
Article

Forecasting maize yield using
ARIMA-Genetic Algorithm approach

Santosha Rathod1, KN Singh1, Prawin Arya1, Mrinmoy Ray1,
Anirban Mukherjee2, Kanchan Sinha1, Prakash Kumar1,
and Ravindra Singh Shekhawat1

Abstract
Maize is widely cultivated throughout the world and has highest production among all the cereals. India is the sixth largest
producer of maize in the world, contributing 2% of global production and accounting for 9% of the total food grain
production in the country. Based on increasing growth rates of poultry, livestock, fish, and milling industries, the demand
for maize is expected to increase from the current level of 17 to 45 million tons by 2030. To understand the growing
pattern and economics of crop production, it is necessary to predict crop yield using statistical models and geographic
information system soil mapping and the impacts of insect and pest damage. In this study, the focus was to forecast maize
yield in India using an autoregressive integrated moving average (ARIMA) model and genetic algorithm (GA) approach. GA
simulates the evolution of living organisms, where the fittest individual dominates the weaker ones by mimicking the
biological mechanism of evolution, such as selection, crossover, and mutation. GA has successfully been applied to solve
optimization problems. The study reveals that implementation of GA in ARIMA enhances the prediction accuracy of the
model.
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Introduction

Maize (Zea mays) is considered to be the queen of cereal

crops and one of the most staple food crops in the world,

second only to rice and wheat and is used in animal feed and

many industrial applications. It is cultivated widely through-

out the world and has highest production among all the

cereals. The global production of maize was more than

960 Million Metric tonne (MN MT) in 2013–2014. The crop

has tremendous genetic variability, which enables it to thrive

in tropical, subtropical, and temperate climates. Global pro-

duction of maize has grown at a compound annual growth

rate (CAGR) of 3.4% over the last decade, from 717 MN MT

in 2004–2005 to 967 MN MT in 2013–2014. The area under

maize cultivation over the period has increased at a CAGR

of 2.2%, from 146 MN ha in 2004–2005 to 177 MN ha in

2013–2014. Productivity of maize has increased at a CAGR

of 1.2% from 4.9 MT/ha in 2004–2005 to 5.5 MT/ha in

2013–2014. The United States is the largest maize producer,

contributing 37% of global production followed by China

(22%). India is the sixth largest producer of maize (2%). In

India, maize is the third most important crop after rice and

wheat which accounts for 9% of the total food grain produc-

tion; 85% of the maize crop is cultivated in the kharif season.

Maize production in India has grown at a CAGR of 5.5%

over the last decade from 14 MN MT in 2004–2005 to 23

MN MT in 2013–2014. The area under maize cultivation

has increased at a CAGR of 2.5% from 7.5 MN ha in 2004–

2005 to 9.4 MN ha in 2013–2014. Factors such as its adapt-

ability to diverse agroclimatic conditions, lower labor

costs, and lowering of the water table in the rice belt of

India have contributed to the increase in the maize cropped

area. The productivity of maize (yield) has increased at a

CAGR of 2.9% from 1.9 MT/ha in 2004–2005 to 2.5 MT/

ha in 2013–2014 (Agricultural situation in India, 2015).

Maize is grown throughout the year in India across a

wide range of environments, extending from extreme semi-

arid to subhumid and humid regions. The crop is also very

popular in the low and mid-hill areas of the western and

northeastern regions. In broad terms, maize cultivation can

be classified into two production environments: (i)
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traditional maize growing areas, including Bihar, Madhya

Pradesh, Rajasthan, and Uttar Pradesh and (ii) nontradi-

tional maize areas, viz., Karnataka and Andhra Pradesh.

Maize production is dominated by Andhra Pradesh and

Karnataka, producing approximately 38% of India’s maize

in 2010–2011.

In the past, maize was mainly confined to food con-

sumption but changing Indian dietary patterns now mean

that it is being largely grown for feed purposes (60%).

