
lable at ScienceDirect

Theriogenology 187 (2022) 82e94
Contents lists avai
Theriogenology

journal homepage: www.theriojournal .com
Bimodal interplay of reactive oxygen and nitrogen species in
physiology and pathophysiology of bovine sperm function

Vishwa Ranjan Upadhyay a, *, Vikram Ramesh b, Raju Kr Dewry c, Dileep Kr Yadav c,
Perumal Ponraj d

a Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 13200, India
b Animal Physiology and Reproduction, ICAR-National Research Centre on Mithun, Medziphema, Nagaland, 797106, India
c Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
d Animal Reproduction and Gynaecology, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, 744105, India
a r t i c l e i n f o

Article history:
Received 19 October 2021
Received in revised form
22 April 2022
Accepted 23 April 2022
Available online 28 April 2022

Keywords:
Antioxidants
Cryopreservation
Nitrosative stress
Spermatozoa
* Corresponding author. Animal Physiology Div
Research Institute, Karnal, Haryana, 132001, India.

E-mail address: vishwaranjanhzb@gmail.com (V.R

https://doi.org/10.1016/j.theriogenology.2022.04.024
0093-691X/© 2022 Elsevier Inc. All rights reserved.
a b s t r a c t

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the mediators of redox activity and
are known to perform concentration-specific bimodal roles. At lower concentrations, serves as a mo-
lecular messenger and signaling molecule while at higher concentrations induces stress which in turn
alters the sperm's functional characteristics. Production of ROS and RNS cannot be prevented entirely and
should not be followed as a pragmatic approach as they are involved in numerous sperm physiological
functions. When the antioxidants defense armory is meager, excess generation of these species cross the
physiological limits and inactivates essential metabolic enzymes and disrupts signal transduction
altering normal sperm functions. As per the available literature, oxidants mostly arise as a result of
pathological conditions or cryopreservation-induced injury. Dead and debilitated or abnormal sperma-
tozoa and associated leukocytes release free radicals in an excess amount which elicits oxidative and
nitrosative stressors that are potentially toxic to cryosurviving sperm. ROS plays a double edge sword
effect on sperm function, as regulators of physiological mechanisms at low levels and as toxicants when
produced at high concentrations. Recently nitric oxide (NO.) has emerged as a potential regulator of
sperm physiology, in addition, found to mediate homeostasis of the seminal plasma microenvironment
when semen samples are incubated with optimal concentrations of NO. compounds. The NO. compounds
can provide some resistance to future stresses which are not usually harnessed by using the defensive
strategy of supplementing antioxidants. Therefore, through the optimized addition of NO. donor and
inhibitor in extender, the free radical-induced damage can be avoided without inhibiting their essential
physiological effects on fertilization and subsequent embryo development. This article is intended to
describe the role of reactive oxidants in the physiology and pathophysiology of spermatozoa and their
relationship with various seminal attributes.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Semen cryopreservation led to a considerable reduction in
geographical barriers to breed animals by the transportation of
viable sperm over long distances [1]. In addition, cryopreservation
has allowed for rapid genetic improvement of important farm an-
imals as well as the control of venereal diseases which have a huge
impact on the sustainability of the agri-food industry. Artificial
ision, ICAR-National Dairy

. Upadhyay).
Insemination (AI) with cryopreserved semen allows rapid genetic
improvement of future progeny in a non-descript cattle population
[2]. However, the decreased fertilizing ability of cryopreserved
spermatozoa is a critical constraint in the intensive dairy produc-
tion system. For AI, successful prolongation of spermatozoa's pro-
ductive life can only be accomplished through effective
cryopreservation techniques and the development of semen dilu-
ents that sustain sperm function post-thawing. Semen cryopres-
ervation alters the sperm physiology by disrupting the physical
characteristics, altering the metabolic pathways, enzymes and
antioxidant status that compromises fertilizing efficiency and de-
creases the success rate of AI [3]. The stress associated with
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cryopreservation and thawing can be decreased either through
proper understanding of molecular derangements or standardizing
the cryopreservation protocol to reduce cryo-damage [3e5].
Moreover, as a result of processing and cryopreservation, dead and
morbid spermatozoa release free radicals that are potentially toxic
to the cryosurviving sperm cells and responsible for inflicting
oxidative and associated nitrosative stress on sperm cells [6,7].
Spermatozoa are extremely prone to free radical-induced damage
as they contain a higher concentration of polyunsaturated fatty acid
(PUFA), modest antioxidant defenses, high content of oxidizable
substrates [8] and lack antioxidant protection along with appro-
priate armory of defensive enzymes during the storage period [9].
The imbalance between the amount of ROS or RNS produced and
detoxified decides the seminal oxidative stress and consequential
molecular damage; therefore, it is a potential mediator of physio-
logical sperm functions [10]. A recent study by Naskar [11] and
Mohammed et al. [12] determined that in vitro addition of RNS
compounds at optimal concentrations both in fresh as well as
cryopreserved semen promotes sperm functional integrity and
lowers the deteriorations in frozen-thaw semen. Physiological
concentrations of ROS or RNS have positive effects on sperm
function. This review focuses on the role of ROS and RNS in the
physiology and pathophysiology of bovine spermatozoa with its
potential effects on semen quality.

2. Cryopreservation and associated stressors

Cryopreservation involves the combination of controlled tem-
perature reduction and cellular dehydration. Semen cryopreserva-
tion induces extensive biophysical and biochemical alterations
resulting in destabilization and epigenetic alterations in the
structures of the spermatozoa [13]. In addition, cryopreservation
induces changes in themetabolome profile of bovine semen both at
plasmatic and cellular compartments [14]. The stressors primarily
involved are, sudden osmotic and temperature changes [15], dele-
terious effects of media components and cryoprotectants, genera-
tion of free radicals and depletion of antioxidants [16]. Elevated
intracellular calcium in cryopreserved viable human and bull
sperm reflects impaired mitochondrial membrane fluidity and
subsequently increases mitochondrial membrane potential to
induce ROS release [17]; therefore, cryopreservation serves to be a
common root cause of oxidative stress. In addition, higher sperm
intracellular calcium levels activate a signaling mechanism that is
associated with cryocapacitation [18]. During cryopreservation, the
loss of membrane integrity of apoptotic and dead spermatozoa
further elicits the generation of ROS particularly in egg yolk-based
extenders affecting the viable sperm cells in the immediate sur-
rounding [19]. Furthermore, the freeze-thaw cycle induces nuclear
damage and genome alteration causing irreversible degradation of
the sperm during the process of cryopreservation [20,21]. Several
studies support the fact that there are no functional DNA repair
mechanisms [15,22], and enzymes [23] during cryopreservation
and frozen-thawed sperm are more vulnerable to free radicals
attack as compared to other cells [24].

