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Abstract Global climate change leads to the con-
currence of a number of abiotic stresses including
moisture stress (drought, waterlogging), temperature
stress (heat, cold), and salinity stress, which are the
major factors affecting maize production. To develop
abiotic stress tolerance in maize, many quantitative
trait loci (QTL) have been identified, but very few
of them have been utilized successfully in breeding

Key message A total of 32 meta-QTL conferring
tolerances to different abiotic stresses in maize were
identified from 244 initial major QTL detected in 33
published QTL mapping studies.
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programs. In this context, the meta-QTL analysis of
the reported QTL will enable the identification of sta-
ble/real QTL which will pave a reliable way to intro-
gress these QTL into elite cultivars through marker-
assisted selection. In this study, a total of 542 QTL
were summarized from 33 published studies for toler-
ance to different abiotic stresses in maize to conduct
meta-QTL analysis using BiomercatorV4.2.3. Among
those, only 244 major QTL with more than 10% phe-
notypic variance were preferably utilised to carry
out meta-QTL analysis. In total, 32 meta-QTL pos-
sessing 1907 candidate genes were detected for dif-
ferent abiotic stresses over diverse genetic and envi-
ronmental backgrounds. The MQTL2.1, 5.1, 5.2, 5.6,
7.1, 9.1, and 9.2 control different stress-related traits
for combined abiotic stress tolerance. The candidate
genes for important transcription factor families such
as ERF, MYB, bZIP, bHLH, NAC, LRR, ZF, MAPK,
HSP, peroxidase, and WRKY have been detected for
different stress tolerances. The identified meta-QTL
are valuable for future climate-resilient maize breed-
ing programs and functional validation of candidate
genes studies, which will help to deepen our under-
standing of the complexity of these abiotic stresses.
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Meta-QTL analysis
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Introduction

Maize (Zea mays L.) also known as ‘queen of cere-
als’ is widely grown for food, feed, and industrial
purposes to support a large portion of the world
population (Sheoran et al. 2021). In recent past, it
has gained importance as a source of bio-ethanol
and envisaged as a potential crop to diversify the
rice-based cropping system in the Indo-Gangetic
plains of India (Rakshit et al. 2021). It is mainly
cultivated under marginal land areas prone to rain-
fed conditions imposing different kinds of biotic
and abiotic stresses. Maize production largely
depends on suitable climatic conditions (Gong
et al. 2014), but the extreme climate-changing
scenario generates several abiotic stresses like
drought, heat, salinity, waterlogging, and cold
stress (Krasensky and Jonak 2012; Prakash et al.
2020; Gadag et al. 2021). These abiotic stresses
affect the maize growth and development processes
significantly reducing global yield potential (Mit-
tler 2006; Qin et al. 2011) (Fig. 1). To counter the
negative impacts of these abiotic stresses, advance-
ments in molecular breeding can aid in develop-
ing stress-tolerant cultivars. Various studies have
been conducted to detect many quantitative trait
loci (QTL) imparting tolerance for these abiotic
stresses in maize (Zaidi et al. 2015; Zhao et al.
2018a; Van Inghelandt et al. 2019). The utilization
of maize cultivars with desirable tolerance to these
stresses is the most cost-effective approach for pre-
venting stress damages.

The QTL analysis provides information on chro-
mosomal regions controlling specific traits that can

Fig. 1 Different maize

be further transferred to target cultivars through
marker-assisted breeding programs. Over the last
few decades, QTL analyses have increased across
crop species due to recent advances in genotyping
platforms (Bohra et al. 2020; Kumar et al. 2021).
However, a fraction of the reported QTL has been
successfully utilized in marker-assisted selection
(MAS) in breeding programs due to numerous fac-
tors, such as limited marker-trait association, a low
number of markers used in mapping, small pheno-
typic variance explained, differences in the genetic
backgrounds, and environmental effects (William
et al. 2007; Tuberosa 2012). Many QTL have been
identified for drought, waterlogging, heat, cold, and
salinity tolerance in maize as reviewed by Prasanna
et al. (2021). However, these QTLs have been iden-
tified from different genetic backgrounds being
evaluated in diverse environments following dis-
similar techniques of QTL detection, thus limiting
their utility by different researchers. A meta-QTL
analysis of these different experimental findings
can be effective in refining the number and posi-
tion of the QTL and identify stable and large effect
QTL. Meta-QTL analysis enables the mapping of
QTL on the same chromosome for different traits
detected in different mapping populations with
lower confidence intervals (CI) (Goffinet and Ger-
ber 2000; Kaur et al. 2021). So far, meta-QTL anal-
ysis has been conducted successfully for drought
tolerance in rice (Courtois et al. 2009; Khowaja
et al. 2009; Khahani et al. 2021), cotton (Said et al.
2013), maize (Zhao et al. 2018a; Liu et al. 2019),
and wheat (Soriano and Alvaro 2019), for abi-
otic stress tolerance in barley (Zhang et al. 2017),

abiotic stresses (drought,
waterlogging, heat, cold,
and salinity) and plant
responses against these
stresses at molecular level
in addition to the stress sig-
nalling to induce tolerance
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salt tolerance in rice (Islam et al. 2019), heat and
drought tolerance in wheat (Acuia-Galindo et al.
2015), leaf senescence in Arabidopsis (Char-
don et al. 2014), flowering time in maize (Char-
don et al. 2004; Wang et al. 2016a), yield-related
traits in wheat, (Zhang et al. 2010), and popping
traits in maize (Kaur et al. 2021). However, except
for drought (Zhao et al. 2018a), meta-QTL analy-
sis for targeting different abiotic stresses toler-
ance in maize has not been reported. Hence, the
present study was conducted to identify the meta-
QTL (MQTL) controlling different abiotic stresses
tolerance in maize. The identified MQTL with
refined positions and decreased CI will be valuable
resources for further MAS, candidate gene mining,
pathway analysis, and various other purposes like
functional annotation of genes, ortho meta-QTL
analysis, and linking associations with genome-
wide studies.
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Fig. 2 a Summary of initial QTL for different abiotic stresses
in maize used for meta-QTL analysis. b Chromosome wise
meta-QTL detected from 244 initial QTL for abiotic stresses
in maize. ¢ Confidence interval (CI) of detected MQTL and

