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Abstract: This paper introduces a novel hybrid approach, combining machine learning algorithms
with feature selection, for efficient modelling and forecasting of complex phenomenon governed by
multifactorial and nonlinear behaviours, such as crop yield. We have attempted to harness the benefits
of the soft computing algorithm multivariate adaptive regression spline (MARS) for feature selection
coupled with support vector regression (SVR) and artificial neural network (ANN) for efficiently
mapping the relationship between the predictors and predictand variables using the MARS-ANN
and MARS-SVR hybrid frameworks. The performances of the algorithms are com-pared on different
fit statistics such as RMSE, MAD, MAPE, etc., using numeric agronomic traits of 518 lentil genotypes
to predict grain yield. The proposed MARS-based hybrid models outperformed individual models
such as MARS, SVR and ANN. This is largely due to the enhanced feature ex-traction capability
of the MARS model coupled with the nonlinear adaptive learning ability of ANN and SVR. The
superiority of the proposed hybrid models MARS-ANN and MARS-SVM in terms of model building
and generalisation ability was demonstrated.

Keywords: soft computing; MARS; SVM; ANN; hybrid approach

1. Introduction

Globally, pulses are the second most important crop group after cereals. Lentil is
one of the most widely consumed pulses in India and specifically in the Middle East and
South Asian regions [1]. Being a rich source of essential nutrients, it is regarded as a high
value crop for ensuring food and nutritional security for millions of people in developing
countries. It is drought-tolerant and can also be grown as a rotation crop. Lentils also
improve soil fertility by replenishing soil nitrogen levels. [2]. India contributes around
18% to world lentil production and is one of the major lentil-exporting countries in the
world [3].

Despite being a major producer and consumer, the yield of lentil is considerably
low in India compared to other major producing countries. The crop yield is affected by
multiple factors such as physical, economic and technological. Morphological characters
play a crucial role in yield enhancement as well as reduction. [4,5]. A good prediction
model explores the complex relationship between different factors and yield. It helps to
improve management techniques and boost actual yields. A good prediction model should
be reliable, consistent, object-oriented, cost effective and sensitive to extreme events [6].
Several researchers have attempted to model the crop yield of lentil using different models
such as simple correlation [1], path analysis [7], multiple linear regression [8], stepwise
regression [9], factorial analysis [2] and principle component analysis [10]. These studies
assumed the linear relationship between plant characters and crop yield. However, these
models have not been successful in capturing the nonlinear relationship between crop yield
and plant characters [11].

In the past decades, there has been a consistently rising interest in the application
of machine learning (ML) techniques such as artificial neural networks (ANNs), support
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vector regression (SVR) and random forest (RF) in different fields, particularly for mod-
elling nonlinear relationships. Schultz and Wieland [12] discussed the possibilities of
applying neural networks or neural networks in combination with fuzzy techniques in
the field of agroecological modelling. Uno et al. [13] used artificial neural networks to
predict corn yield from compact airborne spectrographic imager data. They used statistical
and ANN approaches along with various vegetation indices to develop yield prediction
models. Lee et al. [14] and Zhang et al. [15] found that multivariate adaptive regression
spline (MARS) performed better than both statistical parametric methods such as linear
discriminant analysis or logistic regression and nonparametric approaches such as neural
networks and support vector machines. Khazaei et al. [16] applied artificial neural network
methodology to model the correlation between crop yield and 10 yield components of
chickpea (Cicer arietinum L.). They also used the fuzzy c-means clustering technique for
the classification of 362 chickpea genotypes based on agronomic and morphological traits.
Among the various ANN structures, the 10-14-3-1 ANN structure with a training algorithm
of back-propagation and hyperbolic tangent transfer function in the hidden and output
layers performed best. Higgins et al. [17] developed an ANN model for forecasting the
maturity of green peas using historical harvest information along with weather and climate
forecasts. They implemented and evaluated the model in a large pea growing region in
Tasmania, Australia. The model allowed for not only the harvesting of peas closer to their
ideal maturity indices, but also the planning of harvest and transportation logistics with
a significantly longer lead time. Khairunniza-Bejo et al. [11] highlighted the prediction
accuracy of the ANN model compared to other linear models in crop yield prediction. They
showed that the ANN model captured the relationship among the variables much more
accurately. Gandhi et al. [18] used the support vector machine (SVM) model for rice crop
yield prediction in India using climatic variables. Deo et al. [19] applied MARS, least square,
SVM and decision tree for drought forecasting in eastern Australia. Garg et al. [20] forecast
rice yield using the fuzzy logic and regression model. They tested four different types of the
fuzzy interval with four degrees of regression equations. Ying-Xue et al. [21] developed a
support vector machine-based open crop model (SBOCM) integrating developmental stage
and yield prediction models for rice crop yield prediction in China. Klompenburg et al. [22]
and Batool et al. [23], Cubillas et al. [24], Bali and Singla [25] and Ji et al. [26] reviewed the
research works related to crop yield prediction using ML techniques. They explored the
different machine learning techniques used in crop yield prediction and their efficiency.
The studies reported the increasing trend of hybrid models in crop yield prediction.