3. Peroxiredoxins (PRDXs) and antioxidants additives in
semen diluents

Antioxidants manifest important mechanisms in vitro and
in vivo by breaking the oxidative chain reaction or by directly
quenching the free radicals, facilitating the maintenance of cellular
homeostasis. During epididymal transit, sperm undergo morpho-
logical and biochemical transformations, as a result, cytosolic
antioxidant enzymes remain in low amounts in the maturing
spermatozoa providing minimal antioxidant protection [25]. Since
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the presence of antioxidants is important to circumvent oxidative
damage in the spermatozoa, the limited antioxidant enzymes and
peroxiredoxins (PRDXs) family appear to be a key participant in
antioxidant defense [26,27].

PRDXs are antioxidant enzymes and ROS modulators that have
been shown to play a key function in redox signaling and preventing
oxidative damage in human [25] and bull [28] spermatozoa. The six
members of the PRDXs family are differentially localized in subcel-
lular compartments of the human spermatozoon (head, mitochon-
drial sheath, and flagellum), with PRDX6 being the most abundant
and present in all compartments [25,29]. PRDXs are SH-dependent,
selenium and heme-free peroxidases with one or two cysteine res-
idues at the active site and are highly expressed in all living species
[30,31]. These acidic proteins can reduce both organic and inorganic
hydroperoxides, and peroxynitrite by couplingwith the thioredoxins
reductase system [29,30,32]. PRDX6 is a bifunctional enzyme with
peroxidase and calcium-independent phospholipase A2 (iPLA2) ac-
tivities which are necessary to remove noxious free radicals and
repair oxidized membranes [33]. It is the primary antioxidant de-
fense in human spermatozoa, maintaining viability, mitochondrial
function and DNA integrity [29,34]. It plays a role in the regulation of
sperm activation and ensures early capacitation events that are
important for fertility in humans and mice [35,36]. PRDX6 prevents
the spermatozoa from entering the truncated apoptotic cascade
pathway by regulating ROS generation and activating the phos-
phoinositide 3-kinase (PI3K) and its target AKT (protein kinase B)
pathway [27]. Unsaturated fatty acids, such as arachidonic acid (AA)
and lysophospholipids such as lysophosphatidic acid (LPA) are pro-
duced by PRDX6 calcium-independent phospholipase A2 (PRDX6
Ca2þ-iPLA2), which activate the PI3K/AKT pathway and inhibit
apoptotic-like alterations that lead to spermatozoa death [29].
Strong oxidative stress promotes peroxidase inactivation by inter-
acting with the thiols in PRDXs active sites, causing their oxidation
and consequent enzyme deactivation [37]. Low levels or inactivation
of PRDX1 and PRDX6 due to thiol oxidation are linked to aberrant
sperm parameters viz. poor motility, lipid peroxidation, DNA dam-
age, and infertility [34]. It is also reported that the absence of PRDX6
in spermatozoa compromises semen quality both in vivo and in vitro
[38,39] and increases the levels of post-translational protein modi-
fications (S-glutathionylation and carbonylation) and damages the
sperm chromatin [38]. Although scanty information is available
about its role in bovine sperm functions, its presence in the seminal
plasma and positive relation with % viability demarcate it as a po-
tential marker of sperm cryotolerance [40]. Thus to minimize the
cryopreservation-induced injury and to optimize the levels of reac-
tive species, optimum combination and concentration of antioxi-
dants are essential along with adequate freezing-thawing protocols.

The exogenous addition of different enzymes and antioxidants
has been investigated to neutralize oxidants [41] and to maintain
the motility of cryopreserved bovine sperm [42]. Beconi et al. [43]
in their pioneering research on bovine semen reported that the
inclusion of non-enzymatic natural antioxidants (vitamin E @ 1mg/
mL and ascorbic acid @ 5 mM) in the diluent exerted a protective
effect against lipid peroxidation during freezing and thawing,
thereby preserving the metabolic activity and cellular viability.
Latter O'Flaherty et al. [44] and Dalvit et al. [45] in their study
observed that there was a significant reduction in the % of capaci-
tated spermatozoa and fertilization rate while no change in pro-
gressive motility and the % of live spermatozoa when incubation
medium contained vitamin E and ascorbic acid. They concluded
that increasing vitamin E concentration and preserving its func-
tionality with ascorbic acid could affect the physiological produc-
tion of reactive oxygen species, specifically superoxide anion,
affecting the fluidity and permeability of the plasma membrane.
Therefore, altering capacitation, acrosomal reaction, and in vitro
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fertilization processes. Hezavehei et al. [46] recently reviewed that
supplementing the freezing media with various antioxidants
(enzymatic, non-enzymatic, herbal, synthetic, cholesterol-loaded
cyclodextrins, etc.) improves sperm motility, viability, DNA integ-
rity, acrosomal reaction, membrane integrity and decreases lipid
peroxidation and ROS production. Since the oxidative stress asso-
ciated with freezing and thawing primarily manifests mitochon-
drial dysfunction, various non-enzymatic antioxidants and
bioactive agents targeting mitochondria like mito-tempol [47,48]
mitoquinone [49], quercetin [50], resveratrol [51], melatonin
[52,53], elamipretide [54,55], etc. have been reportedly found to
alleviate the peroxidative damage. In particular, mito-tempol acts
as an intracellular scavenger of ROS (superoxide anions) even in the
presence of an oxidative inducer and is found to be the only anti-
oxidant agent effective in nullifying H2O2 [56]. Correspondingly
melatonin a time and dose-dependent antioxidant alter mito-
chondrial respiratory complexes I and IV, efficiently scavenging
hydroxyl and peroxyl radicals and increasing sperm motility
[57,58].

