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Abstract: 

Disease attack on crops is one of the most serious threats to the global food supply chain. A proper, comprehensive 

and systematic solution is required for the early recognition of diseases and to reduce the overall crop loss. In this 

regard, deep learning techniques (especially convolutional neural networks (CNNs/ConvNets)) are being 

successfully applied for automatically recognizing the diseases of crops using digital images. This study proposes 

a novel 15-layer deep convolutional neural network (CNN) model for recognizing the diseases of maize crop. 

Around 3,852 images of maize crop were collected from the PlantVillage data-repository. This dataset contains 

leaf images of three diseases viz. Grey Leaf Spot (GLS), Common Rust (CR) and Northern Corn Leaf Blight 

(NCLB) as well as the healthy ones. The proposed model showed significant results for recognizing the unseen 

diseased images of the maize crop. We also employed a few popular pre-trained networks in the transfer learning 

approach for training on the maize dataset. We presented the comparative performance analysis between the 

proposed model and the pre-trained models in the result section of the manuscript. The experimental findings 

reported that our proposed model showed 3.2% higher prediction performance with 3x lesser trainable parameters 

than the best-performing pre-trained network (i.e. DenseNet121). The overall performance analysis reported that 

the proposed CNN model is very effective in identifying the images of maize diseases and also performs quite 

better than the popular pre-trained models.  
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1 Introduction: 

By 2050, the global population is expected to rise by almost 2 billion people from 7.7 billion to 9.7 billion [1]. 

Therefore, sustainable food security is needed to be maintained to meet the requirements of such a large 

population. Globally, maize is considered one of the major cereal crops after rice and wheat [2]. It potentially 

supports the overall food supply chain by providing food as well as feed for humans and livestock across the 

world. During the year 2020, maize was grown in around ~197 mha area across 170 countries in the world and 

yielded at the rate of 5.82 t/ha [3]. Spite of the high productivity, maize crop is highly vulnerable to a variety of 

diseases during its whole growing season. Till date, around 112 diseases have been reported from different regions 

of the world in maize crop [4]. These diseases have the potential of causing moderate to severe damage to the 

overall production of maize crop. According to the reports, every year around 4-14% of the total production of 

maize is damaged due to the attack of disease-causing pathogens alone [5]. In order to address this issue, diseases 

should be properly diagnosed/recognized before applying any management practices to the crop. Conventionally, 

diseases are diagnosed either through the visual inspection of the damage in fields or by performing laboratory 

experiments on the damaged plant parts of the crop by domain experts [6]. However, these traditional approaches 

have few inherent limitations and aren’t always feasible. These approaches require highly qualified staff and 

involve a significant amount of time to complete the desired tasks. Hence, an effective and precise disease 

diagnosis approach is the hour of need in the current scenario.  

In recent years, computer vision field of computer science has been blessed with the tremendous success of deep 

learning-based techniques, especially convolutional neural networks (CNNs/ConvNets). The CNNs/ConvNets 

have introduced automation in the field of image recognition [7]. The CNNs are capable of extracting the inherent 

and significant features from a large number of images and classifying the extracted features into their respective 

classes. In the last couple of years, recognition of images using deep learning techniques has also gained huge 

popularity in the agriculture sector [8]. In this respect, disease recognition in crops using the symptomatic images 

of diseases has emerged as a suitable candidate for this area of computer science. Therefore, the CNNs/ConvNets 

are considered as the state-of-the-art framework for the automated diagnosis of diseases of crops using digital 

images [9]. In the present study, a developed a novel deep CNN model to recognize/identify the diseases of maize 

crop from the PlantVillage data-repository [10] (publicly available image data repository of diseases of several 

crops). The major contribution of this study is mentioned as follows:  

• We proposed a 15-layer deep convolutional neural network model that is simple and lightweight in 

nature. The proposed model was trained and tested on the diseased images of maize crop from the 

PlantVillage data repository. 

• In order to showcase the effectiveness of our proposed model, we applied the transfer learning approach 

using a few popular pre-trained models on the maize dataset and compared their classification 

performance with our proposed model. 

The remainder of the article is arranged as follows: In the next section, we briefly discussed the related works 

done on maize crop. Next, we discussed the proposed approach for recognition of the diseases of maize crop using 

the convolutional neural networks. After that, we provided experimental details of model implementation, details 

of data collection and pre-processing and applied evaluation metrics. Then, we presented and discussed the 

experimental results, prediction performance proposed model and comparative performance analysis between 



several pre-trained models done using the maize dataset. Finally, we summarised and concluded the overall study 

in the last section.  

