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Bemisia tabaci (Hemiptera: Aleyrodidae) is a highly efficient vector in the spread of chilli
leaf curl virus (ChiLCV, Begomovirus) which is a major constraint in the production
of chilli in South Asia. Transcriptome analysis of B. tabaci post-6 h acquisition of
ChiLCV showed differential expression of 80 (29 upregulated and 51 downregulated)
genes. The maximum number of DEGs are categorized under the biological processes
category followed by cellular components and molecular functions. KEGG analysis of
DEGs showed that the genes are involved in the functions like metabolism, signaling
pathways, cellular processes, and organismal systems. The expression of highly
expressed 20 genes post-ChiLCV acquisition was validated in RT-qPCR. DEGs such
as cytosolic carboxypeptidase 3, dual-specificity protein phosphatase 10, 15, dynein
axonemal heavy chain 17, fasciclin 2, inhibin beta chain, replication factor A protein
1, and Tob1 were found enriched and favored the virus infection and circulation in
B. tabaci. The present study provides an improved understanding of the networks of
molecular interactions between B. tabaci and ChiLCV. The candidate genes of B. tabaci
involved in ChiLCV transmission would be novel targets for the management of the
B. tabaci-begomovirus complex.

Keywords: ChiLCV, silverleaf whitefly, RNA-Seq, transcriptome, RT-qPCR, virus-vector relationship

INTRODUCTION

Transmission of a plant virus within or between the fields is often dependent upon a mobile vector.
Insects are the most efficient vectors of plant viruses because of their abundance and feeding
behavior (Milenovic et al., 2019). About 70% of reported insect vectors are hemipterans (Fereres
and Raccah, 2015). Silverleaf whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is an
invasive insect pest and vector of several plant viruses (Legarrea et al., 2015). Transmission of
several begomoviruses, carlaviruses, criniviruses, cytorhabdoviruses, ipomoviruses, poleroviruses,
and torradoviruses by B. tabaci causes economic losses exceeding billions of US$ and threatens food
security (Dasgupta et al., 2003; Jones, 2003; Navas-Castillo et al., 2011; Brown et al., 2015; Orfanidou
et al., 2016; Saeed and Samad, 2017; Zanardo and Carvalho, 2017; Ghosh et al., 2019; Costa et al.,
2020; Pinheiro-Lima et al., 2020; Cornejo-Franco et al., 2022).
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The spectrum of diseases caused by begomoviruses is a
continuing challenge to crop production worldwide (family:
Geminiviridae) (Navas-Castillo et al., 2011). These diseases
cause an estimated yield loss of 50–90% in tomatoes, chilli,
and other crops including beans, cassava, cotton, cucurbits,
eggplant, papaya, and potatoes (Briddon et al., 2010; Saeed and
Samad, 2017). To date, 445 begomovirus species have been
reported1. One of the begomoviruses, i.e., chilli leaf curl virus
(ChiLCV) is a major threat to chilli production in tropical and
sub-tropical countries (Senanayake et al., 2007, 2012; Menike
and De Costa, 2017; Oraonand and Tarafdar, 2018; Thakur
et al., 2018). ChiLCV has caused several epidemics in India
and Sri Lanka (Senanayake et al., 2007, 2012). The disease is
typically manifested in the infected plants as upward curling,
puckering, and bunching of leaves. The leaves become smaller
and severely affected plants produce fewer and deformed fruits.
Yield loss of 20–50% has been recorded in chilli by ChiLCV
(Thakur et al., 2018) which may rise to 100% with the infestation
of thrips and mites (Menike and De Costa, 2017). Control
options for B. tabaci-ChiLCV are very limited as insecticides
continue to lose their efficacy due to the emergence of resistant
B. tabaci populations (Barman et al., 2021). Additionally,
insecticides adversely affect the environment and human health.
Understanding the molecular interactions between B. tabaci and
ChiLCV and interrupting the interrelationship is a promising
approach to manage the virus-vector complex. The present
understanding of B. tabaci-begomovirus interaction is largely
based on the study of B. tabaci cryptic species MEAM1 and MED
and tomato yellow leaf curl virus (TYLCV). Once ingested by
B. tabaci, virus particles pass through the midgut, where they
move across the midgut membrane into the hemolymph, possibly
via receptor-mediated endocytosis, and circulate to the primary
salivary glands, from where they are egested along with saliva
during feeding (Czosnek and Ghanim, 2012). During the entire
process, the viral proteins need to interact with several proteins in
the midgut, hemolymph, and primary salivary glands (Wei et al.,
2014). B. tabaci MEAM1 heat shock proteins (Hsp), cyclophilins,
and peptidoglycan recognition protein interact with TYLCV coat
protein (CP) for successful internalization (Götz et al., 2012;
Kanakala and Ghanim, 2016; Wang et al., 2016). Silencing of
hsp70 in B. tabaci Asia II 1 inhibits transmission of ChiLCV
(Chakraborty and Ghosh, 2022). A GroEL homolog produced by
C-type endosymbionts in B. tabaci MEAM1 is known to transport
TYLCV particles through the hemolymph of B. tabaci in coated
vesicles (Bragard et al., 2013).

Over the past 5 years, transcriptomic analysis of B. tabaci
has enabled us to study the differential expression of genes
that are involved in virus transmission (Luan et al., 2011; Kaur
et al., 2017; Xia et al., 2017; Hasegawa et al., 2018; Ding et al.,
2019). However, these studies were limited to gene regulations
in MEAM1 and MED cryptic species of B. tabaci in response
to infection of TYLCV, tomato yellow leaf curl China virus
(TYLCCV), and a crinivirus-tomato chlorosis virus (ToCV).
To date, 46 morphologically indistinguishable cryptic species
of B. tabaci are known (Rehman et al., 2021) that differ in

1https://talk.ictvonline.org/taxonomy/

genetic structure, chemical resistance, adaptability, and virus
transmission (Brown, 2000; Gorman et al., 2010; Wang et al.,
2010; Qin et al., 2016). The genes of B. tabaci involved in the
transmission of begomoviruses are not conserved across all the
B. tabaci cryptic species–begomovirus combinations. Also, little
is known about the role of putative genes of B. tabaci Asia II 1
in response to ChiCLV transmission. The present study reports
the candidate genes of B. tabaci Asia II 1 that are regulated at an
early stage of ChiLCV infection. Identification of candidate genes
involved in key physiological processes and ChiLCV infection
would be novel targets for the management of the B. tabaci-
ChiLCV complex.