4. Reactive oxygen species (ROS)

ROS are the by-products of the normal metabolism of aerobic
organisms which includes superoxide anion (.O2

�) as a primary
molecule that transforms into various secondary products like
singlet oxygen (1O2), hydrogen peroxide (H2O2), peroxyl radical
(ROO�) and hydroxyl radicals (OH�) [59,60]. They are either free
radicals or non-radical molecules, additionally derived from the
reaction of carbon-centered molecules with ROS in all complex
cellular systems [60]. The dead spermatozoa, abnormal spermato-
zoa, leukocytes, immature sperm cells in semen [6] and mito-
chondria in spermatozoa are the endogenous sources and
inflammatory reactions or diseases of the male genital tract are the
exogenous sources of ROS production [61]. Intracellular ROS is
produced through enzymes such as NADPH oxidases in the cell
membrane and cytochrome P450-dependent oxygenases in mito-
chondria and endoplasmic reticulum, or by direct electron transfer
to oxygen in the electron transport chain in mitochondria [62].
Recent studies have reported that energy metabolism (oxidative
phosphorylation pathway) and oxidative deamination of the aro-
matic amino acids of egg yolk by the enzyme L-amino acid oxidase
of spermatozoa can also be the source of ROS [60]. The mitochon-
drial ROS production is bidirectionally driven by oxidative stress
which triggers lipid peroxidation cascades that terminate in the
generation of small-molecular-mass aldehydes which covalently
bind proteins at vulnerable histidine, lysine, and cysteine residues
and ends up activating a self-perpetuating chain of free radical
formation [63]. Sperm-specific ROS mainly originates from the
mitochondrial electron transport system, which enhances during
abnormal oxygen supply and cryopreservation-induced mito-
chondrial dysfunction [17,64]. Likewise, an aromatic amino acid
oxidase-catalyzed reaction is the principal source of ROS produc-
tion in bovine semen containing dead and abnormal spermatozoa
[65], and leukocytes like neutrophils and macrophages are associ-
ated with excessive production of ROS [66,67]. The impulsive
generation of intracellular ROS from dead sperms affects the cry-
osurviving sperm, which can be observed in routine semen analysis
like seminal plasma hyperviscosity [68] and poor spermmembrane
integrity [61]. Seminal plasma confers some degree of protection
against ROS damage due to the presence of catalase and superoxide
dismutase enzymes that scavenge ROS. The absence of endogenous
defence mechanism and exposure of gametes to various manipu-
lation techniques as well as environment contribute to the accu-
mulation of ROS during in vitro conditions [69]. In addition, adverse
climatic conditions like heat stress [70] and dissolved oxygen in the
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extender enhance the production of ROS [5]. ROS is detrimental
from a reproduction perspective, as they generate furthermore free
radicals, thereby perpetuating a chain of reactions and creating
high amounts of oxidants around viable sperm pools [71].

ROS plays a double edge sword effect on sperm function, as
regulators of physiological mechanisms at low levels and as toxi-
cants when produced at high concentrations (Fig.1.). The controlled
endogenous generation of ROS by germ cells undoubtedly plays a
vital role in the regulation of sperm count and quality during the
spermatogenesis and post-testicular maturation phase [67,72]. Low
levels of ROS viz. “oxidative eustress” play crucial roles in signaling
processes and normal sperm physiology [6,73]. In contrast, excess
ROS generated during cryopreservation attack viable sperm PUFA
rich membranes, impair DNA, alter seminal antioxidant profile, and
induce capacitation-like changes resulting in the low fertilizing
ability of sperm [16,63].

4.1. Physiological roles of ROS

Low or moderate ROS levels in the body maintain a functional
redox state and serve important functions such as maintenance of
primary cellular antioxidants, physiological regulation of cell
signaling, cellular growth, regulation of cytokines, neuro-
modulation, immune modulation and regulation of gene expres-
sion [41,74]. ROS through redox modulation of cysteine residues
influence the function of ion channels and transporters, modulate
kinases and activate the ubiquitin-proteasome system, which is
important in many redox-regulated activities and cell signaling
[19,41]. The physiological role of these molecules is crucial in
reproductive events such as sperm maturation, hyperactivation,
acrosome reaction and sperm-oocyte fusion [75,76] with their
short half-life and limited diffusion. ROS generate cyclic AMP in
spermatozoa and optimize tyrosine phosphorylation cascades in
the female genital tract, resulting in hyperactivation [9] and bind-
ing to the zona pellucida [77].

ROS promote tyrosine phosphorylation mediated capacitation
via increasing cholesterol efflux, bicarbonate inflow, calcium influx,
and other small ion influx, which causes hyperpolarization, acti-
vates adenyl cyclase, inhibits phosphotyrosine phosphatases, and
activates tyrosine kinases [76]. Capacitation is part of an oxidative
process and the superoxide anion promotes physiological capaci-
tation in cryopreserved human [78] and cattle [79] spermatozoa. In
addition, a certain optimal concentration of ROS is necessary for
increasing fluidity of the membrane and normal sperm functioning
[80,81]. During spermatogenesis, ROS like H2O2 confers protection
to mitochondria by inducing changes in its membrane marked by
the formation of the mitochondrial capsule. Under mild oxidative
conditions, disulfide bonds develop between the cysteine residues
of protamine, resulting in characteristically tight packaging of
chromatin and the stabilization of nuclear DNA, which may aid in
sperm maturation [75,82]. Therefore at controlled physiological
concentrations, ROS stabilizes the mitochondrial capsule [83],
serves as an essential second messenger in the sequence of coor-
dinated molecular events and fertilization [76,84]. Another
important aspect of physiological concentrations of ROS that it
leads to activation of the Phosphatidylinositol-4,5-bisphosphate 3-
kinase (PI3K) enzyme, which promotes sperm survival, maintains
them in an active state and inhibits apoptosis [63,85].

4.2. Pathological effects of increased ROS

Oxidative stress arises due to the excess generation of ROS
during freezing and thawing procedures and lack of intracellular
alleviation measures is the foremost factor behind the impaired
quality of frozen-thawed sperm [86]. Throughout various



Fig. 1. Physiological roles of ROS and pathological effects of increased ROS on bovine sperm functions. Note: ROS, Reactive oxygen species; PUFA, Polyunsaturated fatty acid; MDA,
Malondialdehyde; 4-HNE, 4-Hydroxynonenal; MMP, Mitochondria membrane potential, H2O2, Hydrogen peroxide; OH�, Hydroxyl ion; 1O2, Singlet oxygen; O2