Materials and methods
QTL database development

An exhaustive literature review was carried out from
published QTL mapping studies in maize for differ-
ent traits (like grain yield, flowering time, and other
agronomic-based traits) that regulate abiotic stresses.
From 1994 to 2019, information for 542 QTL from 33
published studies was summarized for drought (238),
waterlogging (61), heat (82), cold (93), and salinity
(68) tolerance in maize (Fig. 2a; Table S1). During
data compilation, the QTL identified under control
conditions were excluded as they were detected under
normal conditions. The information related to genetic
maps and various parameters of stress tolerance QTL
was used in the analysis. For the meta-QTL analy-
sis, the QTL with more than 10% or 75th percentile
of phenotypic variance were used in the analysis as
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these are potential candidates to be utilised for MAS
(Collard et al. 2005; Rossi et al. 2019). For salin-
ity and waterlogging studies, mostly minor QTL
(with less than 10% phenotypic variance) have been
reported; hence, for these traits, minor QTLs were
also considered for the analysis. After filtering with
the above criteria, a total of 244 initial QTLs were
used for meta-QTL analysis. For different studies,
the mapping populations size varied from 75 to 302
progenies including F, (12), F; (2), F, (1) backcross
(BC) (1), doubled haploid (DH) (2), and recombinant
inbred lines (RILs) (15) populations phenotyped at
different locations and years (Table 1).

Consensus map and QTL projection

A high-resolution map, ‘ISU Integrated IBM 2009’,
available on MaizeGDB (https://www.maizegdb.org/
data_center/map) was used as a reference map to
construct the consensus map as it has high marker
density with different types of markers. It consists of
9073 markers with a total length of 2400.97 cM. A
SNP marker-based dataset (Dell’Acqua et al. 2015)
was also integrated into the reference map for the
inclusion of SNP-based QTL studies as applied by
Khahani et al. (2021). To conduct the meta-QTL
analysis, the algorithmic-based ‘MetaQTL’ software
was used for QTL projection in XML file format
(https://www.bioinformatics.org/downloads/list.php?
group_id=693). For QTL projection on the consensus
map, LOD (logarithm of odd) value, phenotypic vari-
ance (Rz), QTL positions, and CI were compiled from
published studies to conduct the meta-QTL analysis.
For most of the studies, the QTL position was already
given based on the position of the flanking marker
on the consensus map. The QTL without positions
were assigned positions as per the flanking markers.
The QTL which lacked CI was calculated using the
530/N x R* approach for F, and BC, while 163/N x R*
for RIL population-based studies (Darvasi and Soller
1997), where N is the size of population and R? is the
phenotypic variance explained by each QTL.

Meta-QTL analysis
Following the generation of consensus map and QTL
projection, ‘BioMercator V4.2.3* was used for MQTL

detection (Arcade et al. 2004; Veyrieras et al. 2007;
Sosnowski et al. 2012) (https://urgi.versailles.inra.fr/

@ Springer

Tools/BioMercator-V4). The meta-QTL analysis first
determined the number of potential MQTL on each
chromosome from different experiments based on
best model values, i.e. AIC (Akaike information con-
tent), AICc (AIC correction), AIC3 (AIC 3 candidate
models), BIC (Bayesian information criterion), and
AWE (average weight of evidence). The QTL models
with the lowest value in at least three of the five mod-
els were used to determine the number of MQTL on
each chromosome (Swamy et al. 2011; Chardon et al.
2014). The physical positions within 95% CI of each
MQTL were calculated, and the flanking markers for
each MQTL were selected from Maize GDB database
(http://maizegdb.org/).

Candidate gene identification

The locus lookup browser (www.maizegdb.org) was
used to determine the physical position of the flanking
markers. In case of flanking markers without physi-
cal position, the next closest outer marker was used to
detect genomic coordinates of the MQTL. The physi-
cal lengths of the obtained MQTL were determined to
retrieve candidate genes linked with abiotic stresses
from the maizeGDB database. Further, the ‘qTeller’ tool
available on maizeGDB was used for identifying genes
present within the MQTL physical interval by selecting
the expression datasets of B73 genome version 4 for par-
ticular stresses only (Woodhouse et al. 2021).

In silico expression analysis of identified candidate
genes

The in silico expression analysis of identified can-
didate genes under drought, heat, cold, and salinity
stress was carried out obtaining the transcriptome
data for these abiotic stresses from Hoopes et al.
(2019). From the publicly available abiotic stress
experiment datasets, the transcriptomic data for the
identified candidate genes in the current study was
extracted. In previous experiments, to induce abi-
otic stresses such as drought, salt, and temperature
stress (heat and cold), the plant roots (Opitz et al.
2014), leaves, and whole plant tissues above the
ground (Makarevitch et al. 2015) were used. The data
included the stress treatments as roots exposed to
drought stress at 0 MPa (mega Pascal), low MPa, and
very low MPa water potential for six and 24 h, above-
ground whole tissue exposed to temperature stress


https://www.maizegdb.org/data_center/map
https://www.maizegdb.org/data_center/map
https://www.bioinformatics.org/downloads/list.php?group_id=693
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control for cold and heat stress, and leaves exposed
to salt stress at 0 mM (Milli molars) and 200 mM
concentrations. The expression data of all recognized
candidate genes for abiotic stresses was retrieved
using maize eFP (electronic fluorescent pictograph)
browser (http://bar.utoronto.ca/efp_maize) (Li et al.
2010) except for waterlogging stress as no expression
data was available for waterlogged treatment. The
genes with a higher number of transcripts showing
positive fold-change (Log2) were up-regulated, while
the genes having a lower number of transcripts with
negative fold change (Log2 < = —1) were down-reg-
ulated. A heatmap of abiotic stress-responsive genes
was generated using Heatmapper software (http:/
www.heatmapper.ca/) by following the hierarchi-
cal average linkage clustering method (Babicki et al.
2016). In the study, a p value of * 0.05 and Log2>1
was used as the threshold to detect significant gene
expression differences.