MATERIALS AND METHODS

Establishment of Isofemale Population of
Bemisia tabaci
A homogeneous population of B. tabaci Asia II 1 maintained
at Advanced Centre for Plant Virology, Indian Agricultural
Research Institute (IARI), New Delhi since 2015 was used in
the present study. The homogeneous population was developed
from a single adult female on healthy eggplants. The cryptic
identity of the B. tabaci was confirmed by PCR amplification
of the mitochondrial cytochrome oxidase subunit I (mtCOI)
using C1-J-2195 and L2-N-3014 primers (Simon et al., 1994;
Supplementary Table 1) and sequencing. DNA was isolated
from randomly collected adult flies from the homogeneous
population using CTAB extraction buffer as described by Rehman
et al. (2021). PCR was performed in a 25 µl reaction mixture
comprised of 1x DreamTaq buffer, 0.1 mM dNTPs (Thermo
Fisher Scientific, Waltham, MA, United States), 10 picomoles
forward and reverse primers, 1.25 U DreamTaq DNA polymerase
(Thermo Fisher Scientific, Waltham, MA, United States), and
50 ng of template DNA. Thermal cycling was followed as initial
denaturation at 94◦C for 2 min, 30 cycles of denaturation at
94◦C for 30 s, annealing at 53◦C for 30 s and polymerization
at 72◦C for 1 min, followed by final extension step at 72◦C for
10 min. PCR products were visualized on 1% agarose gel stained
with GoodViewTM (BR Biochem, New Delhi, India). The purified
PCR products were sequenced bidirectionally. The sequences
were processed by BioEdit and species homology was checked
in BLASTn. A consensus sequence was submitted to GenBank.
The genotype or cryptic species of the B. tabaci population was
confirmed based on Bayesian Inference phylogeny considering
a genetic divergence cutoff of 4% as described by Rehman
et al. (2021). The population was maintained under controlled
environmental conditions at 28 ± 2◦C, 60 ± 10% relative
humidity, and 16 h light- 8 h dark photoperiod.

Virus Isolate and Generation of
ChiLCV-Exposed and Non-exposed
Bemisia tabaci
A pure culture of ChiLCV maintained on chilli plant (var.
Preeti, Nunhems, Haelen, Netherlands) by B. tabaci inoculation
under insect-proof conditions was used in the study. ChiLCV
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was confirmed by amplifying DNA-A using Begomo F and
Begomo R primers (Akhter et al., 2009) (Supplementary Table 1)
and nucleotide sequencing. To establish the ChiLCV-exposed
and non-exposed B. tabaci populations, freshly emerged female
adults were collected and released onto ChiLCV-infected and
virus-free chilli plants at 4–6 leaf stage for 6 h in three
biological replicates. A 6 h acquisition was found adequate for
the successful transmission of ChiLCV by B. tabaci Asia II 1
(Senanayake et al., 2012; Roy et al., 2021). After 6 h of acquisition,
ChiLCV-exposed (BtTrI1, BtTrI2, and BtTrI3) and non-exposed
(BtTrH1, BtTrH2, and BtTrH3) B. tabaci adults were collected.
ChiLCV infection in B. tabaci populations was confirmed by
randomly collecting 10 flies from each population and testing
in PCR using ChiLCV-specific primers (AG149F-AG150R) (Roy
et al., 2021, Supplementary Table 1). Each population was
divided into two parts. One part was utilized for RNA-Seq
and another part was preserved in −80◦C for gene expression
analysis in a reverse transcription-quantitative polymerase chain
reaction (RT-qPCR).

Total RNA Isolation
Total RNA was isolated from each ChiLCV-exposed (BtTrI1,
BtTrI2, and BtTrI3) and non-exposed (BtTrH1, BtTrH2, and
BtTrH3) B. tabaci populations using Trizol reagent (Invitrogen,
Waltham, MA, United States) following manufacturer’s protocol.
In brief, 50 B. tabaci were crushed in 1 mL Trizol and kept
at room temperature for 10 min. Two hundred microliter of
chloroform was added to the mixture, vortexed for <10 s,
and incubated at room temperature for 10 min. The mixture
was then centrifuged at 16,000 xg for 10 min at 4◦C.
The upper aqueous phase was transferred to a fresh tube
and 0.8 volume of ice-chilled isopropanol was added, mixed
properly, and incubated at 4◦C for 10 min. The mixture was
again centrifuged at 16,000 xg for 10 min at 4◦C and the
supernatant was discarded. The pellet was finally washed with
70% ethanol, air-dried, and resuspended in 30 µl nuclease-
free water. RNaseZAP (Thermo Fisher Scientific, Waltham,
MA, United States) was used for decontamination, RNase-
free tips, microfuge tubes, and water were used throughout
the experiment. Total RNA quality was measured using
RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, CA,
United States) on 2100 Bioanalyzer (Agilent Technologies) with
a minimum RNA Integrity Number (RIN) value of 7. RNA
concentrations were determined using a NanoDrop ND-8000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
United States).