�, Superoxide
anion(Created with BioRender.com).
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operations before freezing to AI (in vitro manipulation), bovine
sperms are exposed to light and aerobic environments, generating
oxidative radicals [87]. ROS are unstable and highly reactive
throughout the metabolism process, they get stable on gaining
electrons from nucleic acids, lipids, proteins, carbohydrates, or any
other adjacent molecule, culminating in a chain reaction leading to
cell damage [63,88]. Lipid peroxidation and stimulation of mito-
chondrial ROS results in the consequent generation of lipid alde-
hydes which has a protein-adducting activity that culminates in a
self-perpetuating redox cycle and a state of oxidative stress [89].
Mitochondria being the chief source of ROS and ATP production,
under limited antioxidant defence, the oxidants impair the electron
transport chain, resulting in decreased ATP synthesis, altered
mitochondrial membrane permeability, disruption of calcium ho-
meostasis and ultimately challenging the sperm competence [17].
Sperm may undergo an intrinsic apoptotic pathway by opening the
permeability transition pore and consequently extrusion of cyto-
chrome c [90]. Redox-dependent genetic and protein modifications
have been associated with oxidative stress in humans, bovine,
equine, hamster and mouse resulting in low sperm quality and
fertility failure [37,91]. As a consequence of redox deregulation,
there is irreversible oxidation of thiols in cysteine residues of key
proteins involved in controlling numerous sperm functions, leading
to malfunction and ultimately death of the spermatozoa [92]. In
addition, the seminal antioxidant armoury is also incompetent to
maintain equilibrium between the production and detoxification of
ROS [93]. The intrinsic reactivity by H2O2 and the .O2

� have been
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proposed as a major cause of defective sperm functions in case of
male infertility [94]. The following are the adverse effect of ROS on
sperm functions.

a. Lipid peroxidation and DNA damage

The sperm membrane is rich with PUFAs which contribute to
the membrane elasticity and fluidity that is required for successful
fertilization, however, at the same time, it makes sperm extremely
vulnerable to peroxidative damage [95,96]. The abundance of
carbon-carbon double bonds, which are easily oxidized by ROS
results in the loss of more than half of the fatty acids and suscep-
tibility to peroxidative damage [76]. Free radicals react with the
fatty acid chain to form lipid radicals which further react with
oxygen to form peroxyl radicals which can extract the hydrogen
from the lipid molecules, causing an autocatalytic self-propagating
reaction associated with destabilization of the membrane [65,76].
This lipid peroxidation cascade eventually terminates in the gen-
eration of highly reactive lipid peroxidation products such as
malondialdehyde (MDA), 4-Hydroxynonenal (4-HNE), acrolein and
isoprostanes which ultimately results in loss of membrane
permeability and membrane potential, and also affects the cellular
integrity [97]. The loss of membrane properties results in decreased
fluidity, increased non-specific permeability to ions and alteration
in receptor transduction, transport process and membrane en-
zymes [98]. The whole process of lipid peroxidation causes several
downstream effects like increased DNA fragmentation, reduced
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plasma membrane integrity, reduced progressive motility and
increased morphological abnormality of bovine spermatozoa [99].

ROS induce epigenetic changes in spermatozoa and are associ-
ated with a dysregulation in levels of mRNAs [97]. ROS brings about
DNA damage by reacting with the heterocyclic DNA bases and sugar
moiety and causes modification of all bases, production of base-free
sites, frame shifts, deletions, formation of DNA cross-links, chro-
mosomal rearrangements and chromosomal micro deletions
[100,101]. Specifically, free radicals bind to the double-bonds of
DNA bases and extract hydrogen from deoxyribose carbon leading
to strand breaks, base release and numerous base alterations which
certainly have an impact on embryonic development [62]. The
presence of PUFAs, particularly docosahexaenoic acid (DHA) with
six double bonds per molecule, and the lack of apurinic/apyr-
imidinic endonuclease 1 (APE1), an enzyme that plays a critical role
in DNA repair in the base excision repair pathway, are the mecha-
nisms behind spermatozoa's susceptibility to the afore mentioned
damages [102,103]. A significant positive correlation was reported
between high semen oxidative stress levels, DNA damage and
reduced fertilizing capacity, specifically in infertile human patients
with high-frequency DNA strand breaks [80,104,105], precisely
single and double-strand DNA breaks [106]. Oxidative stress-
induced DNA fragmentation in the sperm nucleus, mediated by
peroxidative damage not only disrupts sperm fertilizing potential
but also retards the development of a healthy embryo [107]. The
extent of DNA damage in mature sperm is also directly related to
ROS production by immature spermatozoa, higher the ROS pro-
duction lower the percentage of mature spermatozoa [108,109].

b. Protein dysfunction and apoptosis

The generations of cytotoxic aldehydes from lipid peroxidation
results in additional damage to spermatozoa as these aldehydes
covalently binds to exposed lysine, histidine, and cysteine residues
on target proteins [63], and disrupt post-translational modification
processes. Alterations in post-translational modification processes
result in a disturbance in protein-protein interactions, protein
localization and protein turnoverwhichmarks incorrect cleavage of
proteins, changes in protein folding pattern and protein carbonyl-
ation [60]. Moreover, direct oxidation or aldehyde adduction to the
protein components of the mitochondrial electron transport chain
increases the cell's inclination to generate excess ROS, causing
additional proteolytic degradation perturbing cell functionality
[64,110]. Produced ROS can bind to proteins and either activate or
deactivate leading to the induction of the intrinsic apoptotic
cascade [111] which may be the sequel to the depleted ATP and
inevitably leads to cell death [112]. The intrinsic apoptotic pathway
may further originate signals that initiate the activation of caspases
leading to the formation of adducts with mitochondrial proteins
and DNA fragmentation [113]. This is often accompanied by loss of
mitochondrial membrane potential, translocation of phosphati-
dylserine, destabilization of nucleoprotein structure and oxidative
DNA damage induced alterations to gene expression [89,114].

c. Effect on seminal attributes

The motility of sperm is lost more abruptly when exposed to
higher oxygen levels compared to nitrogen due to excess produc-
tion of ROS [5,115] and lower detoxification [116]. Excessive pro-
duction of ROS in semen can cause insufficient axonemal
phosphorylation, ATP depletion, decrease sperm viability and
midpiece sperm morphological defect affecting motility [117]. In
addition, induce premature acrosome reaction, lipid peroxidation
and inhibit mitochondrial membrane potential leading to low
fertilization rates [6,24,118]. The physiological concentrations of
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ROS are disrupted during in vitro manipulation in assisted repro-
ductive techniques (ARTs), as dead and damaged spermatozoa itself
generates supra-physiological levels of ROS that are detrimental to
viable sperms [69]. As ROS levels are highly connected with the
conception rates in humans undergoing IVF, measuring seminal
ROS levels has become important [119]. Higher levels of ROS can be
considered as a potent marker of male infertility, independent of
normal or abnormal seminal parameters [120]. The status of sem-
inal oxidants level is emerging as a significant diagnostic and
prognostic tool crucial for the treatment and management of
oxidative stress. High ROS levels are due to the low anti-oxidative
capacity of sperm as most of their cytoplasm-containing antioxi-
dants are discarded during the terminal stages of spermatogenesis
or diluted during the extension of semen for producing a large
number of straws for AI [121,122]. Therefore, accurate measure-
ment of concentrations of reactive species and addition of an
antioxidant to the extender can be an appropriate approach to
control ROS-induced oxidative stress [58,123]. In addition to in vitro
sperm processing and storage; heat stress, nutrition and age are
emerging as potential causes of oxidative stress in mammalian
spermatozoa [60]. Thus a molecular understanding of semen redox
biochemistry and the use of this knowledge to devise processing
and storage protocols with optimum antioxidant supplement
strategies is a prerequisite for efficient ROS homeostasis.
5. Reactive nitrogen species

