidney$counts # Matrix of read counts from KIRC dataset 

replic <- kidney$replic # Replic vector indicating paired columns 

treatment <- kidney$treatment # Treatment vector indicating Non-Tumor or Tumor 

columns 

nf <- apply(counts, 2, quantile, 0.75) 

library(fdrtool) 

sort.list <- SortData(counts = counts, treatment = treatment, replic = replic, 

sort.method = "paired", norm.factors = nf) 

counts <- sort.list$counts 

replic <- sort.list$replic 

treatment <- sort.list$treatment 

nf <- sort.list$norm.factors 

probs <- CalcPvalWilcox(counts, treatment, sort.method = "paired", 

sorted = TRUE, norm.factors = nf, exact = FALSE) 

weights <- 1 - fdrtool(probs, statistic = "pvalue", plot = FALSE, verbose = FALSE)$lfdr 

data.sim <- SimData(counts = counts, replic = replic, treatment =treatment, 

sort.method ="paired", k.ind = 35, n.genes = 15000, n.diff = 1500,  

weights = weights, norm.factors = nf) 

write.csv(data.sim$counts, file=”path”) 

e. R function to filter and transform RNA-Seq count data: 

The function is used to filter lowly expressed genes and transform the RNA-Seq count 

data to log counts per million (log cpm) values. The resulting log cpm values have also 

been used for feature selection using different methods given in “GSAQ” R package. 

datalogcpm <- function(X, y){ 

  countData1 <- X 

  geneNames1 <- rownames(X) 

  Labels <- as.numeric(y) 
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  group <- unique(y) 

  z <- factor(Labels, levels = group, labels = group) 

  n1 <- length(which(z == group[1])) 

  n2 <- length(which(z == group[2])) 

  n <- n1+n2 

   ## Filtering to remove low count reads: [74] 

  LS <- colSums(countData1) 

  LS.CPM <- LS/10^6 

  t <- round(10/min(LS.CPM), 1) # Threshold 

  y <- DGEList(counts = countData1, genes = geneNames1) 

  keep <- rowSums(cpm(y) > t) >=2 

  y <- y[keep, , keep.lib.sizes=FALSE] 

  countData <- y$counts 

  geneNames <- y$genes 

  nGenes <- nrow(countData) 

  log.cpm <- cpm(countData, log = TRUE) 

  return(as.data.frame(log.cpm)) 

} 
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Chapter 4: RESULTS & DISCUSSION 

This section describes the experimental results obtained by applying the developed 

algorithms to the data sets. For experimentation, two read count data sets were obtained. 

The present study divided the data into 10 folds where 1 fold was for testing and 9 folds 

were for training for the 10-fold crossover validation for training the SVM classifier for 

the genetic algorithm. A population size of 100 was created for 100 generations in the 

genetic algorithm. The default mutation probability of 0.30 and an elitism probability of 

0.10 was applied in the algorithm. An informative gene set of size 350 was selected from 

GSE64870 gene expression dataset and gene set of size 551 was selected from Kidney 

data using developed algorithm. 

4.1 Analysis Results 

a. Real Balanced Data 

1. UV stress on Arabidopsis thaliana data with population size=100 and Iterations =100 

and 22 variables 

Reference 

 

Prediction Control  

 

Treatment 

Control 11 0 

 

Treatment   0 11 

 

Table 4.1: Confusion Matrix for UV stress on Arabidopsis thaliana data 

Method Accuracy Sensitivity Specificity PPV NPV Precision 

TSGS 1 1 1 1 1 1 

Table 4.2: Statistics for UV stress on Arabidopsis thaliana data 

  95% CI : (0.8316, 1) 

2. KIRC RNA-seq data with population size=100 and Iterations =100 and 144 variables 

Reference 

 

Prediction Control  

 

Treatment 

Control 71 1 

 

Treatment   1 71 

 

Table 4.3: Confusion Matrix for KIRC RNA-seq data 
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Method Accuracy Sensitivity Specificity PPV NPV Precision 