Results

Detected MQTTL for different abiotic stresses and
their distribution on the maize genome

Out of the 244 initial major QTL, a total of 197 QTL
(80.73%) were successfully projected on the consen-
sus map for different abiotic stresses (drought, heat,
salinity, cold, and waterlogging) in maize. Conse-
quently, chromosome 1 has the highest (38), and chro-
mosomes 8 and 10 have the lowest (3 and 11) number
of the projected QTL. In the meta-QTL analysis; a
total of 32 MQTL consisting of 118 initial QTL were
detected on six chromosomes (1, 2, 4, 5, 7, and 9)
representing 48.36% of the total 244 initial QTL on
all ten chromosomes of the maize genome (Fig. 2b,
Table 2). The data supported a significant reduction
in the respective CI of detected MQTL in comparison
to the CI of initial QTL (Fig. 2c, Table 2; Table S1).
Hence, meta-QTL analysis efficiently reduced the
number of QTL in addition to narrowing down the
genomic regions controlling different abiotic stresses-
related traits.

Out of 32 MQTL, five MQTL were located on
chromosome 1 with 54 initial QTL, while seven
MQTL were detected on each chromosome 2 and 7,
and five, six, and two MQTL were located on chro-
mosomes 4, 5, and 9, respectively (Fig. 2b). Among

@ Springer

abiotic stresses, the MQTL for drought tolerance were
detected on six chromosomes, with chromosomes
2, 4, 5, and 6 each containing five drought-tolerant
MQTL, while two and one MQTL were detected on
chromosomes 9 and 1, respectively. On chromosome
4, all five MQTL consisted of drought-tolerant initial
QTL (Fig. 2d; Fig. 3). In total, five MQTL for heat
tolerance were detected on chromosomes 1(2), 2 (2),
and 9 (1), while four were detected for salinity toler-
ance on chromosomes 1 (2), 5 (1), and 7 (1). For cold
tolerance, five MQTL were detected on chromosomes
2 and 5 with each having two and chromosome 7 hav-
ing one, while for waterlogging tolerance, five MQTL
were detected with one MQTL detected each on chro-
mosomes 2, 7, and 9 and two MQTL were located on
chromosome 5 (Fig. 2d; Fig. 3).

Many MQTL contained initial QTL for combined
abiotic stress tolerance. The MQTL2.1 has combined
initial QTL for drought, heat, cold, and waterlogging,
while MQTLS5.1 has initial QTL for drought, cold,
salinity, and waterlogging tolerance. The MQTL5.2
has initial QTL for drought and waterlogging toler-
ance and MQTLS5.6 contained drought and cold toler-
ance initial QTL. MQTL7.1 consists of salinity and
cold tolerance QTL. The MQTL9.1 contained drought
and waterlogging tolerance QTL, while MQTL9.2
contains drought and heat tolerance initial QTL. The
MQTL were formed from one major initial QTL (on
chromosomes 1, 2, and 7) to a maximum of 15 major
initial QTLs (on chromosome 2). Among identi-
fied MQTL, one MQTL, i.e. MQTL9.2, was formed
with initial QTL from five different populations. Two
MQTL, i.e. MQTL2.1 and 5.1, and one MQTL, i.e.
MQTL5.6, were formed with initial QTL from four
and three different populations, respectively. The
MQTL formed from different populations appeared to
be unique as these genomic regions are found across
different genetic backgrounds making it more reliable
for breeding programs. The meta-QTL analysis also
reduced the CI of QTL from the original 19.08 cM on
average to 4.94 cM for each MQTL. MQTL9.2 has
the lowest CI of 0.02 cM (8.10-8.12 ¢cM) on chromo-
some 9.

Candidate genes identified for different abiotic
stresses

Based on the physical positions of the 32 MQTL, a
total of 1907 candidate genes were identified for


http://bar.utoronto.ca/efp_maize
http://www.heatmapper.ca/
http://www.heatmapper.ca/
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Fig. 3 Graphical representation of 32 MQTL distributed on six chromosomes of maize for different abiotic stresses {drought (red),
waterlogging (green), heat (blue), cold (pink), and salinity (sea green)}

different abiotic stresses (Table S2). The number of
candidate genes positioned within a MQTL ranged
from 7 (MQTL7.4) to 221 (MQTL4.3). No candidate
genes were detected within the small CI of MQTLS.3.
Furthermore, > 100 candidate genes were present
in five regions, viz. MQTL 1.3 (101), 2.3 (128), 4.1
(196), 4.3 (221), 4.4 (136), and <15 candidate genes
were present in other five regions, viz. MQTL 1.5 (9),
2.4 (15), 4.5 (7), 7.4 (10), and 9.1 (12). The identi-
fied MQTL, viz. 1.1, 2.1, 2.4, 4.4, 4.5 9.1, and 9.2,
with a large number of initial QTL for drought toler-
ance possessed 19, 41, 15, 136, 7, 12, and 33 candi-
date genes, respectively. A total of 93 candidate genes
for waterlogging tolerance were within 29.87 cM of
the CI for MQTL7.3. The MQTL for heat tolerance
such as MQTL1.2, 1.3, 2.1, and 2.2, contained 47,
101, 41, and 54 candidate genes, respectively. A total
of 128 and 31 candidate genes have been reported
in MQTL2.3 and 5.4, respectively, containing initial
QTL for cold tolerance. Two important MQTL, i.e.
MQTL1.5 and 1.4, for salinity tolerance possessed 9
and 42 candidate genes, respectively. The identified

candidate genes encode for important transcription
factor (TF) family proteins against abiotic stress tol-
erance. It supports the significance of each MQTL
identified in this study, which has been elaborately
discussed in discussion section.

