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Maydis leaf blight (MLB) of maize (Zea Mays L.), a serious fungal disease, is

capable of causing up to 70% damage to the crop under severe conditions.

Severity of diseases is considered as one of the important factors for proper

crop management and overall crop yield. Therefore, it is quite essential to

identify the disease at the earliest possible stage to overcome the yield loss. In

this study, we created an image database of maize crop, MDSD (Maydis leaf

blight Disease Severity Dataset), containing 1,760 digital images of MLB disease,

collected from different agricultural fields and categorized into four groups viz.

healthy, low, medium and high severity stages. Next, we proposed a lightweight

convolutional neural network (CNN) to identify the severity stages of MLB

disease. The proposed network is a simple CNN framework augmented with

two modified Inception modules, making it a lightweight and efficient multi-

scale feature extractor. The proposed network reported approx. 99.13%

classification accuracy with the f1-score of 98.97% on the test images of

MDSD. Furthermore, the class-wise accuracy levels were 100% for healthy

samples, 98% for low severity samples and 99% for the medium and high

severity samples. In addition to that, our network significantly outperforms the

popular pretrained models, viz. VGG16, VGG19, InceptionV3, ResNet50,

Xception, MobileNetV2, DenseNet121 and NASNetMobile for the MDSD

image database. The experimental findings revealed that our proposed

lightweight network is excellent in identifying the images of severity stages of

MLB disease despite complicated background conditions.

KEYWORDS

maydis leaf blight disease, maize crop, disease severity stages, MDSD image database,
convolutional neural network, inception module
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1 Introduction

In India, maize (Zea Mays L.) is the third most important

cereal grain crop. The maize crop is being grown in Kharif and

rabi seasons across the country (Kaur et al., 2020). It is

considered as the ‘Queen of Cereals’ due to its multiple use

cases, such as staple food for human beings, feed-fodder for

livestock animals, raw materials for several processed foods,

industrial products, a rich source of starch and so on. As per the

reports, around 31.65 mt of maize was produced across the

country during 2020-2021 (ICAR-IIMR, 2021). Every year,

around 13.2% of the total crop yield is damaged due to the

attack of several disease-causing pathogens (Aggarwal et al.,

2021). Among several diseases, Maydis leaf blight or MLB (aka

Southern corn leaf Blight) is a serious fungal disease across

maize-growing regions of India. Generally, the country’s warm

and humid climatic condition is extremely favorable for the

disease development (Malik et al., 2018). The MLB disease is

caused by Bipolaris maydis (Nisik. & Miyake) Shoemaker 1959

fungus. In the early stages, its symptoms appear as small and

oval to diamond-shaped, necrotic to brown-colored lesions on

the leaf surfaces. These lesions get elongated as the disease

progresses (Aggarwal et al., 2021). It is reported that this

disease alone is capable of causing damage approx. 70% of the

total crop yield in severe conditions (Hooda et al., 2018). The

severity of diseases is an important parameter that measures the

intensity level of disease symptoms in the affected portion of the

crop and is crucial for disease management too (Hooda et al.,

2018). Therefore, our first and foremost aim must be to identify

and control the disease at the earliest possible stage of severity to

minimize the risk of potential yield loss of maize crop. However,

the conventional approach for identifying the severity stages

involves visual observations and laboratory analysis. But the fact

is, these approaches require highly trained and experienced

personnel, which makes them practically infeasible many

times. Hence, there is a much need for a precise, quick, cost-

effective and automated approach to identify the disease severity

stages in the field conditions.

In recent years, several computer vision techniques have

been applied to several challenging agricultural problems

(Kamilaris and Prenafeta-Boldú, 2018). In this connection, the

convolutional neural networks (aka CNNs) are considered as the

benchmark for different image-based problem identification in

the agriculture domain. The CNN approaches have eased the

image recognition process by automatically extracting the

features from the images as compared to the hand-engineered

feature extractions in the traditional machine learning

approaches (LeCun et al., 2015). In case of diagnosis of

diseases as well as their severity stages, CNNs have shown

significantly better results than the traditional image

processing and machine learning techniques. In this context, a

very limited number of works have been reported to diagnose
Frontiers in Plant Science 02
disease severity stages in maize crop using in-field images.