TSGS 98.61 98.61 98.61 98.61 98.61 98.61 

Table 4.4: Statistics for KIRC RNA-seq data 

  95% CI : (0.9507, 0.9983) 

b. Real Unbalance data 

TCGA (LGG)RNA-Seq data with population size=100 and Iterations =100 and 97 

variables 

Reference 

 

Prediction Control  

 

Treatment 

Control 20 0 

 

Treatment   7 70 

 

Table 4.5: Confusion Matrix for TCGA (LGG) RNA-seq data 

 

Method Accuracy Sensitivity Specificity PPV NPV Precision 

TSGS 0.9278 0.7407 1.00 1.00 0.9091 1.00 

Table 4.6: Statistics for TCGA RNA-seq data 

  95% CI: (0.857, 0.9705) 

c. Simulated data 1 with population size=100 and Iterations =100 and 35 variables 

Reference 

 

Prediction Control  

 

Treatment 

Control 35 1 

 

Treatment   0 34     

 

Table 4.7: Confusion Matrix for simulated data 1 

Method Accuracy Sensitivity Specificity PPV NPV Precision 

TSGS 98.57 1.00 97.14 97,22 1.00 98.57 

Table 4.8: Statistics for simulated data 1 

    95% CI : (0.923, 0.9996) 
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d. Simulated data 2 with population size=100 and Iterations =100 and 15 variables 

Reference 

 

Prediction Control  

 

Treatment 

Control 15 0 

 

Treatment   0 15  

 

Table 4.9: Confusion Matrix for simulated data 2 

Method Accuracy Sensitivity Specificity PPV NPV Precision 

TSGS 1 1 1 1 1 1 

Table 4.10: Statistics for simulated data 2 

  95% CI: (0.8843, 1) 

4.2 Performance Analysis 

We got 551 genes selected using developed method TSGS. Here, we have used 

“DESeq2” for the differential expression analysis. For comparison with other methods, 

we sorted the genes according to “BH” adjusted p-value with 0.05 level of significance 

and then selected top 100 genes for determining the accuracy of our developed 

methodology.  

Our developed method TSGS was compared with “t-score”, “F-score”, “MRMR” and 

“bootMRMR” methods available in “GSAQ” R package. Informative gene selection 

using each of these methods was performed. Since, “MRMR” and “boot-MRMR” 

methods are for smaller dataset they were unable to select 100 genes using the complete 

dataset. Therefore, for these two methods, we performed differential expression analysis 

and selected top 1000 genes. We apply the filtering criteria: “BH” adjusted p-value < 

0.05 and log fold change cut off of ±1 (logFC > 1 and logFC < -1). We used data 

corresponding to 100 genes selected using these four methods We used “svmRadial” 

method and “LOOCV” resampling method for building the training model and validation 

using “caret” R package. We performed the validation 100 times. The mean of various 

measures of accuracies (in %) obtained using each method are shown in Table 4.2.1: 

 

Accuracy Sensitivity Specificity PPV NPV 

Precisi

on Recall F1 

TSGS 98.61 98.61 98.61 98.61 98.61 98.61 98.61 98.61 

t-score 97.30 95.99 98.61 98.57 96.13 98.57 95.99 97.25 
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F-score 97.81 97.00 98.61 98.59 97.06 98.59 97.00 97.78 

MRMR 98.06 97.5 98.61 98.60 97.53 98.60 97.50 98.04 

bootMRM

R 98.15 97.69 98.61 98.60 97.72 98.60 97.69 98.14 

Table 4.2.1: Evaluation of TSGS with other methods 

The performance analysis showed that the developed methodology TSGS selects 

informative genes which are more biologically relevant. The developed methodology 

TSGS is also found to be quite competitive with the existing techniques with respect to 

subject classification accuracy. Our results also showed that under the multiple criteria 

decision-making setup, the proposed technique is better for informative gene selection 

over the above compared methods. 

