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Agricultural productivity is highly influenced by its associated microbial community. With
advancements in omics technology, metagenomics is known to play a vital role in
microbial world studies by unlocking the uncultured microbial populations present in
the environment. Metagenomics is a diagnostic tool to target unique signature loci
of plant and animal pathogens as well as beneficial microorganisms from samples.
Here, we reviewed various aspects of metagenomics from experimental methods
to techniques used for sequencing, as well as diversified computational resources,
including databases and software tools. Exhaustive focus and study are conducted
on the application of metagenomics in agriculture, deciphering various areas, including
pathogen and plant disease identification, disease resistance breeding, plant pest
control, weed management, abiotic stress management, post-harvest management,
discoveries in agriculture, source of novel molecules/compounds, biosurfactants and
natural product, identification of biosynthetic molecules, use in genetically modified
crops, and antibiotic-resistant genes. Metagenomics-wide association studies study
in agriculture on crop productivity rates, intercropping analysis, and agronomic field
is analyzed. This article is the first of its comprehensive study and prospects from an
agriculture perspective, focusing on a wider range of applications of metagenomics and
its association studies.

Keywords: agriculture, metagenomics-wide association studies, metagenome, software tools, web resources

INTRODUCTION

Metagenomics (community and environmental genomics), once described as a major demand in
microbial analysis, is uncovered through methods that drive microbial community population
studies on heterogeneity and complexity over time. The goal for any metagenomic study is to
completely characterize a microbial community, i.e., “who’s present?”, “what are their actions?”.
This helps to decipher the structure of the microbial community, the functional activity of each
microbial member, and the intra-species heterogeneity information (Scholz et al., 2012).

Frontiers in Microbiology | www.frontiersin.org 1 May 2022 | Volume 13 | Article 708335

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.708335
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2022.708335
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.708335&domain=pdf&date_stamp=2022-05-17
https://www.frontiersin.org/articles/10.3389/fmicb.2022.708335/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-708335 May 11, 2022 Time: 14:22 # 2

Iquebal et al. Microbial Community Genomes in Agriculture

The term “metagenomics” was coined in 1998 to capture
the analysis knowledge of a set of similar but not identical
organisms, as in meta-analysis, which is defined as the analysis
of analyses (Handelsman et al., 1998). Stepwise advancement
in metagenomics study includes proposal involving the cloning
of DNA from environmental-related samples, phage vector
study, and construction of metagenomic library from DNA.
The metagenomics field was initially defined by constructing
the libraries from prokaryotic organisms in seawater with 16S
rRNA (Schmidt et al., 1991; Stein et al., 1996). Later, similar
studies were reported using 16S rRNA from soil samples (Henne
et al., 1999). Soil is considered the most challenging environment
due to the size and diversity of the microbiome (Daniel,
2005). A study estimated one gram of microbial population
in forest soil containing 4 × 107 prokaryotic cells (Richter
and Markewitz, 1995) while cultivated soils and grasslands
contained an estimated 2 × 109 prokaryotic cells (Paul and
Clark, 1989). Later on, ‘metagenomic’ was termed as ‘the
functional and sequence-based analysis of the collective microbial
genomes of an environmental sample’ (Allen and Banfield, 2005;
Sarangi et al., 2019).

The revolution of metagenomics analysis started with
computational technology and advancement in sequencing.
The decreasing cost of next-generation sequencing and increase
in analytical applications have led to a major transformation
in the field of the microbial world. Microbial community
characterization is progressive using various sequencing
methods, namely, Sanger, pyrosequencing, ABI-solid, 454,
Illumina, assembled, and so on (Table 1). Metagenomics
involves DNA extraction and cloning from a collection of
microorganisms. It is emanated from inevitable studies that
microorganisms represent a massive population probably in all
environments on earth especially 16S rRNA analyses approach
facilitates the detection of ample new microbial life lineages
(Dhanjal et al., 2020a). Though 16s rRNA revolutionized the
detection of the microbial community, metagenomics has led
to a detailed study on environmental microorganisms in the
context of ecology and physiology.

The need for metagenomics has gained significant concern
among microbiologists due to earlier microbial techniques.
It involves the growth of microbes in pure culture in the
laboratory due to which many organisms might have missed or
gone unnoticed during culturing. This cultivation bottleneck is
overcome by metagenomics analysis by providing a relatively
unbiased view of species richness, diversity, and their potential
activity in the community population (Links et al., 2012).
In general, a powerful combination of genome sequencing
and bioinformatics analysis of data has transformed our
understanding and knowledge about how organisms evolve,
function, and interact with each other, their hosts, and
with the environment, providing new channels of inquiries
and advances for translational impact (Moreno-Indias and
Tinahones, 2020). Garrido-Cardenas and Manzano-Agugliaro’s
2017 article on worldwide research in metagenomics shows
an exponential rise every year in the study and application
of metagenomics approaches from the beginning of the
metagenomics era (Figure 1).

Metagenomics mainly deals with the analysis of
environmental samples from diversified sources like agriculture
and seawater. The environment is a major reservoir of microbial
species diversity and the complexity of this diversity depends
on various factors like pH, temperature, water content, biotic
activity, soil structure, and climatic variations. Although
microbial communities are key players in the functioning of
all ecosystems, their identification and understanding role
of uncultivable microorganisms in natural ecosystems are
uncertain (Tyson et al., 2004). Also, metagenomics helps in
unlocking the uncultured microbial population present in an
environment, especially, novel molecules related to therapeutic,
biotechnological, and sustainable agricultural applications. With
this versatility, in this review, we present its wider applications in
agriculture, including livestock health and disease concerns, crop
production and effect of environmental factors, such as abiotic
stress, novel products identified through this approach, and its
industrial applications.

Spatial Dimensions of Metagenomic
Studies in the Biosphere
Metagenomics study is not limited to air (Núñez et al., 2016),
water samples like aquatic (Doxey et al., 2015), freshwater (Edge
et al., 2020), soil (Delmont et al., 2011), gut microbiota (Zhou
et al., 2020), coral (Meenatchi et al., 2020), terragenome (Vogel
et al., 2009), marine (Woyke et al., 2009), and oil-contaminated
sediments from the Deepwater Horizon spill (Kimes et al., 2013).
Based on human gut microbiota studies through metagenomics,
a database atlas on gutMEGA was developed by Zhou et al.
(2020). Various studies related to mass bleaching to understand
the global impact on coral microorganisms (Meenatchi et al.,
2020), iron intake trends by microbes prevailing on the surface
ocean (Toulza et al., 2012; Meenatchi et al., 2020), ecobiomics
projects to estimate and check soil health and quality of water
(Edge et al., 2020), virus diversity and host interactions (Obiol
et al., 2020; Schulz et al., 2020) have been undertaken. Recently,
a study identified 1200 metagenome-assembled genomes from
African cattle rumen and provided wider insights on the rumen
functionality at extremely harsh conditions like food scarcity
(Wilkinson et al., 2020). Another work estimated about 400 novel
species and their ecological preferences in freshwater ecosystems
(Rodriguez-R et al., 2020).

A recent study by Kwok et al. (2020) on zoonotic
origin infectious diseases, stated the role of metagenomic
Next-Generation Sequencing (mNGS) in identifying and
characterizing novel etiologies and viruses from diversified
samples in livestock, such as pig, cattle, poultry, and small
ruminants (Kwok et al., 2020). Further, recent studies on
human microbiota in disease association stated the impact
and importance of microbial ecology of livestock in achieving
better food quality and a healthy environment for the host
(Frank, 2011). Features, such as plant fitness, soil biogeochemical
properties, quality traits, and crop yield, play a key role in
agriculture depend majorly on the microbiome of soil, plant, and
livestock (Esposito et al., 2016). Miller et al. (2013) elaborated
on the role of metagenomics in the public health sector
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TABLE 1 | Different next-generation sequencing platforms used in metagenomics sequencing.

Company Platforms Read length
(bp)

Run time
(hours)

Output – throughput per
run (GB)

Web link

ABI-Sanger 3500 genetic analyzer 500–900 0.5–2.5 Differ on polymer type https://www.thermofisher.com/order/
catalog/product/4359571#/4359571

Illumina MiSeq 36–250 39 8.5 https://www.illumina.com/

HiSeq 2500 36–150 264 600

Roche Genome Sequencer (GS) FLX
Titanium

1000 23 1 Roche: https://www.roche.com

GS Junior System 500 10 0.035

Life Technologies Proton 200 4 10 https://www.thermofisher.com/in/en/
home/brands/life-technologies.html

Ion Torrent with Personal
Genome Machine (PGM) 318
Chip

400 7 2

Oxford Nanopore MinION 48,000 Differ Differ −

Pacific Biosystems PacBio RS 2,000–15,000 2 0.1 https://www.pacb.com/

for new pathogen detection (Miller et al., 2013). The study
also commented on constantly evolving and zoonotic in origin
microorganisms like H7N9 influenza and Middle East respiratory
syndrome coronavirus (MERS-CoV). All these studies show the
broad application of metagenomics in agriculture and other
sectors (Taş et al., 2021; Figure 2).