Therefore, we proposed a novel lightweight CNN network for

identifying the severity stages of MLB disease in maize crop. This

network would be a practical and viable solution for the farm

community of the country. The main contributions of this study

are provided below:
• Created an image database known as MDSD (Maydis

leaf blight Disease Severity Dataset) containing digital

images of maize leaves infected with MLB disease

covering all severity stages. The images of MDSD were

collected in non-destructive manner with natural field

backgrounds from different agricultural fields.

• Proposed a lightweight and efficient convolutional

neural network (CNN) model augmented with

modified inception modules. The proposed network is

trained and validated on the images of the MDSD

database for automatic identification of severity stages

of MLB disease.

• To evaluate the effectiveness of the proposed network,

we conducted a comparative analysis of the prediction

performance between the proposed model and a few

popular state-of-the-art pretrained networks.
This article is organized into six sections. Section 1 (present

section) highlights the importance of maize crop, the devastating

effect of MLB diseases, constraints of the conventional

approaches of disease recognition and management,

importance of computer vision-based technologies etc.: Section

2 explores and briefly discusses the related works relevant to the

present study, Section 3 explains the materials and

methodologies used to carry out the current study; Section 4

reports and discusses the experimental results and finding of the

study; Section 5 presents the ablation studies; and Section 6

concludes the whole study highlighting the impact and crucial

finding and aligns the future perspective of this study.
2 Related work

In this section, we will briefly discuss the methodologies

proposed by research works from across the globe for

recognizing diseases as well their severity stages. In recent

years, deep learning-based techniques are gaining momentum

for identifying diseases of several crops. Several authors like

Mohanty et al. (2016); Sladojevic et al. (2016); Ferentinos (2018);

Barbedo (2019) and Atila et al. (2021) focused on identifying the

diseases of crops at once by applying variety of deep learning

models such as state-of-the-art networks, transfer learning

models, custom defined models, hybrid CNN models and

many more. These works targeted identifying diseases of

multiple crops by a single deep learning model. Whereas most
frontiersin.org

https://doi.org/10.3389/fpls.2022.1077568
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Haque et al. 10.3389/fpls.2022.1077568
of the reported works aimed at crop-specific disease

identification problems such as for Rice crop (Lu et al., 2017;

Chen et al., 2020; Rahman et al., 2020), Wheat crop (Lu et al.,

2017; Picon et al., 2019; Nigam et al., 2021), Tomato crop

(Fuentes et al., 2018; Zhang et al., 2018), Maize crop (DeChant

et al., 2017; Priyadharshini et al., 2019; Lv et al., 2020; Haque

et al., 2021; Haque et al., 2022a; Haque et al., 2022b), etc. The

experimental findings of these research works reported

significant results by employing several types of CNN-based

networks to identify the diseases using color images. Some of

these works used lab-based images of crop-diseases such as plant

village for their model development, while some has used in-

field images

Nowadays, the identification of severity stages of diseases has

also attracted the attention of researchers. Significant works have

been carried out to identify the disease severity stages using

digital images. Wang et al. (2017) applied transfer learning of

popular deep CNN models to diagnose disease severity in apple

plants and obtained more than 94% classification accuracy on

the test dataset. They used publicly available images and assessed

them into 4 categories of severity stages for their experiment.