 Initially, we have used “DESeq2” for the differential expression analysis in our 

method. Later on, based on various suggestions, we used “edgeR” package for 

differential expression analysis. Furthermore, we used a portion of our program to get the 

expression data and used this data as input to the different methods of “GSAQ” package. 

After modifying our program, 622 genes got selected using our method. For comparison 

with other methods, we selected the genes according to “BH” adjusted p-value with 0.05 

level of significance. Our proposed method was compared with “t-score”, “F-score”, 

“MRMR” and “bootMRMR” methods available in “GSAQ” package. We performed 

gene selection using each of these methods. We used the expression data obtained from 

our method as input data for these methods. However, “MRMR” and “boot-MRMR” 

methods were unable to select any genes using the complete dataset. This is one of the 

limitations of “GSAQ” R package. Therefore, we discarded these two methods from 

further comparison. We selected 622 genes using the methods “t-score” and “F-score”. 

We used “svmRadial” method and “LOOCV” resampling method for building the 

training model and validation using “caret” R package. We performed the validation 100 

times. The mean of various measures of accuracies (in %) obtained using each method 

are shown in Table 4.2.2: 

 

Accuracy Sensitivity 

Specific

ity PPV NPV 

Precisio

n Recall F1 

TSGS 97.65 98.61 96.69 96.8 98.58 97.69 97.65 98.61 

t-score* 97.73 98.61 96.85 96.94 98.59 97.76 97.73 98.61 

F-score* 98.01 98.61 97.42 97.46 98.59 98.03 98.01 98.61 

MRMR* NA NA NA NA NA NA NA NA 

bootMRMR* NA NA NA NA NA NA NA NA 
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Table 4.2.2: Evaluation of TSGS using KIRC RNA-seq data , TSGS was used to get the 

expression data which was then used as input to the different methods of “GSAQ” 

package. 

From the above table, we observe that “F-score” method has more accuracy as compared 

to other methods. However, the results are comparable. Thus, we can say that after 

including a portion of our method TSGS, the accuracy of other methods also increases. 

Same conclusion was drawn when we used simulated data (Benidt and Nettleton, 2015) 

consisting of 15000 genes and 35 samples in each of the two classes (Please see section 

3.7 & 3.8 d). We got 67 genes selected using developed method TSGS. The mean of 

various measures of accuracies (in %) obtained using each method are shown in Table 

4.2.3: 

 

Accuracy Sensitivity 

Specific

ity PPV NPV 

Precisio

n Recall F1 

TSGS 98.5 99.89 97.11 97.2 99.89 98.52 98.5 99.89 

t-score* 98.41 99.89 96.94 97.04 99.89 98.44 98.41 99.89 

F-score* 98.57 100 97.14 97.22 100 98.59 98.57 100 

MRMR* NA NA NA NA NA NA NA NA 

bootMRM

R* 

NA NA NA NA NA NA NA NA 

Table 4.2.3: Evaluation of TSGS using simulated data1, TSGS was used to get the expression 

data which was then used as input to the different methods of “GSAQ” package. 

Comparison using TCGA’s Low Grade Glioma (LGG) unbalanced Dataset 

We applied our method “TSGS” with population size 100, number of iterations 100, 

level of significance 0.05, “bonferroni” method of adjusting p-values. We got 53 genes 

selected using our method “TSGS”. We have used “svmRadial” method and “LOOCV” 

resampling method for building the training model and validation using “caret” R 

package.  TSGS was compared with “t-score”, “F-score”, “MRMR” and “bootMRMR” 

methods available in “GSAQ” R package. Gene selection using each of these methods 

was performed. However, “t-score” and “F-score” methods were unable to select any 

genes as it cannot handle unbalanced data. Similarly, we also tried “MRMR” and “boot-

MRMR” methods, but these methods also failed to select any genes. This is one of the 

limitations of “GSAQ” R package that it cannot handle unbalanced data whereas TSGS 

worked for unbalanced data also. 
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4.3 Development of Web tool: 