Various Approaches and Tools for
Metagenomics Data Analyses
Next-generation sequencing (NGS) is a powerful diagnostic tool
in agriculture metagenomics due to its scope to target various
unique signature loci of plant and animal pathogens as well as
beneficial microorganisms from samples. The various approaches
used in metagenomic studies include:

Amplicon-Based Methods
These are read-based reconstructions of the functional and
taxonomic components of the metagenome. It is a targeted
strategy, which involves a pre-sequencing PCR amplification to
selectively target a taxonomic marker rRNA gene. Amplicon
sequences are PCR products that specify a region within a gene
and are specific to a particular organism. Strategies used through
this method in bacterial characterization are 16S rRNA, RNA
polymerase and heat shock protein 90, protozoan, and fungal
identification with 18s rRNA gene (Iliev et al., 2012). In the case
of viral population studies, viral RNA polymerase is used. In deep
sequencing with next-generation technology, multiple different
amplicons can be sequenced in a sample These sequences are
assembled to a reference database to identify the conserved gene
of a specific organism. This method identifies the organism along
with its relative abundance. Overall, the sensitivity of this method
increases in strain identification that is targeted to a particular
species through amplicons. Though potential bias does exist in
this method, such as the abundance ratio, due to artificially
inflated counts of certain taxa during PCR amplification or with
the use of universal primers which may mislead and may ignore
the identification of certain organisms (Gonzalez et al., 2012).

Shotgun Metagenomics
It is a broader strategy that involves entire genome sequencing
present in an environmental sample which facilitates a better
understanding of the functions along with taxonomic profiling
of the microbes (Enagbonma et al., 2019). The sequenced reads
are compared to the reference database which is different and
large in comparison with amplicon-based methods. This method
is computationally intense, less biased, and reflects the better
microbial community structure in a sample (Shakya et al., 2013).
Moreover, this method has the power to differentiate the closely
related species or strains (Miller et al., 2013). This method can
also be used in the identification of stable microbial community
structures in agricultural soil as well as novel ammonia oxidizers
in fertilization (Orellana et al., 2018).

The general workflow of metagenomics includes: (i)
processing of biological samples after sample collection and
DNA/RNA extraction, (ii) sequencing, and (iii) bioinformatics
analyses using various tools. Each step involving various
approaches and tools is discussed precisely (Figure 3).

Processing of Biological Samples
Based on the purpose of the study, metagenomic analysis
involves the extraction of the entire nucleic acid from a sample.
Depending on the strategy, either DNA or RNA is targeted
based on the microbial population to be studied, like, bacteria
or viruses. In the case of virus studies in metagenomics, virions
are extracted by removing cellular material followed by treatment
of nucleases to remove non-viral nucleic acids and to extract
viral nucleic acids intact within the nucleocapsid (Thurber et al.,
2009). Technical issues related to very fewer amounts of nucleic
acid in a sample can also be handled with library preparation
kits for metagenomics, such as Nextera XT (Illumina, San
Diego, CA, United States), random PCR, multiple displacement
amplification, and higher sequencing depth (Loman et al., 2013).

Another important aspect in metagenomics is the collection
of environmental sample associated data, i.e., metadata, that
include temperature, pH, and salinity, as well as the collection
of geographical data, such as global positioning system
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FIGURE 1 | Literature reported in PubMed for metagenomics and metagenomics wide association studies from 1990 till 2021 in (A) agriculture and (B) other than
agriculture.

coordinates, depth, height, date of sample collection, extraction
method, and clone library information (Field et al., 2008).
Similarly, metadata with clinical samples varies like height,
weight, sex, age, symptoms, heredity diseases, and so on.

Databases for metagenomics also include the diverse degrees
of metadata and also facilitate comparative communities
study along environmental, longitudinal, or spatial gradients
(Seshadri et al., 2007).
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FIGURE 2 | Application of metagenomics in (A) agriculture and (B) other areas.
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FIGURE 3 | Flow-chart of metagenomics approaches and their association studies.

Sequencing
Sequencing is a crucial step that depends on various factors,
such as samples being sequenced, sample size and cost. Various
sequencing platforms available are discussed in Table 1. The most
commonly used sequencing platforms in metagenomics analysis
are Illumina and 454 pyrosequencing.

Bioinformatics Analysis
The computational analysis depends on sequencing methods,
which use two main approaches in genome reconstruction: (i)
Assembling of reads, followed by taxonomic and functional
classification: Shotgun sequencing (ii) read-based reconstruction
method: Amplicon sequencing. Due to a wide study on bacterial
16S rRNA and fungal ITS amplicon sequencing and whole sample
sequencing by shotgun metagenomics, bioinformatics algorithms
and tools are specially designed and developed. This plays a
significant role in understanding diverse microbes inhabiting a
varied environment.

Computational Approaches
Various approaches for reference and taxonomic profiling are
implemented during sequence data analysis. In the case of
OTU’s mapping for amplicon data, based on sequence similarity,
three approaches are implemented, which are the following: (a)
reference-based methods, which include mapping to reference
databases like Greengenes and Silva database; (b) de novo OTU
clustering method, which is for those data for which reference
database match was very minimum or for those who rely on
the de novo method (like UPARSE and UCLUST); (c) hybrid
approach, which generally is initiated with reference mapping
and unmapped sequences are further mapped by de novo
clustering method, for instance, SortMeRNA (Edgar, 2013).

Databases
Various databases are developed and used as reference datasets
during the taxonomic classification of the sequence data.
The most common databases are Ribosomal Database Project,
Greengenes, SILVA, and UNITE database (Pruesse et al., 2007;
Cole et al., 2009; Abarenkov et al., 2010). Specific pipelines for
the identification of any specific category of microbes are also
developed. For instance, identification of specific fungal species
from ITS data includes CloVR-ITS, Clotu, PIPITS, and Plutof
(Abarenkov et al., 2010; White et al., 2013; Gweon et al., 2015).

Toolkits
Some of the frequently used bioinformatics toolkits in amplicon
data analysis include QIIME (Caporaso et al., 2010), BioMaS
(Fosso et al., 2015), and MOTHUR (Schloss et al., 2009).
These toolkits facilitate multiple analyses at each step, starting
from various kinds of sequence data preprocessing, like,
denoising, merging of pair-end data, binning, demultiplexing,
error correction, barcode-type analysis (Semenov, 2021) to
diversity estimation. DADA2 algorithm is a recent pipeline for
taxonomic identification, which uniquely produces amplicon
sequence variant analysis rather than operational taxonomic
units (OTU) (Callahan et al., 2016).

Workflow management systems available for genomic and
metagenomic data where the users can apply the customized
features and can build analysis and share data, including
CAMERA (Seshadri et al., 2007), Galaxy (Giardine et al.,
2005), and Ergatis (Orvis et al., 2010). Galaxy metagenomics
toolkit contains six tools: fetching taxonomy, summarizing
taxonomy, drawing phylogeny, finding of diagnostic hits,
classification of diagnostic hits, and the Poisson two-sample
test. Windshield splatter analysis is one of the first studies
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on metagenomic analysis using the NGS data analysis pipeline
within the Galaxy workflow management system. Currently,
there are many modular pipelines developed using such
workflow systems.

There also exist stand-alone data analysis packages, developed
using open-source tools by the Nanopore community, like
Oxford Nanopore Technologies (ONT) cloud-based What’s In
My Pot (WIMP) software, and MinION Detection Software
(MINDS) for rapid species identification. Several bioinformatics
applications have been developed implementing ONT’s
framework for long reads’ analysis (Deshpande et al., 2019).

Tools
Computational tools and algorithms differ depending on the
sequencing of data like amplicon-based or shotgun. In the case
of shotgun data analysis, different software is used at different
steps. Metagenome assembly is supported by the following
algorithms starting from the traditional approach that includes
overlap-based assembly and the most frequently used Kmer
approach. Others include apriori algorithm, association rule
mining algorithm, a binning algorithm like MaxBin 2, SPHINX,
MetaCluster 5, sequence classification algorithm, and so on
(Tandon et al., 2016; Saha et al., 2019). Classical metagenome
gene predictors include Fgenesb and Critica/Glimmer which
were evaluated by simulated data sets in a study by Kunin et al.
(2008).

The shotgun based analysis is performed in various steps
and tools used are the following: (i) assemblers, such as
SOAP, Ray Meta, Snowball, MetaVelvet, MetaSPAdes, Meta-
IDBA, MEGAHIT (Boisvert et al., 2012; Luo et al., 2012;
Nurk et al., 2013; Li et al., 2015; Gregor et al., 2016); (ii)
Binning of sequence fragments can be processed by taxator-
tk, MaxBin2, Kraken, PhyloPytiaS+, Metaphlan, MEGAN and
MetaBAT (Wood and Salzberg, 2014; Wu et al., 2014; Dröge
et al., 2015; Kang et al., 2015; Gregor et al., 2016; Huson et al.,
2016); (iii) metagenomics annotation and classification includes
MetaGeneMark, PRODIGAL, KEGG, TIGRFAMs, COG, PFAM,
eggNOG, and SEED (Overbeek et al., 2005; Zhu et al., 2010;
Kanehisa et al., 2014; Powell et al., 2014; Garrido Oter, 2018).

Tools developed are even specific in mapping and
characterization of organism type, like bacterial and archaeal
annotations implemented by the functional annotation and
gene calling pipeline, such as the command-line cg-pipeline and
Ergatis web-based workflow management system. The electronic
probe Diagnostic Nucleic acid Analysis (EDNA) tool utilizes
NGS data for the detection of eukaryotic plant pathogens like
fungi and oomycetes (Espindola et al., 2015). Similarly, virus-
specific workflows are Viral MetaGenome Annotation Pipeline
that was developed by using knowledge of specialized databases,
such as mobile genetic elements collections and environmental
metagenomes, to enhance the identification, classification, and
functional analysis of viral gene products (Lorenzi et al., 2011).

Online servers for the study of metagenomics data uploaded
by users can be comprehensively analyzed with MG-RAST,
CAMERA, and IMG-M (Meyer et al., 2008). They also provide
functional annotations and pathway reconstruction and facilitate
the user for depositing, analyzing, sharing, both in public and

private mode and visualization of the data in a single platform.
All these resources help the researchers without access to high-
performance computing facilities.