Reactive nitrogen species (RNS) is a subset of the ROS family
which include nitrogen dioxide (NO2), peroxynitrite (ONOO�), ni-
tric oxide (NO.) and all those products that are formed by the
interaction of NO. to .O2

� and RO. [124]. RNS is particularly prevalent
in several parts of the male reproductive system and their origin
can be classified based on their structure and cell types. They are
ubiquitously present throughout the male reproductive system viz.
Testes, epididymis, accessory glands, penis (infiltrating leukocytes,
epithelial cells, endothelial cells, smooth muscle cells and macro-
phages) and ducts (ejaculatory duct and vas deferens) [71]. The
mitochondria are the prime site for the formation and reactions
related to nitric oxide and peroxynitrite, the formation of the latter
precedes at a cellular level when the level of nitric oxide over-
whelms superoxide dismutase [125]. Peroxynitrite further reacts
with other molecules and forms additional reactive nitrogen spe-
cies such as nitrogen dioxide (NO2) and dinitrogen trioxide (N2O3)
as well as other chemically reactive nitrogen free radicals. NO. being
a diffusible free radical, functions as an intracellular messenger in a
variety of physiological and pathological conditions [126]. RNS
plays a physiological role in signal transduction by inducing
mitogen-activated protein (MAP) kinase signaling pathways [71],
immune system facilitation [127,128], and mediating tight junction
dynamics of the blood-testis barrier, which is important for sper-
matogenesis, germ cell maturation, and development [127,129,130].
Although it supports several sperm functions at physiological levels
[131,132], RNS at disproportionate levels contributes to nitrosative
stress, exerting severe pathological effects on the male reproduc-
tive system [133,134]. In particular, RNS has recently been impli-
cated in inducing poor sperm function and fertilizing ability when
present at the supra-physiological concentration [135] because of
their ability to modify key biomolecular systems through oxidation,
nitrosylation, and nitration [124]. Excessive generation of reactive
oxidants is implicated in the etiology of male infertility, and even
antioxidant therapy has failed to treat male infertility in many cases
[135]. This led to the discovery that ROS and RNS are required for
appropriate sperm functioning in small and controlled physiolog-
ical concentrations.
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5.1. Nitric oxide (NO.)

NO. is a diatomic free radical that, due to its non-polarity, may
easily diffuse across phospholipid bilayer, acts as a cell-signaling
molecule in mammalian cells and influences key processes in vi-
tal body systems [136e138]. Owing to its potent vasodilation
property, NO. is recognized as a vascular endothelium-derived
relaxing factor. Normally produced during nonadrenergic-
noncholinergic neurotransmission, therefore, plays an important
role in erection in males [139]. Currently, it is one of the widely
investigated radical species in medicine and has significant impli-
cations in biochemical systems due to its versatility and extensive
downstream network [113]. NO. biosynthesis has been reported in
several organs of the male reproductive system [140,141] including
spermatozoa [142,143]. The NO. is produced in sperm from L-argi-
nine via the enzyme nitric oxide synthase (NOS) and the activity of
the enzyme depends on male germ cell maturity [144]. All identi-
fiedmammalian NOS isoforms are heme-containing proteins with a
monomeric molecular mass of 126e160 kDa in natural conditions.
NOS comprise a reductase domain-containing tetrahydrobiopterin
(BH4), which through protein-protein interactions catalyze the
reaction that produces NO. [135]. Apart from NOS, the said reaction
needs oxygen, as well as cofactors such as nicotinamide adenine
dinucleotide phosphate (NADPH), flavin mononucleotide (FMN),
flavin adenine dinucleotide (FAD), calmodulin and calcium to pro-
duce NO. and L-citrulline as a byproduct [128,145]. The three
different isoforms viz. endothelium NOS (eNOS) is mostly found in
the endothelium, neuronal NOS (nNOS) is predominantly found in
neural tissue and inducible NOS (iNOS), found in macrophages,
neutrophils and hepatocytes [136] which was also reported to be
expressed in the head or flagellum regions of the sperm [146,147].
Therefore, the endogenous presence of eNOS, iNOS, and Nnos
within the testis proves the importance of NOS for spermatogen-
esis. The isoforms eNOS and nNOS are constitutive and bio-
synthesized at steady rates are recognized as calcium (Ca2þ)
calmodulin-dependent enzymes [131,136]. Whereas, iNOS is a
Ca2þindependent enzyme that has specific inducers (e.g. inflam-
matory cytokines, tumor necrosis factor and bacterial endotoxins)
that vary from cell to cell. The above factors elevate iNOS synthesis
and activate for a longer duration, which can result in the pro-
duction of higher concentrations of NO. [148]. TnNOS, a testis-
specific subtype of nNOS, has been identified as a substantial
contributor to the synthesis of NO. [129,130], localized in leydig
cells and engaged in steroidogenesis [149]. Moreover, some
research has postulated the indirect role of glucose through the
pentose phosphate pathway and arginase enzyme (mitochondrial
form) in the regulation of the synthesis of nitric oxide.