Construction of cDNA Library and
Sequencing of Transcripts
RNA-Seq libraries for all samples were prepared using NEBNext
UltraII RNA library preparation kit for Illumina (New England
Biolabs, Ipswich, MA, United States) following manufacturer’s
protocol and sequencing was done in a single HiSEQ 4000
(Illumina Inc., San Diego, CA, United States) lane using 150 bp
paired-end chemistry. The library preparation and sequencing
were done by commercial service providers (NxGenBio Life

Sciences, Delhi, India). Briefly, mRNA was purified using oligo-
dT beads. Magnetic beads were used for the second round of
purification. During the second elution of the poly-A RNA, the
RNA was also fragmented into short stretches of 200–500 bp at
94◦C for 5 min using an ultrasonicator in presence of divalent
cations. The cleaved RNA fragments were copied into first-
strand cDNA using SuperScript-II reverse transcriptase (Thermo
Fisher Scientific, Waltham, MA, United States) with random
primers. After second-strand cDNA synthesis, fragments were
end-repaired, A-tailed, and ligated to indexed adapters. The
products were purified and enriched with PCR to create the
final cDNA library. The tagged cDNA libraries were pooled in
equal ratios and used for 2 × 150 bp paired-end sequencing
on a single lane of the Illumina HiSEQ 4000. Illumina clusters
were generated and were loaded onto Illumina Flow Cell and
sequenced. After sequencing, the samples were demultiplexed
and the indexed adapter sequences were trimmed using the
CASAVA v1.8.2 software (Illumina Inc.).

Pre-processing of Raw Reads and
Differential Gene Expression Analysis
The ambiguous “N” nucleotides with a ratio of “N” > 5%,
reads with adaptor sequences, and low-quality reads with a
quality score < 20% were removed by the Trim Galore v0.4.1
to get the high-quality reads. Reference genome index was
established using BWAv0.7.5 and the clean reads were mapped
to the reference genome of B. tabaci MEAM1 (Chen et al.,
2016). Read numbers, mapped to every gene were counted using
Samtools v0.1.19. Differential expression between the ChiLCV-
exposed (BtTrI1, BtTrI2, and BtTrI3) and non-exposed (BtTrH1,
BtTrH2, and BtTrH3) B. tabaci populations was analyzed using
the DESeq R package2. Significant differential gene expression
that was consistent among the biological replicates, was counted
with ≥ log2 2-fold change and p < 0.05.

Annotation and Functional Enrichment
Analysis of Differentially Expressed
Genes
Gene annotations and functional enrichment analysis including
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) biological pathways were used to identify
the differentially expressed genes (DEGs) that were significantly
enriched in GO terms or biological pathways post-6 h of ChiLCV
acquisition. Gene annotations against the Uniprot GO database3

were performed by aligning DEGs to the NR database using the
blast v 2.6.0+ programme. KEGG pathway enrichment analysis
of DEGs was performed using the KEGG database resource4

by KAAS (Moriya et al., 2007) to identify the pathways that
were differentially regulated between ChiLCV-exposed and non-
exposed B. tabaci with p-value < 0.05.

2http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
3http://geneontology.org/
4http://www.genome.jp/kegg
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Relative Expression of Putative Genes in
Reverse Transcription-Quantitative
Polymerase Chain Reaction
To validate the RNA-Seq data, 20 putative genes of B. tabaci
Asia II 1 with ≥log2 2-fold change values were selected to
assess the gene expression in RT-qPCR. Two sets of primers
were designed for each of the target and endogenous control
(β-actin) genes. The primer pairs were initially optimized in
a gradient PCR. One set of primers for each target gene was
selected based on the efficiency of PCR amplification at the
same PCR conditions for the endogenous control primers.
A part of the same ChiLCV-exposed and non-exposed B. tabaci
populations used for RNA-Seq was preserved for RT-qPCR
analysis. Total RNA was isolated from ChiLCV-exposed (BtTrI1,
BtTrI2, and BtTrI3) and non-exposed (BtTrH1, BtTrH2, and
BtTrH3) B. tabaci populations as described earlier. cDNA was
synthesized using the FIREScript RT cDNA synthesis kit (Solis
BioDyne, Estonia). The reaction mixture contained 1X RT
reaction buffer, 1.0 µg template RNA, 5.0 µM oligo dT primer,
500 µM dNTP mix, 10-unit FIREScript RT, and 1-unit RiboGrip
RNase inhibitor. The reverse transcription was carried out in
a thermocycler (T100, Bio-Rad, Hercules, CA, United States)
at 42◦C for 60 min followed by enzyme inactivation at
85◦C for 5 min.

The relative RT-qPCR was carried out in an InstaQ 48 real-
time PCR (Himedia, Mumbai, India) with 20 µl reaction volume
containing 10 µl of 2X Maxima SYBR green master mix, 10 µM
ROX passive reference dye, 10 picomoles each forward and
reverse primer (Supplementary Table 1), and 2 µl template
cDNA. Thermal cycling was performed as initial denaturation at
94◦C for 5 min, 30 cycles of 94◦C for 30 sec, 56◦C for 30 sec,
and 72◦C for 30 sec. The dissociation or melting stage was
carried out after every reaction to determine the specificity of the
amplicons in RT-qPCR using a computer interface programme
for InstaQ 48M2 (Himedia). The RT-qPCR was performed with
three biological and two technical replicates. The expression
change of the target gene was normalized by excluding the
changes in cycle threshold (CT) value of endogenous control,
β-actin. Log2-fold change value was calculated and relative
expression of mRNA was determined by normalizing the log2
values of the ChiLCV-exposed populations with non-exposed
using the 2−11 C

T method (Livak and Schmittgen, 2001) in
Mircosoft Excel 2016.

RESULTS

Characterization of Bemisia tabaci and
Begomovirus
An isofemale line of B. tabaci Asia II 1 (Accession No.
MT920041), maintained on healthy eggplant at Advanced Centre
for Plant Virology, IARI was used to generate ChiLCV-exposed
and non-exposed B. tabaci populations. The identity of the
B. tabaci cryptic species was confirmed by sequencing the
mtCOI gene. PCR amplification of B. tabaci mtCOI with C1-
J-2195 and L2-N-3014 primers showed an expected amplicon

of ∼860 bp on an agarose gel. The nucleotide (nt) sequence
showed 99.99% homology in BLASTn analysis with other
B. tabaci sequences in NCBI. The sequence can be retrieved
using the GenBank Accession No. MT920041. Bayesian Inference
phylogeny considering genetic divergence cutoff of 4% revealed
that the population belonged to the cryptic species B. tabaci Asia
II 1 (data not shown).