2 Related works 

Several researchers across the world are performing experiments for recognizing the digital image of diseases of 

maize crops by applying deep learning techniques. Mohanty et al. [11] worked on the diagnosis of 26 diseases of 

14 different crops using deep learning techniques. They used the publicly available image data-repository 

‘PlantVillage’[10] which contains more than 50 thousand images of several crops such as apple, cherry, maize, 

potato, tomato etc. They applied transfer learning on two most popular deep CNN models viz. AlexNet [12] and 

GoogleNet [13] for their experiment. Dechant et al. [14] trained a computational pipeline of CNNs for the 

identification of northern corn leaf blight (NLB) disease of maize. They trained and validated the proposed CNN 

model on the in-field images of NLB disease captured in non-destructive mode. Their proposed 3-stage CNN 

model identifies the NLB disease symptoms with 96.7% accuracy. However, they focused on only one identifying 

only one disease of maize and the use of 3-stages of CNN makes it slightly expensive in terms of computation. 

Zhang et al. [15] applied two state-of-the-art models viz. GoogleNet [13] and Cifar-10 for recognizing 9 diseases 

of maize crop. They collected the image dataset from the PlantVillage data repository and several internet sources. 

They applied the transfer learning approach to reduce the computational overload of the state-of-the art models 

and achieved more than 98% accuracy. Sibiya et al. [16] proposed a custom CNN model to identify and classify 

images of diseases of maize crop. They collected the symptomatic images of maize crop from different agricultural 

fields. They used a java based implementation method for implementing the proposed CNN model. However, 

their proposed model achieved an overall classification of 92.85% on the test dataset.  Priyadharshini et al. [17] 

developed a simple CNN model inspired by LeNet [18] architecture for classifying diseases of maize crop 

collected from the PlantVillage dataset. They applied the PCA whitening technique to pre-process the images 

before training and achieved around 98% accuracy. Lv et al. [19] proposed the improved version of the AlexNet 

[12] model for classifying images (diseases, insect-pest and nutrient deficiencies) of maize crop. The enhanced 

feature learning capability of AlexNet model by incorporating one multi-scale convolution operation provided 

significant results on test images. Waheed et al. [20] proposed an optimized CNN model for classifying the images 

of maize crop into respective disease categories. Their proposed model is based on the architectural framework 

of the DenseNet [21] model. Haque et al. [9] have used the popular deep CNN network ‘GoogleNet’ for 

identifying the MLB disease of maize crop. They collected images of healthy and MLB diseased leaves of maize 

from agricultural fields in a non-destructive manner with complex backgrounds. They achieved around 99% 

accuracy while identifying the MLB disease of maize.  Chen et al. [22] developed a lightweight CNN model for 

the identification of 8 diseases of maize crop. They collected 466 images of maize diseases from agricultural fields 

of Fujian Province, China. They incorporated an attention module in the DenseNet architecture to propose the 

novel CNN model, which achieved around 95% classification accuracy.  

The studies in the available literature reported that most of the works had shown significant results in identifying 

the diseases of crops. However, in some cases, the significant results were achieved at the cost of higher number 

of trainable parameters or computation time which adversely affects the model’s overall detection performance. 

Therefore, to reduce the computational complexity of the conventional disease identification model and improve 

the model's detection accuracy, we proposed a computationally lightweight CNN model for recognizing the 



diseases of maize crop. We applied 15 layers of stacked convolution and pooling operations to extract the most 

inherent features from the images. In addition, we incorporated batch normalization and ReLU operation in each 

of the convolutional operations of our proposed network to normalize the input feature maps for efficient feature 

extraction and reduce the computational parameters in the network. We also employed global average pooling 

instead of fully connected layers, drastically reducing the number of parameters with enhanced detection 

capability.   

3 Proposed approach for maize disease recognition: 

3.1 Overview 

We depicted the overall flow of the proposed maize disease recognition approach using the convolutional neural 

networks (ConvNets/CNNs) in Fig. 1. Firstly, we collected the digital images of maize crop from the PlantVillage 

data-repository and stored them in our storage disks. Next, we applied different image pre-processing and 

augmentation techniques to this maize image dataset. Then, we split the maize image dataset into two groups such 

as training and testing sets. After that, we trained our proposed CNN model as well as the pre-trained models by 

using the training set of the maize image dataset. After the completion of model training, all the models were 

evaluated based on their prediction performance on the test set. Finally, the best model was selected for the maize 

disease recognition approach. 

3.2 Convolutional Neural Networks 

Generally, convolutional neural networks (CNNs/ConvNets) are the highly specialized form of supervised 

artificial neural networks [17]. The concept of CNNs/ Convnets is inspired by the working principle of the 

biological visual cortex [26]. As shown in Fig. 2 (a, b), CNNs are composed of two major functional modules, 

such as the ‘feature extraction module’ and the ‘classifier module’ [27]. The feature extraction module is made 

up of multiple layers of linear transformations, i.e. convolution and pooling layer, which automates the extraction 

of the promising features from the images. The classifier module (also known as fully-connected layer or dense 

Fig. 1 Overall flow of the maize disease recognition approach 



layer) then processes the extracted features to classify them into their respective classes. The details of the different 

layers of CNNs/Convnets are described in the following sections. 