Expression analysis of identified candidate genes
responsive to abiotic stresses in maize

Out of 1907, a total of 77 candidate genes, i.e. well
characterised by Hoopes et al. (2019) and encoding
for stress-responsive genes, were used to analyse their
differential expression patterns (Fig. 4; Table S3). The
analysis showed that a total of 40 and 43 genes were
up-regulated under drought stress at low MPa and very
low MPa for 6-h treatment, while 31 and 29 genes were
down-regulated. Similarly, 39 and 36 genes were up-
regulated under drought stress at low MPa and very
low MPa for 24-h treatment, as 32 and 33 genes were
down-regulated. For cold and heat stress, 28 and 13
genes were up-regulated, and 45 and 56 genes were
down-regulated, respectively. For salinity stress, a total
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Fig. 3 (continued)

of 42 and 23 genes were up- and down-regulated,
respectively. Hierarchical average linkage cluster-
ing of all these abiotic stress-responsive genes led to
the identification of four clusters possessing distinct
differential expressed genes (Fig. 4). Cluster I con-
tained 10 genes among which four genes were up-
regulated for cold and salinity stress, while all genes
were down-regulated for heat stress. Cluster II was
subdivided into two sub-clusters as Ila and IIb har-
bouring a total of 60 genes. Among which 35, 37,
33, and 31 genes were up-regulated under all drought
stress treatments, while 23, 10, and 33 genes were up-
regulated under cold, heat, and salt stress conditions.
Cluster IIT possessed five genes which were mostly
up-regulated under drought and salt stress except for
Zm00001d003483 that was down-regulated under
drought stress treatments. Cluster IV confined only
two genes into which one gene Zm00001d049756
was up-regulated under drought, cold, and heat stress
conditions, while another gene Zm00001d005766
was down-regulated under all stress conditions
except heat (Fig. 4; Table S3). Moreover, a few com-
mon differentially expressed genes under all abiotic
stressed conditions were also identified and showed

@ Springer
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similar expression patterns under different stresses.
For example, Zm00001d052069, Zm00001d004768,
and Zm00001d017693 were up-regulated under
all conditions, while genes Zm00001d049678,
Zm00001d051569, Zm00001d015213, Zm00001d020013,
and Zm00001d028348 were down-regulated. A few
genes also showed inverse differential regulation
between different stress conditions.

Discussion

Abiotic stresses are genetically complex quantitative
traits as they are controlled by numerous minor genes
and are highly influenced by environmental condi-
tions (Witcombe et al. 2008). In the current study, the
meta-QTL analysis for abiotic stresses (drought, heat,
cold, salinity, and waterlogging) in maize detected a
total of 32 MQTL located on six chromosomes (i.e.
1,2, 4,5, 7, and 9). From the 244 complied QTL,
197 were projected on the consensus map using the
Gaussian mixture model (Veyrieras et al. 2007), but
only 118 were a part of the detected MQTL. Addi-
tionally, despite higher phenotypic variance, certain
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Fig. 4 Heatmap of dif-
ferentially expressed abiotic
stress (drought, cold, heat,
and salinity) responsive
candidate genes in maize.
Expression profiles of up-
and down-regulated genes
are presented with gradi-
ent green and red boxes,
respectively. Treatment
abbreviations: DS, drought
stress; TS, temperature
stress; SS, salt stress. Black
boxes indicate missing val-
ues. The scale bar is shown
at the top and log2 value
(treatment /control) was
used to express fold change
in gene expression
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QTL were not assigned to the MQTL region due
to the use of different reference maps in consen-
sus map construction, marker type, and population
heterogeneity.

Moisture stress tolerance in maize
Drought (low moisture) stress tolerance in maize

Drought is one of the major constraints in maize pro-
duction as it causes nearly 30-90% yield loss and
severely affects the flowering and grain filling stage
(Pandit et al. 2018; Sah et al. 2020). Numerous QTL
mapping studies have been undertaken in maize
for drought stress (Beavis et al. 1994; Agrama and
Moussa 1996; Vargas et al. 2006; Rahman et al. 2011;

. Cluster IV

DS-very LowMPa-6h

Cluster I

Cluster
Ila

| Cluster IIb

Cluster I11

DS-0MPa-24h
DS- LowMPa-24h
TS-Control
TS-Cold
TS-Heat
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SS-200mM

DS-very LowMPa-24h

Zhu et al. 2011; Zhao et al. 2018a). However, all the
studies depict variable results due to diverse mapping
population types and sizes used in the study, different
segregation patterns in certain genetic backgrounds,
and environmental conditions (Welcker et al. 2007;
Farfan et al. 2015; Huo et al. 2016). Hence, the meta-
QTL analysis of a total of 238 initial QTL for drought
traits compiled from 11 experimental studies helped
to identify the real and stable QTL for drought stress
tolerance.