Based on the increasing growth rate of poultry, livestock,

fish, and milling industries, maize demand is expected to

increase from the current level of 16.72 to 45 million tons

by 2030 (Report of India maize summit, 2015). Constraints

on the low productivity of maize include climatic condi-

tions resulting in drought/excess water associated with

increased pressure of diseases or pests, imbalance or ineffi-

cient use of nutrients, limited adoption of improved pro-

duction–protection technologies, and deficiencies in the

production and distribution system of quality seed. To

overcome these challenges, forecasting crop yield using

statistical models, predicting the possibilities of insect or

pest incidence based on weather forecasting, geographic

information system–based soil fertility mapping, and

remote sensing for crop productivity or pest incidence

assessment are all becoming essential elements to support

improved agricultural management. Forecasting is used to

provide an aid to decision-making and to improve future

planning. Governments are increasingly concerned with

accurate crop production forecasts as they provide some

idea of the size of the national income, the overseas bal-

ance of payments situation, and any marketing difficulties

likely to be associated with the sale of products in domes-

tic as well as overseas markets. Statistical forecasting

models are often used to develop an appropriate forecast

methodology using historical data to predict future trends

in growth with the help of identifying patterns within data

(Choi et al., 2015).

In this study, effort has been made to forecast the yield

of maize in India using an autoregressive integrated mov-

ing average (ARIMA) model combined with a genetic

algorithm (GA) approach. ARIMA models (Box et al.,

1994) have been widely used for crop yield and other agri-

cultural production forecasting. Sarika et al., 2011 con-

ducted a study on modeling and forecasting time series

data of pigeon pea production in India using Box–Jenkins

ARIMA time series methodology; the ARIMA (2, 1, 0)

model was reported to perform better among other models

of the ARIMA family for modeling as well as for forecast-

ing purposes. Jambhulkar (2013) applied the ARIMA

methodology based on the lowest Akaike information cri-

terion (AIC) and Bayesian informa-tion criterion (BIC)

values; ARIMA (1, 1, 2) model found to be superior to

other ARIMA models for forecasting rice production in

Punjab, India. Tahir and Habib (2013) applied linear trend,

quadratic trend, exponential trend, and S-curve models for

trend analysis of the area and production of maize in Paki-

stan and reported that forecast values were very close to

observed values with a positive increasing trend in Paki-

stan. Karim et al. (2010) conducted a study on the growth

pattern of wheat production in Bangladesh and showed that

the best fitting was quadratic, linear, and cubic models. The

analysis found that if the present growth rates continued,

then wheat production in Bangladesh would reach 1.54

million tons. Naveena et al. (2014) used ARIMA model for

forecasting coconut production in India. The best model

ARIMA (1, 1, 1) was selected based on the minimum root

mean square error values.

Sometimes in ARIMA, modeling the large sum of the

squared residuals in the Ljung–Box statistic indicates that

the model is not appropriate for the data. The common

zeros in the AR and MA process indicate parameter redun-

dancy, which means that the model can be shortened by two

parameters (Rolf et al., 1997). Under such conditions, the

ordinary least square (OLS) method cannot converge to the

true parameter. To overcome this problem, a powerful

iterative optimization technique is required to estimate the

parameters of the ARIMA model under consideration. GA

is a powerful global searching method developed by Hol-

land (1975) which was successfully applied to solve opti-

mization problems in many areas (e.g. Parviz et al., 2010;

Rolf et al., 1997, Zaer et al., 2012). In this study, effort has

been made to employ the GA for parameter estimation of

the ARIMA model to overcome the shortcomings of the

OLS method for forecasting maize yield in India.

ARIMA model building

Box and Jenkins (1970) introduced the concept of ARIMA

in 1970 in their book Time Series Analysis Forecasting

and Control. The technique is used to forecast future val-

ues of a series based completely on past values. Here

“AR” means lags of the differenced series appearing in

the forecasting equation; “MA” is the lag of the forecast

errors and a time series which needs to be differenced for

making it stationary is termed “integrated.” Generally, a

nonseasonal ARIMA model, denoted as ARIMA (p, d, q),

is expressed as

Yt ¼Ø1Yt�1 þ Ø2Yt�2 þ . . . þ ØpYt�p þ εt � θ1εt�1

� θ2εt�2 � . . . � θqεt�q ð1Þ

where Yt and εt are the actual values and random error at

time t, respectively; Øi(i¼ 1,2, . . . , p) and θi (i¼ 1,2, . . . , q)

are AR and MA parameters, respectively; and p and q are

integers and often referred to as orders of AR and MA

polynomials, respectively. Random errors εt are assumed

to be independently and identically distributed with mean

zero and the constant variance σε
2. Box and Jenkins (1970)

propose a practical three-stage procedure for finding a good

model, viz., (i) identification of the model, (ii) parameter

estimation, and (iii) diagnostic checking of the model.