NO. has been demonstrated to have effects via two separate
signaling pathways: cyclic guanosine monophosphate (cGMP)-
dependent (classical signaling) and cGMP-independent (non-clas-
sical signaling) [148,150]. Classical signaling involves activation of
soluble guanylate cyclase (sGC), generation of cGMP and subse-
quent activation of specific cGMP-dependent enzymes, while non-
classical signaling occurs through covalent post-translational
modification of target proteins, that is S-nitrosylation, S-gluta-
thionylation and tyrosine nitration [151e153]. NO. regulates its
activity via a feedback inhibition mechanism [127] which is highly
dependent on its concentration within the male reproductive sys-
tem. While abnormal concentrations of NO. undoubtedly affects
reproductive efficiency, it is least intoxicating with a short half-life
of 3e10 s, and quickly combines with oxygen and transforms to
nitrite and nitrate in tissues. Therefore, it has a paradoxical bimodal
role (Fig. 2.) in the physiology of bovine spermatozoa depending on
time and concentration, resulting in either beneficial or detri-
mental effects on the sperm pool.
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5.1.1. Physiological roles of NO
NO. is the regulatory molecule in controlling the hypothalamic-

pituitary-gonadal axis [137]. It stimulates the secretion of
gonadotropin-releasing hormone (GnRH) from the hypothalamus,
which then potentiates the pituitary gland to secrete the gonado-
tropins by triggering the pituitary localized nNOS [154]. NO. also
acts as a major facilitator of human sexual behavior; as it causes
penile erection in males by producing cGMP in the corpora cav-
ernosa [155], relaxes the vaginal smooth muscle and secretes
vaginal discharges in females [154]. Owing to its potent junction
modulation property and ability to control the level of cytokines
and hormones in the testis, it has a typical role in modulating germ
cell viability and development [113]. At physiological levels, NO. has
an essential role in sperm transport from the rete testis to the
epididymis and in regulating motility, viability, morphology and
the ability of sperm to capacitate and undergo acrosome reaction
[130,135]. NO. accomplishes beneficial effects on sperm function
either by improving the functional status of sperm mitochondria
and sperm quality [156] or by scavenging, deactivating and inhib-
iting free radicals [157]. The concentration <1 mM increases normal
sperm motility and has shown sperm hyperactivation [132,156]. In
consonance with previous findings, improved motility, viability,
membrane integrity, acrosome integrity and reduced total abnor-
mality were reported after in vitro addition of an optimized dose of
NO. compounds post thawing [11,158]. Khodaei et al. [159] and
Upadhyay et al. [160] recorded that in vitro addition of nitric oxide
compounds at standardized concentrations in cryopreservation
media significantly improves various seminal attributes of bovines
after freezing.

5.1.2. Effect of nitric oxide compounds on seminal attributes
RNS have major contribution to human reproduction since its

recognition as a key molecule involved in the in vivo regulation of
the hypothalamic-pituitary-gonadal axis and in vitro regulation of
sperm functions when added at an optimized concentration
(Table 1.). Nitric oxide due to its dual action in humans, impairs
sperm morphology at high concentration, while at low concentra-
tion (1e500 mM) enhances sperm motility [161]. The amount of
nitric oxide produced by sperm cells and how long it lasts de-
termines whether it has a pathological or physiological effect. The
ability of NO. to interact with the Iron-Sulphur (FeeS) center of
aconitase and other mitochondrial electron transport chain en-
zymes such as NADH dehydrogenase or succinate oxidoreductase
decreases motility and viability of human spermatozoa particularly
at high concentrations [162] by altering energy, metabolism, and
cellular respiration [163]. Herrero et al. [131] reported that capac-
itation was accelerated by NO. releasing compounds due to an in-
crease in the levels of tyrosine phosphorylation of two different
sperm proteins (p81 and p105). In cryopreserved bovine sperma-
tozoa, exogenous NO. functions as a capacitation inducer and par-
ticipates in intracellular pathways that lead to the activation of
protein kinase A (PKA), protein kinase C (PKC), and protein tyrosine
kinase (PTK) [164]. The precursor of NO. synthesis, L-arginine, af-
fects polyamines which are key biomolecules for cell growth and
differentiation [165], increasing sperm motility [166], vigor, mem-
brane integrity and oocyte penetration [167]. The sodium nitro-
prusside (SNP) and N-nitro-L-arginine methyl ester (L-NAME) are L-
arginine analogues that function as NO. donor and inhibitor,
respectively. Among different NO. donors, SNP is regarded as the
most effective for in vitro study of the action of NO. [168]. The SNP
treated semen samples (up to 100 nM) in human [169] and Holstein
bull [159] maintain motility, viability and acrosome integrity of
spermatozoa at pre and post-thawing stages. Contrarily some re-
searchers observed that the in-vitro SNP addition increases ROS
production, induces precocious acrosome reaction and significantly



Fig. 2. Physiological roles of nitric oxide, sources of reactive nitrogen species and pathological effects of increased nitric oxide and peroxynitrite on bovine sperm functions. Note:
H&P, Hypothalamus and pituitary; CC, Corpus cavernosum; GC, Germ cell; NADPH, Nicotinamide adenine dinucleotide phosphate; NADP, Nicotinamide adenine dinucleotide
phosphate, SNP, Sodium nitroprusside; L-NAME, N-nitro-L-arginine methyl ester; SIN-1, 3- Morpholinosydnonimine; nNOS, neuronal Nitric oxide synthase; GnRH, Gonadotropin-
releasing hormone; cGMP, cyclic Guanosine monophosphate(Created with BioRender.com).
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decreases the rates of fertilization with compromised embryonic
development [170]. Digamber et al. [171] investigated the influence
of SNP treatment on frozen-thawed buffalo semen and observed
fewer numbers of normal spermatozoa with reduced viability and
motility as compared to control. High concentrations of NO. damage
the nuclear or mitochondrial DNA of spermatozoa via deamination,
nitration and oxidation process [71].

Rodriguez et al. [164] reported that certain NOS inhibitors have
proven essential for assessing the role of NO. in physiological pro-
cesses. The L-arginine analogues such as N-nitro-L-arginine (L-NA)
or L-NAME are specific inhibitors of constituent and inducible nitric
oxide synthase (NOS) forms as they compete with L-arginine for the
limited number of binding sites on the enzyme eNOS, whereas
aminoguanidine (AG) selectively inhibits inducible NOS [180]. In
cattle and buffalo, the addition of L-NAME to sperm capacitation
media reportedly decreases sperm membrane integrity [167], in-
hibits premature capacitation and induces acrosome reaction 6 h
after capacitation [174]. A similar study in cattle by Rodriguez et al.
[164] reported that the capacitation was inhibited by the addition
of L-NAME at different concentrations (0.001, 0.01 and 0.1 mM). The
addition of a higher concentration of L-NAME (10 mM) has signif-
icantly (P < 0.05) inhibited NO. synthesis, sperm progressive
motility, sperm vigor and sperm membrane integrity suggesting
the importance of NO. in functional seminal attributes [167].
Interestingly L-NAME was also reported to potentiate sperm count
and morphology [181], indicating its physiological role against
peroxidative damage which arises during nitrosative stress. This
conjectures the existence of dose and time-dependent variation in
sperm motility, viability, membrane integrity, acrosome integrity
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and total abnormality as evidenced by various researchers in
bovine spermatozoa after in vitro addition of SNP and L-NAME
[11,158].