PCR amplification of the DNA-A using Begomo F and
Begomo R primer produced a 2.7 kb product as visualized
on 1% agarose gel. Bidirectional sequencing of the cloned
products produced an 1896 nt sequence, comprising complete
AV1 and AV2 genes, and partial AC1, AC2, AC3, and
AC4 genes, that was 100% similar to ChiLCV isolates upon
BLASTn analysis. The sequence can be retrieved by GenBank
Accession No. MW399222.

ChiLCV-Exposed and Non-exposed
Bemisia tabaci Population
ChiLCV-exposed and non-exposed B. tabaci populations were
developed by allowing the freshly emerged adult flies to feed
on infected and healthy chilli plants for 6 h. A few randomly
collected B. tabaci adults were tested in PCR with ChiLCV-
specific primers, AG149F and AG150R (Supplementary Table 1).
A product of 290 bp was visualized on agarose gel that confirmed
the virus infection in ChiLCV-exposed B. tabaci adults. B. tabaci
populations (BtTrH1, BtTrH2, and BtTrH3) that were exposed
to healthy chilli plants did not produce any ChiLCV-specific
amplification in PCR.

Illumina Sequencing and Assembly
Total RNA was extracted from three ChiLCV-exposed (BtTrI1,
BtTrI2, and BtTrI3) and non-exposed (BtTrH1, BtTrH2, and
BtTrH3) B. tabaci Asia II 1 populations. For RNA-Seq analysis
of ChiLCV-exposed and non-exposed B. tabaci, a total of six
cDNA libraries were constructed and used for 2 × 150 bp pair-
end sequencing on a single HiSEQ4000 lane. About 26–33 million
raw reads were generated from each library (Table 1). Of which,
99.58–99.70% reads were clean reads. The cleaned reads of all the
six libraries were mapped with the reference genome of B. tabaci
MEAM1 (Chen et al., 2016). The mapping percent for all six
libraries ranged from 87.21 to 93.16% of clean reads.

General Pattern of Bemisia tabaci Gene
Expression in Response to ChiLCV
Infection
A total of 15,514 genes in adult B. tabaci Asia II 1 were found
to be differentially expressed post 6 h of ChiLCV exposure.
Out of which, 7,193 genes were upregulated and 8,321 genes
were downregulated. However, only a total of 80 (0.52%) genes
showed significant regulations with ≥log2 2-fold change in
expression level at a significant p-value of ≤0.05. Among the
significant differentially expressed genes (DEGs), 29 genes were
upregulated and 51 genes were downregulated in combined
BtTrI as compared to BtTrH (Figure 1). The top upregulated
and downregulated genes of B. tabaci in response to ChiLCV-
infection are listed in Table 2. The DEGs of B. tabaci were
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TABLE 1 | Summary of RNA-Seq data obtained from ChiLCV-exposed and non-exposed B. tabaci Asia II 1.

Sample Raw reads Filter reads Clean reads (%) % mapped with reference genome

ChiLCV non-exposed B. tabaci BtTrH1 2,65,84,539 2,65,09,920 99.7 91.7

BtTrH2 2,65,05,012 2,63,95,200 99.58 87.38

BtTrH3 3,12,05,804 3,11,08,963 99.68 87.21

ChiLCV exposed B. tabaci BtTrI1 3,31,48,645 3,30,35,921 99.65 93.16

BtTrI2 2,97,68,269 2,96,75,113 99.68 88.01

BtTrI3 2,67,77,701 2,66,83,511 99.64 90.03

FIGURE 1 | Differential gene expression of B. tabaci Asia II1 in response to ChiLCV infection. (A) Percentage of upregulated and down-regulated transcripts; (B)
Percentage differentially expressed genes of B. tabaci at the expression level of ≥log2 2-fold and p-value ≤ 0.05; (C) Proportion of differentially expressed genes
(DEGs) in RNA-Seq analysis. A total of 29 DEGs were found upregulated while 51 were downregulated; (D) Volcano plot of DEGs. The x-axis shows the fold change
in gene expression between different samples, and the y-axis shows the statistical significance of the differences. Significantly up- and downregulated genes with
log2 FC ≥ 2 are highlighted in red and green, respectively. The blue dots represent non-significant DEGs.
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TABLE 2 | Differentially expressed upregulated and downregulated genes of B. tabaci Asia II 1 in response to ChiLCV infection.

Sl No. Gene ID Gene name GO term Log2 fold
change

P-value

Upregulated genes

1 Bta12916 Toll receptor 3 Involved in control host immune response, activated by double-stranded RNA, a sign of viral
infection

3.6 0.0009

2 Bta06925 Cytosolic
carboxypeptidase 3

Catalyzes the deglutamylation of polyglutamate side chains generated by post-translational
polyglutamylation in proteins such as tubulins

2.6 0.001

3 Bta15365 Dynein heavy chain Involved in ATPase activity, plays a major role in sperm motility, implicated in sperm flagellar
assembly and beating

4.1 0.01

4 Bta07280 Tob1 Plays an important role in controlling cell cycle progression, suppressing tumor development 3.4 0.01

5 Bta00655 GMP reductase Functions in the conversion of nucleobase, nucleoside, and nucleotide derivatives of G to A
nucleotides, and in maintaining the intracellular balance of A and G nucleotides

3.5 0.014

6 Bta13317 Replication factor A Plays an essential role in DNA replication, recombination, and repair. Binds and stabilizes
single-stranded DNA intermediates

3.5 0.016

7 Bta00469 Fasciclin 2 Homophilic cell adhesion via plasma membrane adhesion molecule, synapse organization 2.6 0.02

8 Bta06684 Estrogen
sulfotransferase

Catalyzes the sulfate conjugation of many hormones, neurotransmitters, drugs, and xenobiotic
compounds

