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Abstract
Maize is one of the most important cereal crops with diverse adaptation and end-uses. Maize possesses enormous diversity owing 

to its dynamic genome (repetitive elements). Conventional breeding contributed significantly to maize improvement during the area 
of the pre-molecular marker, however, has certain limitations. Molecular markers address the limitations of conventional breeding 
through indirect selection, and growth-stage and environment insensitive nature. Furthermore, molecular markers-based selection 
is cost-effective and efficient over phenotypic selection. The introduction of molecular markers in maize breeding added new 
avenues to the maize improvement, especially for complex traits related to quality, agronomic, abiotic, and biotic stresses. Molecular 
markers contributed essentially to the germplasm characterization, genetic diversity assessment, heterotic grouping, heterosis 
prediction, construction of highly dense genetic maps, gene mapping and tagging, and marker-assisted and genomic selections. 
Besides, the molecular markers can also serve as useful criteria for DUS characterization of the new varieties. Furthermore, the 
markers will also likely be harnessed in the memory stress breeding for abiotic and biotic stresses. Therefore, with the evolving high-
throughput sequencing platforms, molecular markers will continue to serve as a boon in the future for maize improvement and hence 
safeguarding the food and nutritional security globally. 
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Introduction

Maize (Zea mays L.) belongs to Poaceae and is adaptable under 
versatile agro-climatic conditions. The wide adaptation of maize 
can be witnessed from its cultivation ranging from 58° N to 40° S, 
from below sea level to elevations above 3000 m, and in regions 
having rainfall from 250 mm to over 5000 mm of rainfall per year 
[1,2]. Modern maize was domesticated from the Zea mays ssp. 
parviglumis, its closest progenitor [3] occurred 6,000 years ago in 
the tropical valley of the Balsas River in Mexico [4-7]. Hence, Mexico 

and Central America are considered to be the center of origin of 
maize [8]. The leading producers of maize are mainly restricted to 
the world’s temperate regions like the USA, Brazil, and Mexico due 
to its origin from Mexico [9]. Maize is mostly used in poultry feed 
but it is also used for different purposes such as food, animal feed, 
value-added products like starch, maltodextrins, maize oil, maize 
syrup, biofuels, etc. [10-12]. It is the choice of food and industries, 
and as such has achieved the highest compound annual growth rate 
in last decade, surpassing even wheat and rice. Maize is a diploid 
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crop with a haploid set of 10 chromosomes and a genome size of 
2.3 to 2.7 Gb [13,14]. But unlike other crops, the maize genome 
is mainly composed of non-genic, repetitive fractions punctuated 
by distinctive or low-copy DNA clusters that harbor single genes 
or small gene groups. These repetitive elements comprising 
transposable elements, ribosomal DNA, high-copy short-tandem 
repetitions in telomeres, centromeres, and heterochromatin 
knobs imparts enormous species diversity [15,16]. The enormous 
cytogenetic variations in maize are supposed to be responsible for 
imparting huge genetic variation in maize germplasm [17,18].

The beginning of the era of maize improvement focused upon 
the identification and exploitation of existing variation in maize 
germplasm along with tapping the unique variability of landraces. 
The selection of elite cultivars was based upon the phenotypic 
level, depending upon the heritability of the desired trait. The trait 
with high heritability was easy to improve through phenotypic 
selection but the traits with low heritability such as yield were 
difficult to select through visual selection. Although conventional 
breeding strategies contributed immensely to maize improvement 
providing elite cultivars possessing higher yields, good quality, 
agronomic traits, etc., at the cost of time, economic resources, and 

labor-consuming practices [19,20]. Hence with the discovery of 
environmentally insensitive molecular marker technology in the 
1980s, the paradigm of selection shifted from phenotypic selection 
to selection at the genotypic level.

Molecular breeding in maize relies mainly upon the utilization 
of different types of molecular markers owing to their use for 
germplasm characterization, genetic diversity studies, genetic 
purity and identity of lines, heterotic grouping and prediction of 
heterosis, development of dense genetic maps, gene identification 
(gene mapping and tagging), marker-assisted selection (MAS), 
and genomic selection (GS) [21,22]. Molecular markers help in the 
improvement of complex traits through identification and mapping 
of the number of Quantitative Trait Loci (QTLs)/genes associated 
with different traits of economic importance and thereby 
providing plenty of marker-trait associations to plant breeders 
(Table 1). These mapped QTLs assist the maize breeders in the 
rapid development of elite maize cultivars having desirable traits. 
Furthermore, biotechnologists can explore the QTLs for cloning 
and characterization of genes to develop genetically modified 
plants [62-65].