We have developed a user-friendly tool TSGS (Trait Specific Gene Selection) for gene 

selection based on RNA-Seq expression data. We have implemented all the steps in R 

[77] and used “shiny” package [79] for developing the web application. Besides these, 

we have also used various Bioconductor packages [80]. The tool is available at 

https://icar-iasri.shinyapps.io/tsgs/ 

 

    Fig 4.1 Home Page of TSGS 

The user has to upload data in a specified format either in csv, tsv, txt, xls or xlsx format 

(Please see Figure 4.2). The sample names are specified in the first row starting from 

second position of row. The classes of each samples are specified in the second row 

corresponding to the sample names in first row. From third row and onwards, we have to 

put the RNA-Seq count data corresponding to genes in the first column and samples of 

the first row. A portion of KIRC RNA-Seq count data with 72 samples in each of the two 

classes is shown below: 

https://icar-iasri.shinyapps.io/tsgs/
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Fig 4.2 A portion of RNA-Seq count data 

Then, the user has to specify other parameters, namely, population size, number of 

iterations, level of significance (default value 0.05) and method of adjusting p-values for 

multiple testing of genes. We have provided the following options for adjusting p-values: 

“BH”, “bonferroni”, “holm”, “Hochberg”, “hommel” and “BY”. The method 

“bonferroni” is the default adjustment method. 

 

Fig 4.3  Status of Job 
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Fig 4.4 Parameters Selected 

 

Fig 4.5 Summary 
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Fig 4.6  List of Selected Genes 

 

Fig 4.7  LogCPM of selected Genes 
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Fig 4.7a Differential Analysis Result 

 

 

Fig 4.7b Differential Analysis Result 
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Fig 4.8a PCA Plot before 

 

Fig 4.8b PCA Plot After 
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4.4 Interface for Biocomputing Portal 

In order to provide access to users to analyse their data using the HPC facility at 

ASHOKA, TSGS has been made available at Biocomputing portal 

(ashoka.cabgrid.res.in:4443/pbsworks/login). The user can login to the portal with their 

credentials and access the tool and submit the job on the cluster. 

 

Fig 4.9a Login Screen for Biocomputing Portal 

Fig 4.9b Accessing TSGS from Biocomputing Portal 
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Chapter 5: Conclusion 

NGS and microarrays are a popular source of data for gathering gene expressions. 

Analysing these can be difficult due to the size of the data. The analysis of huge amount 

of gene expression data requires the execution of algorithm and tools to infer the hidden 

information or knowledge from these resources. Selection of informative genes from 

available high dimensional GE data is a challenging task. The complicated relations 

among the different genes make analysis more difficult and removing excess features can 

improve the quality of the results. Feature selection plays a bigger role in removing 

irrelevant features. In this study combination GA-SVM technique was used to develop a 

methodology which is a heuristic approach for informative gene selection from such GE 

data by considering gene relevance and redundancy simultaneously. In this methodology 

fitness value is used to evaluate individual chromosome present in the population. 

Fitness of the population can be increased in hope of producing child chromosomes with 

better genetic material in the subsequent generations. The average fitness could be 

improved by eliminating the unfit chromosomes in a population and replacing them with 

fitter chromosomes. Those chromosomes with the highest fitness values are given more 

opportunities to reproduce and the offspring share features taken from their parents. This 

ensures that the selected genes are carried to the next generation. The classification 

accuracy of the obtained gene set from the developed methodology was found to be 

better when compared with the gene sets obtained from methods such as Boot-MRMR, 

MRMR, t-score and F-score of R- package “GSAQ”. The findings of this study will 

guide the genome researchers and experimental biologists to select informative gene set 

scientifically and objectively. 
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साराांश 