The selection of appropriate input variables is an important part of any model such
as multiple linear regression models (MLRs) and machine learning models [27–29]. Fea-
ture selection is an effective way to reduce computation time, improve learning accuracy
and facilitate a better understanding of the learning model or data. Many studies [30–32]
suggested that variable selection reduces the complexity of the model and make it more
interpretable. However, each variable (feature) selection strategy is data-based and has its
own benefit, drawback and applicability. MARS is based on local regression modelling,
which uses spline functions to approximate complex nonlinear relations [33,34]. The ad-
vantage of MARS is that the relative importance of independent variables to the dependent
variable can be captured [15,33,35]. The important variable can be selected based on the
relative importance of independent variables. Therefore, MARS was used as a selection
model in the present study.

In the literature, most researchers have restricted themselves to using only one method
such as ANN in their study. Comparative study and hybrid modelling of soft computing
techniques with variable selection on particular datasets is yet to be done. This motivated
the present comparative study of different soft computing techniques such as ANN, MARS
and SVR. A hybrid model was formulated using MARS and ANN/SVR. These techniques
and the proposed hybrid model were applied to the lentil dataset, and their modelling and
forecasting performances were compared using different statistical measures. The remain-
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ing portion of the paper is divided into materials and methods, results and discussion, and
a conclusion section.

2. Materials and Methods
2.1. Plant Material and Field Experiment

The experimental data for this study comprise 518 lentil accessions, of which 206
entries are exotic collections and 312 are indigenous collections, including 59 breeding
lines. These accessions were grown in augmented block design with five checks during
rabi season, 2006–07 at ICAR-Indian Institute of Pulses Research, Kanpur. Accessions were
evaluated for 21 descriptors, including plant characteristics and seed characteristics follow-
ing the biodiversity and national Distinctness, Uniformity and Stability (DUS) descriptors
guidelines. More information on the descriptors is accessible in [36]. Ten numerical descrip-
tors including days to 50% flowering (DF), plant height (PH), days to 90% maturity (DM),
100 seed weight (SW), biological yield per plant (BYP), number of primary branch per plant
(PB), number of secondary branch per plant (SB), number of pods per plant (PPP), yield
per plant (YPP) and plant height at lowest pod (PHLP) were used for detailed analysis.
Our target variable was yield per plant (YPP), which was influenced by other factors (See
Supplementary Materials).

2.2. Machine Learning Models
2.2.1. Multivariate Adaptive Regression Spline (MARS) Model

The MARS model for a dependent (outcome) variable y, and M terms, can be summa-
rized in the following equation [37]:

→̂
y = f̂M(

→
X) = c0 +

M

∑
m=1

cmBm(
→
X) (1)

where
→̂
y is the dependent variable (YPP) predicted by the MARS model, c0 is a constant,

Bm(
→
X) is the mth basis function, which may be a single spline basis function, and cm is the

coefficient of the mth basis function. Both the variables to be introduced into the model
and the knot positions for each individual variable have to be optimized. For a dataset

→
X

containing n objects and p explanatory variables, there are N = n × p pairs of spline basis
functions with knot locations (i = 1, 2, . . . , n; j = 1, 2, . . . , p). In the present study, x = 206
entries are exotic collections and 312 are indigenous collections, including 59 breeding lines,
p = 9 and n = 518. MARS was used as a variable selection model in the present study.