Comparative metagenomics, as its name indicates, is
for multiple metagenome comparisons among different
environments based on taxonomical and functional assignments
in another important part of metagenome study. The first
comparative metagenomics study introduced the knowledge
of a gene-centric view of different environments (Tringe et al.,
2005). Various studies on comparative metagenomics include
Daphnia symbionts, modeling ecological drivers in marine
viral communities, the role of microbes in human biology,
poly-microbial black band disease of corals, biogas producing
microbial communities, organic management, etc. (Meyer et al.,
2017). This comparison platform will act as a tool in gaining
a scientific understanding of microbial communities related
to environmental perturbations. METAREP is one such tool
that facilitates comparative metagenomics analysis along with
statistical analysis like principal component analysis (PCA),
non-metric multidimensional scaling (NMDS), and multivariate
analysis1. Similarly, Integrated Microbial Genomes (IMG) system
also serves as a comparative analysis resource facilitating the
annotation and visualization of data2.

Metagenomics-wide association studies (MWAS) are a
broader branch of metagenomics of recent interest. With its
wider application, this study is successful but its use and
implementation are still in its infancy stage because of various
challenges. One such challenge focuses on the choice of tools,
methods, and workflow (James et al., 2019). The study has also
elaborated on the classification of tools in MWAS based on their
analysis that includes phylogeny, non-phylogeny (statistical),
hybrid tools (both statistical and phylogenetic methods), and
machine-learning tools. Tools and software available for MWAS
studies include the following:

(a) Command-line software: SEER (Lees et al., 2016), bugwas
(Earle et al., 2016), Phenotype Seeker (Aun et al., 2018),
PySEER (Lees et al., 2018), and HAWK (Rahman et al.,
2018) and

(b) Graphical user interface software: Scoary (Brynildsrud et al.,
2016) but also supports command-line function (Table 2).

METAGENOMICS AND SUSTAINABLE
AGRICULTURE

Agriculture challenges are the major concern in terms of the
growing demand for food and bioenergy all over the world
which has to be effectively addressed (Tilman et al., 2011).
Environmental threats, including biodiversity loss, climatic
change, water and land pollution, the low organic content of the
soil, and degradation, have to be balanced accordingly. Many
studies and strategies are planned in agricultural ecosystem
biology but still need to be deciphered to gain deeper awareness
and to meet the growing needs and negative impacts of

1https://www.jcvi.org/research/metarep
2https://img.jgi.doe.gov/
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TABLE 2 | Software tools and algorithms in metagenomics and its association studies.

Functional category Software/Tool Sequencing approach data
used/analysis

Area of study/Application Web link

(1) Trimming Trimmomatic Illumina All Omics http://www.usadellab.org/cms/?page=trimmomatic

FASTQC All high throughput platform All Omics https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

PRINSEQ All high throughput platform Metagenomic http://prinseq.sourceforge.net/

SolexaQA Illumina, Ion Torrent and 454 data All Omics http://solexaqa.sourceforge.net/

FASTX-Toolkit All high throughput platform All Omics http://hannonlab.cshl.edu/fastx_toolkit/

(2) de novo Assembly RAY All high throughput platform Metagenomic http://deNovoAssembler.sf.Net/

MetaVelvet All high throughput platform Metagenomic http://metavelvet.dna.bio.keio.ac.jp/

Genovo All high throughput platform Metagenomic https://pubmed.ncbi.nlm.nih.gov/21385045/

CLC Genomics
Workbench

All high throughput platform All Omics https://digitalinsights.qiagen.com/clc-genomics-workbench-
features/

Meta-IDBA All high throughput platform Metagenomic https://i.cs.hku.hk/~alse/hkubrg/projects/metaidba/

SOAPdenovo Illumina All Omics https://github.com/aquaskyline/SOAPdenovo2

Newbler 54 GS-series of pyrosequencing
platforms

Genomic and Metagenomic https://help.rc.ufl.edu/doc/Newbler

ABySS All high throughput platform All Omics http://www.bcgsc.ca/downloads/abyss/

ALLPATHS-LG Illumina Genomic and Metagenomic https://github.com/danforthcenter/bioinformatics/blob/master/
docs/allpaths.md

(3) Reference-based Alignment BWA All high throughput platform Short DNA sequence reads to a large
reference genome

https://sourceforge.net/projects/bio-bwa/

Bowtie All high throughput platform Short DNA sequence reads to a large
reference genome

https://sourceforge.net/projects/bowtie-bio/

MUMer All high throughput platform Short DNA sequence reads to a large
reference genome

https://sourceforge.net/projects/mummer/

BFAST All high throughput platform Short DNA sequence reads to a large
reference genome

http://bfast.sourceforge.net

MrFAST Illumina Short sequence reads http://mrfast.sourceforge.net/pubs.html

CloudBurst All high throughput platform Short DNA sequence reads to a large
reference genome

https://sourceforge.net/p/cloudburst-bio/wiki/CloudBurst/

SOAP Illumina-Solexa short oligonucleotides reads https://academic.oup.com/bioinformatics/article/24/5/713/
203564

BLAST All high throughput platform Short DNA sequence reads to a large
reference genome

https://blast.ncbi.nlm.nih.gov/Blast.cgi

Novoalign Illumina Short sequence reads http://www.novocraft.com/products/novoalign/

MOSAIK All high throughput platform Short-Read Mapping https://code.google.com/archive/p/mosaik-aligner/

(4) Annotation and comparison MG-RAST Taxonomic, Phylogenetic, functional
and comparative analysis

Metagenomic https://www.mg-rast.org/

METAREP Taxonomic, functional and comparative
analysis

Metagenomic https://www.jcvi.org/research/metarep

DIYA Functional analysis Bacterial Genomics https://sourceforge.net/projects/diyg/

(Continued)
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TABLE 2 | (Continued)

Functional category Software/Tool Sequencing approach data
used/analysis

Area of study/Application Web link

CloVR Taxonomic and functional analysis Metagenomic http://clovr.org/

RATT Functional analysis All Omics http://ratt.sourceforge.net

CAMERA Taxonomic, Phylogenetic, functional
and comparative analysis

Metagenomic https://journals.plos.org/plosbiology/article?id=10.1371/journal.
pbio.0050075#s4

Eragatis Functional analysis All Omics http://ergatis.sourceforge.net

IMG-M Taxonomic and comparative analysis Metagenomic http://img.jgi.doe.gov/m

Blast against COG
database

Functional analysis All Omics http://www.ncbi.nlm.nih.gov/COG/

PICRUSt Phylogenetic and functional analysis Metagenomic http://picrust.github.io/picrust/

MEGAN Taxonomic, Phylogenetic, functional
and comparative analysis

Metagenomic https://uni-tuebingen.de/fakultaeten/mathematisch-
naturwissenschaftliche-fakultaet/fachbereiche/informatik/
lehrstuehle/algorithms-in-bioinformatics/software/megan6/

LEfSe Taxonomic analysis Metagenomic https://huttenhower.sph.harvard.edu/lefse/

DADA2 Taxonomic and phylogenetic analysis Metagenomic http://www.metagenomics.wiki/tools/16s/dada2

QIIME Taxonomic, Phylogenetic, functional
and comparative analysis

Metagenomic http://qiime.org/

(5) Statistical Analysis STAMP Statistical analysis of taxonomic and
functional profiles

Genomic and Metagenomic http://kiwi.cs.dal.ca/Software/STAMP

PAST Univariate and multivariate statistics,
curve fitting, time-series analysis, data
plotting, and simple phylogenetic
analysis

All Omics, Paleontology and ecology https://past.en.lo4d.com/windows

FAST UniFrac Diversity Analysis Metagenomic https://www.nature.com/articles/ismej200997

R software
Package

Statistical computing and graphics All Omics https://www.r-project.org/

XLSTAT Flexible Excel data analysis add-on for
statistics

All Omics https://www.xlstat.com/

CANOCO Multivariate data analysis and
visualization

All Omics and ecology http://www.canoco5.com/

(6) Metagenome Wide Association Studies TreeWAS Genome-wide and phylogenetic
analysis

Metagenomic https://github.com/caitiecollins/treeWAS

bugwas Genome-wide analysis Bacterial Genomics https://github.com/xiangzhou/GEMMA

Phenotype Seeker Genome-wide and phylogenetic
analysis

Metagenomic https://github.com/bioinfo-ut/PhenotypeSeeker/

Scoary Pan-genome association analysis Metagenomic https://github.com/AdmiralenOla/Scoary

Magnamwar Genome-wide analysis Bacterial Genomics https://cran.r-project.org/package=MAGNAMWAR

PySEER Pan-genome association analysis Metagenomic https://github.com/mgalardini/pyseer

DBGWAS Genome-wide analysis Bacterial Genomics https://gitlab.com/leoisl/dbgwas
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the environment (Power, 2010). Soil fertility is a key player
and depends on various factors, like, water availability and
contamination, elements fluxes in soil like carbon, nitrogen, and
phosphorus, and climatic conditions. But the most crucial is soil
microorganisms’ dynamics. Under such cases, metagenomics will
help in resolving challenges in agricultural sectors as it considers
biotic and abiotic factors associated with it (Scholes and Scholes,
2013). Furthermore, the use and demand for biopesticides and
biofertilizers in agriculture and advancement in sequencing and
metagenomics analysis have led to the discovery of beneficial
microbes for agriculture (Park et al., 2013).

Soil microbiomes are largely responsible for the
biogeochemical cycles that support life on earth where they
mediate the nitrogen cycle, carbon, and sulfur cycles, as well as
in the transformation of oxidative and reductive states of metals
like iron and mercury. They particularly influence the health of
plants and their dependents by providing nutrients and vitamins,
influencing developmental processes, and protecting the host
from attack from virulence factors (Handelsman, 2003). All
these show the positive phase of the microbial population with a
balanced natural system. If this system is disrupted, it can lead
to harmful effects like acid mine drainage, exposure of coal or
copper mines to oxygen, and disruption of the earth leading to
the production of high damaging waste. Most of these factors
are currently addressed on a broader scale with metagenomics
for instance soil microorganism dynamics is studied through
diversity and functional analysis of soil microbial populations
(Fierer et al., 2013).