2.3 0.04

9 Bta02631 Deoxyribonuclease I Cleaves protein-free DNA, involved in cell death by apoptosis. Together with DNASE1L3, plays
a key role in degrading neutrophil extracellular traps

2.2 0.04

10 Bta07061 Unknown protein - 2.5 0.009

11 Bta03305 Unknown protein - 2.1 0.02

12 Bta15645 Unknown protein - 2.7 0.03

13 Bta12076 Unknown protein - 2.6 0.03

14 Bta09526 Unknown protein - 2.2 0.034

15 Bta08486 Unknown protein - 3 0.04

16 Bta10794 Unknown protein - 2.7 0.04

17 Bta11684 Unknown protein - 2.6 0.04

Downregulated genes

18 Bta00788 Protein argonaute 2 RNA interference (RNAi) pathway. A member of the RNA-induced transcriptional silencing (RITS)
complex

−2.6 1.30E-13

19 Bta09958 Protein argonaute 2 Involved in RNA interference (RNAi) pathway. A member of the RNA-induced transcriptional
silencing (RITS) complex

−3 2.70E-11

20 Bta07464 Pupal cuticle protein 36 Component of the pupal abdominal endocuticle. May have an important role in the larval and
adult exoskeleton structure.

−2.6 2.54E-09

21 Bta05467 Major royal jelly protein Induces the differentiation of honeybee larvae into queens through an Egfr-mediated signaling
pathway

−3 0.0001

22 Bta10408 Prolyl 4-hydroxylase
alpha-1 subunit

Iron ion binding, L-ascorbic acid-binding, procollagen proline 4 dioxygenase activity −3.1 0.01

23 Bta13082 Endochitinase A Involved in cortical microtubule organization −2.6 0.013

24 Bta15272 Inhibin beta chain Germ cell development and maturation, nerve cell survival, embryonic axial development −2.7 0.014

25 Bta05443 T-box transcription
factor TBX20

Acts as a transcriptional activator and repressor required for cardiac development and may
have key roles in the maintenance of functional and structural phenotypes in adult heart

−3.4 0.016

26 Bta10856 Protein phosphatase 1L Acts as a suppressor of the SAPK signaling pathways by associating with and
dephosphorylating MAP3K7/TAK1 and MAP3K5, and by attenuating the association between
MAP3K7/TAK1 and MAP2K4 or MAP2K6.

−3.4 0.019

27 Bta07414 Neurobeachin-like
protein 1

Protein kinase binding and protein localization −3.3 0.02

28 Bta01185 Anther-specific
proline-rich protein

Serine type endopeptidase involved in inhibitor activity −2.8 0.02

29 Bta03315 Adenosine deaminase Plays an important role in purine metabolism and adenosine homeostasis −2.6 0.028

30 Bta01284 AGAP004475-PA Unreviewed −4 0.029

31 Bta03804 AT-rich interactive
domain-containing
protein

Transcription factor which may be involved in the control of cell cycle progression by the
RB1/E2F1 pathway and in B-cell differentiation

−2.9 0.03

32 Bta11712 Klingon Axon guidance receptor activity, hemophilic cell adhesion via plasma membrane adhesion
molecule

−2.8 0.03

(Continued)
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TABLE 2 | (Continued)

Sl No. Gene ID Gene name Go term Log2 fold
change

P-value

33 Bta14472 Homeobox protein
Hox-A2

Play a crucial role in several biological processes like control of cell identity, cell growth, and
differentiation, cell to cell, and cell to extracellular matrix interactions

−2.2 0.01

34 Bta00780 Unknown protein - −2.7 3.02E-13

35 Bta04905 Unknown protein - −2.8 1.53E-09

36 Bta00785 Unknown protein - −3.4 0.001

37 Bta09990 Unknown protein - −4.4 0.003

involved in receptor binding, antigen binding, epithelial cell
differentiation, extracellular matrix organization, cell-to-cell, and
cell-surface receptor signaling. Besides, a large number of orphan
genes were significantly regulated in B. tabaci post 6 h of ChiLCV
acquisition.

Differentially Expressed Genes in
Bemisia tabaci Post-ChiLCV Acquisition
A total of 16 known genes were found to be upregulated in
adult B. tabaci at an early stage of ChiLCV infection. The key
upregulated genes included dual-specificity protein phosphatase
10 (DUSP10)-like, dual-specificity protein phosphatase 15
(DUSP15)-like, estrogen sulfotransferase (Ste), cytosolic
carboxypeptidase 3 (AGBL3)-like, fasciclin 2 (Fas2), Tob1,
GMP reductase 1 (GMPR), dentin sialophosphoprotein
(DSPP), toll receptor 3 (TLR3), dynein axonemal heavy chain
17 (DNAH17), ATP-dependent DNA helicase (DDX11),
WAS/WASL-interacting protein family member 1 (WIPF1),
proline-rich extensin protein EPR1 (EPR1), CG13607, and
glutamyl-tRNA(Gln) amidotransferase subunit A (QRSL1).

Twenty-three genes were significantly downregulated in
B. tabaci adults post 6 h of ChiLCV acquisition. Putative genes
of B. tabaci such as nose resistant to fluoxetine protein 6 (nrf-
6), protein masquerade (mas), protein argonaute 2 (AGO2),
endochitinase A (CHIA), pupal cuticle protein 36 (PCP36),
keratinocyte proline-rich protein (KPRP), adenylate cyclase,
juvenile hormone acid O-methyltransferase (jhamt), T-box
transcription factor TBX20 (TBX20), 1-acyl-sn-glycerol-3-
phosphate acyltransferase (plsC), AGAP004475-PA, protein
phosphatase 1L (PPM1L), neurobeachin-like protein 1
(NBEAL1), major royal jelly protein (MRJP), prolyl 4-
hydroxylase alpha-1 subunit (P4HA1), AT-rich interactive
domain-containing protein (ARID), Klingon (klg), inhibin beta
chain (Actbeta), adenosine deaminase (ADA), chloroquine
resistance marker protein, leptin receptor (LEPR), and
homeobox protein Hox-A2 (HOXA2) could be seen significantly
downregulated in response to ChiLCV infection.