2.2.2. Artificial Neural Network (ANN) Model

Artificial neural networks (ANNs) are nonlinear data-driven self-adaptive approaches
as opposed to the traditional model-based methods [38]. ANNs have the ability to iden-
tify correlations between input variables and associated target values. ANNs can solve
problems involving nonlinear and complicated data even if the data are noisy and in-
accurate since they mimic the learning process of the human brain. They are therefore
perfectly suited for modelling agricultural data, which are known to be complicated and
frequently nonlinear.

The output of a neural network can be expressed by the following equation [39]:

yt = α0 +
n

∑
j=1

αj f (
m

∑
i=1

βijyt−1 + βoj) + εt (2)

where yt is output of neural network model (yield per plant); n is number of hidden nodes; m
is the number of input nodes; f is the net input of the activation function; βij {I = 1, 2, . . . , m;
j = 0, 1, . . . , n} are the weights from input to hidden nodes; αj{j = 0, 1, . . . , n} are the vectors
of weights from hidden to output node; α0 and β0j are the weights of arcs leading from
bias terms. Activation function is a differentiable function that is used for smoothing the
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result of the cross product of the covariate or neurons and the weights. In artificial neural
networks, the activation function of a node defines the output of that node given an input
or set of inputs. In the present study, logistic function was used as activation function and
the Levenberg–Marquardt (LM) learning algorithm was used to adjust the weights in the
multi-layered feedforward networks.

2.2.3. Support Vector Regression (SVR) Model

Support Vector Machine (SVM) is nonlinear algorithms used in supervised learning
frameworks for data analysis and pattern recognition [8]. The traditional support vector
machine technique is the predecessor of the SVR that is a nonlinear prediction model. Based
on Vapnik’s concept of support vectors [8], Drucker et al. [40] first introduced support
vector regression. SVR’s primary objective is to maximize the difference between predicted
and actual values while minimizing error by adding a hyperplane. The SVR model can be
written as:

y =
N

∑
i=1

WiKer(xi, xj) + b (3)

where y is our dependent variable (YPP), Wi is associated weight and Ker(xi, xj) is the
nonlinear mapping function known as kernel function for input (independent) variables xi
(I = 1, 2, . . . , 9).

2.2.4. Hyperparameter Tuning of Machine Learning Models

Hyperparameter is one of the important factors in the ML model’s accuracy and pre-
diction. Hyperparameters work differently in different datasets [17,41]. Choosing the best
hyperparameter values improves the stability of any ML performance. Randomly, a ratio
of 80 and 20 of the whole dataset was used for the training sample and the testing sample,
respectively. The k fold cross-validation method was adopted to deal with the model
over fitting problem. The cross-validation method evaluates ML algorithms’ capacity to
handle new and unexplored data. In this method, the dataset is divided into approxi-
mately k equal-sized groups (folds) at random. The data are trained on k-1 folds, with the
first fold being treated as a testing set. For each dataset in this investigation, three folds
(k = 3) were taken. Some studies [13,21,42,43] suggest the superiority of this approach for a
small dataset. The details of used hyperparameters for the used ML models are provided
in Table 1. The hyperparameter tuning was conducted based on the trial-and-error method
for minimizing root mean square error (RMSE).

Table 1. Hyper parameter tuning of the machine learning model.