पिछले कुछ दशकों में, अनुसांधान प्रयोगशालाओां सहित अधधकाांश उद्योग में बड़ी मात्रा में डटेा 
उत्िन्न ककया जा रिा िै। प्रयोगात्मक डटेा की इस बढ़त़ी िुई मात्रा ने वैज्ञाननकों को ऐस़ी पवधध 

और उिकरण पवकससत करने में सक्षम बनाया िै जो इस पवशाल मात्रा में डटेा के पवश्लेषण सहित 

ििुांच में आसाऩी प्रदान करते िैं। उच्च थ्रिूुट प्रौद्योधगककयों द्वारा उत्िन्न जैपवक डटेा की मात्रा 
और प्रकार ने बड ेिैमाने िर डटेा िैंडसलांग और इसके पवश्लेषण की कई चनुौनतयों का सामना ककया 
िै। एनज़ीएस और माइक्रोएरे ज़ीन असिव्यक्तत एकत्र करन ेके सलए डटेा का एक लोकपप्रय स्रोत 

िैं। डटेा के आकार के कारण इनका पवश्लेषण करना मुक्श्कल िो सकता िै। इसके अलावा, 
पवसिन्न ज़ीनों के ब़ीच जहटल सांबांध पवश्लेषण को और अधधक कहिन बनात ेिैं और अनतररतत 

सुपवधाओां को िटाने से िररणामों की गुणवत्ता में सुधार िो सकता िै। अप्रासांधगक सुपवधाओां को 
िटाने में फीचर चयन एक बड़ी िूसमका ननिाता िै। कई अलग-अलग फीचर चयन और फीचर 

ननष्कषषण पवधधयाां मौजूद िैं और उनका व्यािक रूि से उियोग ककया जा रिा िै। इन सि़ी 
पवधधयों का उद्देश्य अनावश्यक और अप्रासांधगक पवशषेताओां को िटाना िै ताकक नए उदािरणों 
का वगीकरण अधधक सटीक िो सके। 

उच्च आयाम़ी ज़ीन असिव्यक्तत डटेा स ेसूचनात्मक ज़ीन का चयन ट्ाांसकक्रिटासमक में एक 

मित्विूणष अनुसांधान क्षेत्र के रूि में उिरा िै। सांिूणष ज़ीनोम ट्ाांसकक्रप्टोम पवश्लेषण में RNA-

Seq दृक्ष्टकोण के साथ प्रमुख मुद्दों में से एक यि िै कक, पवसिन्न पवसिन्न ज़ीनों की 
असिव्यक्तत की गनतश़ीलता िर कब्जा कर सलया जाता िै। इसका िररणाम डटेा में बिुत उच्च 

आयाम़ीता िै, क्जसका अथष िै कक ज़ीन की सांख्या नमूनों की सांख्या से बिुत अधधक िै। इससलए, 

उियुतत कम्पप्यूटेशनल दृक्ष्टकोणों की सिायता स ेिजारों ज़ीनों में से क्थथनत वगष से सांबांधधत 

सबस ेप्रासांधगक ज़ीन का चयन करना मित्विूणष िै। 

पिछले एक दशक में कई फीचर सेलेतशन एल्गोररदम (एफएसए) िेश ककए गए िैं, लेककन उनमें 
स ेज्यादातर बड़ी सांख्या में बेमाऩी सुपवधाओां के साथ उच्च-आयाम़ी डटेासेट िर अच्छा प्रदशषन 

निीां करते िैं। इस प्रकार वतषमान िररयोजना में, ज़ीन असिव्यक्तत डटेा से पवशषेता पवसशष्ट ज़ीन 

के प्रासांधगक सेट प्राप्त करने के सलए कायषप्रणाली पवकससत करने की योजना बनाई गई थ़ी। इस 

िररयोजना के तित दो िारांिररक मश़ीन लननिंग एल्गोररदम, सिोटष वेतटर मश़ीन (एसव़ीएम) 