Identification. The autocorrelation function (ACF)

and partial ACF (PACF) are used to identify the

number of potential AR and MA orders to be

selected. For testing of stationarity, the most pop-

ular methods used include the augmented Dickey–

Fuller (ADF) unit root test and the Phillips–Perron
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unit root tests with a null hypothesis that the time

series is not stationary and the alternative hypoth-

esis is that the time series is stationary. Details of

these tests are found in the literature (Dickey and

Fuller, 1979; Phillips and Perron, 1988).

Estimation. For the estimation phase, the parameters

identified in the identification stage are estimated

for the ARIMA model by employing an iterative

least squares method. AIC and BIC values are used

for choosing the best model and are given as follows

AIC ¼ T logðσ2Þ þ 2ðpþ qþ 1Þ ð2Þ

and

BIC ¼ T logðσ2Þ þ 2ðpþ qþ 1ÞlogT ð3Þ

where T represents the number of observations utilized for

estimation of parameters and σ2 represents the mean

square error.

Diagnostic checking. Based on the ACF and PACF of

the residuals, the independency of the residuals can

be diagnosed. If the residuals approximate to white

noise (residuals of the models are found to be ran-

dom in nature), the sample space–time ACFs

should be effectively zero. The Ljung–Box test

(Box et al. 1994) can be employed on the original

series or to the residuals after fitting a model with

the null hypothesis that the series is white noise,

and the alternative hypothesis is that one or more

autocorrelations up to lag m are not zero. The test

statistic is given by

Q� ¼ TðT þ 2Þ
Xm

k¼1

rk
2

T � k
ð4Þ

where T is the number of observations deployed to esti-

mate the model and m is the maximum number of lags.

The statistics Q� approximately follows a w2 distribution

with (T � k) degrees of freedom, where k is the number

of parameters estimated in the ARIMA model and rk is

the ACF of residual at lag k. If it is not adequate, we

return to the identification stage to speculatively select

another model.

GA. A GA (Holland, 1975) is a random search algorithm

based on the basic principles of biological evolution and

natural selection. The GA simulates the evolution of living

organisms, where the fittest individual dominates over the

weaker ones, by mimicking the biological mechanism of

evolution, such as selection, crossover, and mutation;

therefore, it is also known as an evolutionary algorithm.

Thus, GA is a powerful optimization technique applicable

in many science and engineering problems such as system

identification, controller design, neural networks, fuzzy

systems, image and signal processing, and motion planning

of robot manipulators (e.g. Parviz et al., 2010; Zaer et al.,

2012). In GA, the population of possible solutions is eval-

uated to estimate the best solution based on three main

concepts, (i) reproduction, (ii) evaluation, and (iii) selec-

tion. The genetic reproduction is performed by two basic

genetic operators: crossover and mutation. The evaluation

is performed by means of the fitness function that depends

on the specific optimization problem. The selection is the

process of choosing the best parent individuals according to

their relative fitness. Building a GA for any problem

includes initialization, fitness evaluation, GA encoding,

selection, crossover, mutation, GA decoding, fitness eva-

luation, and finally termination (Figure 1).

Steps in GA formulation

Initialization. Based on the pre-assumed number of

parameters; the number of AR and MA parameters

(p max þ q max) are considered as initial

Figure 1. Steps in the genetic algorithm formulation.

Table 1. Summary statistics of maize yield series.

Statistic Series Statistic Series

Observation 64 Skewness 0.76
Mean 1366.30 Kurtosis �0.29
Standard deviation 529.17 Coefficient of variation (%) 38.73
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population, where each parameter is an individual

in the population, which consists of different sets

of solutions and each solution set is termed a chro-

mosome. Each value in the solution set consists of

a number of bits, that is, genes. Consider a matrix

of population size (Np), resulting in a population

matrix containing Np� (p maxþ q max) elements.

The roots of the numerator and the denominator

must be inside the unit circle to satisfy the stability

and invertibility conditions. Thus, the genes will

generate within the chosen range and the first gen-

eration is randomly generated in real values.

Fitness evaluation. To start with the estimation pro-

cess, an objective function should be defined in

terms of fitness function for evaluation. In general,

the fitness function may be a mathematical or

experimental function that achieves the desired

output. In the proposed method, the function is

based on minimizing the difference between the

actual and estimated values. In our case, the fitness

function was defined in terms of mean absolute

percentage error (MAPE) % as

Fitness ¼ 1

1þMAPE
ð5Þ

MAPE ¼ 1

n

Xn

i¼

Yt � Ŷ t

Yt

����
���� ð6Þ

where Yt is the actual series and Ŷ t is the estimated value.