Two MQTL for drought tolerance, MQTL9.1 and
9.2, consisted of ten and nine initial QTL for differ-
ent traits from four different studies (Beavis et al.
1994; Zhu et al. 2011; Nikoli¢ et al. 2013; Zhao
et al. 2018a). The MQTL2.4 included seven QTL
for drought tolerance from a single study (Beavis
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et al. 1994) with three being agronomic-based traits,
while three QTL were directly used to measure
drought tolerance, i.e. ASI (anthesis-silking inter-
val), GDD (growing degree days) and stay green.
Five initial drought tolerance QTL from a single
study (Beavis et al. 1994) formed MQTLS5.3. In the
MQTLI1.1, 2.1, 4.4, and 4.5, each has three initial
QTL for drought tolerance-related traits such as cob
weight, ear weight, kernel weight, ASI, and ear set-
ting. Many MQTL, viz. MQTL2.5, 2.6, 4.1, 5.6, and
7.2, has two initial drought tolerance QTL mostly
for agronomic traits from different studies (Vargas
et al. 2006; Zhu et al. 2011; Nikoli¢ et al. 2013;
Zhao et al. 2018a). The agronomic-based traits such
as plant height, ear height, ear length, ear diameter,
kernel width, kernel number, and ASI have been
widely utilised for QTL mapping and understand-
ing the drought-tolerant molecular mechanisms as
these traits are directly correlated with yield (Lebre-
ton et al. 1995; Welcker et al. 2007; Fu et al. 2008;
Wang and Zhang 2008; Li et al. 2009; Nikoli¢ et al.
2013). Among these traits, grain yield and ASI are
directly relevant to evaluating maize drought tol-
erance ability (Hao et al. 2008; Lu et al. 2010;
Jia et al. 2020). Female (silk) growth is severely
affected under drought stress in combination with
an increase in GDD in comparison to male (tassel)
so detecting the MQTL for growing degree units
is highly relevant to observe its effect on ASI that
subsequently affects grain yield (Beavis et al. 1994;
Araus et al. 2012).

In the current study, MQTLS5.3 possess no can-
didate gene as being low CI or may be the region
is not well characterised functionally. The genes
encoding for putative MYB (myeloblastosis) DNA-
binding domain superfamily protein were reported
in MQTL4.3, 4.4, 5.1, and 7.2. Earlier studies sug-
gested that MYB TF regulate stomatal opening,
defence mechanism, and ABA (abscisic acid)-sig-
nalling in maize and wheat under drought stress
(Zhao et al. 2018b). Hence, further characterisation
of these genes could validate their link to drought
adaptation in maize. The ERF (ethylene respon-
sive factor) genes were reported in MQTL2.1, 2.7,
and 4.3. It has been observed that maize proteins
encoded by ERF TF regulate a multitude of tran-
scriptional programs to potentially contribute to
multiple stress responses (Zhou et al. 2012). Many
genes have been observed for glycosyltransferase

@ Springer

and glycosyl hydrolase family proteins in
MQTL2.6, 2.7, 4.1, 4.2, 4.3, and 5.1, which could
play role in response to different biotic and abiotic
stresses as also reported in Arabidopsis, rice, and
maize (Bray 2004; Opassiri et al. 2006; Keppler
and Showalter 2010; Xin et al. 2018). Several LRR
(leucine-rich repeat) receptor-like kinase family
protein-encoding genes have been detected in sev-
eral MQTL regions, viz. MQTLI1.1, 2.1, 2.4, 4.2,
4.3,5.1, 7.2, and 7.6, which could play important
roles in signal transduction and drought response
(Perruc et al. 2004; Alam et al. 2010). Besides,
induction of peroxidase is a common feature under
all the stress treatments (Kapoor and Sveenivasan
1988), and four genes encoding for peroxidase
were reported from MQTLI1.1, 4.2, 5.2, and 5.6
which may be involved in the stress response. Sev-
eral genes in MQTLI.1, 2.6, 2.7, 4.1, 4.3, 4.4, 5.2,
7.2, 7.6, and 9.2 have been reported encoding for
ZF (zinc finger) (such as C2H2, C3HC4-type RING
finger) family protein. Genes encoding for different
ZF proteins have been found to improve drought
tolerance in various plant species such as maize
(Shan et al. 2013), rice (Jan et al. 2013), and Arabi-
dopsis (Luo et al. 2012; Zhang et al. 2016a; Wang
et al. 2016b).

Three MYBs, two ERFs, two bZIP (basic leucine
zipper), one glycosyl hydrolase, two Glycosyltrans-
ferase family, three CBTA (calmodulin-binding
transcription activator), two LRR, and three ZF
encoding genes have been up-regulated for drought
stress. While two MYB, two bHLH (basic helix
loop helix), one WRKY, two ZF, three LRR, one
40S ribosomal unit, one UBX domain, two WD-40,
one auxin response factor, one cytokinin-O-gluco-
syltransferase, and two peroxidase encoding genes
have been down-regulated. Similarly, in previous
studies (Zhang et al. 2014; Yan et al. 2014; Bianchi
et al. 2015; Shi et al. 2018; Zenda et al. 2019), sev-
eral genes including MYBs, bZIPs, bHLH, WRKY,
and other TFs were also identified suggesting their
involvement in drought adaptation responses. Three
up-regulated and two down-regulated MYBs were
identified in foxtail millet (Seatria italic) (Shi
et al. 2018). Likewise, Yan et al. (2014) associated
WRKY TFs as an important element in drought
stress. Hence, the identified candidate genes in the
current study could be important contributors to
drought stress tolerance in maize.
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Waterlogging (high moisture) stress tolerance
in maize

Waterlogging is another serious abiotic stress that
has a significant impact on maize growth and yield
potential, causing 15-80% reduction in yield (Li et al.
2011; Prasanna and Rao 2014). In maize, the second
leaf stage (V2) to the seventh leaf stage (V7), i.e. the
early seedling stage, is more vulnerable to waterlog-
ging stress (Liu et al. 2010). Mostly minor QTL have
been identified for waterlogging tolerance in maize
except for a few major QTL (Qiu et al. 2007; Zaidi
et al. 2015). The meta-QTL analysis was carried out
by compiling the data of 61 initial QTL from five
published QTL mapping studies targeting waterlog-
ging stress.