Rhizosphere harbors powerful microbiomes which play a
significant role in maintaining plant health and productivity,
nutrient cycling, and enhancing soil fertility. These microbiome
complexities vary by plant species, soil type, host genotype, and
land tillage system. They are the most complex ecosystem on
earth and the rhizosphere microbiomes of various agricultural
crops and their biocontrol characteristics have been studied
(Subrahmanyam et al., 2020; Alawiye and Babalola, 2021). These
studies and evidence reflect the importance of metagenomics
application as a tool in unlocking the knowledge of biota that
are influenced by abiotic factors in sustainable agriculture. Major
challenges currently faced in agriculture in maintaining a balance
between sustainability and increasing fiscal growth rate are the
environmental threats, social threats, economic threats, and other
factors like global warming, urbanization, and pollution (Gupta
et al., 2018; Figure 4).

Soil metagenomics advancement stimulates new soil
conceptions as “living” and “laboring” (Granjou and Phillips,
2019). It is also stated as a new agroecological revolution
period with the use of biota for soil functioning. Overall
soil metagenomics helps in reconfiguring biopolitical and
bioeconomic relations and it may influence future (micro)
biopolitical studies.

Dimensions of Metagenomics Data in
the Agricultural Ecosystem
The major perspective of the present review is to understand
metagenomics applications in agriculture, including: (i) livestock

FIGURE 4 | Threats to sustainable agriculture.

health and disease, (ii) crop production and its environmental
impact mainly abiotic stress, and (iii) design and development of
novel products and their industrial applications. Among many
such studies reported in the literature, we are presenting a
few studies in Table 3 of this decade focused mainly on the
agriculture sector.

Antibiotic-resistant genes in soil are majorly produced
by the action of complex antibiotic-producing microbes
which include aminoglycoside acetyltransferase, ADP-ribosyl
transferase, ribosomal protection protein, aminoglycoside
6-adenyltransferase, transporters, and other antibiotic-resistant
determinants and their resistant mechanisms are identified
through functional metagenomics approach. The distribution
of antibiotic-resistant genes in agricultural and non-agricultural
metagenomic samples has been investigated and it was
observed that a large percent of antibiotic resistance genes
was produced by diverse bacterial communities in agricultural
and gastrointestinal-associated metagenomes compared to
marine and Antarctic samples (Durso et al., 2012).

Studies on the microbial establishment in the developing
rumen are said to have implications in farm animals ecologically
and physiologically that ultimately lead to productivity
efficiency in mature animals. Metagenomic studies on fish
gastrointestinal communities are focused on the identification
of a healthy microbiome and its role in vertebrate health
(Tarnecki et al., 2017).

Applications of Metagenomics in
Agriculture
Pathogen and Plant Disease Identification
Plant disease control, identification and characterization of the
microbes, and prevention are successful and efficient with early
detection of plant disease outbreaks and accurate diagnostic
methods. Plant pathogens and pests have significant economic,
ecological, and evolutionary consequences in agricultural
ecosystems. Symptoms of attack of pathogens on plants are
the major factors that help in diagnosing a disease by a plant
pathologist. However, this is not a highly desirable method,
as there is a gap existing in strain-level/species identification
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TABLE 3 | Overview of metagenomics applications in agriculture.

Agriculture samples used for study Proposal/Hypothesis/Conclusion of the
study using metagenomics approach

Country Parameters evaluated Method/Approaches
used

References

Agriculture Soil and Rhizosphere Proposed the functional metagenomics
approach for mining novel biosurfactant for use
in agrochemical industries.

India Biosurfactant characterization High throughput
techniques:
Functional
Metagenomics

Sachdev and
Cameotra, 2013

Roots of maize plants Organic fertilizer shows positive feedback and
can be a boost to sustainable agricultural
practices. Novel endophytic bacteria groups
also identified in maize for promoting growth
and bio-industrial applications.

North-West University
School Farm, Molelwane,
Mafikeng, North West
Province, South Africa

Maize roots microbiome
cultivated from seeds grown in
inorganic fertilization, and
Organic fertilization and no
fertilization soil

Shotgun
sequencing

Fadiji et al., 2020

Sorghum cropped rhizosphere soil Different fertilization managements including
organic and chemical fertilization and its effect
on soil microbial communities.

Battipaglia, Italy Rhizospheric soil microbiome:
Crop land (fertilized, chemical
fertilized and compost
amended) and grass land

Pyrosequencing Lavecchia et al.,
2015

Rhizosphere soil of barley and tomato How iron nutrition, plant species and soil type
shapes the rhizosphere microbiome?

Italy Barley and tomato microbiome,
characterized by different
strategies for Iron acquisition.

454
pyrosequencing
technology

Pii et al., 2016

Rice Root (Oryza sativa L.) Endophytic microbial community profiling and
its role such as nitrogen fixation in rice crop

India Root endophytic microbial
community of Indian rice
(O. sativa L.)

Amplicon
sequencing

Sengupta et al.,
2017

South African uncultivated endemic
plant species: E. caput-medusae,
Limeum africanum, Exomis microphylla,
and Polygala garcinii

Geometagenomics approaches: Viral diversity,
host-pathogen interaction, Geminivirus case
study that identified complex evolutionary
dynamics of some of the highly divergent
geminivirus species.

South Africa Geminiviruses within two
ecosystems containing both
cultivated and uncultivated
areas: Root microbiome

Geometagenomics-
based
approach

Claverie et al., 2018

Achatina fulica snails (agricultural pest):
crop fluid

Comparative metagenome analysis of the first
land snail crop microbiome from a highly
invasive species, which has a wide-ranging diet
and is capable of consuming different varieties
of plants and substrates. The A. fulica holobiont
represents a prosperous reservoir of novel GH
genes and related modules, which will be of
biotechnological application in eco-friendly
biofuel production.

Rio de Janeiro, Brazil Crop of an Invasive Snail:
Metagenome

Shotgun
sequencing

Cardoso et al.,
2012

Plant, soil and compost samples of
three leafy Asian greens – Brassica rapa
var. parachinensis, Brassica oleracea
var. alboglabra and Amaranthus spp.

Vegetable crop phytobiomes to understand the
different functional aspects.

Lim Chu Kang, Singapore Soil metagenome, leaf
metagenome, root
metagenome and compost
metagenome

High throughput
sequencing: HiSeq
2500 platform

Bandla et al., 2020

(Continued)
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of the causative agent. For instance, in tomatoes “bacterial
speck disease symptoms” are caused by different species of
Pseudomonas syringae pathovar (pv.) tomato (Pto) (Cai et al.,
2011). Similarly, “bacterial spot disease symptoms” on tomato
leaves are caused by genus Xanthomonas but involve four
different species (Jones et al., 2004). Another significant fact
is that during diagnosis and crop rotation, different species of
the same pathogen may have varied host ranges. In P. syringae
pathovar (pv.) tomato (Pto), strain DC3000 could affect not
only tomatoes but also leafy greens by existing in weeds of the
Brassicaceae family (Yan et al., 2008).

Various methods are used in plant disease diagnosis for
species identification, including gene sequence-based techniques
with pure culture, 16S rRNA gene method but involve low
resolution, whole-genome sequencing using pure culture, and
antibody-based assays, such as ELISA (El Sheikha and Ray,
2014). However, limitations associated with these methods are a
lengthy pathogen identification protocol to obtain pure culture
and prior knowledge of pathogens. In the current scenario, all
these limitations are overcome with metagenome sequencing and
identification methods in agriculture.

Metagenomics in pathogen diagnosis has the potency to
target multiple unique signature loci of pathogens in an infected
plant. This approach has already been used to detect unknown
pathogens in different organisms, including mammals, plants,
and insects (Adams et al., 2009). Also, various farming practices
influence the taxonomic diversity of the phyllosphere microbial
community leading to unique signatures (Khoiri et al., 2021).
Nevertheless, the protocol of this method should be targeted
toward precise identification of causative agents as this involves
DNA extraction, which may contain host sequences, other
microbe sequences apart from pathogens of interest. Electronic-
probe Diagnostic Nucleic acid Analysis or EDNA overcomes this
with simulated metagenomes.

The bacterial tomato pathogen identification at the strain-
level was achieved by metagenomics (Mechan Llontop et al.,
2020). Fusarium wilt is a common vascular wilt fungal disease
in many plants. In banana, a study with fusarium wilt infected
fields was conducted by analyzing endophytic communities,
which led to the recognition of bacterial communities having
an impact on disease development, including Flavobacteriales
(Kaushal et al., 2020). Simulated metagenome data analysis
using EDNA was done for detecting fungal and oomycete
plant pathogens (Espindola et al., 2015). Soil may also act as
disease suppressive agent in agriculture by protecting the crops
from harmful microbes. Mendes et al. (2011), with PhyloChip-
based metagenomics, diagnosed key bacterial taxa and genes
comprising 33,000 bacterial and archaeal species from soil to be
involved in the suppression of fungal root pathogens (Mendes
et al., 2011). This soil microbial consortia act as superorganisms
in controlling and protecting plants and crops from harmful
invading microbes.