3.2.1 Convolution 

In CNNs, the most significant and essential layer is the convolution layer. The CNNs learn the elementary low-

level features of the images such as edges, curves, lines, endpoints, textures, corners and so on through the 

convolution operation [18]. The convolution layer involves the convolution operation, a mathematical operation 

(denoted by ∗) on two functions whose output determines how the shape of one function will change by the other 

one. In the case of image classification, the convolution layer convolves a set of filters (or kernels) through the 

pixels of the images and generates a set of features (or activation) maps [28]. The convolution operation performs 

sums of products between the filter (kernel) elements and the input activation maps. These sums of products of 

the feature maps are activated by the given non-linear activation functions applied in the networks [7]. The major 

advantages of the convolution operation are such as it provides sparse connectivity between the neurons, shares 

the parameters among several neurons and imposes translation invariance in the images. The overall convolution 

operation can be expressed by the equation shown in eq. 1:  

𝑧!" = g(%𝑥	!"

!
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Where, 𝑧!"  denotes the output feature map of 𝑘-th input at 𝑙-th layer of the model; 𝑥!"  denotes the 𝑘-th input 

feature map at 𝑙-th layer of the model; 𝑊!
"  and 𝑏!"  denotes the weights and bias at the 𝑙-th layer of the model and 

𝑔(. ) is the non-linear activation function. 

3.2.2 Pooling 

The pooling operation is the subsampling process in which input feature/activation maps are down-sampled i.e. 

the dimension of the inputs are reduced spatially. Pooling makes the representations in the input feature maps 

smaller but more manageable [26]. The output units of the pooling layer are connected to the outputs of a smaller 

number of neurons in the preceding layer of the network located within a narrower receptive field. It works 

individually on each of the input feature maps to generate a set of new pooled feature maps. Moreover, the down-

sampling operation on the input feature maps in the pooling layer minimizes the number of trainable parameters 

and the network’s computational load [29]. In the case of image classification using CNNs, mainly two types of 

pooling operation are applied viz. max-pooling and average pooling. In max-pooling operation, a max-filter (max-

eq. 1 

a b
Fig. 2 General framework of convolutional neural networks (CNNs/Convnets) a) feature 

extraction module and b) classifier module 



kernel) is applied over the input feature maps (see in Fig. 3) and in the average-pooling, an average-filter is applied 

on the feature maps [9]. 

 3.2.3 Fully-connected (Dense) Layer 

The fully-connected (dense) layer is generally a classifier in CNNs/ ConvNets that classifies the learned feature 

maps into corresponding class labels of the dataset under study. This layer generally resembles the traditional 

artificial neural networks (or MLPs) structurally as well as functionally as shown in Fig. 2(b). In the dense layer, 

all the neurons of any layer are associated with every neuron of other layers in the network precisely similar to 

the MLPs [9]. Hence, the outputs nodes are computed through the dot multiplications between the inputs vectors 

and the weight vectors followed by the bias term [17]. Finally, the dense layer's last layer has as many nodes as 

there are class labels in the dataset under study. 

3.2.4 Activation Functions 

The activation functions boost the efficiency of the CNN models significantly. These functions are applied to the 

output of the convolution operation before passing them to the next layer [30]. The activation function computes 

the weighted sum of the neurons to determine whether a neuron in the network should be activated or not. In case 

of CNNs/ConvNets, ReLU (Rectifier Linear Unit) function is used to activate the neurons in the convolution 

layer. ReLU is a non-linear transformation function that speed-up the network’s convergence capability during 

training [19]. It activates a specific neuron in the network when its value exceeds a certain threshold (e.g. 0 

threshold value). The ReLU function is defined by the following equation (eq. 2): 

𝑅𝑒𝐿𝑈(𝑥!) = .𝑥! ,			if,	𝑥!	>	0		0,							if,	𝑥!	≤	0
 

3.3 Proposed Convolutional Neural Network Model: 

In this research work, we developed a novel deep convolutional neural network (deep CNN) model to recognize 

the diseased images of maize crop. The proposed deep CNN model is a 15-layer deep network consisting of 8 

convolution layers, 5 max-pooling layers, 1 global average pooling layer and 1 dense layer as shown in Fig. 4. 

Each convolution layer was coupled with batch normalization (BN) layer and a ReLU activation function. A 

global average pooling (GAP) module was incorporated between the last max-pooling layer and the dense layer. 

Finally, a softmax function was incorporated into the dense layer to classify the images into the respective classes 

along with their probability values.   