Differentially Expressed Orphan Genes in
Bemisia tabaci Post-ChiLCV Acquisition
Among the 80 differentially expressed transcripts, 50 (16
upregulated and 34 downregulated) transcripts could
not be annotated based on nucleotide similarity against

B. tabaci genome database5. When searched for nucleotide
similarity at NCBI RefSeq non-redundant protein database,
43 (16 upregulated and 27 downregulated) transcripts
did not show any similarity to known proteins. Out of
the 16 upregulated genes, 9 genes showed similarity with
unknown protein-coding genes. Whereas, 8 genes out of
27 downregulated genes showed similarity with unknown
protein-coding genes. In common, 13 upregulated and 22
downregulated transcripts in adult B. tabaci could not be
assigned any annotation. These genes were depicted as
orphan genes that were differentially expressed in response
to ChiLCV infection.

Functional Analysis of Differentially
Expressed Genes
Based on the GO study, the DEGs were categorized into cellular
components, biological processes, and molecular functions
(Figure 2). A total of 38 genes were categorized under
biological processes (47.5%) followed by cellular components
(24 genes, 30%) and molecular functions (18 genes, 22.5%).
In the biological processes, genes involved in the metabolic
process (24%), cellular process (24%), biological regulation
(16%), regulation of biological process (16%), signaling (8%),
response to stimulus (8%), growth (2%), and cell proliferation
(2%) were highly enriched. Similarly, genes associated with
catalytic activity (28%), protein-containing complex (12%),
organelle (12%), cell part (12%), cell (12%), membrane (6%),
membrane part (6%), extracellular regions (6%), organelle part
(3%), and extracellular region part (3%) were differentially
enriched under cellular components category. In the molecular
functions category, binding (67%), transcription regulator
activity (22%), and molecular function regulator (11%) were
enriched significantly.

Kyoto Encyclopedia of Genes and
Genomes Pathway Analysis of
Differentially Expressed Genes
KEGG pathway analysis of differentially expressed genes showed
that a total of 17 DEGs in B. tabaci were involved in different
functions like metabolism, signaling pathways, and cellular
processes. The metabolic pathways that were majorly affected
by the DEGs were metabolic pathways, TGF-beta signaling
pathway, signaling pathways regulating pluripotency of stem

5http://www.whiteflygenomics.org/cgi-bin/bta/blast.cgi
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FIGURE 2 | Gene ontology (GO) enrichment analysis of differentially expressed genes (DEGs). (A) DEGs were characterized under the cellular components,
molecular functions, and biological processes based on GO analysis; (B) Pie chart describing the Gene Ontology (GO) analysis of differentially expressed genes
(DEGs) and their distribution under different GO terms. DEGs were categorized majorly under biological processes (48%) followed by cellular components (30%), and
molecular functions (22%); (C) A major category of DEGs fall under cellular processes in which most of the DEGs belongs to cell, cell part, organelle, and
protein-containing complex (17%) followed by membrane, membrane part, and extracellular region (8%); (D) In biological processes, cellular and metabolic
processes (24%), regulation of biological process, and biological reaction (16%), etc. were enriched; (E) DEGS categorized under molecular functions were mainly
distributed under catalytic activity (50%), binding (33%), transcription regulator activity (11%), and molecular function regulator (6%).
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FIGURE 3 | KEGG pathway analysis of differentially expressed genes (DEGs) of B. tabaci Asia II 1 at an early stage of ChiLCV infection. KEGG pathway analysis of
DEGs showed that the genes were involved in the functions like metabolic pathways, biosynthesis of secondary metabolites, signaling pathways, and actin
cytoskeleton regulation in which mostly DEGs were involved in metabolic pathways.

cells, RNA degradation, regulation of actin cytoskeleton,
purine metabolism, phospholipase D signaling pathway,
glycerophospholipid metabolism, glycerolipid metabolism,
fat digestion and absorption, endocytosis, cytokine-cytokine
receptor interaction, cell adhesion molecules, arginine and
proline metabolism, and adherens junction (Figure 3). The
pathways identified in GO enrichment analysis were consistent
with the findings of the KEGG pathway study.

Validation of Gene Expression in Reverse
Transcription-Quantitative Polymerase
Chain Reaction
To validate the differential expression of B. tabaci genes in
response to ChiLCV infection, 20 highly regulated genes of
B. tabaci were selected and mRNA expression levels were
quantified in RT-qPCR. The primer pairs that produced
a single sharp amplicon at the same PCR conditions for
endogenous control (β-actin) primers were selected for RT-
qPCR assay. Primer pair, AG177F and AG178R (Supplementary
Table 1) specific to β-actin produced sharp bands at annealing
temperatures of 54–59◦C. The annealing temperature of target
genes was standardized within the same temperature range.
One primer pair for each of the target genes was optimized
for RT-qPCR assay (Supplementary Table 1). The relative
expression of a target gene was estimated using the 2−11 C

T
method (Roy et al., 2021). The CT value of β-actin was used
to normalize variation among biological replicates. Among the

highly regulated genes that were selected for the RT-qPCR assay,
the genes like Fas2-like (Bta00469) showed the highest regulation
at an early stage of ChiLCV infection. The mRNA expression
level of Fas2-like was upregulated by 4.518-fold in the RT-qPCR
assay. TLR3 (Bta12916) was another upregulated gene with log2
3.517-fold change in mRNA expression in response to ChiLCV
infection. The mRNA expression of replication factor A protein
1 (RFA1) was upregulated by log2 0.403-fold in ChiLCV-exposed
B. tabaci adults in comparison to non-exposed adults. As a result
of exposure to ChiLCV, the expression of GMPR of B. tabaci
(Bta00655) was elevated by a factor of log2 2.246-fold. Expression
of protein Tob1 (Bta07280) was also augmented by log2 1.34-
fold at an early stage of ChiLCV infection. Likewise, the mRNA
expression levels of a few other genes like AGBL3-like (Bta06925),
DUSP10-like (Bta09526), QRSL1 (Bta13949) were elevated by
log2 0.168, 2.593, and 0.081-fold, respectively, in the RT-qPCR
assay. An uncharacterized protein, CG13607 (Bta13910) was also
upregulated by log2 1.74-fold in the ChiLCV-exposed B. tabaci
population in comparison to non-exposed populations.