Marker Mapping 
Population Crosses QTLs Trait References

Abiotic Stresses
RFLPs F3:4 (80) Os420 × IABO78 16 QTLs Leaf ABA content [23]
SSRs and 
AFLP F2

B64 × Zea mays ssp. hue-
huetenangensis

QTLs (chromosomes 3, 
7, and 8)

Adventitious root formation under 
waterlogging [24]

SSRs F2 B73 × Zealuxurians 8 QTLs Nodal root angle [25]

SSRs BC3F1 (317) Mi29 × Zeanicaraguensis 3 QTLs Adventitious root formation  
(waterlogging) [26]

SSRs RILs Zong3 × 87-1 9 QTLs Leaf temperature responses to 
drought

[27]

SSRs F2 A150-3-2 × Mo17 22 QTLs Stay green traits [28]

SNPs RILs Oh43 × W64a (OhW), 
Ny821 × H99 (NyH)

15 QTLs Root architectural traits [29]

SNPs Two BC1F2:3 

backcross
LPSpop and DTPpop 

Populations 105 QTLs
Early vigour and stay green under 

drought [30]

SNPs DH (240 
lines) PH6WC × PH4CV

6 QTL (qSPH1, qSPH5–1, 
qPHI1, qPHI4, qPHI9, 

qPHI10)

Plant heigh and plant height-based 
salt tolerance index [31]

SNPs RILs (204) DH1M × T877 364 QTLs Primary, seminal, and crown root 
length, seminal root number [32]
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SNPs F2:3 (650) 220 × PH4CV 19 QTLs Emergence rate, germination index, 
total length, root length, and shoot 

length

[33]SNPs F2:3 (650) 220 × Y1518 13 QTLs
Emergence rate, germination index, 
total length, root length, and shoot 

length

SNPs F2:3 (650) P9-10 × PH4CV 11 QTLs Emergence rate, germination index, 
total length, root length, and shoot 

length

SNPs DH n DHpop1 × DHpop2 26 QTLs
Grain yield, Days to anthesis and 
silking, ASI under nitrogen deficit 

condition
[34]

Biotic Stresses

SSRs F2:3 (193) CA00106 × CM140 Three QTLs (chromo- 
somes 6, 8 and 9)

BLSB [35]

SSRs F2 L14-04B × L08-05F 6 QTLs Reaction to Phaeosphaeria leaf spot [36]

RFLP and 
SSRs

F3 progeny

P345C4S2B46-2-2-
1-2-B-B-B (yellow), 

(resistant) × SC-
TEP5-19-1-3-1-4-1-1 
(white)(Susceptible)

3 putative QTLs

Resistance to sorghum downy 
mildew

[37]

SSRs and 
AFLPs F2:3 families Mo17 × Huangzao4 5 QTLs

Head smut resistance
[38]

SSRs
Seven differ-
ent backcross 
populations

CM137, CM138, CM139, 
CM140 and CM212

TLB resistant genes Ht-
n1and Ht2 along with a 

QTL (RppQ) for Polysora 
rust

TLB and Polysora rust

[39]

SSRs 185 F2 prog-
eny CM500-19 × MAI105 3 QTLs Resistance to Sorghum downy 

mildew [40]

SSRs Inbred line Y32 × Q11 4 QTLs Gray leaf spot resistance [41]
RAPD, 
ISSR, SSRs 
and STS

Segregating 
population 

(170)
Gm1021 ×Gm1002 8 QTLs

Maize stalk rot disease resistance
[42]

DArTseq
198 

BC1S1 families

TZEEI 29 (Striga
resistant) × TZEEI 23 
(Striga susceptible)

14 QTLs
Grain yield, ears per plant, and 

striga damage [43]

DArT F2:3 KU-R × GT-S 18 QTLs MSV resistance [44]

SNPs 170 and 163 B73 × B97 and 
B73 × CML322

12 QTLs NCLB resistance [45]

Quality Traits
SNPs RIL By804 ×B73 ZmcrtRB3 gene α-carotene content [46]

SNPs RIL CI7 × K22 6 QTLs Starch content in maize kernels [47]

57

Molecular Markers in Maize Improvement: A Review

Citation: Mukesh Choudhary., et al. “Molecular Markers in Maize Improvement: A Review". Acta Scientific Agriculture 6.9 (2022): 55-70.