GA encoding. To carry out the GA operations, viz.,

crossover and mutation, the real values must be

represented in binary strings 0 and 1. The number

of bits (n) in each variable is given by the formula

(7) the chromosome variables and the operation is

per formed with a certain quality value, that is,

0.001.

2n ¼ Range

Quality
¼ xupper � xlower

Quality
ð7Þ

Selection. For creating new offspring for the next gen-

eration, chromosomes are chosen from the current

population based on the fitness function. The larger

the fitness, the higher the probability that the chro-

mosome will contribute one or more offspring to

the next generation. Choosing few chromosomes

limits the availability of offspring in the next gen-

eration and keeping too many chromosomes may

contribute to undesired traits in the next genera-

tion. Therefore, we keep a minimum of 50% in the

natural selection. There are several methods for the

selection operation (Haupt and Haupt, 2004). In

Figure 2. Trend and correlation analyses of actual series.

Table 2. Testing for stationary in the actual series.

ADF test statistic PP test statistic

Single
mean

With
trend

Probability

Single
mean

With
trend

Probability

Single
mean

With
trend

Single
mean

With
trend

�1.05 �7.07 0.98 0.63 �1.03 �17.77 0.88 0.08

ADF: augmented Dickey–Fuller.
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our approach, we used the Roulette wheel selection

which is based on a randomization process.

Crossover. In crossover, each pair of chromosomes is

crossed over to produce two new segments. Usually,

offspring inherit some genes from each parent; how-

ever, they have their own structures compared with

their parents. Crossover operation is not usually

applied to all the selected chromosomes. However,

the choice is made randomly with a probability of

crossover (Pc) being between 0.6 and 1.0. In gen-

eral, there are three common methods of crossover

operation: one-point crossover, multiple-point

crossover, and uniform crossover.

Mutation. This is a random search to avoid a prema-

ture convergence and is applied to each offspring

individually once the crossover operation has been

performed. Mutation is a random bit with a small

probability Pm (between 0.1 and 0.001) that is

randomly selected from the total number of bits

from the population matrix.

GA decode. Once the selection, crossover, and muta-

tions are performed, the new offspring are evalu-

ated. In order to do this, the string values should be

converted into their equivalent real values. This

process is called decoding and is performed by the

following equation

x ¼ xlower þ
xdec

2n � 1
xupper � xlower

� �
ð8Þ

where x is gene’s real value, xdec is gene’s decimal decoded

value, xlower is variable lower bound, and xupper is the vari-

able upper bound.

Replacement. Once the new offspring population is

evaluated, the parents need to be replaced with the

new offspring. The replacement operation is

grouped into two main categories, namely, genera-

tional and overlapping replacements. In genera-

tional replacement, the parent population is

replaced by the offspring population except the

best individuals in parents, this is also known as

nonoverlapping replacement, and in the overlap-

ping replacement, both the offspring and parent

population compete to survive into the next gener-

ation according to their fitness values.

Termination. Once the convergence criterion is met,

such as the maximum number of generations is

Figure 3. Trend and correlation analyses of differenced (1) series.

Table 3. Testing for stationary in the differenced (1) series.

ADF test statistic Phillips Perron test statistic

Single
mean

With
trend

Probability

Single
mean

With
trend

Probability

Single
mean

With
trend

Single
mean

With
trend

�132.40 �326.48 0.0001 0.0001 �75.52 �74.58 0.0006 0.0001

ADF: augmented Dickey–Fuller.

Table 4. Parameter estimation of the ARIMA model by MLE.

MLE

Parameter Estimate SE t Value Pr > |t| Lag

MU 29.04390 12.10634 2.40 0.0164 0
MA1,1 0.50573 0.11133 4.54 <.0001 1

ARIMA: autoregressive integrated moving average; MLE: maximum
likelihood estimation; SE: standard error.
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reached or a desired fitness value is reached, the

GA is terminated; if not, the entire algorithm is

repeated until the fitness value is reached.