Among the highly downregulated genes, expression of
B. tabaci Actbeta (Bta15272) decreased by log2 5.982-fold in
the RT-qPCR assay at an early stage of ChiLCV infection.
The next highly downregulated genes in RT-qPCR were TBX20
(Bta05443) and HOXA2 (Bta14472). Expression of TBX20 and
HOXA2 declined by log2 3.517, 2.378-fold, respectively in
response to ChiLCV infection. The mRNA expression level of
NBEAL1 (Bta07414) was also downregulated by log2 1.146-fold
in ChiLCV-exposed B. tabaci in comparison to non-exposed
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populations. A log2 0.793-fold downregulation for MRJP
(Bta05465) was also recorded in response to ChiLCV infection.
Few other genes of B. tabaci like ARID (Bta03804), anther
specific protein (sf2)-like (Bta01185), plsC (Bta15094) showed
significant downregulations by log2 0.241, 0.036, and 1.687-fold,
respectively, in RT-qPCR assay post-ChiLCV exposure.

All the primer pairs for the target and endogenous
control genes produced single specific peaks without any
secondary amplifications in the RT-qPCR melting curve
analysis that indicated the specificity of the reactions. The
melting temperatures of RT-qPCR amplicons were listed in
Supplementary Table 1. The melt curve of each reaction
has been provided as Supplementary Figure 1. The relative
expression of selected B. tabaci genes in response to ChiLCV
infection substantiated the RNA-Seq analysis (Figure 4).

DISCUSSION

The molecular interactions between B. tabaci cryptic species
and begomoviruses are not universal (Czosnek et al., 2017)
and not much is known about the interaction of ChiLCV
with B. tabaci. For successful transmission, the begomovirus
particles need to reach the salivary glands of B. tabaci. It
takes 4–7 h after the onset of feeding to be circulated through
hemolymph in coated vesicles and translocated into the primary
salivary glands (Czosnek et al., 2002). In our recent study,
ChiLCV copies were estimated in individual B. tabaci at
different exposure of active acquisition feeding (Roy et al.,
2021). A 6 h sacquisition was found adequate for the successful
transmission of ChiLCV by B. tabaci Asia II 1 (Senanayake
et al., 2012; Roy et al., 2021). About 7.86 × 1013 copies of
ChiLCV can be acquired by an individual B. tabaci adult
female during 6 h of feeding on an infected chilli leaf (Roy
et al., 2021). Comparison between ChiLCV-exposed and non-
exposed B. tabaci transcripts post-6 h of acquisition revealed
differential expression of 80 DEGs involved in replication
factor, cell adhesion receptor, and intracellular trafficking. GO
analysis indicated the majority of the DEGs were involved
in biological processes followed by cellular components and
molecular functions. KEGG pathway analysis showed that the
majority of the DEGs were involved in the metabolic pathways
of B. tabaci.

The key upregulated genes included TLR3, Fas2, GMPR,
RFA1, Tob 1, DUSP, DNAH17, AGBL3, and QRSL1. Several
genes of B. tabaci that were related to immune response pathways
such as TLR3, Fas2, RFA1, and GMPR were induced in response
to ChiLCV infection. Toll receptors are important parts of
the insect’s innate immune system by triggering a cascade
of signaling pathways. In mammals, it induces interferons to
confer antiviral resistance (Ozato et al., 2002). Toll receptors
might have a function in limiting the virus infection in vector
and upregulation of TLR3 might be activated upon ChiLCV
infection to preclude the adverse effect of the virus on the vector.
Another component of B. tabaci immunoglobulin (Ig)-related
superfamily, Fas2 was upregulated post-exposure to the ChiLCV
in the present study. Fas2 belongs to the superfamily of cell

adhesion receptors with structural similarity to the vertebrate
receptor NCAM (Grenningloh et al., 1990; Brummendorf and
Rathjen, 1993). NCAM molecules also have a role in viral
attachment to promote virus penetration into the host cells but
inhibit the replication of rabies virus via induction of interferon β

(Hotta et al., 2007), which is mainly involved in innate immunity
against viral infection. Silencing Fas 2 using dsRNA results in an
increase of ChiLCV copies in B. tabaci Asia II 1 (Chakraborty and
Ghosh, 2022). This suggests that upregulation of Fas2 transcripts
in B. tabaci post-ChiLCV infection is due to the innate immune
response against the virus infection. GMPR plays an important
role in the purine salvage pathway and regulates intracellular
purine nucleotides. Besides, it has a role in host innate immunity
(Imamura et al., 2020). Upregulation of this gene after ChiLCV
exposure indicated induction of defense in B. tabaci upon
ChiLCV exposure. RFA1 is an ssDNA binding protein (Wold,
1997). Although replication factors play an important role in
DNA replication, recombination, and repair (Vanoli et al., 2010;
Yamamoto et al., 2019), ChiLCV-DNA does not replicate within
the vector (Rosen et al., 2015; Ghosh et al., 2021). This rejected
the possibility of involvement of RFA1 in virus multiplication
in B. tabaci. Although not confirmed, upregulation of RFA1 the
ChiLCV-exposure might be due to the employment of innate
immune response by B. tabaci to protect itself from virus
nuclease attack.