SNPs Two BC1F2:3 

backcross
LPSpop and DTPpop 

Populations 105 QTLs Early Vigour and Stay-Greenness [30]

PSY-SNP7 
and 
PSY1-IDI 
(InDel)

130 diverse 
tropical 
adapted 

yellow maize 
inbred lines

Inbred lines developed 
from eight bi-parental 

crosses of tropical 
inbred lines, four broad-
based populations, and 

28 backcrosses 
involving temperate 

lines as donors

PSY1 gene

Provitamin A content

[48]

LCYE-SNP
and 
LCYE-
3’InDel

LCYE gene

crtRBI-5’ 
TE, crtR-
BI-InDel4
and 
crtRBI-3’ 
TE

crtRB1 gene

SNPs
and InDel 155 inbred 

lines

91 inbreds, 35 high-oil 
lines, 25 inbred lines 
derived from Chinese 

landraces, and four high 
provitamin A from the 
University of Illinois

DGAT1-2 gene

Oil content

[49]

SNPs F7 High folate (GEMS31) × 
low folate (DAN3130) 2 QTLs Folate content [50]

InDel RILs B73 × Mo17 (IBM
population) 8 QTLs Starch content [51]

Agronomic Traits

SSRs F2:3 popula-
tion X178 × B73

7 QTLs under non-stress 
and 7 under stress 

conditions

Grain yield, 100-kernel weight, 
kernel number per ear, cob weight 
per ear, kernel weight per ear, ear 
weight, and ear number per plant

[52]

SSRs F2 LH200 ×LH216 28 QTLs Grain yield 53
SSRs 200 F2:4 lines cross R15 × 478 14 distinct QTLs Plant and ear height [54]

RFLPs 
and SSRs

236 RILs CML444 × SC-Malawi 223 QTLs
Male flowering, ASI, grain yield, 
kernel number, 100-kernel fresh 

weight, and plant height

[55]

SSRs F2 (203) KCB × GBK 032357

Four candidate markers 
(p-umc2189, p-bnlg1179,

p-bnlg1014 and 
p-umc1542)

Female flowering time, ASI, Kernel 
number, and grain yield [56]

SSRs and 
EST F2:3 (247) HZ32 × K12.

Six QTLs (ph6-1, sdw4-1, 
sdw7-1, tdw4-1, tdw7-1 

and rl1-2)

Plant height, shoot and root dry 
weight, total dry weight, and root 

length
[57]

SSRs F2 02S6140 × KSS22 14 QTLs Yield and agronomic traits [58]
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InDel and 
SNP 71 European 

inbred lines

Lines from 4 pools: 
flint/Lancaster (L), flint 
(F), iodent and iodent/
stiff stalk (I), and Stiff 

stalk (S)

Dwarf8 gene

Flowering time

[59]

SSRs 161 DH lines Zheng58 (Z58) × 
Chang7-2 (C7-2)

49 QTLs
Ear length, Ear diameter, Ear row 
number, Kernel number per row 

100-kernel weight Grain weight per 
plant

[60]

SNPs 199 F2 and its 
F2:3 lines SG5/SG7

10 QTLs (five QTLs each 
for kernel length and 

width)

Kernel size
[61]

Table 1: Detailed information on mapped QTLs for various abiotic and biotic stresses, quality, and agronomic traits using different types 
of markers.

Molecular marker system

Molecular markers are considered to be identifiable sequences 
(landmarks), found at specific locations in the genome and 
transmitted by the standard laws of inheritance from one 
generation to the next. These should not be considered as normal 
genes as they usually do not have any biological effect and they 
rely on a DNA assay, in contrast to morphological and biochemical 
markers that are based on visible traits and proteins produced by 
genes, respectively. Molecular markers have been classified based 
on technique and principle involved into three different categories 
viz. A) Hybridization-based markers namely restriction fragment 
length polymorphism (RFLP), B) Polymerase chain reaction 
(PCR)-based markers like random amplification of polymorphic 
DNA (RAPD), amplified fragment length polymorphism (AFLP), 
and simple sequence repeat (SSR), etc. and C) Sequence-based 
markers viz., single nucleotide polymorphism (SNP) [66]. The 
desirable properties of molecular markers are that they should 
be polymorphic so that able to differentiate among the genotypes 
in a population of parents. Also, properties such as abundance 
in the genome, neutrality in nature, easyaccessibility, and highly 
reproducibility make an ideal marker.