Liang et al. (2019) proposed a robust approach for disease

diagnosis and disease severity estimation of several crops using

deep learning models. Verma et al. (2020) worked on tomato late

blight disease and Prabhakar et al. (2020) worked on estimating

the severity stages of tomato early blight disease using Deep

CNN models. Recently, Sibiya and Sumbwanyambe (2021) used

Deep CNN models to classify images of common rust disease of

maize crop into four classes of severity levels. They applied fuzzy

logic-based techniques to automatically categorize the diseased

images into severity categories. Nigam et al. (2021) classified the
Frontiers in Plant Science 03
stem rust disease of wheat crop into four severity categories

using deep convolutional neural networks. Chen et al. (2021)

worked on estimating the severity of the rice bacterial leaf streak

disease using a segmentation-based approach. Wang et al. (2021)

proposed an image-segmentation-based approach by integrating

a deep CNN model to recognize severity stages of downy

mildew, powdery mildew and cucumber viral diseases of

cucumber crops. Ji and Wu (2022) proposed fuzzy logic

integrated deep learning model for detecting the severity levels

of grape black measles disease. Liu et al. (2022) developed a two-

stage CNN model for diagnosing the severity of Alternaria leaf

blotch disease of the Apple plant. A summary of the previous

works is provided in Table 1.
3 Materials and methods

3.1 Flow of the proposed approach

The workflow of the proposed disease severity identification

approach is depicted graphically in Figure 1. First, digital images

of MLB disease of maize crop were captured from the fields and

MDSD image database was created. Next, images were labelled

into respective severity categories based on domain experts’

observations and saved into respective folders in the storage

disk. Then, images were pre-processed and augmented to

increase the training dataset; After that, the whole image

dataset was split into two categories viz. training and testing

sets and the proposed CNN model was trained and validated.

Finally, based on the performance evaluation, the MLB disease-

severity identification model was finalized and its architecture
TABLE 1 A brief summary of related works.

Authors Work done Dataset Approach

Wang et al. (2017) Diagnosis of disease severity in Apple plant Plant Village
dataset

Transfer learning approach

Liang et al. (2019) Diagnosis of diseases and their severity levels of several crops Own dataset Custom CNN based on ResNet50 and
ShuffleNet models

Verma et al. (2020) Identification of severity levels of tomato late blight disease Plant Village Transfer learning approach

Prabhakar et al. (2020) Detection of severity levels of tomato early blight disease Plant Village Pre-trained ResNet101 models

Sibiya and
Sumbwanyambe (2021)

Classification of common rust disease of maize into four severity levels PlantVillage
dataset

OTSU threshold-segmentation method

Nigam et al. (2021) Estimation of severity of stem rust disease of wheat Own dataset Custom CNN network

Chen et al. (2021) Estimation severity of the Rice bacterial leaf streak disease Own dataset Segmentation-based CNN approach

Wang et al. (2021) Recognition of severity stages of downy mildew, powdery mildew and
cucumber viral diseases of cucumber

Own dataset Image-segmentation-based CNN model

Ji and Wu (2022) Detection of severity levels of black measles disease of grape Own Dataset Fuzzy logic integrated Deep learning
approach

Liu et al. (2022) Diagnosis of severity levels of Alternaria leaf blotch disease of Apple plant Own dataset Custom CNN model
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was saved on the disk. Detailed illustrations of these phases are

discussed in the following sections.
3.2 Image acquisition

In this study, we created an image database known as MDSD

containing digital images of maize leaves affected with MLB

disease. The images were collected in a non-destructive manner

from several agricultural plots located at Bidhan Chandra Krishi

Visvavidyalaya, Kalyani (22.9920° N, 88.4495° E) and ICAR-

Indian Agricultural Research Institute, New Delhi (28.6331° N,

77.1525° E) during 2018-2020. Digital cameras (Nikon D3500

W/AF) and smartphones (Redmi Y2 and Asus Max Pro M1)

were used for capturing the images under normal daylight

conditions. We collected the images of MLB disease by
Frontiers in Plant Science 04
focusing the camera lens on the symptomatic portions of

leaves starting from the disease incidence stage to the highest

severity stage with complex field backgrounds.
3.3 Disease severity stages

The images of MLB disease were thoroughly verified and

categorized into four groups based on their symptomatic

characteristics viz. healthy (no symptoms), low severity,

medium severity and high severity stages as provided in

Table 2. The categorization into the severity groups was done

under the strict supervision of subject matter specialists (domain

experts) of maize pathology at ICAR-IIMR, Ludhiana, India.