Plant disease management can be made successful as in
medicine through the transfer of microbiome by mixing disease
suppressive soils with disease conducive soils (Gopal et al., 2013).
Blackroot rot disease of tobacco in suppressive and conducive soil
with rhizobacterial community study resulted in novel bacterial
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taxa that help as indicators of disease suppressiveness. Bacterial
taxa with plant beneficial properties in disease suppressive
soils were Pseudomonas, Azospirillum, Gluconacetobacter,
Comamonas, Burkholderia, and Sphingomonadaceae,
whereas Mycobacterium, Rhodobacteraceae, Bradyrhizobium,
Rhodospirillum were more frequent in the conducive soil
(Kyselková et al., 2009). Another global problem faced by potato
growers annually is potato common scab caused by Streptomyces
species. A similar study on suppressive and conducive soil
identified various bacterial genera (predominantly Bacillus
genus) in the disease-conducive soil (Rosenzweig et al., 2012).

Disease Resistance Breeding
Application and manipulation of plant-microbe interactions
and microbe-microbe interactions with a strong scientific basis
are being extensively used in agro-ecosystems. Their roles in
improving plant health and productivity are a well-recognized
in various studies. Microbial community engineering through
plant breeding is another way of harnessing plant-microbe
interactions (PMI). These interactions also provide insights in
improving resistance breeding against diseases in crops, which
is a promising approach in achieving sustainable agriculture
(Rubiales et al., 2015).

Plant resistance breeding usually targets developing cultivars
with the best performance over diversified environments.
However, it is a very challenging task as holobiont varies in
different environments. A study on lupine cultivars for resistance
against Fusarium avenaceum in Canada was not successful,
whereas it was found effective in Denmark and Germany (Chang
et al., 2014). Therefore, it is also attributed to geographical
location and environmental conditions. These studies show
that selection under targeted environmental conditions will
help in producing resistant cultivars. In grain legumes, PMI
plays an important role in resistance breeding against root
diseases (Wille et al., 2019). This is based on the hypothesis
that plant functioning is mediated by plant metagenomes that
encompass both internal and external microbes (Berg et al.,
2017). Plants and plant metagenomes are comprehensively
termed as holobiont necessary for plant-resistant breeding
strategies (Wille et al., 2019).

Metagenomics application under the influence of resistance
breeding in Phaseolus vulgaris (common beans) against
fungal root pathogen Fusarium oxysporum (Fox) with
rhizosphere microbiomes was conducted. As rhizosphere
microbiomes are involved as the first line of defense against root
infections and diseases, the use of metagenomics in rhizosphere
engineering has also been studied (Hakim et al., 2022). This study
identified microbes, including Pseudomonadaceae, bacillaceae,
solibacteraceae, and cytophagaceae, to be predominant
in resistant cultivars of common beans. Metagenome
analyses further explained that unique functional traits
like protein secretion systems and biosynthesis genes of
antifungal phenazines and rhamnolipids were dominant
in the rhizobacterial community in Fox-resistant cultivars
(Mendes et al., 2018).

In another study, comparative analyses of rhizosphere
metagenomes from resistant tomato variety, Hawaii 7996

and susceptible variety, Moneymaker to soil-borne pathogen
Ralstonia solanacearum revealed the abundant presence of
flavobacterium genome in resistant variety, following which
rhizosphere microbiota from resistant plants when transplanted
suppressed disease symptoms in susceptible plants (Kwak et al.,
2018). All these pieces of evidence prove the impact of
metagenomics in resistance crop breeding.

Plant Pest Control
Microbes act as prominent biocontrol agents in the following
ways: inhibition of pathogenic genes by impairing the pathogens
with quorum sensing, production of antagonistic molecules
in plant tissues, influence on plant defense mechanism
through hormones production. There are also microbes
that support pathogens through their mutual relationship
like the Enterobacteriaceae family (Erlacher et al., 2014).
So in the biocontrol mechanism microbes having negative
benefits on pathogens can be used, on the contrary, microbes
showing positive effects with pathogens can be targeted to
break the symbiotic relationship in plant protection methods
(Berg et al., 2017).

Plant microbiota act as substitutes to environmentally
unfriendly pesticides and agrochemicals. It also mediates
significant functions, including fitness, nutrient availability,
pathogen or pest control, and stress tolerance. Microbial
population manipulation in the rhizosphere is directly associated
with crop health and productivity of crops. This microbial
population is studied extensively using metagenomics as a
prime tool. These strategies studied with metagenomics will be
helpful for the control of plant diseases (Parakhia and Golakiya,
2018). Plant-associated metagenomes help in recognizing a large
number of signatures involved in these interactions, but the traits
produced through these interactions are yet to be extensively
studied. Metagenomics the emerging omics technology shows
that analysis of the microbiome and its function may provide
insights and a paradigm shift in deciphering the holobiont
functioning related to health and associated biocontrol measures.

The recent study by Poudel et al. (2019) on tomatoes
with a metagenomics approach observed rootstock genotypes
on endosphere and rhizosphere microbiomes which have the
potential to select a candidate for the biocontrol process (Poudel
et al., 2019). Organic crops are potentially enriched with their
own biocontrol agents. Schmid et al. (2011) study on the
grapevine-associated microbiome in organic and conventional
fields evidenced the role of a biocontrol agent Aureobasidium
pullulans, as well as the copper-detoxifying fungus in the organic
field (Schmid et al., 2011).

Metagenomics study on disease and surviving plant
microbiota for future plant health demonstrated that surviving
plant microbiomes are linked with specific rare taxa having
pathogen-suppressive tendencies or else involved in encoding
antimicrobial compounds, these taxa included bacterial microbes
like Pseudomonas and Bacillus (Wei et al., 2019). Fusarium
Head Blight (FHB) is a devastating global disease caused
by Fusarium graminearum, a fungus affecting small grain
cereals. It is devastating, as it poses threat related to health
diseases by producing mycotoxins which affect yield and seed
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germination. Therefore, a project using the metagenomics
approach is proposed to interpret the wheat head microbiome
and its dynamics during FHB disease development3. It also
has the potential to reveal growth-promoting microbes or new
pathogen antagonists, thereby aiding in the identification of
novel biocontrol promoters.

Pest management strategies also involve microbial and viral
enzymes like chitinases for use as bio-pesticides and have
promising fungicidal, nematicidal, and insecticidal activities.
Unraveling novel chitinases for use as a biocontrol is possible with
a powerful tool, such as metagenomics. Metagenome-sourced
chitinases have been studied in terrestrial and aquatic ecosystems
with their distribution varying among abiotic factors. One
such study is the identification of Chi18H8b, a novel chitinase
with antifungal activity against Fusarium graminearum and
Rhizoctonia solani (Berini et al., 2017). These novel metagenome-
sourced chitinases were extracted from wastewater contaminated
soil, chitin-enriched soil samples, pig feces, and sediments
(Cretoiu et al., 2015). Metagenomics contribution in biocontrol
agent identification is promising and expected to show greater
application in near future.

Weed Management
With the global increase of herbicide-resistant weed
communities, there is a need for a strategy targeting the
different mechanisms of action. Development of metagenomics
application for natural product discovery paves way for approach
in weed management research which leads to innovative control
strategies in cropping and farming systems. This approach
based on high-throughput technology can accelerate the rate
and scale of herbicide development in the agriculture and pest
management sectors.

Transformation of traditional methods with metagenomics
techniques in the discovery of novel and natural products like
enzymes and antibiotics from microbes having antimicrobial
and phytotoxic effects are increasing (Dhanjal et al., 2020b;
Wani et al., 2022). Metagenomics-based functional screens offer
a natural drug discovery potential for the segregation of weed
suppressive compounds from microbes that targets the wider
plant range. The recent focus on bioherbicide research is targeting
major crops and turfgrass landscapes.

Metagenomics-based functional screens in weed management
involve two approaches (i) novel herbicide isolation and
(ii) herbicide resistance genes identification. Lucas (2011),
Genetically modified crops resistant to herbicides through
recognition of herbicide resistance genes from soil microbes were
studied (Lucas, 2011). Another study was conducted, leading to
the discovery of glyphosate resistance and glyphosate degrading
abilities using microbes (Staub et al., 2012). It is estimated
that the finding of a novel antibiotic in actinomycetes may
involve hundreds of clone screening, but metagenomics along
with robotics techniques may speed up the acceleration process.
A similar study has been done on cellulase with hundreds of clone
libraries (Mewis et al., 2011).

3https://gfo.ca/research-projects/w2017id03/

Although, the number of studies linking metagenomics
in weed management is limited there are many promising
studies conducted to show its potential applications. For
example, application of metagenomics and metatranscriptomics
approaches in studying seed microbiome population and
function for identification of novel bioherbicides (Müller-Stöver
et al., 2016) and use of metagenomics functional screening
approach for microbiome selection on small plants, such as
duckweed (Lemna minor L.), algae or leaf spot assays, to
test success rate, following a large-scale screening in the
greenhouse (Kao-Kniffin et al., 2013). Metagenomics along
with the metabolomics approach helps in the identification
of novel herbicide compound discovery. Numerous antibiotics
were obtained from Streptomyces spp. using the metagenomics
approach have the ability to suppress the weed. The role of
new sequencing technologies for weed establishment and weed
prevention along with the exploitation of the knowledge in search
of new biocontrol agents against weeds based on soil and plant
microbial communities is well reported (Trognitz et al., 2016).

Abiotic Stress Management
Microbes associated with plants/crops, including soil microbes
and rhizosphere microbiomes, contribute to a wide range
of functions that are needed for plant productivity, like
mineralization of soil organic matter, nutrient cycling,
stimulating disease resistance, and responding to abiotic
stresses like drought, salinity, pollution, etc. There is extensive
information about the ability of specific soil microbes to
influence abiotic stress tolerance in plants, for example, the
impact of rhizosphere microbiome on some plant species
survival under extreme stress conditions (Jorquera et al., 2012).

Abiotic stress players are non-living components but pose
a great threat and unfavorable conditions and challenges in
agriculture. Plant response depends on the type of stress
like extreme temperature, drought, salinity, waterlogging, soil
pollutants, hazardous compounds, such as heavy metals, and
the extent to which the condition is affecting the plant. They
are the foremost limiting factors in crop productivity. Crop
plants need to cope with these adverse external pressures
of the environmental conditions with their innate biological
mechanisms, failing which plant growth, development, and
productivity suffer (Meena et al., 2017).