RFLP was the first-generation hybridization-based (restriction 
enzyme digestion) molecular marker system used for the detection 
of DNA polymorphism r [67]. RAPD marker is PCR based (DNA 
segment amplification in PCR by using short oligonucleotides of 
4-10 bp) marker [68,69]. In comparison to RFLP, it is a simple, 
quick, and cost-effective method to detect polymorphism based on 
presence or absence of band but with the limitations of dominant 

nature and low reproducibility [69-71]. In 1995, Vos., et al. [72] 
developed an amalgam of RAPD and RFLP technology known as 
AFLP for DNA fingerprinting through combining the techniques of 
selective PCR amplification of restriction and fragments restriction 
digestion. The SSRs also known as microsatellites, tandem 
arrangement of 10-100 repeated sequences of di, tri, and tetra 
nucleotides [73,74], and due to their co-dominant nature, these 
have become the markers of choice for germplasm characterization 
[75,76]. The advantage of SSRs is that different repeat numbers 
can serve as separate “alleles” and the site can be recognized as 
a highly polymorphic site with an opportunity to detect multiple 
alleles (variations) in populations [77]. However, there has been a 
gradual shift from the use of PCR-based markers to SNPs owing to 
the availability of cheaper sequencing platforms.

Molecular markers serve as an effective toolbox to explore the 
plant genome, viz., genetic variability, DNA profiling, comparative 
mapping, gene mapping, the evolution of the genome, population 
genetics, diagnostics, etc. The next-generation sequencing (NGS) 
platforms in combination with restriction site associated DNA 
(RAD)-tag sequencing are now assisting the modern breeding 
strategies like Genome-wide selection (GWS) and Genome-wide 
association studies (GWAS) by providing highly dense genomic 
markers [78,79]. In addition, these play a vital role in the 
distinctness, uniformity, and stability (DUS) characterization [60].

Application of molecular markers in maize improvement

In maize, numerous DNA markers have been identified through 
the advanced genome analysis, viz., thousands of SSRs, SNPs, 
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insertion-deletion (InDel) markers and successful utilization of 
them can be cited from the cloning and characterization of genes 
for regulation of plant development, resistance to biotic and 
abiotic stresses and quality attributes in maize [80]. It also helps to 
dissect polygenic traits into their responsible QTLs along with the 
understanding of gene action and inheritance patterns [81]. 

DNA profiling of maize germplasm for analyzing genetic 
variability

The method to identify an individual’s DNA features, which are 
as distinctive as fingerprints, is DNA profiling (also called DNA 
fingerprinting). The impact of studying the genetic variations 
through molecular markers is stable [82] at different growth 
stages and not confused with environmental, pleiotropic, and 
epistatic as phenotypic level. RFLPs were first used in phylogenetic 
analysis and diversity studies between and within species, due to 
their high abundance throughout the genome, hybridization, and 
introgression studies [83]. A set of 46 RFLP markers were used 
to cluster all the inbred lines into the two major heterotic groups 
and further into subgroups within the major heterotic groups 
[84]. Another group analyze the 145 released maize inbreds in 
France and concluded that RFLP markers could serve as tools to 
discriminate between closely related individuals from different 
breeding sources [85] Dillman. The RAPDs markers have been 
widely used in diverse plant species for assessment of genetic 
variation in populations and species, fingerprinting, and study of 
phylogenetic relationships among species and subspecies [86]. 
AFLP markers have vast applications in fingerprinting, gene 
identity, phylogenetic studies, identification of clones and cultivars 
[72]. This technique differentiates the individuals at the subspecies 
level [87]and is also used to explore the genetic similarity among 
different accessions of maize [88,89].