Data description. In this study, all maize yield (kg/ha)

data from 1950 to 2013 was collected from agri-

cultural statistics including the Department of

Agriculture, Cooperation and Farmers Welfare and

Ministry of Agriculture and Farmers Welfare. Data

from 1950 to 2003 were used for model building

and the remaining decadal data from 2004 to 2013

were used for model validation.

Results and discussion

Summary statistics for Indian maize yield are given in Table

1 and a time series plot is shown in Figure 2. The plot shows

that the data set is nonstationary. Figure 2 shows the plot of

ACF, PACF, and inverse ACF (IACF) for the actual price

series. To validate the stationarity of the series, two tests,

namely, ADF test and Philips–Peron test were used (Table

2). The result indicates that the maize yield time series being

considered here is nonstationary. Once the series was found

to be nonstationary, we made the differencing of order 1 and

obtained a resulting stationary series. The differenced series

expressed in terms of ACF, PACF, and IACF is given in

Figure 3, which shows the series is stationary for the first-

order difference. To validate the stationarity of the series, the

same two tests were used and results summarized in Table 3.

The final model orders based on lowest likelihood ratios,

viz., AIC (665.49) and Schwarz’s Bayesian criterion (SBC)

(669.43), were selected as p ¼ 0, d ¼ 1, and q ¼ 1. There-

fore, the resulted model is ARIMA (0, 1, 1) and the para-

meter estimated by maximum likelihood estimation method

is given in Table 4. In ARIMA model building, diagnosis

checking is the final step, whereby the autocorrelation of the

residuals was evaluated (Table 5) and probability values of

the w2 test were found to be nonsignificant. We therefore

concluded that the chosen model provided a good fit.

Parameter estimation by GA

After the primary classical ARIMA building, an attempt

was made to employ the GA for ARIMA parameter estima-

tion. The optimized parameters of GA with regard to mini-

mization of the objective function resulted after several

runs. For GA in this problem, the population size was

250 and populations were chosen with a selection rate of

60% based on the Roulette wheel selection method (rando-

mization). The optimum parameter selection for the GA is

given in Table 6 and the parameter estimation by the GA is

given in Table 7. Once the parameter estimation by GA was

complete, the next step was model validation. Data from

1950–2003 were used for model building and the remaining

10-year data (2004–2013) used for model validation, that

is, forecasting. The forecast values from the ARIMA and

ARIMA-GA approach are given in Table 8. Based on the

MAPE (Table 8), one can infer that the ARMA-GA

Table 5. Autocorrelation of residuals.

autocorrelation check of residuals

Lag w2 DF Pr > w2 Autocorrelations

6 6.35 5 0.2739 �0.001 �0.093 0.192 0.020 �0.194 �0.089
12 11.70 11 0.3862 0.174 �0.117 �0.077 �0.006 0.132 �0.059
18 14.72 17 0.6156 0.005 0.144 0.009 �0.076 �0.069 0.061
24 20.24 23 0.6277 0.058 �0.076 0.032 0.191 �0.091 0.024

DF: Dickey–Fuller.

Table 6. Optimal values for the GA parameters.

Population size 250
Selection type Roulette wheel
Selection rate 60%
Crossover type Single point
Crossover rate 70%
Mutation rate 0.05
Iteration 27

GA: genetic algorithm.

Table 7. Parameter estimation of ARIMA by GA.

Statistic Parameter

MU 27.37
MA(1) 1.54

ARIMA: autoregressive integrated moving average; GA: genetic algorithm.

Table 8. Prediction of maize yield (kg/ha) using the ARIMA and
ARIMA-GA approach.

Year Actual ARIMA ARIMA-GA

2004 1907 1933.443 1941.034
2005 1938 1957.489 1985.163
2006 1912 1981.535 2011.942
2007 2335 2005.581 2039.985
2008 2414 2029.626 2067.988
2009 2024 2053.672 2095.975
2010 2542 2077.718 2123.955
2011 2478 2101.764 2151.928
2012 2566 2125.81 2179.892
2013 2583 2149.856 2207.848
MAPE 10.4898 9.91145

ARIMA: autoregressive integrated moving average; GA: genetic algorithm;
MAPE: mean absolute percentage error.
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approach can provide reasonable results compared to the

other well-known methods as the GA minimizes the error

in the parameter estimation and provides excellent results

in the model parameter estimation compared to classical

methods. This is also important for future maize forecasting

studies. This approach could be further extended using

other machine learning techniques for varying the AR and

MA orders so that practical validity of the model could be

well established.
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