To perceive the cumulative role of these multiple interactions
in plants along with its ability in abiotic stress management
(ASM), a broader scale study, such as metagenomics, is
needed. Zolla et al. (2013), work on drought stress conditions
in Arabidopsis thaliana using the pyrosequencing approach
reported the robust set of soil microbes having an ability to
sense abiotic stress and increase plant biomass production along
with reduced expression of drought response marker genes (Zolla
et al., 2013). A similar study on wheat rhizosphere for abiotic
stress management reported the wider and diversified role of
metagenomics in ASM where metagenomics of wheat along
with its application in climate-resilient genotypes development
is elaborated (Ahlawat et al., 2018).

Soil pollution is another important abiotic feature associated
with plant damage and disease susceptible environments.
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Response to polycyclic aromatic hydrocarbons pollution using
16S rRNA gene pyrosequencing approach was studied on
Trifolium (Kawasaki et al., 2012). Pollutants like detergents,
oxidants, and glucose also pose severe losses to agriculturists.
The promising use of functional metagenomics in unrevealing
proteins that are tolerant to such pollutants from agricultural
soil is well reported. Alkaline β-glucosidases enzymes showing
high resistance toward severe detergents, glucose, and oxidants
are identified by this technique.

In another study on proteins like ACC-deaminase, genes
involved in stress alleviation, using metagenomics libraries
reported the functioning of acdS operon from uncultivated
endophyte in potato (Nikolic et al., 2011). Salt-tolerant genes
from pond water metagenomics libraries can be used in
developing salt-tolerant recombinant microbes and transgenic
plants. Comparable study on acid mine drainage led to the
identification of genes that tolerate low temperatures like
cold-shock proteins, anti-freeze protein, pH homeostasis, and
compatible solutes production pathways using the metagenomics
approach (Liljeqvist et al., 2015). Functions involved in
improving plant stress resistance activity like detoxification of
ROS and quorum sensing can also be identified through the
metagenomics approach with endophytic bacterial residents of
rice roots (Sessitsch et al., 2012).

A novel approach using endophytic bacteria to alleviate
various stress conditions is gaining significance in agriculture.
Kunda et al. (2018) study on bacterial endophytes from roots
of rice plants grown in the coastal saline zone identified
the microbial genera with plant growth-promoting potentials
in a high salt environment and also proposed the use of
these microbial genera for designing cultivation strategies in
saline conditions (Kunda et al., 2018). Methe et al. (2017)
study on functional genes that differentiate maize phyllosphere
metagenomes in two distinct conditions: drought and well-
watered identified unique taxa involved with potential growth-
promoting traits (Methe et al., 2017).

Post-harvest Management
Post-harvest loss is one of the major concerns worldwide. It
is a wider sector, covering a long chain of processes from
production in a field to food in consumer plates (Buchholz
et al., 2018). It includes several steps, such as harvesting,
protection, preservation, preparing, packaging, transportation,
and marketing. It is stated by the Food and Agriculture
Organization (FAO) that ‘Hunger is still one of the most
demanding challenges, still the agriculture throughout the world
is producing more than enough food.’, but a huge amount of food
produced gets lost on its way from the field to consumer. It is
also estimated by FAO that about 15–50% of food produced in
developing countries is lost after harvest due to various abiotic
factors like drought, high temperature, huge rainfall, the wrong
procedure of harvesting, physical damage, or contamination by
microbes4.

Post-harvest food loss is defined, as measurable qualitative and
quantitative food loss along the food process chain, beginning

4https://www.ipcc.ch/srccl/chapter/chapter-5/

from the time of harvest until its consumption. Food losses are
attributed to loss during harvest, transport, loss in quality due
to undesired microbial growth or pathogen attack, rancidity,
water loss, etc. (El Sheikha and Xu, 2018). Post-harvest loss in
potato production in Switzerland showed that about 50–55%
losses are due to pathogen attack, water loss, saccharification,
etc. (Willersinn et al., 2015). However, plant microbiota dynamics
have a symbolic role in post-harvest food loss by influencing the
storage of crops. However, many studies on plant microbiota are
focused on crop productivity, but still, the plant microbiome’s
role and impact on processing, packaging, storing, and marketing
is mostly unexplored.

Pathogen-induced post-harvest crop loss caused by microbial
activity, including bacteria and molds, is obvious. Plant
microbiomes consist of complex microbial interactions of
potentially mutualistic, commensal, and pathogenic microbes
colonizing as in crop plants. The dynamics and role of the
bacterial community of potato tubers during infection with soft
rot pathogen named Pectobacterium atrosepticum was studied
(Kõiv et al., 2015). The soil microbial communities on flowering
phenology and reproductive fitness of Boechera stricta, a wild
relative of Arabidopsis were tested and it was concluded that the
soil microbiome is the possible driver contributing at flowering
time, to differential selection observed between habitats through
the metagenomics approach (Wagner et al., 2014).

The Vitis vinifera L. cv. Corvina grapes are popular for the
production of unique wines, like Amaron. This unique feature
is strongly linked to the post-harvest grape withering process.
With the use of whole metagenome sequencing, insights into
the microbiome of Corvina withered berries revealed pertinent
variations attributable to post-harvest withering conditions.
This knowledge and management of the withering process in
Corvina will have an impact on winemaking (Salvetti et al.,
2016). Meta-omics technologies involving meta-genomics, meta-
transcriptomics, meta-proteomics, and meta-metabolomics are
at the earlier stage in post-harvest studies. This omics approach
will certainly bring revolution in our understanding and
knowledge of post-harvest biocontrol systems, post-harvest
physiology, and foodborne pathogens (El Sheikha et al., 2018).

An important feature that has to be noted is microflora
associated with different parts of a fruit/vegetable should be
considered when preparing strategies for biocontrol systems
involving post-harvest disease management. A work by
Abdelfattah et al. (2016) reported the diversity in fungal
microflora among various parts of harvested apples and as well
as in farming techniques like organic or conventional methods
(Abdelfattah et al., 2016). Mazzola and Freilich (2017) also
emphasized the need for meta-omic studies to understand the
potential and functional aspects of the microbial community in
post-harvest management strategy (Mazzola and Freilich, 2017).

Discoveries From Metagenomics in Agriculture
Metagenomics as a tool resulted in many discoveries. First,
bacteriorhodopsin was discovered due to metagenomics as a
novel gene product. Discoveries on microbial rhodopsin through
functional metagenomics studies were stated (Pushkarev et al.,
2018). Heliorhodopsins, which include diverse members of the
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rhodopsin family, are detected from microorganisms distributed
globally. Further, novel biomolecules with antimicrobial activity
and new proteins of known families like DNA polymerase and
RecA were also identified. Microbial communities are agents and
insight providers on biogeochemical cycling, energy and nutrient
cycling, and metabolic potential. Multi-metagenome complete
genome recovery from metagenome has led to link genomic
analysis, which includes observations on gene function, genome
structure, lateral gene transfers, and population genetics.

Metagenomics is probably used as a tool in the pathogen
detection of agriculture. Synthetic metagenomics involves the
identification of novel genes through mining sequence databases
and metagenomics data for the gene of interest, followed by its
chemical synthesis. This approach has led to the identification of
the enzyme, methyl halide transferase, which is prominently used
in biofuel production in the agriculture industry (Culligan et al.,
2014). Biosurfactants have been identified through metagenomics
studies, which are used as emulsifiers and detergents in various
sectors, including pharmaceutical, agricultural and ecological
functions (Thies et al., 2016).

Source of Novel Molecules/Compounds
The metagenomics approach has led the way in novel discoveries
of genes, enzymes, and antibiotics. Functional metagenomics
will accelerate the rate of discovery of new molecules from
the microbiome community and it paves ways to investigate
natural products from uncultured microbes. Metagenomics
has been used as routine tools for novel natural product
discovery during larger-scale exploration of bacteria coupled
with genome engineering of naturally privileged heterologous
expression hosts under larger-insert environmental DNA cloning
methods (Iqbal et al., 2016). These natural products, which
were discovered through the metagenomics approach have a
number of characteristics, such as antimicrobial, hydrolytic,
and phytotoxic compounds, and are being used in industry,
agriculture, and biomedicine fields.

In agriculture, these novel products are antibiotics and
have the potential to suppress weeds, act as biocontrol agents
by plant-growth promotion, pathogen suppression, and plant
disease resistance as well as effective pesticides. For example,
buffalo rumen is used to isolate enzymes with unique features
that can survive in extreme temperatures or pH (Singh et al.,
2012). In another examination, novel hydrolase diversity was
retrieved from bovine rumen microflora with a metagenome
library and had a role in biocatalysis. Similarly, novel endo-
α-1,5-L-Arabinanase was discovered from cow rumen with an
endo-acting mechanism with arabinotriose as the final product
(Wong et al., 2009).

Agricultural soil is also a rich source of novel compounds
with diverse applications in industry. Novel phytase genes
were identified from an agricultural soil microbial community
for identification of phytase activity in a metagenomic library
(Tan et al., 2014). In a different survey, a novel salt-tolerant,
chitobiosidase was derived from chitin-amended disease-
suppressive agricultural soil with the use of a metagenomic
library (Cretoiu et al., 2015). Rhizospheric soil samples
collected from three different Solanum phureja farms located

in the Cundinamarca Andean Plateau, Colombia revealed
unique lipase, esterase, and protease enzymes that have a
biotechnological application (Calderon et al., 2019).