SSRs markers have been utilized to a greater extent for diversity 
assessment and DNA profiling of maize germplasm globally 
[80,90]. Twenty EST-SSRs used to conduct the diversity assessment 
in 80 progenies (40 each of Piranão and CIMMYT population) of 
Full Sib Reciprocal Recurrent Selection exhibited relatively greater 
diversity for the Piranão population. The study concluded that 
genetically diverse populations can significantly contribute to high 
genetic gains and hence generating promising high-yielding hybrids 
[91]. Genetic diversity study performed on 108 Benin’s maize 
accessions using three SSR markers grouped the accessions into 

four clusters related to the regions of collection [92]. Microsatellite 
markers have been also utilized for evolutionary studies in maize 
[5,93]. Matsuokas they tend to show extensive variations owing 
to repeated occurrence in the genome [77]. SSRs were used to 
assess the genetic diversity for the yield and quality traits [94]. 
The SNPs are the most abundant molecular markers throughout 
the genome [87,95]. The development of several high throughput 
genotyping technologies boosted the adoption of SNPs for diversity 
studies in wheat [96]and maize [68,79,97,98]. SNP markers are 
likely to become the marker of choice for breeding in the near 
future, especially as the full sequences of more plant genomes 
will become available with the advantage of NGS technologies 
[99]. However,[98] genotyped 1,537 elite maize inbred lines with 
359 SSRs and 8,244 SNPs and proposed that around 7 to 11 times 
more SNPs should be used for analyzing population structure and 
genetic diversity as compared to SSRs. 

Genetic analysis of traits

The process of constructing linkage maps followed by the QTL 
analysis i.e., to identify genomic regions associated with traits, 
is known as QTL mapping. It is based on linkage disequilibrium 
in segregating populations and involves testing DNA markers 
throughout the genome for their likelihood of association with 
QTL. Various genes/loci of several important traits have been 
successfully tagged using different molecular markers (Table 
1). Initially, RFLPs were used in gene mapping and introgression 
studies in maize [83,80,100] firstly reported QTLs for yield-related 
attributes in maize. The major factor responsible for yield loss in 
maize is biotic stresses generally caused by diseases and insect 
pests [101]. Northern Corn Leaf Blight (NCLB), Turcicum Leaf 
Blight (TLB), Banded leaf and sheath blight (BLSB), Downy Mildew, 
Maize Streak Virus (MSV), and aflatoxin contamination are the 
most common diseases of maize. Maize is also plagued by pests, 
including European, Mediterranean, and tropical maize borers, as 
well as pest weevil storage [102]. Several QTLs for downy mildew 
resistance were mapped on chromosome 6 using recombinant 
inbred lines (RILs) derived from the cross of Ki3 (resistant) and 
CML139 [103]. Later under a multi-institutional project, Asian 
Maize Biotechnology Network (AMBIONET), different downy 
mildew reactions were tested in RILs evaluated at Mandya 
(Southern India); at Farm Suwan (Thailand) for sorghum downy 
mildew; at Maros (Indonesia) for Java downy mildew; at Udaipur 
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(Western India) for Rajasthan downy mildew and southern 
Mindanao (Philippines) for Philippine downy mildew. This study 
reported the presence of tight linkage between umc11, umc23a, 
and umc113 SSR markers and QTL on chromosome 6 for efficient 
use in MAS studies [104,105] developed a backcross population by 
crossing NAI116 (resistant to sorghum downy mildew) with CM139 
and identified the QTLs for sorghum downy mildew resistance on 
chromosomes 3 and 6. [40]mapped 3 putative QTLs for sorghum 
downy mildew (SDM) resistance on chromosomes 2, 3, and 6 in 
maize.[106] screened a total of 115 RILs for mapping QTL related to 
MSV disease resistance using 52 SSR markers and identified three 
SSR primers; bnlg1811, umc1917, and umc1144 on chromosome 1 
which could help to differentiate resistant lines from susceptible 
lines. In China, [107] reported 4 stable QTLs on chromosomes 2, 
6, and 10 out of a total of 11 QTLs mapped in the F2 population of 
R15 (resistant) × 478 (susceptible) for BLSB resistance in maize. 
Similarly, [35] identified three QTLs in the F2:3 population for BLSB 
resistance on chromosomes 6, 8, and 9. Recently, [44,45] mapped 
QTLs using DArT and SNP markers for MSV and NCLB resistance, 
respectively.