और एक जेनेहटक एल्गोररथम (ज़ीए) के सांयोजन को लागू करके पवशषेता पवसशष्ट ज़ीन चयन 

उिकरण (टीएसज़ीएस) पवकससत ककया गया िै। व ेएक आवरण दृक्ष्टकोण के आधार िर प्रिाव़ी 
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ढांग स ेएकीकृत िोत ेिैं। GA का उियोग वगीकरण और मूल्याांकन के सलए SVM को िेज ेगए 

ज़ीन के सबसेट को ननयांत्रत्रत और अनुकूसलत करने के सलए ककया जाता िै। एसव़ीएम को 
तलाससफायर प्रदशषन के रूि में और फीचर चयन के सलए जेनेहटक एल्गोररदम का उियोग करके 

सूचनात्मक ज़ीन सेट का एक सेट प्राप्त ककया जा सकता िै। पवकससत िद्धनत से प्राप्त ज़ीन सेट 

की वगीकरण सटीकता की तुलना बूट-एमआरएमआर, एमआरएमआर, टी-थकोर और आर-िैकेज 

"ज़ीएसएतय"ू के एफ-थकोर जैस़ी पवधधयों से प्राप्त ज़ीन सेट से की गई थ़ी। 

TSGS की आसान उिलब्धता के सलए उियोगकताष को शाइऩी ऐि का उियोग करने वाला एक वेब 

टूल बनाया गया िै, आगे टूल को बायोकां प्यूहटांग िोटषल के माध्यम से ि़ी एतसेस प्रदान ककया 
जाता िै ताकक उियोगकताष अशोका का उियोग करके अिने उच्च आयाम़ी ज़ीन असिव्यक्तत डटेा 
का पवश्लेषण कर सकें । 
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Summary 

In last few decades, huge amount of data is being generated in most of the industry 

including research labs. This ever-increasing amount of experimental data has enabled 

the scientists to develop the method and tools that provide an ease of access including 

analysis of this huge amount of data. The amount and type of biological data generated 

by high throughput technologies have posed many challenges of large-scale data 

handling and its analysis. NGS and microarrays are a popular source of data for 

gathering gene expressions. Analysing these can be difficult due to the size of the data. 

In addition, the complicated relations among the different genes make analysis more 

difficult and removing excess features can improve the quality of the results. Feature 

selection plays a bigger role in removing irrelevant features. Many different feature 

selection and feature extraction methods exist and they are being widely used. All these 

methods aim to remove redundant and irrelevant features so that classification of new 

instances will be more accurate.  

Selection of informative genes from high dimensional gene expression data has emerged 

as an important research area in transcriptomic. One of the major issues with the RNA-

Seq approach in whole genome transcriptome analysis is that, the expression dynamics 

of various different genes are captured. This result in very high dimensionality in the 

data, which means the number of genes is much larger than the number of samples. 

Therefore, it is important to select most relevant genes related to condition class from 

thousands of genes with the help of appropriate computational approaches.  

Many feature selection algorithms (FSA) are introduced in past decade but most of them 

do not perform well on high-dimensional datasets with a large number of redundant 

features. Thus in the present project, it was planned to develop the methodology for 

obtaining relevant set of trait specific genes from gene expression data. Under this 

project trait specific gene selection tool (TSGS)  has been developed by applying 

combination of two conventional machine learning algorithms, support vector machine 

(SVM) and a genetic algorithm (GA). They are integrated effectively based on a wrapper 

approach. GA is used to control and optimize the subset of genes sent to the SVM for 

classification and evaluation. Using SVM as the classifier performance and the Genetic 

algorithm for feature selection a set of informative gene set can be obtained. The 

classification accuracy of the obtained gene set from the developed methodology was 

compared with the gene sets obtained from methods such as Boot-MRMR, MRMR, t-

score and F-score of R- package “GSAQ”. 

For the easy availability of the TSGS the user a web tool using shiny app has been 

created further the tool is also provided access through Biocomputing portal for the user 

to analyse their high dimensional gene expression data using ASHOKA. 
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