Three initial QTL for root and shoot fresh weight
and seedling height from a single study formed
MQTL5.1 (Zhang et al. 2013), while in MQTLS5.2
and 7.3, each has two initial QTL for shoot dry
weight, root dry weight, brace root, and stem lodging
mapped from two studies (Zhang et al. 2013; Zaidi
et al. 2015). The MQTL2.1 and 9.1 each possessed
one initial QTL for chlorophyll content and root dry
weight from already published studies of Zhang et al.
(2013) and Zaidi et al. (2015). For waterlogging tol-
erance, grain yield is the most favoured trait directly
used for selection, while the other secondary traits
such as a number of brace roots, chlorophyll content,
root and shoot biomass, root and stem lodging, plant
and ear height, adventitious root and aerenchyma
formation, and leaf injury are used as indirect selec-
tion indices in maize (Zaidi et al. 2015; Reneau et al.
2020). Hence, the MQTL identification for these
traits could enhance waterlogging tolerance via their
marker-assisted introgression into elite varieties.

A TF gene for the ERF family (Zm00001d001907) was
revealed from MQTL2.1 which could be associated with
waterlogging tolerance as also detected by Yao (2021) in
maize line ‘Suwan-2’ for waterlogging tolerance. Further
characterisation can find the role of this gene in controlling
flooding responses and anaerobic tolerance in several plant
species as stated by Licausi et al. (2010) and Gibbs et al.
(2015). In MQTLS.2, a gene has been reported for MAPK
(mitogen-activated protein kinase) (Zm00001d017693),
which is considered as a central regulator of primary sig-
nalling, cascades like reactive oxygen species (ROS),
and suppresses the action of gibberellin to hinder elonga-
tion under submergence (Singh and Sinha 2016). Two

genes in MQTLS.1 and 7.3 (Zm00001d015181 and
Zm00001d021490) have been identified encoding for o/f-
hydrolases superfamily protein which were induced under
flooding and salinity stress. A gene has been reported for
auxin-responsive protein in MQTLS.1 (Zm00001d015228)
that could play an important role in integrating hormonal
and environmental signals at different growth and devel-
opmental phases, inhibiting H,O, accumulation, and
chlorophyll reduction under abiotic stress in addition to up-
regulating stress-responsive genes (Ren and Gray 2015;
Guo et al. 2018). Two genes, i.e. Zm00001d017704 and
Zm00001d021537, have been reported in MQTLS.2 and
7.3 for MYB family protein that is known to be positively
involved in abiotic stress tolerance in plants (Dubos et al.
2010; Arora et al. 2018; Hoeren et al. 1998; Yang et al.
2012). In MQTLS5.2, a gene (Zm00001d017712) for WRKY
TF was detected that is involved in regulating suberin bio-
synthesis in outer roots during radial oxygen-loss barrier
formation under waterlogging (Liu et al. 2012). In the cur-
rent study, the in silico expression analysis of candidate genes
responsible for waterlogging tolerance was not carried out
due to the non-availability of its transcriptomic datasets. But
Du et al. (2014) performed the expression analysis of maize
AP2/ERF genes under waterlogged stress and demonstrated
their important role under waterlogged stress which was also
detected in this study.

Temperature stress tolerance in maize
Heat (high temperature) tolerance in maize

Heat stress significantly hampers maize yield by
affecting photosynthetic efficiency, kernel abortion,
and storage starch reduction (Cantarero et al. 1999;
Edreira and Otegui 2013). Being a highly variable
stress to measure its effects, carrying out QTL map-
ping studies for heat stress is really challenging task
in maize (Jodage et al. 2017; Lizaso et al. 2018). The
meta-QTL analysis carried out included 82 heat toler-
ance QTL compiled from nine experiments to iden-
tify the most stable and consistent MQTL.

The MQTL1.2 was formed from two initial heat
tolerance QTL for leaf firing and leaf blotching traits,
while MQTL1.3 and 9.2 have two initial heat toler-
ance QTL for leaf firing only from two different
populations of a single study (McNellie et al. 2018).
In another two MQTL, i.e. MQTL2.1 and 2.2, each
contained two previously identified QTL for male and
female flowering and grain yield (Frey et al. 2016). In
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heat stress, the foliar and tassel traits are yield com-
ponents and were affected by leaf firing, leaf blotch-
ing, and tassel blast phenotypes (Chen et al. 2012,
2017; Zaidi et al. 2016). The identification of major
QTL for these secondary traits will be reliable targets
for heat stress tolerance in maize.

One gene, i.e. Zm00001d002501, was reported
in MQTL2.2 and encodes for a heat shock pro-
tein (HSP) whose function is known to impart heat
stress tolerance (Bita and Gerats 2013). Two genes
Zm00001d046921 and Zm00001d046922 from
MQTL9.2 were found to be linked to F-box domain
proteins. These genes could be responsible for protein
protection and processing under stressed conditions
(Yong et al. 2019). Several genes were annotated as
‘hypothetical protein’ or ‘expressed protein’, which
may be novel candidate genes for heat stress tolerance
that needs testing to assign a particular function in
future experiments. In this study, 13 genes were up-
regulated including two MYB, three ERF, one bZIP,
one HSP40, one glycosyl hydrolase superfamily pro-
tein, one glycosyltransferase-related family protein,
and two CBTA receptors, while the remaining were
down-regulated in response to heat stress. Similarly,
previous studies have also reported the response
of major TF genes under heat-stressed conditions
(Zhang et al. 2012; Qian et al. 2019; Gao et al. 2021).