Abiotic stresses such as moisture stress, high and low-
temperature stress, salinity; nutrient stress, etc. frequently limit 
the growth and productivity of major crop species such as maize. 
The reproductive stage is the most sensitive affecting maize 
production during drought stress. Several QTLs related to a low 
anthesis-silking interval (ASI) were incorporated in CML247 from 
drought-tolerant line Ac7643 [108,109] mapped a QTL, Root-ABA1 
for abscisic acid levels in leaf and associated with root development 
under drought stress in maize. Later, [39] 2009b mapped QTLs for 
drought tolerance associated traits on chromosomes 1, 2, 8, and 10. 
Major QTLs for ASI and number of ears/plant under drought stress 
mapped on chromosomes 1 and 9 in X178 × B73 based F2:3 mapping 
population [5,20,110] conducted a meta-QTL (m-QTL) analysis 
using three bi-parental tropical populations (CML444 × MALAWI; 
CML440 × CML504; CML444 × CML441) and reported 7 and 1 
genomic regions for grain yield (GY) and ASI, respectively. Among 
these m-QTL for GY and ASI on chromosomes 7 and 3, respectively, 
were found to be adaptable to drought stress and therefore can be 
efficiently used in the MARS programme [110]. Significant QTLs 
for adventitious root formation in progenies of B64 and Teosinte 
accession of Zea mays ssp. huehuetenangensis conferring water-
logging tolerance have been mapped on chromosomes 3, 7, and 

8. Similarly, QTLs for adventitious root formation mapped on 
chromosomes 1, 5, and 8 in a population derived from the cross 
of teosinte (Zea mays spp. nicaraguensis) with B73 and evaluated 
under waterlogging conditions [24,26]. During the waterlogging 
period at the seedling stage of 0 to 3 days, 3 to 6 days, and 6 to 
9 days, 6 QTLs (ph6-1, sdw4-1, sdw7-1, tdw4-1, tdw7-1, and rl1-2) 
were reported to be associated with plant height, shoot and root 
dry weight, total dry weight and root length [57]. The recent past 
has witnessed the prioritized use of SNPs for QTL mapping for 
abiotic stress [31,32,34], quality traits [50,51], and agronomic 
traits [60,61]. Hence, the identified QTLs can serve as a potential 
source to develop abiotic stress-resilient maize cultivars globally 
[64,111].

Marker assisted selection

The selection or identification of desirable plants (for the 
specific trait) possessing a specific gene of interest via linked 
marker is known as marker-assisted selection (MAS). Therefore, 
indirect selection for the desired trait through MAS accelerates the 
breeding process and therefore leading to the rapid development 
of improved cultivars. MAS has great advantages as it leads to 
the culling of unwanted plants in early generations and thereby 
retaining a lesser number of high-priority lines in subsequent 
generations. The greatest efficiency of MAS is exhibited in early 
generations particularly in the case of loose linkage between the 
marker and the selected QTL as it leads to an increased probability 
of recombination between the marker and QTL. The major 
disadvantage of applying MAS at early generations is the cost of 
genotyping a larger number of plants which can be overcome 
by the use of co-dominant DNA markers to fix specific alleles in 
their homozygous state as early as the F2 generation. In maize, 
MAS was first used for the conversion of normal lines to lysine 
and tryptophan-rich Quality Protein Maize (QPM) using opaque 
2-specific SSR markers [112]. The “Vivek QPM hybrid 9” was the 
first MAS-based product in maize developed by transferring the O2 
gene [113]. The selection through marker system can be performed 
at the early seedling stage irrespective of genotype × environment 
(G × E) interactions. Assembling the desired genes into a single 
parent from multiple parents is known as Marker-assisted gene 
pyramiding [62]. MAS technique can be further divided as Marker-
assisted backcross breeding (MABC), Marker-assisted recurrent 
selection (MARS), and Genomic Selection (GS).
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Marker-Assisted Backcrossing (MABC)