Sample images of each category of MLB disease are shown

in Figure 2.
TABLE 2 Categorization and summary of images of MDSD database.

Category Characteristics Original Synthetic Total

Healthy No disease symptoms 511 3066 3577

Low severity Disease symptoms cover <25% of the total leaf area 389 3112 3501

Medium severity Disease symptoms cover 25-50% of the total leaf area 621 3105 3726

High severity Disease symptoms cover > 50% of the total leaf area 239 3346 3585

Total 1,760 12629 14389
frontie
FIGURE 1

Overall framework of the proposed approach for recognition of severity stages of MLB disease.
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3.4 Image pre-processing

Prior to training process, slight pre-processing of the raw

images was required for better modelling. At first, unwanted

images like duplicate, noisy, out-of-focus, blurred images were

discarded from the raw images. After that, images were resized

to 256 × 256 pixel size by keeping hardware system constraints

in mind and for better interpretation by the proposed model.
3.5 Image augmentation

In order to increase the number of images for model

training, synthetic images were generated and augmented with
Frontiers in Plant Science 05
the original dataset. Here, we used two techniques to generate

the synthetic images: geometric transformation and brightness

adjustment. The overall summary of images in the MDSD

database is provided in Table 2.

3.5.1 Geometric transformation
Geometric transformation means transforming the

orientation of the images. In this study, we applied several

geometric transformations randomly to generate artificial

images which involved rotating (90°, 180° and 270°), flipping

(top-down and left-right), skewing, and zooming. The geometric

transformations were applied using the ‘Augmentor’ library

(Bloice et al., 2019) which provides translation invariance

transformation of the images.
D

A

B

C

FIGURE 2

Sample images of MLB disease of maize crop grouped into four categories (A) Healthy (B) Low Severity (C) Medium Severity and (D) High Severity.
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3.5.2 Brightness adjustment
As the images were captured using different devices and at

different periods of time, the images weren’t homogeneous in

terms of illumination. The light intensity on the diseased images

greatly impacts when we apply computer vision techniques.

Hence, we applied a gamma function in our images to

generate synthetic images with different brightness levels. The

gamma function is an image processing technique that applies

the non-linear adjustment to individual pixel values to encode

and decode the luminance of an image. The gamma function can

be defined mathematically by the following formula (eq. 1).

iout = ai 1=gð Þ
in

where, iin is the input images with pixel values scaled from

[0, 255] to [0, 1], g is the gamma value, iout is the output image

scaled back to [0, 255] and a is a constant value (mainly equal to

1). The gamma values ( g ) < 1 will shift the image towards the

darker end of the spectrum while gamma values ( g ) > 1 will

make the image brighter and the g=1 will not affect the

input image.”
3.6 Proposed lightweight CNN model

In this study, we proposed a lightweight convolutional

neural network (CNN) to identify the severity stages of MLB

disease of maize crop. In this network, we have incorporated the

modified Inception modules into a simple CNN framework,

enhancing the network’s finer and multi-scale feature

extraction capability. The proposed model is composed of

several computational modules which are discussed in

following subsections:
3.6.1 CRB layer (crb)
The CRB is the most important layer in the proposed

lightweight model which encompasses three popular

operations viz. Convolution operation, ReLU and Batch

Normalization operation as shown in Figure 3. The main

function of this CRB layer was to generate pattern detectors

from the images in the form of feature maps.
3.6.1.1 Convolution operation (conv)

The convolution operation involves the extraction of inherent

features (aka feature maps) from the input images by using a set of

kernels/filters (LeCun et al., 1998). The kernel/filters are of smaller

size than the input images such as 3 × 3 or 1 × 1. Mathematically,

the convolution operation is expressed by eq. 2:

zlk =o
m

k

xl  k :w
l
k + blk

where,
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zlk denotes the output feature map of k-th input at l-th layer

of the model

xlk denotes the k-th input feature map at l-th layer of

the model

wl
k and blk denotes the weights and bias at the l-th layer of

the model

3.6.1.2 ReLU operation (ReLU)

ReLU (Rectifier Linear Unit) is the widely used activation

function for the CNN models that enhances the non-linear

attributes within the input feature maps (Haque et al., 2021).