Source of Biosurfactants
Another promising role of functional metagenomics is in
green biosurfactants analysis from uncultured microbes in the
agriculture industry. It has the potential to replace harsh
chemical surfactants. In biosurfactants synthesized by the
rhizosphere, plant-associated microbes play a vital role and have
a wider application in industries, including agriculture. They are
responsible for biofilm formation, motility, signaling process,
plant-pathogen destruction, the bioavailability of nutrients,
agricultural soil quality enhancement through soil remediation,
plant growth promotion, etc. There are different types of
biosurfactants obtained from bacteria, yeast, and fungi based on
their physiochemical properties, such as lipopeptides, glycolipids,
phospholipids, neutral lipids, polymeric, and fatty acids. In
the bioremediation process, a biosurfactant is employed for
the effective removal of hydrocarbon and metal pollutants
that are tightly bound to soil (Pacwa-Płociniczak et al., 2011;
Sharma et al., 2021) for enhancing the degradation of certain
chemical insecticides in agricultural soil. The first report of
biosurfactant identification was by using the metagenomic
library from environmental DNA that is N-acyltyrosines with
N-myristoyltyrosine (Thies et al., 2016). The application of
metagenomics in deciphering the novel biosurfactants from the
marine environment is also reported (Gudiña et al., 2016).
Moreover, N-acyltyrosines exhibited antibiotic activity across
varied bacteria.

Source of Natural Product
Different industries depend on various agricultural products
in their application. Here, products discovered using a
metagenomics approach from agriculture-related fields to
use in industries are discussed. In second-generation biofuel
production, the focus is on the use of sustainable and alternative
energy management. In this case, the industrially reasonable and
economic conversion process involves the use and conversion of
lignocellulosic biomass into biofuel molecules with cellulolytic
enzymes. Tiwari et al. (2018), elaborated a study on deciphering
the novel and effective cellulases from different environmental
niches by uncultivable metagenomic approaches for their strong
utilization in bio-refineries (Tiwari et al., 2018). Agricultural
production-scale biogas plants provided new insights into
microbial community composition and the genetic potential of
important communities involved in biogas production (Bremges
et al., 2015). Hemicellulolytic enzymes used in biofuel production
are obtained from ruminal metagenomic libraries (Duque et al.,
2018). Asymmetric synthesis of chiral alcohols using microbes is
also studied (Saravanan and Suneetha, 2017). Table 4 describes
the novel products detected using metagenomics approaches.

Other industries include pharmacy, which involves antibiotics
and pharmaceuticals identified from agricultural soil. Antibiotics
discovered are indirubin, deoxyviolacein and violacein,
N-acyltyrosine, terragine (mycobacterium-inhibiting antibiotic),
acyltyrosines, and turbomucin A and B.
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TABLE 4 | List of natural products discovered using a metagenomics approach.

S. No. Novel compounds Source References with PubMed
ID/Cross-link

1 Lactocillin Lactobacillus gasseri Donia et al., 2014, 25215495

2 Lugdunin Staphylococcus lugdunensis Zipperer et al., 2016, 27466123

3 4-hydroxybutyrate dehydrogenase Soil Henne et al., 1999; Henne et al., 1999,
3393

4 Alcohol oxidoreductase Field Soil Knietsch et al., 2003, 12620823

5 Alpha amylase Cow dung Pooja et al., 2015,
https://link.springer.com/article/10.
1007/s12088-014-0487-3

6 Amidase Soil Gabor, 2004, http://irs.ub.rug.nl/ppn/
265777593?pFullItemRecord=ON

7 Amylase Soil Gabor, 2004, http://irs.ub.rug.nl/ppn/
265777593?pFullItemRecord=ON

8 Asparaginase Soil Arjun et al., 2018, 29127643

9 Beta-galactosidase Infant feces Xin et al., 2019, 31511933

10 Biotin production Soil Entcheva et al., 2001, 11133432

11 Cellulase Sediment enrichment, Buffalo
rumen

Rees et al., 2003, 12845554; Shah
et al., 2017, 28733938

12 Chitin synthase Tribolium castaneum strain GA-2 Arakane et al., 2004, 14871625

13 Chitinase Soil characterized as suppressive
to club root disease of cabbage

Hjort et al., 2014, 24121932

14 Endosulfan degrading protein Mycobacterium sp. strain ESD Sutherland et al., 2002, 12450848

15 Erdacin Desert Soil King et al., 2009, 19621341

16 Exosialidase Freshwater thermal hot spring Chuzel et al., 2018, 30249617

17 Extradiodioxygenases Activated sludge Suenaga et al., 2007, 17686025

18 Fasamycins A, B Soil Feng et al., 2012, 22224500

19 Fatty acid enol esters Soil Brady et al., 2002, 12188643

20 Glycopeptide- and lipopeptide-like antibiotics Soil Owen et al., 2013, 23824289

21 Hemicellulase Degrading wheat straw Maruthamuthu et al., 2016, 26822785

22 Indirubin Soil MacNeil et al., 2001, 11321587

23 Isocyanide derivatives of tryptophan Soil Brady et al., 2004, 16206308

24 Lignocellulose degrading enzymes Porcupine microbiome Thornbury et al., 2019, 30601862

25 Methyl halide transferase Biomass Bayer et al., 2009, 19378995

26 N-acyl tyrosine Soil Brady and Clardy, 2000, https://pubs.
acs.org/doi/abs/10.1021/ja002990u

27 N-acyl-amino acid synthase Soil Brady et al., 2002, 12188643

28 Nitroreductases pharmaceutical industry effluent Sree et al., 2019, https:
//www.sciencedirect.com/science/
article/pii/S0964830519305803

29 Novel Biindole Pigment Marine Sponge Halichondria okadai Abe et al., 2012, https://www.journal.
csj.jp/doi/abs/10.1246/cl.2012.728

30 Novel biocatalysts Field Soil Voget et al., 2003, 14532085

31 Novel Isoprene-Degrading Proteobacteria Soil and Leaves Larke-Mejia et al., 2019, 31866954

32 Palmitoylputrescine Bromeliad tank water Brady and Clardy, 2000, 15528554

33 Polyketide syntase Soil Ginolhac et al., 2004, 15345440

34 Terragine A thru E Soil Wang et al., 2000, 10956506

35 Transaminase Environmental DNA of uncultivable
archaea and bacteria

Pawar et al., 2018,
https://pubs.rsc.org/en/content/
articlehtml/2018/ra/c8ra02764a

36 Turbomycin A, B Soil Gillespie et al., 2002, 12200279

37 Violacein and deoxyviolacin Soil Brady et al., 2001, 11418029

38 β-galactosidase Soil Liu et al., 2019, 30529535

39 β-Lactamase Soil Gabor, 2004, http://irs.ub.rug.nl/ppn/
265777593?pFullItemRecord=ON

40 β-N-acetyl hexasoaminidase tri-functional enzyme Oil spilled mangroves Soares et al., 2017, 28952541
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Identification of Biosynthetic Molecules
Functional metagenomics has led to the detection of carotenoids
and metatricycloene, a biosynthetically and structurally
significant polyene. Metatricycloene is the first biosynthetically
complex natural product to be obtained from Streptomyces
species by metagenomics screening methods. Large numbers
of herbicidal compounds have been isolated from soil bacteria
which paved the way for the development of popular herbicides,
like glufosinate (Kao-Kniffin et al., 2013).

Biosynthetic genes and proteins associated with insecticidal
activity are discovered through this approach. For instance,
insecticidal active proteins were isolated from Xenorhabdus
nematophilus, and discovery of pyripyroprene an insecticide
from Penicillium coprobium PF1169 (Hu et al., 2011). Pest
management strategies, which were discussed in this review,
explain the application and design of microbial-derived
management strategies in agriculture. A study on Serratia
entomophila strain Mor4.1, a bacterial pathogen of several
soil pests from genera: Phyllophaga and Anomala lead to
the discovery of cell membrane protein having a toxic effect,
which is proposed to be used in designing biocontrol project
(Rodríguez-Segura et al., 2012).

Use in Genetically Modified Crops
Metagenomics application for genetically modified crops is
through identification of herbicide resistance genes from soil
microbes, which can be used in engineering genetically modified
crops. The best example is the discovery of glyphosate resistance
and glyphosate degrading abilities from microorganisms
(Staub et al., 2012).

Antibiotic-Resistant Genes
Metagenomics analyses play important role in the identification
of antibiotics resistant genes in agriculture. This antibiotic
resistance gene from agricultural soil contaminates groundwater.
In addition, the clinical consequences caused by it will have an
adverse effect, if, consumed by humans and animals. Antibiotics
resistance genes of about 9 aminoglycosides and one tetracycline
were identified from soil (Riesenfeld et al., 2004).

METAGENOME-WIDE ASSOCIATION
STUDIES

Predictive Biology of Crops
Numerous studies on metagenomics in agriculture have led to
the association of microbial communities in crop growth factors
like crop productivity, growth rate decline, etc. Recent works
of research in agricultural metagenomics are being focused on
Metagenomics Wide Association Studies (MWAS). MGWAS
and Genome-Wide Association Studies (GWAS) have striking
similarities between challenges and pitfalls and elaborated on
three key points in MWAS analysis (Weissbrod et al., 2018).
These are (i) uniform data format adoption (ii) stringent
statistical criteria and (iii) treating microbiome and host genome
as specific entities. It aims at identifying genetic variants in
microbial genomes that are associated with host variation in

microbe phenotypes, like genetic variation affecting phenotypes,
including carriage (in humans) and virulence in microbes.