The transfer of one or more genes to an elite cultivar that is 
deficient in few traits is termed marker-assisted backcrossing 
(MABC). Foreground selection, recombinant selection, and 
background selection are key steps of MABC [114]. Initially, 
“foreground selection” involves the use of markers to screen the 
target/desired gene in the individual plants at the early seedling 
stage [62,115]. Secondly, selection of backcross (BC) progeny 
possessing target gene and recombinant events between target 
loci and linked flanking markers is performed under “recombinant 
selection” to reduce the linkage drag [116]. Minimum two 
BC generations are used because of rare chances of double 
recombination to occur on both sides of target loci [117]. Lastly, 
“background selection” is used to select for the progeny with 
maximum recovery of the recurrent parent (RP) genome using the 
unlinked genomic markers (to target locus), helping to save time 
relative to conventional breeding [115,118]. A successful example 
of MABC in maize breeding can be cited from the development of 
Vivek QPM 9 through introgression of opaque 2 from CML176 (donor 
parent) to V25, high yielding and extra-early maturing normal 
maize line [112]. Later, [108] developed a drought-tolerant line by 
crossing the tropical inbred line CML247 (susceptible) and Ac7643 
(tolerant line). Later, maize breeders at IARI (Indian Agricultural 
Research Institute), New Delhi executed the gene pyramiding in 
five elite lines (CM137, CM138, CM139, CM150, and CM151) to 
develop TLB (Htn1and Ht2 genes) and Polysora rust resistance 
(RppQ QTL) lines using four resistant donors viz., NAI147, SKV21, 
NAI112 and SKV18 [119]. Later, the same approach was used to 
develop CM139 (sorghum downy mildew resistant line) and QTL-
NILs [62,120]. APQH9, an EDV of Vivek QPM 9 possessing higher 
Provitamin A has been developed through introgression of crtRB1 
in the parental lines of Vivek QPM 9 [11,121]. Further efforts have 
been made on gene pyramiding for quality improvement in maize 
[122,123]. The MABC limitations lie in its use for improving only 
a single trait with qualitative nature [124]. The basic strategy of 
MABC for the transfer of recessive genes has been illustrated in 
figure 1.

Marker-assisted recurrent selection (MARS)

MARS involves the repeated selection and accumulation of 
numerous loci/genes governing complex traits to develop elite 
cultivars. MARS is just an extension of phenotypic recurrent 

Figure 1: Marker assisted back-crossing (MABC) scheme for 
transferring target gene from donor parent to recipient parent.

selection focusing on the use of molecular markers for increasing 
the frequency of favorable alleles within the population. This 
approach is used to combine several gene/QTL into a single 
individual/genotype within-population for complex traits like 
drought tolerance, disease resistance, and yield in maize resilience 
breeding program population [125]. It involves the genotyping 
of the F2 or F3 population (use of markers linked to minor or 
major QTLs) and phenotyping of F2 derived F4 or F5 individuals, 
followed by the use of recombination cycles to evaluate the marker 
effects [126]. Initially, identification of QTLs in the population 
is performed followed by pyramiding of superior alleles in the 
population by crossing lines having superior alleles (favorable 
QTLs). Later, RILs selected based on accurate phenotypic screening 
in multi-location field trials are released as varieties [127]. MARS 
has been exploited in maize to build up stable disease tolerant 
lines possessing a combination of various genes and therefore 
conferring tolerance to multiple races of a pathogen [62]. MARS 
has been used to confer early flowering in agronomically superior 
but late flowering NSE331 line by crossing with NSE626 (flowers 8 
to 10 days earlier) as donor parent [128]. CIMMYT also utilized this 
approach to develop 10 populations based on SNP-based recurrent 
selection of crosses between commercial lines CML and drought-
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tolerant donor lines CZL or VL [124]. MARS is more advantageous 
to MABC as it allows capturing of whole genomic regions having 
minor and major QTLs [127]. A generalized approach depicting the 
basic steps of MARS is represented in figure 2.

Figure 2: Marker assisted recurrent selection (MARS) scheme 
for accumulation of favorable QTLs in a population.

Genomic selection 

Genomic selection can be defined as the simultaneous selection 
of densely located whole genomic markers (tens or hundreds 
or thousands) with anticipation that all genes are in linkage 
disequilibrium with at least some markers [129]. This strategy is 
still in the embryonic stage in terms of its use in plants as compared 
to the rest of the marker-assisted approaches [126,130,131]. This 
approach involves the prediction of complex traits by using genetic 
markers covering the entire genome and desirable individuals 
can be selected based on markers derived genomic estimated 
breeding value (GEBV). It differs from QTL mapping and is based 
on the development of the GS model for the estimation of GEBV 
[129,132]. Initially, a training population is used to train the model 
(associating the relationship between genotype and phenotype) 
and estimate GEBVs which are further utilized to select desirable 
individuals in the breeding program. GS was first demonstrated 
in maize, barley, and Arabidopsis [133] after witnessing better 
accuracy as compared to pedigree information alone [134]. The GS 
scheme has the potential to efficiently utilize off-season nursery 
and greenhouse facilities and thereby hastening the breeding 
program for complex traits through efficient selection [135]. 
NCLB resistance in maize was predicted using a genomic selection 
approach relying upon extensive phenotyping of 100 dent and 
97 flint lines for NCLB resistance and high-density SNP markers 
genotyping [136]. Furthermore, rapid-cycle GS is an effective 
strategy for achieving higher genetic gains for abiotic stress 
tolerance in maize [137]. 