Cold (low temperature) stress tolerance in maize

Maize being a cold-sensitive crop needs a relatively
higher temperature threshold (25-28 °C) for its ger-
mination and vegetative growth (Hol4 et al. 2003;
Rodriguez et al. 2014). A few studies have been car-
ried out for QTL mapping of cold tolerance related
traits in maize (Fracheboud et al. 2002; Jompuk et al.
2005; Rodriguez et al. 2008; Hu et al. 2016). In the
current study, 93 QTL identified from five QTL map-
ping studies have been compiled to carry out a meta-
QTL analysis.

Four initial QTL for cold tolerance formed MQTL2.3
(Jompuk et al. 2005), while two initial QTL controlling
germination rate and primary root length at low tem-
perature formed MQTL5.4 (Hu et al. 2016). In addition,
MQTL2.1, 5.1, 5.6, and 7.1, each has one initial QTL for
cold tolerance from two different studies (Fracheboud
et al. 2004; Jompuk et al. 2005). Four candidate genes
(Zm00001d017693, Zm00001d015181, Zm00001d014726,
and Zm00001d017707) encoding for fatty acid hydroxylase
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have been reported in MQTLS5.1, 5.4, and 5.6 which could
play putative roles in low-temperature tolerance (Palta et al.
1993). One gene (Zm00001d0177120) has been identified
for the WRKY superfamily in MQTLS5.6 and a few others
for the MYB family (Zm00001d015226, Zm00001d017704,
and Zm00001d014701) in MQTLS5.1, 5.2, 54, and 5.6,
respectively. It has been observed that WRKY proteins con-
trol the pathogen defence and senescence processes under
cold stress in Arabidopsis (Eulgem et al. 2000), while MYB
TF is involved in the regulation of secondary metabolism and
other developmental processes (Stracke et al. 2001). How-
ever, the auxin-related gene (Zm00001d015243) was also
found in MQTLS.1, which is reported to affect senescence
induction as a response to severe cold stress (Kratsch and
Wise 2000). The expression gene analysis identified 28 up-
regulated genes for cold stress belonging to major TF fami-
lies as MYB, ERF, glycosyl hydrolase superfamily protein,
glycosyltransferase-related family protein, CBTA, LRR, ZF,
and peroxidase. At the same time, 45 down-regulated genes
were related to different families (four MYB, two NAC
(NAM, ATAF, and CUC), one bZIP, one ERF, two bHLLH,
four glycosyltransferase-related family proteins, three CBTA,
five LRR, five ZF, and one brassinosteroid synthesis). The
role of each of these TF families has been well demonstrated
under stress conditions (Li et al. 2015; Zhou et al. 2021). As
the genetic regulation of cold stress tolerance is poorly under-
stood, the study of cold-responsive MQTL and candidate
genes residing within it could help to further understand the
cold tolerance pathway in maize.

Salinity stress tolerance in maize

Salinity causes nearly 51.43 and 53.18% decrease in
dry weight and leaf area of maize, respectively (Hus-
sein et al. 2007). In maize, germination and plant
stand establishment are the most vulnerable stages
to salinity stress. Several QTLs have been identi-
fied for salinity stress in maize (Cui et al. 2015;
Luo et al. 2017, 2019). For the meta-QTL analysis,
a total of three QTL mapping studies reporting 68
QTL were utilized to detect the MQTL for salinity
stress tolerance.

The MQTL1.5 was formed from 15 initial QTL
controlling various morphological traits under
salt stress from a single study (Luo et al. 2019),
while in MQTL1.4, 5.1, and 7.1, each has two ini-
tial QTL for shoot dry weight salt tolerance index,
shoot length, plant height, root fresh weight, and
plant fresh weight. As maize is more sensitive to
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salt stress at the early seedling stage (Farooq et al.
2015; Luo et al. 2017; Sun et al. 2018), the QTL
for biomass-related traits with high heritability and
directly correlated to early vigour are important
to include in maize salt tolerance breeding pro-
grams (Khan et al. 2003; Giaveno et al. 2007; Yu
et al. 2018; Sandhu et al. 2020). Several genes have
been identified for salt tolerance in maize (Zhang
et al. 2019). Three genes (Zm00001d028347,
Zm00001d028348, Zm00001d028349) have been
identified for peroxidase in MQTL1.4 which could
be involved in the antioxidant defence pathway
(Xie et al. 2018; Luan et al. 2020). The genes for
LRR protein have also been identified in MQTLS5.1
which could be directly involved in stress defence
and root growth (Kwon et al. 2015; Guo et al.
2018). A gene (Zm00001d015176) for protein PGR
has been revealed from MQTLS5.1, and hormones
like ABA and cytokinin play an active role in the
development of tolerance to salinity stress (Farooq
et al. 2015). A gene (Zm00001d028372) for bZIP
has been detected in MQTL1.4 that is induced
under salt stress conditions in previous studies (Li
et al. 2017) that suggests it is generally involved
in response to several stresses. The genes encod-
ing for protein kinase were identified in MQTL1.5
and 7.1 and could play an important role in salt
tolerance (Zhang et al. 2016b). Identification of an
MYB DNA-binding protein (Zm00001d015226) in
MQTLS5.1 suggests a critical role of this TF family
in salinity response. One gene (Zm00001d015181)
in MQTLS5.1 was found for the o/f-hydrolase
which can enhance salt tolerance of plants by regu-
lating osmotic balance, increasing ROS scavenging
capacity, and protecting membrane integrity and
photosynthesis rate (Liu et al. 2014). Under salin-
ity stress, major TF families such as MYB, ERF,
bZIP, glycosyltransferase-related family protein,
CBTA, LRR, HSP 40, brassinosteroid synthesis,
o/p-hydrolases, and two ZF proteins were up-reg-
ulated, while four MYB, two NAC, one bZIP, one
ERF, one bHLH, two CBTA, three LRR, and four
ZF proteins were down-regulated. Xie et al. (2018)
also reported that TFs such as NAC, ERF, MYB,
bZIP, bHLH, and ZF protein showed differential
expression under salt stress in maize. It suggests
that the identified TFs in the current study could
play a central role in regulating salt-responsive net-
works in maize.