The proposed CNN model takes the images as input with the dimension of 227 × 227 × 3 and outputs a vector 

of size 1 × 4 representing the probability values of 4 classes of the maize dataset. Initially, the input images were 

eq. 2 
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Fig. 3 Depiction of max-pooling operation on the feature maps in the CNNs/Convnets 



processed by convolution and pooling layers to generate a series of feature maps (feature detectors) which were 

the close representations of input images. In each convolution layer, kernels/filters of size 3 × 3 with stride 1 were 

used to generate the feature maps. Straightway, the generated feature maps were normalized by the BN layer and 

passed through the ReLU activation function. The BN was applied to normalize the input batch of images with 

mean 0 and standard deviations 1 and the ReLU function added nonlinearity into the feature maps. In the maxpool 

layers, we applied 3 × 3 filters with stride 2, which drastically reduces the spatial dimension of the feature maps 

without losing any crucial information from the images. In this way, 8 convolutions (cbr_1 to cbr_8) and 5 

maxpool (pool_1 to pool_5) operations were stacked together for the extraction of inherent features from the input 

images.  Next, to process the generated inherent feature maps from the pool_5 layer and to create the feature 

vectors, a GAP layer was applied instead of a fully connected layer. The GAP layer has the potential to enhance 

the prediction capability of the model without any extra training parameters [31]. At last, the GAP layer-generated 

feature vectors were processed by the softmax function in dense layer and output the probability values of 

respective classes. A layer-wise detailed description of the proposed CNN network is presented in Table 1. Our 

proposed CNN model consists of average 2.5 million parameters which are trained during model training.   

Table 1: Layer-wise configuration of the proposed model 

Name Layer Kernel size Stride Output shape Parameters 

input Input - - 227 x 227 x 3 0 

cbr_1 Conv + BN + ReLU 3 x 3 1 225 x 225 x32 864 + 96 + 0 

cbr_2 Conv + BN + ReLU 3 x 3 1 225 x 225 x32 9,216 + 96 + 0 

pool_1 Max-Pooling  3 x 3 2 112 x 112 x 32 0 

cnr_3 Conv + BN + ReLU 3 x 3 1 112 x 112 x 64 2,048 + 192 + 0 

pool_2 Max-Pooling  3 x 3 2 55 x 55 x 64 0 

cbr_4 Conv + BN + ReLU 3 x 3 1 55 x 55 x 96 55,296 + 288 + 0 

 Fig. 4 Architectural view of the proposed deep CNN model for maize disease recognition 



cbr_5 Conv + BN + ReLU 3 x 3 1 55 x 55 x 128 12,288 + 384 +0 

pool_3 Max-Pooling  3 x 3 2 27 x 27 x 128 0 

cbr_6 Conv + BN + ReLU 3 x 3 1 27 x 27 x 256 2,94,912 + 768 + 0 

cbr_7 Conv + BN + ReLU 3 x 3 1 27 x 27 x 384 8,84,736 + 1152 + 0 

pool_4 Max-Pooling  3 x 3 2 13 x 13 x 384 0 

cbr_8 Conv + BN + ReLU 3 x 3 1 13 x 13 x 384 13,27,104 + 1152 + 0 

pool_5 Max-Pooling  3 x 3 2 6 x 6 x 384 0 

gap Global average pooling - - 384 0 

dense Dense - - 1 x 4 1540 

3.4 Transfer learning approach: 

The transfer learning approach in deep learning refers to the process of applying previously learned knowledge to 

a new task. According to this concept, machine learning or deep learning models are trained and tested on a bulky 

image dataset and their learned weights are applied to train and make inferences on some other image dataset. 

The main advantage of the transfer learning approach is that it significantly reduces the longer training time of 

the models [32]. Therefore, in this work several state-of-the-art deep CNN models were used, those were trained 

on the ImageNet dataset [33] and their learned pre-trained weights are available in the TensorFlow environment. 

We employed 10 popular state-of-the-art deep learning models viz. VGG16 [34], VGG19 [34], InceptionV3    

[35], ResNet50 [36], Xception[37], MobileNetV2 [38], DenseNet121[21], NASNetMobile [39], EfficientNetB0 

[40] and EfficientNetB7 [40] to train and classify our maize dataset in transfer learning approach.  

4. Experimental Setup: 

4.1 Implementation and hyperparameter setting:  

The proposed model was implemented by python programming language using the TensorFlow environment. 

Tensorflow is an open-source environment for deep learning tasks, provided by Google [41]. The experiments in 

this work were conducted on NVIDIA DGX GPU servers equipped with 512GB RAM and 8 high-speed Tesla 

V100 graphics processing units of 32GB each. The proposed CNN model was compiled with the ‘Adam’ 

optimization function and ‘categorical cross entropy’ loss function. During the training phase of the model the 

default learning rate of the ‘Adam’ optimization function i.e. 0.001 was used with the fixed learning rate policy. 

The details of the hyperparameters of the proposed CNN model are presented in Table 2.  