Some genes such as Tob1 and DUSP10 having a functional
role in the virus lifecycle were also upregulated to favor
virus transcription. Gene encoding Tob1 protein was found
upregulated in B. tabaci post-ChiLCV exposure. Overexpression
of Tob1 suppresses cell growth (Shan et al., 2009). The
upregulation of this gene in the current study might lead to
cellular dysfunction in B. tabaci to favor ChiLCV infection.
DUSP10, also called MPK5 is involved in the regulation of
mitogen-activated protein kinases. These proteins are the major
modulators of critical signaling pathways that are dysregulated
in various biotic stresses (Patterson et al., 2009). DUSP facilitates
vaccinia virus transcription (Liu et al., 1995). Upregulation of this
gene indicated the activation of signaling cascades in response
to ChiLCV infection and functional role in the virus lifecycle in
B. tabaci.

Expression of B. tabaci putative genes like DNAH17, AGBL3,
and QRSL1 was manipulated by ChiLCV to facilitate its
circulation within the vector. Several viruses access dynein to
mediate the viral replication processes. Silencing of dynein
reduced the infection of Murine leukemia virus (Valle-Tenney
et al., 2016). Carboxypeptidases play an important role in the
stimulation of slow migrating forms of cowpea mosaic virus
(CPMV) to fast migrating CPMV leading to increased infectivity
(Niblett and Semancik, 1969). Upregulation of DNAH17 and
AGBL3 post-ChiLCV exposure in the present study might be due
to the manipulation of B. tabaci genes by ChiLCV to facilitate
the infection and circulation of the virus within the vector.
QRSL1 is a highly conserved protein throughout eukaryotes and
prokaryotes. This gene is essential for the proper translation
of the proteins (Morris et al., 2008). Upregulation of this gene
post-ChiLCV exposure might be due to the utilization of host
translation apparatus by the virus.
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FIGURE 4 | Expression of B. tabaci Asia II 1 putative genes in response to ChiLCV infection in RNA-Seq and RT-qPCR. The values of log2-fold changes calculated
in RNA-Seq analysis were in accordance with the RT-qPCR fold change values.

Other than the above-mentioned upregulated genes, a few
immune-associated genes like AGO2, PPM1L, NBEAL1, TBX20,
and Actbeta were downregulated in B. tabaci upon ChiLCV
exposure. AGO2 is a major component of the RNA-induced
silencing complex (RISC). In Drosophila, loss of function of
AGO2 leads to susceptibility against Drosophila C virus and
Cricket paralysis virus (Van Rij et al., 2006). PPM1L is known
to be associated with the replication of viruses like HIV-1, HIV-2,
Ebola virus, papovavirus, adenovirus, and rift valley fever virus
(Brown et al., 1994; Modrof et al., 2002; Nekhai et al., 2007;
Zeng et al., 2009; Baer et al., 2016). Neurobeachin is a peripheral
membrane protein of the BEACH domain protein family that
is involved in the subcellular targeting of membrane proteins
(De Lozanne, 2003). Increased expression of neurobeachin was
recorded in stimulated immune cells (Wang et al., 2001, 2004).

As an essential factor of autoimmunity, TBX20 produces IgG2a
via activation of B cells during viral infection (Rubtsova et al.,
2013). Inhibin plays an important function in immunological cell
development (Licona-Limon and Soldevila, 2007). Lack of plsC
activity increased the virulence and infectivity of coxsackievirus
(Karlsson et al., 2009). Downregulation of these immune-
associated genes in B. tabaci post-ChiLCV acquisition indicated a
possibility of suppression of vector immune response by ChiLCV
to become circulative in its vector.

Transcription regulatory genes like HOXA2, klg, and
ARID were also downregulated to support ChiLCV entry
and movement within B. tabaci. Homeobox proteins are
transcriptional factors that regulate several genes in insects
(Cillo et al., 2001). In tomatoes, homeobox protein was found
to be involved in limiting programmed cell death that limits
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pathogens (Mayda et al., 1999). In ChiLCV-exposed B. tabaci,
downregulation of HOXA2 might be due to the suppression
activity of ChiLCV that triggered the repression in B. tabaci. Klg
is a CAM orthologue in insects that is required for photoreceptors
and the prevention of excessive synapses (Shimozono et al.,
2019). Upon infection of human cytomegalovirus (HCMV), klg
is downregulated and causes increased adhesion of the virus
to the tumor cells and transendothelial penetration (Blaheta
et al., 2004). Downregulation of klg might help the binding
and cellular entry of ChiLCV. ARID contains a DNA binding
domain (Patsialou et al., 2005) and is an important factor for
development, tissue-specific gene expression, and cell growth
regulation (Kortschak et al., 2000; Wilsker et al., 2002). This
gene is also involved in transcriptional activation and repression
of genes through chromatin remodeling (Zhang et al., 2016).
Repression of ARID in B. tabaci might favor ChiLCV entry and
movement within the vector.

Putative genes that code for anther specific protein, major
royal jelly protein, and CG13607 were also differentially
expressed in B. tabaci at an early stage of ChiLCV infection.
Although these genes have been characterized in other insects,
their functions in B. tabaci and begomovirus transmission are yet
to be explored. The expression of several orphan genes in B. tabaci
Asia II 1 was also modulated upon ChiLCV exposure. Functional
validation of these orphan genes in B. tabaci Asia II 1 and their
role in virus transmission need further in-depth study.

CONCLUSION

In conclusion, we have assembled a whole-body transcriptome
of B. tabaci Asia II 1. Several genes of B. tabaci associated
with innate immune response, cell adhesion, and intracellular
trafficking were regulated in response to ChiLCV infection
to facilitate its survival and circulation within the vector, B.
tabaci. The present study helps in understanding the network of
molecular interactions between B. tabaci Asia II 1 and ChiLCV.
Data generated in this study will enrich genomic information of

whitefly and will enable future functional studies. The candidate
genes of B. tabaci that are involved in key physiological processes
and ChiLCV transmission would be novel targets for sustainable
management of the whitefly-begomovirus complex.
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