The ReLU function requires less computation hence speed up

the overall training process. Its convergence speed is higher than

the other functions and induces sparsity in feature maps. It is

expressed by the following equation (eq 3):

ReLU zkð Þ =
zk,       if   zk   > 0  

0,         if   zk   ≤  0

(

where, zk denotes the output feature map of k-th input

feature map

3.6.1.3 Batch normalization operation (BN)

The batch normalization process transforms a batch of images

(say m) to have a mean zero and standard deviation of one. It

speeds up the training process and handles the internal covariances

of the input feature maps (Ioffe, 2017). The batch normalization is

expressed as the following equations (eq. 4 and eq. 5):

yi = g ẑ i + b  

ẑ i =
zi − E(zi)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var zið Þ + ϵ

p

FIGURE 3

Framework of the CRB module of the proposed model.
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where,

yi denotes the output feature map

ẑ i is the normalized input feature map

E(zi) denotes the mean of the input feature map zi var(zi)

denotes the variance of the input feature map zi g and b are the

scaling and offset factors of the network that are trainable

3.6.2 Maxpool module (pool)
The maxpooling operation extracts the maximum element

from the respective regions of feature map covered by the

pooling kernels (Chollet, 2021). The maxpool layer outputs the

most promising features from the input images without adding

any extra trainable parameters to the network. In this proposed

model, we applied maxpool with a kernel size of 3 x 3 and strides

of 1 and 2.
3.6.3 Modified inception module (incep)
Generally, the ‘inception’ module of Inception networks

obtain the integration of sparse structure by approximating the

available dense component of the network (Szegedy et al., 2015;

Szegedy et al., 2016). In this study, we proposed a modified

inception module by applying few changes with respect to the

kernel sizes, number of filters and parallel convolutions. In the

proposed inception module, we applied symmetrical (1 x 1) and

asymmetrical convolution kernels in a parallel manner with a

maxpool operation. Here, we factorized the convolutions with

spatial filters of n × n (for 3 x 3 or 5 x 5) into asymmetrical

convolutions with filter sizes n×1 and 1×n (e.g., 3 x 1 and 1 x 3; 5 x

1 and 1 x 5). Prior to each asymmetrical convolution, one 1 x 1

convolution kernel is incorporated to reduce the representational
Frontiers in Plant Science 07
bottleneck of the network. We also applied ReLU in each

convolution operation to induce sparsity in the feature maps (as

shown in Figure 4). Finally, the outputs from all parallel

convolutions and maxpool layers were concatenated and passed

to the next layer of the network.

3.6.4 GAP module (gap)
The GAP or Global Average Pooling is a unique pooling

operation designed to generate a scalar vector of features by

computing the average of each feature map. It aggressively

summarizes the presence of a feature in an image by

downsampling the entire input feature map to a single value

(Lin et al., 2013). The purpose of the GAP layer was to reduce the

chance of overfitting as it doesn’t add any extra learnable

parameters to the network.

3.6.5 Softmax layer (softmax)
A softmax layer was added at the end point of the proposed

CNN model. The softmax layer contains the same number of

nodes as the number of classes in the dataset under study. The

softmax function generates the output probability values from

the input feature vectors. It converts the non-normalized

feature vectors of the network into a probability distribution

over the predicted output class (Bouchard, 2007).