Table 2: Hyperparameters of the proposed model 

Name Hyper Parameters 
Optimization Algorithm Adam 
Loss Function Categorical Cross Entropy 
Base Learning Rate 0.001 
Momentum 0.9 
Weight Decay 0.004 
Epochs 500 
Batch size 32 

4.2 Data acquisition and pre-processing:  



In this work, we collected around 3,852 digital images of diseases of maize crop from the PlantVillage data 

repository [10]. The images were downloaded from https://github.com/spMohanty/PlantVillage-Dataset. The 

images in the PlantVillage data repository were captured under controlled conditions i.e. captured with uniform 

background. This data-repository contains images of three diseases of maize crop viz. Grey Leaf Spot (GLS), 

Common Rust (CR), and Northern Corn Leaf Blight (NCLB) along with healthy ones. Example images of disease 

symptoms for each class are presented in Fig. 5. These are very serious foliar diseases occurring in maize crop 

and significant concerning maize productivity. A detailed description of the diseases and their symptomatic 

characteristics and a summary of the image dataset of the maize crop is provided in Table 3.  

Table 3: Details of the maize dataset collected from the PlantVillage data-repository 

Category Causal organism Symptoms # of 

Images 

Grey Leaf Spot 
(GLS) 

Cercospora zeae-maydis Individual rectangular or circular, brown to 
tan color necrotic lesions, parallel to the leaf 
veins [23] 

513 

Common Rust 
(CR) 

Puccinia sorghii Schw Oval to elongated rust-colored to cinnamon 
brown colored pustules sparsely scattered on 
both leaf surfaces [24] 

1,192 

Northern Leaf 
Blight (NCLB) 

Exserohilum turcicum 
(Pass) Leon.& Sugs. 

Symptoms start as small elliptical spots on 
the lower leaves which turn greenish cigar-
shaped and bigger with time [25] 

985 

Healthy - - 1,162 

Total 3,852 

a

c

b

d

Fig. 5 Example images of diseases of maize crop: a) Common Rust (CR), b) Grey 
Leaf Spot (GLS), c) Healthy and d) Northern Corn Leaf Blight (NCLB) 



The images were annotated by putting them in respective disease-named folders in the storage disks. All the 

images were resized to 227	 × 227 pixel size for better interpretation by the proposed model. We used the 

ImageDataGenerator package in Keras to create the data tensors for each batch of images. To reduce the chance 

of the model’s overfitting, we implemented a runtime mode of image augmentation technique provided by the 

ImageDataGenerator package. In this mode of augmentation, each batch of images was augmented during the 

model training time. The main advantage of this technique is that the images were augmented at the model runtime 

only, hence no extra disk storage was required for storing the augmented images. A detailed description of the 

image augmentation techniques is given in Table 4.  

Table 4: Description of the applied image augmentation  

Techniques Details 

featurewise_center mean of the dataset is set to 0 

featurewise_std_normalization inputs are divided by the standard deviation of the dataset 

rotation rotating within the range of 20 degrees 

shear Shearing within the range of 0.2  

zoom Zooming within the range of 0.2 

flip flip the images horizontally and vertically  

brightness_range increase brightness within the range of [1.5, 2.0] 

ZCA_whitening ZCA whitening is applied with the default epsilon value  

4.3 Performance Evaluation and comparison metrics: 

In this work, confusion matrix and other associated metrics viz. classification accuracy, specificity, recall 

(sensitivity), Precision, F1-Score and Matthews Correlation Coefficients (MCC) were used to evaluate the 

prediction performance of the proposed model. The confusion matrix is the tabular representation of the model’s 

prediction performance on the testing dataset. The rows entries of the confusion matrix denote the instance of the 

actual classes, whereas the columns represent the model’s prediction instances. The correct predictions of the 

proposed models concerning the actual class labels are denoted by the diagonal elements, while the incorrect 

predictions are denoted by the off-diagonal elements of the confusion matrix. It provides four variables such as 

true negatives (TN), false positives (FP), false negatives (FN) and true positives (TP). These variables were used 

to compute the evaluation metrics as follows: 

Classification	Acuracy = 	 (#$%&	()*+,+-&*	(#()/#$%&	0&1&2,+-&*	(#0))
(0%34&$	)5	*2367&*	+8	,9&	:2,2*&,)

  

Specificity = 	 (#$%&	0&12,+-&*	(#0))
(;27*&	()*+,+-&*	(;()/#$%&	0&12,+-&*	(#0))

  

Recall	(Sensitivity) = 	 (#$%&	()*+,+-&*	(#())
(	;27*&	0&1&2,+-&*(;0)/	#$%&	()*,+-&*	(#())

  

Precision = 	 (#$%&	()*+,+-&*	(#())
(;27*&	6)*+,+-&*	(;()	/	#$%&	()*+,+-&*	(#())

  

F1 − Score = 	2 ∗ (($&<+*+)8∗>&<277)
(($&<+*+)8/>&<277)

  



Mathews	Correlation	Coefficient	(MCC) = 	 (?@∗?A)B(C@∗CA)
D(?@/C@)(?@/CA)(?A/C@)(?A/CA)