In the MWAS approach, the microbial community identified
through the metagenomics approach is used as a tool for
analysis along with its abundance. The abundance of taxa is
used as an explanatory variable for MWAS studies. MWAS
is used to study many host-microbe interactions as a way to
uncover microbial communities that are important for host
health. A study by Crespo-Piazuelo et al. (2019), suggested
that about 39 candidate genes may be involved in regulating
microbiota composition, as well as responsible for the association
between host genome and gut microbiota in pigs through
MWAS (Crespo-Piazuelo et al., 2019). It is used in defining
Enterohemorrhagic Escherichia coli Colonization. Further, it has
been found that the plant loci responsible for defense and cell wall
integrity affect microbial community variation in Arabidopsis
thaliana (Horton et al., 2014).

Metagenomics-wide association studies has also been applied
to regulate genes that are important for species-specific
phenotypes in Helicobacter pylori, human diseases like asthma,
obesity, and diabetes (Dutilh et al., 2013; Karlsson et al., 2013).
Very few MWAS studies have been done in an agricultural
context. Some of these are on crops like soybeans, millets, grapes,
and strawberries (Debenport et al., 2015; Chang et al., 2017). In
these studies, the linking of MWAS based on taxon abundance
and crop productivity rates are emphasized, which is elaborately
discussed in the following sections.

Theories, such as neutral (stochastic) and niche
(deterministic), are subject to managing ecological populations.
Rhizosphere microbiome is regulated by a deterministic
approach, while, habitats in bulk soil are dictated by stochastic
theory. Niche mechanisms depend on local habitat circumstances
and their niche requirements. Further, the shaping of niches and
helping of microbial community assembly is through physical-
chemical soil characteristics and products derived from plant
roots. A total of 25 abiotic soil characteristics, including latitude
and longitude of sampling places, clay, silt, sand, and 12 types
of elements percentage, pH, organic matter, cation exchange
capacity along with percent saturation of elements and their
influence on agricultural crops, were studied (Chang et al., 2017).

Genetic variation in microbes is altogether different from
human genetics. The three major variations are (i) single
nucleotide polymorphisms (SNPs) and insertion-deletion
mutations (INDELs), (ii) gene presence and absence, and (iii)
bi-allelic SNP variation that is responsible for the phenotype of
interest. Understanding the type of variation is a fundamental
key in selecting tools and methods in MWAS analysis. Various
tools used for the MWAS study are elaborated in detail in the
tools and approaches section.

Application of Metagenomics-Wide
Association Studies
Crop Productivity Rates
Keen interest in crop productivity linked to MWAS is
exponentially increasing, studying the differences in crop
productivity rates at a location within a field, despite having the
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same features related to crop genotype, management practices,
and cropping history. Assumptions behind this crop productivity
differences are attributed to unequal distribution of bulk soil
biotic and abiotic factors in a location within agricultural fields.

With regard to crop productivity, it is a quantitative trait
influenced by several factors, which includes physical and
chemical analysis for abiotic factors and the next-generation
metagenomics sequencing approach in relation to biotic factors.
There are several abiotic features but few that significantly
impact crop productivity, including water, weather conditions
like temperature, rainfall, and nitrogen availability. Further, soil
characteristics that are much important like soil moisture, soil
physical compaction, and drainage differences within agronomic
fields should also be considered.

Limiting factors of productivity in relation to biotic stress
are (i) yield performance, which is affected by pest, pathogen
and influenced by root nodulation (ii) genotype of crop
variety includes genetics related to the following features:
water and nitrogen utilization efficiency, photosynthesis, and
productivity performance, disease, and pest resistance. de
Almeida Lopes et al. (2016), described the influence of
crop genetic features on rhizosphere microbiome structuring
(de Almeida Lopes et al., 2016).

In addition, plant growth-promoting rhizobacteria (PGPR)
are playing a key role in crop productivity leading to high
crop production and suppressing the development of diseases.
Microbiome structure in the phyllosphere and rhizosphere differ
between plant species, and also with species genotype. Peiffer
et al. (2013), studied the plant-microbe interactions through
genome wide-associations which can be integrated into plant
breeding (Peiffer et al., 2013).

Intercropping Analysis
Intercropping systems are known to positively affect crop growth
and yield by potentially recruiting favorable microorganisms
at the root zone of a crop. The impact of intercropping on
the structure of microbiomes is widely studied by methods
from terminal restriction fragment length polymorphism,
denaturing gradient gel electrophoresis, phospholipid
fatty acid analysis to high throughput sequence-based
approaches. Intercropped soil samples showed frequently
large-magnitude differences in the abundance of beneficial
microorganisms in crops.

Applications of intercropping strategy have led to stimulation
of microbial ecology that increased soil enzyme activity and
resulted in high yield (Debenport et al., 2015). Benefits of
intercropping include improvement in nutrient content, soil
moisture profiles, microfauna of soil, soil enzyme activity,
phospholipid fatty acid biomarkers, root zone microbiome,
increase in crop production, soil organic carbon, etc. Soil
organic matter plays a very potent role in agriculture and its
biodegradability depends on compounds like organic and humic
acids, proteins, and lignin along with pH and oxygen level,
including microbial quality, composition, size, and activity.

Microorganisms’ spatial and temporal interactions with
organic matter dictate the overall microbial population at a
specific site. The increase in soil organic content depends on soil

type. For instance, in semi-arid soils, it influences the arbuscular
mycorrhizal diversity, whereas, in polar desert soil as well as
in medium and low-level saline soils, bacterial communities are
dominated (Van Horn et al., 2014).

Agronomic Field: Rotation With More Crops
Rotation is a cultural practice in agriculture to restrict soil-borne
pathogens causing diseases. It has been observed that the same
cropping pattern over a long period of time leads to reduced yield
potential. Examples are apples, almonds, strawberries (Mazzola
and Manici, 2012). The soil-borne pathogen, which affects a
large number of plant species usually, penetrates through the
roots from infected soil or damages the host roots, making them
susceptible to infection. An example includes fungal pathogens
Verticillium dahliae Kleb, Rhizoctonia sp., Cylindrocarpon
destructans, Fusarium oxysporum, Fusarium solani, Pestalotia
longiseta, Pythium spp., Aphanomyces euteiches, Macrophomina
phaseolina, Sclerotium and nematodes, such as Pratylenchus
penetrans, Meloidogyne hapla, and Globodera pallida.

Recent advances in agriculture are using biofumigation and
anaerobic soil disinfestation (ASD) methods in controlling
these pathogens and pests. Biofumigation is preferred over
chemical methods of fumigation involving methyl bromide and
chloropicrin. Biofumigation is used for brassica species that
generate isothiocyanate as biologically active green manures.
Crop rotation with non-host crops resulted in decreased
incidence of infections and an increase in crop production.
For example, Neubauer et al. (2014), assessed systematically
the use of brassicaceous green manures to Verticillium dahlia
but the results concluded that their efficiency in controlling
the pathogen depends on soil organic conditions (Neubauer
et al., 2014). In another study, wilt occurrence in strawberries is
reduced by broccoli or lettuce crop rotation (Njoroge et al., 2009).
During the biofumigation process release of volatiles suggests
that control measures could be used to improve the control
of soil-borne diseases (Mercier and Jiménez, 2009). A study
in crop fields in Arkansas to investigate the impact of crop
rotation and soil cultivation methods on rhizosphere microbial
diversity was found not to significantly affect bacterial diversity
(Oliveira et al., 2022).

Anaerobic soil disinfestation methods were traditionally used
for grasses, but their effect was unknown. Later, it was studied
that organic materials, including organic wastes, animal and
green manure, compost, and peats, are found to be effective
mainly against pests and partially for pathogens (Runia et al.,
2012). But these studies showed the effectiveness and production
of gasses (CO2, CH4, and N2O, among others) depending
on physical factors, including soil type, organic materials,
temperature, exposure time, and dosage. Organic amendments
included organic wastes, animal and green manure, compost,
and peats. In a metastudy, the characteristics of organic soil
amendments that improve soil fertility, plant health and suppress
soil-borne plant diseases were identified (Bonanomi et al., 2010).
Effective treatment against Verticillium wilt in plants through
the treatment of organic amendments was done (Vitullo et al.,
2013). In short, organic matter possesses positive agronomic
properties in agriculture. For the effective soil disinfectant,
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studies on complete mechanisms that are effective, quick, and
predictable are needed.

FUTURE TRENDS IN METAGENOMIC
STUDIES

Metagenomic studies itself is a potent tool. However,
metagenomics along with wide association studies discussed
in this review and transcriptomics studies termed
metatranscriptomics will strengthen this approach as a whole.
Similarly, proteome study of microbial communities is a new
emerging area that aims at analyzing the catalytic potential of a
microbial population. Along with agriculture, metagenomics has
also been used in food obtained as agriculture byproducts. For
example, it is applied in food industries for the identification of
novel enzymes and enhances the production of recombinant
enzymes (El Sheikha, 2018; Hua et al., 2018). The role of
metagenomics in the identification of biocontrol agents as
future plant health detectors and influencers in biopolitics and
bioeconomics is highly promising for application in near future.

CONCLUSION

Enormous studies by a group of researchers from multiple
fields have made extraordinary advances in metagenomics
over more than three decades. To solve the intricacies of
underlying processes of microbial communities, it is important
to understand the diversity and dynamics of such microbial
communities. This review is a vast resource of knowledge
discovery with product discovery. The appreciable NGS cost
reduction and community approach can be promising in
uncovering the metagenome. Understanding of genome alone of
any agricultural microorganism is not enough, as productivity
is the cumulative role of genomes rather than the genome
of a single organism, be it agricultural crop or fish, or
domestic animal. More investment and attention are required
to improve the model of genome-wide association studies or
genomic selection, adding a metagenome profile in the mixed

model. Genome manipulation is inadequate for genetic gain in
breeding programs if we neglect the metagenome as one of
the major variables. This review highlights the unexplored high
potential area, whereas more research attention is required to
have better agricultural productivity with sustainability. With
the advanced data generation and analyses technologies, this
field of metagenomics will widen and improve the knowledge
of microorganisms.
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