Meta-QTL for combined abiotic stress tolerance in
maize

Crop productivity will be further exacerbated due to
the negative impacts of increased temperature and
greenhouse gases (IPCC 2014). With climate change,
maize is prone to multiple abiotic stresses such as
drought, heat, salinity, cold, and waterlogging during
its lifespan. Due to erratic rainfall in the same sea-
son, rainfed maize during the wet season experiences
both drought and waterlogging stress. Crops activate
a specific type of stress response when exposed to
different stresses concurrently (Rizhsky et al. 2004).
The effects of these combined stresses vary with the
nature of interactions between the stresses (Choud-
hary et al. 2016; Rafique et al. 2020) such as drought
and heat stress conditions simultaneously, further
aggravating yield loss (Shanmugavadivel et al. 2019).
Therefore, to understand the mechanism of combined
stresses, it is very crucial to characterize the germ-
plasm for combined stress tolerance traits.

Among the identified MQTL, MQTL2.1, and 5.1,
each has seven initial QTL for drought, heat, cold,
waterlogging, and salinity tolerance traits from four dif-
ferent studies. The MQTLS5.2 has three initial QTL for
drought and waterlogging tolerance, while MQTLS5.6
contained three initial drought and cold tolerance QTL.
The MQTL7.1 was formed from salinity and cold tol-
erance QTL. Likewise, MQTL9.1 contained 11 initial
QTL for drought and waterlogging tolerance from two
studies, while the MQTL9.2 has 10 drought and heat
tolerance QTL from five different experimental studies.
For different stresses, genes encoding for various fami-
lies (AP2/ERF, MYB, bZIP, bHLH, GRAS, WRKY,
NAC, ZF, MAPK, and HSP) involved in regulating sev-
eral cellular, molecular, and biochemical functions were
identified (Lu et al. 2012; Shikha et al. 2017) (Table S2).
Genes Zm00001d017677 and Zm00001d017724 in
MQTL5.2 and 5.6 have been reported encoding for
bHLH71 TF and HLH DNA-binding domain-con-
taining protein, respectively. The bHLH TF protein is
known to be responsive to salt, heat, water-deficient,
and cold stress (Seo et al. 2011). Genes encoding for
MYB family TF have been identified in MQTLS5.1 and
9.2. In previous studies, it has been reported that MYB
TF is up-regulated when plants were subjected to both
drought and heat stress, simultaneously (Rizhsky et al.
2004). One gene, i.e. Zm00001d017678, was identi-
fied from MQTL5.2 and is putative RING-H2 finger
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protein ATL53. The genes encoding for the RING finger
protein are mainly induced under heat and cold stress
conditions, and its overexpression during these stresses
could increase the acquired thermo-tolerance (Lim et al.
2013). Moreover, in the current study, many common
differentially expressed genes were found belonging
to MYB, WRKY, bZIP, bHLH, ERFs, NACs, ARF,
HLH, and F-box proteins under abiotic stress treat-
ments (drought, heat, cold, and salinity). Few genes
showed inverse differential regulation between different
stress conditions. Some genes showed similar expres-
sion patterns under different stresses. For example,
Zm00001d052069 (MYB), Zm00001d004768 (glycosyl
hydrolase superfamily protein), and Zm00001d017693
(MAPK) genes were up-regulated under all conditions,
while Zm00001d049678 (NAC), Zm00001d051569
(bHLH), Zm00001d015213 (LRR), Zm00001d020013
(ZF), and Zm00001d028348 (peroxidase) were down-
regulated. Various genes showed a similar pattern under
drought and salinity stress as drought stress also causes
osmotic imbalances in the plant tissues (Huang et al.
2012); hence, a similar molecular adaptation has evolved
under different stresses. This indicates that the regula-
tion of these TFs plays an important role in imparting
tolerance under different stress conditions. Further, the
functional validation, characterization, and annotation
of these candidate genes will be valuable to increase our
understanding of the complex underpinning of differ-
ent types of stress tolerances in plants. These genes will
prove noteworthy to carry out further intensive research
efforts to strengthen climate-resilient maize breeding
programs.

Conclusion

As climate change has become more of a reality,
so meeting maize production demand will be fur-
ther challenged in the future under various biotic
and abiotic stresses. Hence, it is important to
enhance our understanding of the genomic regions
imparting abiotic stresses tolerance. The meta-QTL
analysis revealed a total of 32 MQTL for different
abiotic stresses on six chromosomes. For moisture
stress tolerance, a total of 20 MQTL contained ini-
tial QTL for drought tolerance, while five MQTL
comprised initial QTL for waterlogging tolerance.
For temperature stress tolerance, five MQTL were
detected for heat tolerance traits, while nine MQTL
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regions regulate cold tolerance. Three MQTL were
detected for salinity stress tolerance. Simultaneous
targeting of MQTL2.1, 5.1, 5.2, 5.6, 7.1, 9.1, and
9.2 can be helpful for improving combined abiotic
stress tolerance as they control different stress-
related traits. The identified MQTL provide breed-
ers the genomic regions to target for introgression
via marker-assisted breeding programs. The detailed
omics study and validation of identified puta-
tive candidate genes through genome editing tools
and gene expression analysis may help to improve
the abiotic stress tolerance in maize. However, the
effectiveness and accuracy of confidence interval
reduction/refinement for detecting candidate genes
are still unexplored. In addition, the crossing over in
different genetic backgrounds can break the linkage
between target QTL and markers. Hence, it requires
constant validation for identified MQTL to utilise
them effectively in breeding programs. The marker-
assisted introgression, cloning, and functional char-
acterization of identified MQTL in this study could
significantly strengthen the breeding efforts for
developing climate-resilient maize cultivars.
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