  

5 Results and Discussion: 

5.1 Prediction performance of proposed model: 

The whole image dataset of the maize crop was partitioned into two distinct sets such as training and testing 

datasets in 90:10 ratio. There were 3464 images in the training set (GLS - 461; CS - 1,072; NCLB - 886 and 

Healthy - 1045) and the testing set contains 388 images (GLS - 52; CS - 120; NCLB - 99  and Healthy - 117) 

respectively. The proposed deep CNN model was trained and validated for 500 epochs with a batch size of 32 

images per epoch. The training vs validation accuracy and training vs validation loss of the proposed model over 

the epochs are shown in Fig. 6 (a,b). Here, the trends of the accuracy curve in both training and validation sets 

reported a significant surge with the increments of training epochs. On the other side, loss values for both training 

and validation sets were gradually decreased as training iterations increased. The experimental findings on the 

testing set by the proposed deep CNN model reported a classification accuracy of 99.1% with the loss of 0.077 

and an F1-score of 97.49%. The results implied that the proposed model performed admirably on the testing set. 

The reported results are far better than the random guessing of the images for recognition. The higher testing 

accuracy, as well as higher F1-score, implies the efficiency and efficacy of the proposed model in the recognition 

of images of maize diseases.   

We computed the confusion matrix and relevant evaluation matrices of the proposed model on the testing set and 

presented their results in Fig. 7 and Table 5. It is quite evident from Fig. 7 that the proposed model’s prediction 

performance was extraordinary in case of Healthy and CR as all the test images of these two classes were predicted 

correctly by the model. The model showed a slightly moderate performance for the images of NCLB class as 2 

NCLB images were predicted as GLS. Lastly, the model showed a little poor performance for the GLS class as 

compared to NCLB class where 5 GLS images were predicted as NCLB and 1 as healthy. As a whole, out of 388 

images, our model predicted 380 images correctly and 8 images were wrongly predicted which is quite a 

significant prediction result shown by the proposed model.  

a b
Fig. 6 Performance of the proposed model: a) trends of training and validation 

accuracy and b) trends of training and validation loss 



From Table 5, we can get class-wise insights of the model’s prediction performance on the testing set. The 

classification accuracy and specificity achieved for all the classes were more than 98% which implies quite good 

prediction results for the model. However, the GLS class has comparatively less sensitivity due to higher false 

negatives and NCLB class has comparatively less precision as there were more false positives. However, the 

class-wise analysis suffers from the imbalanced class problem, that’s why the previously discussed metrics (i.e. 

classification accuracy, specificity, sensitivity and precision) aren’t sufficient to assess the model’s performance. 

Therefore, we also obtained the class-wise F1-scores of the proposed model on the testing set as presented in 

Table 5. If we see the class-wise F1-scores of the model, it can be observed that CR and Healthy classes achieved 

more than 99% of the F1-score, but the GLS and NCLB have lower values. According to the F1-score, the model 

is 93.88% accurate for identifying the GLS images from the non-GLS images and 96.52% accurate for identifying 

the NCLB images from the non-NCLB ones. However, the proposed CNN model obtained an average F1-score 

of 97.49%, which supports the significance of the model in recognizing the unknown images of maize crop. 

Next, we calculated MCC to obtain the correlation between the predicted and actual labels of each class of the 

dataset (as shown in Table 5). The results showed that the CR, Healthy and NCLB classes are having correlation 

values of more than 0. 95 between the actual labels and the predicted labels. However, the GLS showed 

comparatively lesser MCC values.  Here, it can be said that the model could identify the non-GLS images for the 

given non-GLS images (i.e. CR, Healthy and NCLB) with high probability but significantly less efficient at 

recognizing the GLS images for given GLS images. The possible reason for this result may be the lesser number 

of images in GLS class as compared to the other classes. This can be overcome by incorporating more images or 

generating artificial images for the GLS class. 

Table 5: Class-wise prediction performance of the proposed CNN model on the maize dataset 

Category TP FP FN TN Accuracy 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

Precision 
(%) 

F1 score 
(%) MCC 

GLS 46 0 6 336 98.45 100 88.46 100 93.88 0.9323 

CR 120 0 0 268 100 100 100 100 100 1.0000 

Fig. 7 Confusion matrix of the proposed CNN model on the testing set 



NCLB 97 5 2 284 98.20 98.27 97.98 95.1 96.52 0.9532 

Healthy 117 1 0 270 99.74 99.63 100 99.15 99.57 0.9939 

Average 99.1 99.48 96.61 98.56 97.49 0.9698 
 

5.2 Grad-CAM visualization of activation maps 

We have plotted the Grad-CAM [42] to visualize the activation maps of the last convolution layer involved in the 

proposed model for classifying the images of diseased maize. The Grad-CAM maps of the diseased images were 

generated by creating the heatmaps1 of the feature maps from last convolution layer (i.e cbn_8 layer) and 

superimposing them with the original input images. Here, we used the “jet” colormap of the matplotlib2 python 

package for creating the heatmaps of the feature maps. In Grad-CAM maps, the yellow area represented the 

activation areas of images where the model paid the most attention while classifying the images, whereas the blue 

and red areas had no impact on the model’s classification process as shown in Fig 8 (a, b). Therefore, we can 