5.1.3. Pathological effects of increased NO
At supraphysiological concentration NO. produces noxious per-

oxynitrite and nitrosothiols by reacting with .O2
� and thiol sites

respectively. Another potentially crucial factor that may have NO.

implications in male infertility is NOS uncoupling [136], which re-
sults in the generation of .O2

� rather than NO. and a decrease in NO.

bioavailability. Excessive level of NO. or dysregulation of NOS in
testis triggers uncontrolled germ cell apoptosis [130]. Pathological
levels of NO., greater than 1 mM, have been involved in lipid per-
oxidation because of the easy abstraction of hydrogen from PUFA
rich sperm plasma membranes [11,158]. It triggers a cascade of
reactions, resulting in the production of free radicals that can be
further oxidized to form additional free radicals. Significant levels
of seminal NO. (mM) are associated with alterations in sperm
functions such as decreased motility [132], inhibition of cellular
respiration [162] and DNA damage [182] while a further higher
concentration of NO. (mM) have been demonstrated to cause
mitochondrial hyperpolarization, cytochrome c release and sperm
cell death [183]. Some researchers reported a negative correlation
between high NO. concentrations and spermmorphology [184,185].

5.2. Peroxynitrite (ONOO�) as an oxidant

A detrimental effect of NO. is mediated by the formation of
peroxynitrite [126]. ONOO� is a strong oxidant, nucleophile and

http://BioRender.com


Table 1
Physiological and pathological roles of different concentration of nitric oxide and peroxynitrite compounds on sperm functions.

Free
Radical

Study Result Species Reference

NO. Incubation with SNP @ l0�4 to 10�6 M concentration over 20 h Significant reduction in motility in a dose-dependent manner while
no significant changes in sperm viability

Human Tomlinson
et al. [172]

NO. Incubation with GSNO and PTIO @ 100 mM over 20 min at 37 �C No significant change in progressive motility Human Miraglia et al.
[173]

NO. a. Addition of 10 mM L-Arg to the capacitating medium (30
e60 min at 38.5 �C with a humidified atmosphere of 95% of
air and 5% CO2 for stabilization).

b. Addition of 10 mM L-NAME to the capacitating medium.

a. Increase in progressive motility, sperm vigor, sperm membrane
integrity and oocytes penetration.

b. Decrease in progressive motility, sperm vigor, sperm membrane
integrity and oocytes penetration

Cattle Leal et al. [167]

NO. a. Incubation with L-Arg in different concentrations (2, 5, 10, 15
and 20 mM) for more than 5 h (38.5 �C in 5% CO2 : 95% air)

b. Incubation with L-NAME at the rate of 0.5 mM for more than
5 h (38.5 �C in 5% CO2 : 95% air)

a. Induced capacitation and tyrosine phosphorylation of p38 (5 and
10 mM); viability and progressive motility were significantly
reduced at >10 mM concentration

b. Heparin and L-Arg induced capacitation was inhibited significantly
by L-NAME

Buffalo Roy and Atreja
[174]

NO. Sperm exposed to 1 mM NO. before freezing Significant increase in sperm kinematics and viability post thawing Cattle Sharafi et al.
[175]

NO. Addition of SNP @ 50e100 nM in diluent and examined at 1, 2
and 3 h after thawing

Increase in motility, viability, membrane functionality and acrosome
integrity

Cattle Khodaei et al.
[159]

ONOO� a. Incubation with different concentrations (1e20 mM) of SIN-1
for 45 min at 38 �C

b. Incubation with different concentrations (2, 5 and 10 mM) of
uric acid for 45 min

c. Incubation with �160 mM of SIN-1 for 45 min at 37 �C

a. 10 mM concentration significantly induced capacitation with no
effect on motility and viability

b. 10 mM concentration entirely blocked SIN-1 induced capacitation
and significantly diminished heparin or SNP induced capacitation

c. Dose dependent decrease in motility

Cattle Rodriguez and
Beconi [176]

ONOO� Incubations with SIN-1 at different concentrations (0.05, 0.2, 0.4,
0.6, 0.8 and 1.0 mM) for up to 4 h at 37 �C

Decrease in progressive motility, total motility, mitochondrial
membrane potential (significantly at 1.0 mM) with no change in
viability

Human Uribe et al.
[177]

ONOO� a. Incubation with 160 and 200 mM of SIN-1 for 60 min or above
at 37 �C

b. Incubation with 10 mM of uric acid for 60 min or above at
37 �C

a. Decrease in motility, viability, membrane integrity and acrosome
integrity

b. Increase in viability and ATP production

Cattle Jalmeria [178]

ONOO� a. Exposure of sperms to different concentrations of SIN-1 (10,
50 and 100 nM) at refrigerated temperature for 72 h

b. Exposure of sperms to different concentrations of uric acid
(0.1, 1 and 10 mM) at refrigerated temperature for 72 h

a. Increase in metabolic enzyme activity and, dose and time-
dependent decline in seminal attributes

b. Decrease in metabolic enzyme activity and, dose and time-
dependent increase in seminal attributes

Buffalo Kshetrimayum
[179]

NO. Supplementation of SNP in extender @ 1 mM and L-NAME @
10 mM in refrigeration and cryopreserved samples

Improved motility at 6, 24 and 48 h of refrigeration and after freeze-
thawing

Buffalo Upadhyay et al.
[160]

Note: SNP, Sodium nitroprusside (NO. donor); GSNO, S-nitrosoglutathione (NO. donor); PTIO, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (NO. scavenger); L-Arg,
L-Arginine (NO.-synthesis precursor); L-NAME, N-nitro-L-arginine methyl ester (NO�/NOS inhibitor); SIN-1, 3- Morpholinosydnonimine (ONOO� donor); Uric acid (ONOO�

inhibitor).
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highly reactive short-lived peroxide having a pka value of 6.8 and is
produced from a diffusion-controlled reaction of NO. with .O2

�

[125,145]. Mitochondria act as a central source of .O2
� (produced

through aerobic respiration) in the cell and nitric oxide enters the
mitochondria by diffusion from the cytosol. This favours the for-
mation of ONOO� by an irreversible reaction because of its
exothermic nature. Therefore, mitochondria act as a cellular sink of
nitric oxide and the prime source of ONOO� in the cell [186]. It has
been reported that much of the cytotoxicity of NO. and .O2