Mathematically, softmax function is expressed as the

following equation (eq: 6):

Softmax zj
� �

=
ezj

oje
zj

where, zj denotes the j-th item of the output feature vector
FIGURE 4

Architecture of the proposed modified inception module.
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The overall framework of the proposed network in a

graphical manner is provided in Figure 5. Also, a detailed

layer-wise description like layer names, kernel/filter sizes,

strides, output shapes, number of kernels/filters and number

of training parameters is provided in Table 3.
3.7 Evaluation metrics

We evaluated the prediction performance of the proposed

CNN model on the images of testing data. We computed the

confusion matrix (CM) which represents the model’s prediction

performance in a tabular fashion. In CM, row elements denote

the actual values, while the column entities present the predicted

values. In the CM the diagonal elements represent the correct

predictions (i.e. true positives (TP) and true negatives (TN)),

while the incorrect predictions (i.e. false positives (FP), false

negatives (FN)) are denoted by the off-diagonal elements. Also

computed the relevant evaluation metrics such as Recall,

Precision and f1-score.
Frontiers in Plant Science 08
Classification Accuracy: The classification accuracy (or

accuracy) defines the proportion of the correct prediction

out of the total predictions. The following expression

measures it:

Classification  Acuracy

=  
True   Positives   TPð Þ + True  Negeatives   TNð Þð Þ

Number   of   samples   in   the   datasetð Þ

Recall (Sensitivity): The recall or sensitivity is the measure

which tells that the % of actual positive are predicted as positive.

The following expression calculates it-

Recall   Sensitivityð Þ

=  
True   Positives   TPð Þð Þ

  False  Negeatives FNð Þ +  True   Postives   TPð Þð Þ
Precision: Precision is the measure which gives the % of

predicted as positives that are actually positive. The following

expression calculates it-
FIGURE 5

Overall architectural framework of the proposed CNN model.
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Precision =  
True   Positives   TPð Þð Þ

False   positives   FPð Þ   +  True   Positives   TPð Þð Þ
f1-Score: f1-Score is the measure that tells us about the

robustness of the model. It is the harmonic mean of precision

and recall. The following expression calculates it-

f 1 − Score =   2*
Precision*Recallð Þ
Precision + Recallð Þ
4 Results and discussion

In this study, 1,760 images of MLB disease of maize were

collected under the MDSD database from agricultural fields

which were then augmented to 14,389 images. The MDSD

image database is categorized into 4 groups viz. healthy, low

severity, medium severity and high severity based on the

intensity levels of the disease symptoms on leaves. We
Frontiers in Plant Science 09
randomly split the whole dataset into two sets viz. training

and testing sets in the ratio of 80:20. Here, the proposed

convolutional neural network (CNN) was trained and tested

with the MDSD dataset for automated diagnosis of severity

stages of MLB disease. In this approach, several combinations of

CRB and inception modules were attempted. However, CNN

network with 10 CRB and 2modified inception modules gave the

optimal classification performance. Furthermore, to inspect the

effectiveness of the proposed model, we also employed a few

state-of-the-art pre-trained models viz: VGG16, VGG19,

InceptionV3, ResNet50, Xception, MobileNetV2, DenseNet121

and NASNetMobile networks in this study. All the models were

trained and tested with similar hyperparameters and

configurations as shown in Table 4. All the model

architectures were implemented in python using the

tensorflow environment, an open-source deep learning

framework. We performed all the experimental analyses by

utilizing the high computation power of the Tesla V100 GPUs

in the NVIDIA DGX servers.
TABLE 3 Layer-wise configuration of the proposed model.