 
1 A heatmap is a graphical representation of data in matrix form where each value of a matrix is represented as different shades of single 
color model. 
2 Matplotlib is a comprehensive python package for data visualization 

Fig. 8 Grad-CAM visualization of the activations of the proposed model on the maize dataset.  a) 
original input images of 3 diseases of maize respectively Common Rust, Grey leaf Spot and 
Northern Corn Leaf Blight b) GAD-CAM maps obtained by superimposing the heatmaps (using 
‘jet’ colormap) of the activations of last convolution layers with original images of the dataset. 

a b 



observe that our model was able to capture the inherent features from the underlying images effectively and 

classified the images based on those inherent features. Hence, it is clear that the model made the predictions by 

identifying the correlated features from the images rather than some random background features or noises. 

5.3 Prediction performance of transfer learning approach: 

We also applied the transfer learning approach in the images of maize crop using 10 different popular CNN 

architectures viz. VGG16, VGG19, InceptionV3, ResNet50, Xception, MobileNetV2, DenseNet121, 

NASNetMobile, EfficientNetB0 and EfficientNetB7. These networks were trained and validated using the large 

‘ImageNet’ data [33] and their learned weights were applied to classify the images of maize crop. In this study, 

only the last (top) layer of these models was replaced with a GAP layer and a fully-connected or dense layer 

containing 4 nodes and the remaining layers were kept frozen. The pre-trained models were trained and validated 

on the images of maize crop in exactly same configurations as our proposed CNN model. The experimental results 

showed that the pre-trained models were good at classifying the testing set with more than 90% accuracy except 

for the EfficientNetB0 and EfficientNetB7 models as presented in Table 6. Here we can see that the Xception 

network showed the highest accuracy (i.e. 95.42%) for classifying the images of maize diseases, whereas the 

EfficientNetB0 model obtained the lowest classification accuracy (i.e. 69.93%). Now, while looking at the F1-

scores of the pre-trained models in Table 6, it could be noted that DenseNet121 model achieved the highest F1-

score of 94.37% among the pre-trained models which was at par with its classification accuracy (i.e. 94.12%). 

Whereas, Xception model achieved the F1-score of 90.28% only which is quite lower than its classification 

accuracy (i.e. 95.42%) which implies that the DenseNet121 model was more efficient than the Xception model. 

And again EfficientNetB0 and EfficientNetB7 models achieve significantly lower F1-scores. Therefore, it can be 

concluded that based on the overall prediction performance DenseNet121 was comparatively better at performing 

the classification of the maize dataset than other pre-trained models.  

Table 6: Overall prediction performance of the pre-trained models on the maize dataset 

Model 
Testing 
Accuracy 
(%) 

Testing 
Loss 

Average 
Precision 
(%) 

Average 
Sensitivity 
(%) 

Average F1-
Score (%) 

VGG16 92.16 0.1753 90.60 90.24 90.39 

VGG19 93.46 0.2249 92.37 93.06 92.69 

InceptionV3 93.50 0.1473 88.81 89.45 89.06 

ResNet50 89.54 0.3331 87.61 86.98 87.22 

Xception 95.42 0.1349 90.00 90.68 90.28 

MobileNetV2 92.81 0.3569 92.44 92.87 92.63 

DenseNet121 94.12 0.1863 94.66 94.15 94.37 

NASNetMobile 91.50 0.3507 90.60 87.16 88.04 

EfficientNetB0 69.93 1.2900 54.73 61.98 58.07 

EfficientNetB7 74.51 1.2640 50.67 57.55 53.65 
 

5.4 Comparative performance analysis with pre-trained networks 



Next, we performed a detailed comparative analysis of the prediction performances between the proposed CNN 

model and pre-trained models and discussed them in the below sub-sections: 

Classification accuracy and loss: In Fig 9 (a, b) we presented the classification accuracies and the losses of 

all the models on the testing set. Here, it can be observed that our proposed CNN model acquired the 

classification accuracy of 99.02%, which was significantly higher than the best performing pre-trained model 

i.e. DenseNet121 model. Even our proposed CNN model obtained a very low testing loss (i.e. 0.077) as 

compared to the pre-trained models. Therefore, it is evident that our proposed CNN model performed 

comparatively better than state-of-the-art pre-trained models both in terms of the overall classification 

accuracy and obtained testing loss.  