Heterotic grouping and DUS characterization

The process by which the diverse inbred lines are classified into 
various groups for efficient selection of best parents in breeding 
programs is known as heterotic grouping [138-140] used AFLP and 
SSR markers to group 40 diverse inbred lines into two groups based 
on genetic dissimilarity. With the advent of cheaper sequencing 
technologies, SNP has taken over SSR for heterotic grouping. [141] 
grouped 450 maize inbred lines using SNP markers into 3 major 
groups. Recently, [142] also used the SNP markers for heterotic 
grouping of tropical maize inbred lines. Molecular markers are 
better alternatives to handle the DUS characterization, an essential 
criterion for safeguarding the new varieties, and hence it is likely 
to witness the adoption of a robust genomics-based registration 
system for new maize varieties [60].

Positional cloning

Positional cloning refers to gene identification where a gene 
for a specific phenotype is identified only by its approximate 
chromosomal location. It is very difficult to do positional cloning in 
maize as its genome contains a huge amount of repetitive DNA. The 
successful earliest example of positional cloning can be cited from 
mapping of a QTL for the difference between maize and teosinte 
to teosinte branched 1 gene-containing region. Later various genes 
such as vgt1(vegetative to generative transition 1), ramosa1 (ra1), 
lax panicle, clavate1 (clv1), ra2, ra3, and ts4 have been cloned to 
different chromosomal regions [144-146]. There are various useful 
resources for positional cloning in maize viz. Maize GDB, Arizona 
Genomics Institute, Gramene, MAGI, TIGR Rice Genome Annotation, 
TIGR Maize Database, TIGR Maize Gene Index, TIGR Maize Genomic 
Blast Search, TIGR Maize Marker Mapping, Maize Genetic Mapping 
Project, Maize Mapping Project, and Maize Seq [147].

Conclusion and Future Prospects

Molecular markers are always advantageous to morpho-
biochemical markers due to their efficient application through 
better collaborations between breeders and biotechnologists. 
Different strategies of molecular breeding viz., MAS, MABC, MARS, 
and GS enabled maize breeders to develop climate and disease 
pest-resilient elite maize cultivars. But the higher cost of technical 
equipment in molecular breeding remains the major hindrance to 
applied at a large scale for developing countries. For example, in 
developing countries like India, the lack of facilities and the high 
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cost of molecular marker platform technologies limited its efficient 
use for maize improvement. However, the last decade witnessed 
improvement in the infrastructure development and reduced 
cost of sequencing owing to the development of high throughput 
sequencing platforms. But still, there is a need to formulate 
appropriate research policies and promote public-private 
partnership models to harness the results from complementation 
of molecular markers and conventional breeding. The availability 
of reference genome in maize enabled the development of target 
trait-specific diagnostic markers in the recent past. However, 
success with molecular markers is limited mostly to qualitative 
traits but the use of abundant SNP markers can surely help to 
improve the complex quantitative traits too. The complex traits like 
abiotic and biotic stresses would likely witness the use of markers 
for the memory stress-based breeding in maize [148,149].

Molecular markers hold immense importance for yield 
improvement in maize. The pyramiding of the yield related QTLs 
via selection through linked markers will help to augment the 
grain yield in maize. The higher genetic gains in yield is also likely 
to be achieved in near future through MARS and GS. The use of 
high density SNP markers can be vital in genomic prediction of 
hybrid performance through selective crosses among superior 
inbred lines and hence leading to superior heterotic hybrids. 
The identification of favourable haplotypes for grain yield will 
strengthen the haplotype based breeding in maize. Therefore, the 
use of molecular markers is likely to boost maize productivity to 
fulfill the food requirement of an ever-growing population.
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