Name Layers Kernel size Stride Output shape # Kernel Parameters

input Input images – – 256 x 256 x 3 – 0

crb_1 Conv + ReLU + BN 3 x 3 1 256 x 256 32 864 + 96 + 0

crb_2 Conv + ReLU + BN 3 x 3 1 254 x 254 64 18,432 +192 + 0

pool_1 Max-Pooling 3 x 3 2 126 x 126 64 0

crb_3 Conv + ReLU + BN 3 x 3 1 126 x 126 64 36,864 + 192 + 0

crb_4 Conv + ReLU + BN 1 x 1 1 126 x 126 96 6,144 + 288 + 0

crb_5 Conv + ReLU + BN 1 x 1 1 126 x 126 96 9,216 + 288 + 0

pool_2 Max-Pooling 3 x 3 1 124 x 124 96 0

incep_1 Inception
1 x 1, 3 x 1,
1 x 3, 5 x 1,

1 x 5
1 124 x 124 32, 64, 128, 256 72,128

pool_3 Max-Pooling 3 x 3 2 61 x 61 256 0

crb_6 Conv + ReLU + BN 1 x 1 1 61 x 61 128 32,768 + 384 + 0

crb_7 Conv + ReLU + BN 3 x 3 1 61 x 61 128 1,47,656 + 384 + 0

crb_8 Conv + ReLU + BN 1 x 1 1 61 x 61 256 32,768 + 768 + 0

pool_4 Max-Pooling 3 x 3 1 59 x 59 256 0

crb_9 Conv + ReLU + BN 1 x 1 1 59 x 59 256 65,536 + 768 + 0

crb_10 Conv + ReLU + BN 3 x 3 1 59 x 59 256 8,84,736 + 1152 + 0

pool_5 Max-Pooling 3 x 3 2 29 x 29 384 0

incep_2 Inception
1 x 1, 3 x 1,
1 x 3, 5 x 1,

1 x 5
1 29 x 29 32, 64, 128, 256 1,94,008

gap Global average pooling – – 320 0

softmax Softmax layer – – 1 x 4 1,248
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In the present study, we trained and validated our proposed

CNN model 500 times (epochs) using a batch size of 128

(according to the hardware system feasibility) on the MDSD

database. Our proposed model achieved the training accuracy of

99.78% with loss of 0.046, whereas the testing accuracy achieved
Frontiers in Plant Science 10
so far was 99.13% with loss of 0.0317. We presented the epoch-

wise training and testing behavior (for both classification

accuracy and loss) of the proposed model in Figures 6A, B to

showcase the model’s efficiency on images of MDSD database.

The experimental findings on the testing set of the MDSD

image database reported that our proposed model achieved the

overall classification accuracy (99.13%) which is far better than

the employed pre-trained networks as shown in Figures 7A, B.

However, among the state-of-the-art pre-trained models, the

DenseNet121 model achieves the highest accuracy of 95.65% on

the test dataset (shown in Figure 7A). The rest of the models

achieve accuracy within 85 to 92%. The proposed model also

obtained the lowest (0.0317) of all, while the DenseNet121

model reaches 0.1063 (can be seen in Figure 7B). These

experimental results cater the superiority and effectiveness of

the proposed model over the popular pre-trained models.

The interpretation of the model’s performance evaluation

based on classification accuracy and training loss wouldn’t be
A B

FIGURE 6

Epoch-wise behaviour of training and testing of the proposed CNN model (A) Classification accuracy: training vs testing and (B) Loss: training vs testing.
TABLE 4 Hyperparameters used during model training.

Name Hyper Parameters

Loss Function Categorical Cross Entropy

Optimization function Nadam

Learning Rate 0.001

Momentum 0.9

Weight Decay 0.004

Epochs 500

Batch size 128
A B

FIGURE 7

Comparative performance of the proposed model and pretrained models (A) models wise classification accuracies on test data and (B) model-
wise testing loss.
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sufficient. Hence, we calculated the average f1-scores of all the

models to evaluate the models in an unbiased way. We presented

the obtained f1-scores of the models (proposed as well as pre-

trained) in Figure 8. It is quite evident from Figure 8, that our

proposed model obtained the highest f1-score than the pre-

trained models in the testing dataset of MLB disease. Our

proposed model’s prediction performance on the MLB disease

dataset was far better than the popular pretrained models. This

result implies that our proposed CNN model could identify the

unknown images of MDSD database and classify them into

respective severity classes.

To better understand the prediction performance of our

proposed model, we presented the confusion matrix in Figure 9.