Average F1-scores: Now, as our dataset was unbalanced, classification accuracy wouldn’t be justified to 

make the comparative analysis. Therefore, we presented the comparative analysis of all the models in terms 

of average precision, sensitivity and F1-score in Fig. 9 (c, d). A closer look at the average F1-score depicts 

that our proposed CNN model achieved higher F1-score (i.e. 97.49%) than that of the best-performing pre-

trained models. It implies that the proposed CNN model was better at predicting the unknown images of 

each maize disease class than the applied pre-trained models. These results also support that our proposed 

model is less prone to errors/mistakes while classifying the diseased images of maize crop into respective 

classes.   

Fig. 9 Comparative performance analysis between proposed CNN model and pre-trained 
models in terms of a) classification accuracy and b) testing loss c) Average precision and 

sensitivity and d) Average F1-score 
 



Computational complexity analysis: In this experiment, we also measured the computational complexity of 

the models with respect to the ‘training time per epochs’ and ‘number of training parameters’. In Fig. 10 (a) 

and 10 (b), we can observe that our proposed CNN had lesser training parameters of around 2.5M and the 

training time per epoch was also quite low i.e. only 13s. Whereas, most of the state-of-the-art pre-trained 

models have higher training parameters as well as the training time per epoch. This supports the fact that our 

proposed model was less complex than the pre-trained models yet provides better prediction performance. 

Therefore, the overall comparative analysis of the models, it can be concluded that our proposed CNN model 

is quite effective in classifying and identifying the diseased images of maize crop. 

5.5 Comparison with the previous works 

In this section, we compared the classification performance of our proposed model with the approaches available 

in the literature [15–17, 19, 20] and presented a comparative analysis in Table 7. Here, we considered those studies 

that used the PlantVillage data-repository for model development. We divided the table into two parts where in 

Part-A we presented the works having the same number of classes in the dataset as ours and, in Part-B, we 

presented the works with more number of classes in the datasets. However, it can be observed that our proposed 

method obtained the highest classification accuracy as compared to other works available in the literatures. 

Therefore, it can be concluded that our proposed 15-layer CNN model is best in recognizing the images of diseases 

in maize crop.  

Table 7: Comparison between proposed approach and approaches available in the literature 

References Classes Dataset Models Results 

Our work 4 class PlantVillage Custom CNN Accuracy: 99.1% 

Part-A: Approaches with 4 class datasets 

Sibiya et al. [16] 4 class PlantVillage Custom CNN Accuracy: 92.85% 

Priyadarshini et al. [17] 4 class PlantVillage Modified LeNet Accuracy: 97.89% 

Waheed et al. [20] 4 class PlantVillage Modified DenseNet Accuracy: 98.06% 

Fig. 10 Comparative computational cost analysis in terms of: a) number of training 
parameters and b) training time per epochs 



Part-B: Approaches with more than 4 class datasets 

Zhang et al. [15] 
 

9 class PlantVillage and 
Internet sources 
 

GoogleNet and 
Cifar10  
 

Accuracy: 
GoogleNet: 98.9% 
Cifar10: 98.8%. 

Lv et al.[19] 7 class  PlantVillage, Global 
AI-challenge data 
and Internet sources 

Modified AlexNet 
 

Accuracy: 98.62% 

6. Conclusion  

In this research work, we proposed a novel 15-layer deep convolutional neural network model to identify the 

images of diseases of the maize crop. The proposed model was able to classify the images of maize into three 

disease categories such as grey leaf spot (GLS), common rust (CR), and northern corn leaf blight (NCLB) along 

with healthy ones. We used the maize dataset from the PlantVillage data repository to train, validate and test our 

proposed model. To avoid the overfitting issue of the model, we applied an online data augmentation technique 

in which a batch of images was augmented during the runtime of the model training. We trained our proposed 

model with 90% (1,376 images) of the whole data and tested on the remaining 10% data. The experimental results 

of the proposed model were quite satisfactory for classifying the unseen images of maize data. The proposed 

model obtained an overall classification accuracy of 99.10% along with F1-score of 97.49% in testing set of the 

maize dataset. Furthermore, the Grad-CAM visualization of the activation maps states that the model classifies 

the images based on the inherent features into their respective classes. We also applied the transfer learning 

approach to a few state-of-the-art models and presented comparative performance analysis between the proposed 

and pre-trained models. The comparative analysis showcases the effectiveness of our proposed CNN model over 

the pre-trained models. From the overall performance analysis of the proposed model, it can be concluded that 

our proposed model sufficiently captures the promising features of the input images for classifying the diseases 

of maize crop. Therefore, automated recognition of diseases of the maize crop is feasible using the proposed CNN 

model and will ultimately support the proper crop management practices.  

However, the proposed model was applicable only for the images captured on uniform background images. 

Therefore, in the future course of study, the proposed model could be trained and evaluated on the diseased images 

captured in the normal background conditions to address field-level crop monitoring. Additionally, several 

diseases of other important crops could also be targeted for training & testing with the proposed model for the 

betterment of the farmers and to support the overall global food supply chain. 
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