� radical is
mainly due to ONOO�, as it affects mitochondrial function and
triggers the pathogenic mechanism and cell death via nitration and
oxidation reactions of lipids, proteins and DNA [186]. Additionally it
inhibits complexes I and III of the respiratory chain [187] of mito-
chondria, thereby reduces the activity of the organelle and potency
to produce ATP. Neither .O2

� nor NO. are toxic in vivo as .O2
� is

removed by superoxide dismutase (SOD) isoforms and NO. is
removed by its rapid diffusion through tissues. Therefore under
normal conditions, the formation of peroxynitrite is lower [188]
and its adverse effect is minimized by endogenous antioxidant
defense mechanisms. But under pro-inflammatory conditions and
in vitromanipulation, excess production of .O2

� and NO. leads to the
generation of significant amounts of ONOO� that in turn causes
perturbations in different cellular structures (deoxyribose, gluta-
thione, cysteine, thiols, Naþ/Kþ-ATPase and Ca2þ-ATPase activity)
and the physiological system is not efficient to minimize excess
accumulation [189]. The primary pathway of nitric oxide meta-
bolism is the peroxynitrite formationwhich suggests that excessive
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activity of NOS results in excess production of peroxynitrite. This
event is marked in the idiopathic asthenozoospermia patients, in
which a high level of peroxynitrite along with high nitric oxide
synthase activity is present [190] that inhibits ATP production by
affecting the pathways involved in both glycolysis and oxidative
phosphorylation [191]. Peroxynitrite is also reported to cause the
nitration of protein residues forming 3-nitrotyrosine which affects
motility parameters [186]. The nitration process represents a pro-
tein modification specific for ONOO� formation in vivo and is
widely used as a marker for peroxynitrite [177]. The increase in
superoxide production observed during the cooling phase of
cryopreservation without any alteration in the level of H2O2 is
probably due to the drain of superoxide radical for the production
of peroxynitrite. Longer exposure of spermatozoa to high levels of
peroxynitrite affects viability, membrane integrity and acrosome
integrity by inducing peroxidative damages [178].

During pathological conditions, both NO. and .O2
� are synthe-

sized within close vicinity in supra-physiological amount yielding
ONOO�. It acts as an oxidant and rather than isomerizing to nitrate,
it produces nitrite and a hydroxide ion that react with cellular
components viz. proteins, lipids and nucleic acids causing oxidative
modifications of cellular components [126]. Furthermore, perox-
ynitrite can oxidize a sulfhydryl group producing hydroxyl radical
which is found to be associated with sperm membrane lipid per-
oxidation [192]. Persistent generation of increased levels of ONOO�

cause apoptosis or necrosis and leads to breakage of DNA strands
when reacts with nucleic acids.
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5.2.1. Effect of peroxynitrite compounds on seminal attributes
The formation of ONOO� during cryopreserved spermatozoa

capacitation and its involvement in physiological capacitation [193]
through the participation of PTK is also supported by the fact that
uric acid (by inhibiting ONOO�) affects heparin-induced capacita-
tion [176]. The 3- Morpholinosydnonimine (SIN-1) has been
commonly used as an inducer of peroxynitrite and uric acid as a
strong inhibitor of peroxynitrite in several in vitro studies to
monitor sperm functions in humans and bovines (Table 1.). In
presence of oxygen, SIN-1 transforms spontaneously to nitric oxide
and superoxide [194,195]. A decrease in the motility of cry-
opreserved bull spermatozoa was observed after incubation with
SIN-1 (3- Morpholinosydnonimine) at the rate of 160 mmol/L [176].
Uric acid possesses scavenging properties for peroxynitrite. It
selectively binds with peroxynitrite excluding nitric oxide and has
been shown to inhibit both in vivo and in vitro peroxynitrite-
dependent processes [186]. Jalmeria [178] conducted in vitro
experiment to evaluate the pathophysiological effect of SIN-1 and
uric acid on cryopreserved semen of Karan Fries bulls. The con-
centration of SIN-1 � 160 mM was detrimental for spermatozoa
motility, viability, membrane integrity and acrosome integrity
when incubated for 60 min or above. Conversely, 10 mM concen-
tration of uric acid significantly increased viability and ATP pro-
duction at 60 min of exposure, while there was a loss of membrane
integrity and acrosome integrity at the same dose. Likewise,
Kshetrimayum [179] also observed dose and time-dependent
decline in seminal attributes after in vitro addition of SIN-1 in
cryopreserved semen of Murrah buffalo bulls. Additionally, a sig-
nificant increase and decrease in enzyme activity (alanine amino-
transferase, aspartate aminotransferase, alkaline phosphatase),
which plays key roles in the maintenance of metabolic activity and
membrane stability was reported after incubation with SIN-1 and
uric acid respectively. The other sperm attributes increased signif-
icantly with an increasing concentration of uric acid. The possible
reason behind this fluctuation can be due to the scavenging activity
of uric acid on RNS and particularly on peroxynitrite, but not for
ROS. A low effect was observed on sperm motility and a negative
effect on membrane integrity during long exposure to the uric acid
[178] may be due to species and dose variation or due to activation
of other pathways by addition of this compound.

6. Conclusion

Information on nitrosative stress in a more rational manner, as
well as their relation with cryopreservation, is highly valuable for
optimizing the production of quality frozen semen. Moderate ROS
levels in the body maintain a functional redox state and perform
important functions in the sperm cell. Recently NO. has emerged as
a potential regulator which regulates diverse sperm functions and
potentiates certain sperm parameters like acrosome reaction,
capacitation, hyperactivation of motility and signaling processes.
Therefore, protocols with optimized inclusion of oxidants and an-
tioxidants help to reduce the concomitant stress during extension
and cryopreservation of bovine semen and to prevent any further
deterioration in sperm quality during storage and post-thaw.
In vitro and in vivo addition of both nitric oxide donor (SNP) and
inhibitor (L-NAME) and peroxynitrite inhibitor compounds at an
optimized dose found to have beneficial effects. While the action of
peroxynitrite deteriorates the seminal quality, the addition of its
inhibitor like uric acid in cryopreservation media can reduce its
limiting effect. Concerning the optimizing activity of these com-
pounds on seminal attributes, the degree of support provided by
bovine experiments is still low to moderate. Therefore, it is
necessary to standardize the dose and protocols for supplementa-
tion of these novel compounds as additives in extender in bovine
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and, other species and evaluate the outcomes with in vitro fertil-
ization and in vivo conception rates. Further, requires detailed
investigation through “omics” techniques to establish the patho-
logical or physiological interactions of reactive oxidants and bio-
molecules at the molecular level to facilitate their extensive use in
the semen cryopreservation process.
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