Figure 9 shows that our proposed model was 100% accurate in

predicting the healthy samples, 98% accurate for the low severity

samples, 99% accurate for both samples of medium severity and

high severity. Moreover, we also computed recall, precision and

f1-score to present the class-wise prediction performance of the

proposed model as shown in Table 5. Table 5 shows that the

proposed model obtained quite high scores (approx. 99%) for all

three metrics. It is evident from the confusion matrix and the

performance metrics (recall, precision, and f1-score) that our

model performed remarkably well for all the classes of the

severity of MLB disease in MDSD database. The model’s

performance was quite appreciable not only for healthy or

high severity images but also for low severity images in which

the symptoms of the disease are very mild. This result supports

the significance of the proposed CNN model in recognizing

severity levels for the unknown images of MLB disease of

maize crop.
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From the overall analysis of all the employed models, it is

apparent that our proposed lightweight CNN model

outperforms the popular pre-trained models for identifying

the severity stages of MLB disease. However, the most

important aspect of this study is that the proposed model

can identify the images of the severity of MLB disease even with

complex background conditions. This makes the proposed

CNN model an effective and cost-effective approach for

identifying the appropriate disease severity stages for the

researchers, subject matter specialists and farmers in the

field condition.
FIGURE 8

f1-scores of the models obtained on testing dataset.
FIGURE 9

Confusion matrix of the proposed model on testing dataset.
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5 Ablation studies

In this section, we presented the ablation studies for selecting

the optimum number of inception modules and best

optimization function for the proposed model. First, we

trained our proposed CNN model by incorporating 0,1,2 and

3 Inception modules. The experimental results reported in

Figures 10A, B, depict that the proposed CNN framework

achieved around 95% testing accuracy without any inception

module. However, the accuracy kept increasing as the number of

Inception modules increased as shown in Figure 10A. As a result,

the proposed model showed the best prediction performance
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(classification accuracy of 99.13%) with two Inception modules

compared to the others. From Figure 10B, it is apparent that as

the number of Inception modules increased, the testing loss

decreased and the proposed model achieved the lowest testing

loss (i.e. 0.317) with two Inception modules. Hence, the two

Inception modules were selected for the proposed CNN model.

We also conducted exper iments with different

optimization functions, which have a huge role in model

convergence and feature learning. We experimented with

four types of optimization functions viz. Stochastic gradient

descent (SGD), RMSProp, Adam and Nadam in the proposed

model and presented the results in Figure 10C. Among the
TABLE 5 Class-wise performance of the proposed model.

Category Recall (%) Precision (%) f1-score (%)

Healthy 100 100 100

Low Severity 99.20 98.02 98.61

Medium Severity 98.13 98.55 98.34

High Severity 98.60 99.30 98.95

Average 98.98 98.97 98.97
FIGURE 10

Depiction of the effect of number of Inception modules and optimization functions in performance of the proposed CNN model (A) Number of
Inception modules vs classification accuracy (B) Number of Inception modules vs testing loss and (C) Optimization functions vs classification accuracy .
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four optimization functions, Nadam function showed the best

performance in the MLB disease severity dataset of

maize crop.
6 Conclusion

In this study, we addressed the major issue of crop

management i.e., disease severity stages by proposing a deep

learning-based diagnosis approach. In this regard, we created an

image database known as MDSD containing images of MLB

disease with four different severity stages viz. healthy, low

severity, medium and high severity. Next, we proposed a novel

lightweight CNN model to identify of severity stages of MLB

disease using the images of MDSD. The proposed CNN model’s

basic framework comprises a stack of computational layers like

the CBR layer (Convolution, ReLU and Batch normalization)

augmented with two modified Inception modules. On the test

dataset, our proposed model reported 99.13% classification

accuracy with an f1-score of 98.97% which is quite superior

than most of the popular state-of-the-art pretrained models.

Furthermore, the overall experimental analysis demonstrated

that our proposed CNNmodel efficiently captures the promising

features of the images with complex backgrounds and classifies

them into respective severity classes. Therefore, this automated

approach for identifying the severity stages of MLB disease using

the proposed CNNmodel would be feasible and cost-effective for

the farm community and the subject matter specialists.

However, in the present study, the proposed CNN model only

applies to the MLB disease of maize crop. In the future, the study

can be further expanded to identify severity stages of other major

diseases of maize crop and diseases of other crops as per the

availability of image dataset.
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