Model Hyper Parameters

ANN

Training algorithm Resilient back propagation
(Rprop)

Maximum steps up to which the neural
network is trained (Stepmax) 1 × 107

The number of repetitions used to train the
neural network model (Rep) 3

Threshold (threshold value of the partial
derivatives of the error function) 0.01

SVR

Defining algorithms Kernel

Regularization parameter (C) 1

Kernel coefficient (Gamma) Scale

Penalty function (Epsilon) 0.1

Cross validation 10

MARS
Number of model terms upper bound

(Nmax) 20

Penalty coefficient (b) 3
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2.3. Proposed Mars Based Hybrid Model

In the present study, MARS-based hybrid models have been developed by combing
them with ANN and SVR, respectively. The main motive to develop these hybrid models
was to harness the variable selection ability of MARS algorithm and prediction ability of
ANN/SVR simultaneously. First, MARS algorithm was used to find important variables
among the independent variables that influences yield variable. Then these selected
variables were taken as input variables to predict yield variable (Figure 1). The pictorial
representation of the hybrid methodology can be summed up in the following steps:

Step 1. Start model building with all available predictors.
Step 2. Apply MARS algorithm for extracting the important predictors based on its
importance.
Step 3. Build the machine learning model (ANN/SVR) using the selected predictors.
Step 4. Obtain prediction using the model obtained in Step 3.
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2.4. Model Performance and Accuracy of Fitted Models

The model accuracy measures for root mean squared error (RMSE), mean absolute
deviation (MAD), mean absolute percentage error (MAPE) and maximum error (ME) were
used to select the best models. The formulas were used as follows:

RMSE =

√
N
∑

i=1
(yi−ŷi)

2

N MAD =

N
∑

i=1
|yi−ŷi |

N

MAPE =

N
∑

i=1
|yi − ŷi |/yi

N ME = max
N
∑

i=1
|yi − ŷi|

(4)

where yi and ŷi are the actual value and predicted value of response variable and N is the
number of data. The Diebold Mariano (DM) test [44] was used in addition to accuracy
measurements to compare the final fitted models.

3. Results

In this study the MARS, ANN and SVR model was fitted with the help of R. Two new
R packages i.e., “MARSANNhybrid” [45] and “MARSSVRhybrid” [46] were developed for
fitting of the MARS-based ANN and SVR models, respectively. The hyperparameters of
the fitted models are described in Table 1.

3.1. Data Processing and Statistical Analysis

The basic aim of model building is to find out the existence of a relationship between
the output and input variables. The summary statistics such as mean, range, standard
deviation and coefficient of variation (CV) of parameters were checked (Table 2). The lowest
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coefficient of variation was observed in DM character, while dependent YPP showed the
highest variation. Among the independent variables, the highest variability was found in
the number of pods per plant (PPP).

Table 2. Summary of the parameters of lentil.

Parameter Range Mean Standard
Deviation CV

DF 58–106 78.69 10.75 13.66

PH 17–47.6 30.79 4.79 15.55

DM 114–140 126.03 4.70 3.72

SW 1.2–4.1 2.43 0.53 21.75

BYP 4.2–28 13.37 3.75 28.01

PB 2–9 3.76 1.06 28.20

SB 4–18 10.22 2.39 23.40

PPP 3.7–309.3 116.16 47.53 40.92

YPP 0.2–10.7 3.72 1.61 43.25

PHLP 1–19 10.74 2.30 21.44

The correlation study of input variables with outcome was explored (Figure 1) for the
aforementioned lentil dataset. The Pearson correlation coefficients of input variables with
output variables helped to identify the plant characters (traits) that have a strong correlation
with output. As per Figure 2, there is a significant positive correlation between yields per
plant (YPP) and pods per plant (PPP); biological yield per plant (BYP); number of secondary
branches per plant (SB); plant height at lowest pod (PHLP); number of primary branches
per plant (PB); plant height (PH); and 100 seed weight (SW). In the literature, similar types
of correlation results were reported by different researchers who showed that PH [42,47,48],
PB and SB [42,47,48], PPP [42], SW [42], PHLP [42] and BYP [42] are closely related to the
yield of lentil. We also found a significant negative correlation between YPP and days to
90% maturity (DM) and days to 50% flowering (DF). These negative relationships were
confirmed by some researchers [42,49,50].
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Figure 2 depicts the Pearson correlation coefficients of input variables with the yield
per plant of lentil. Variables were normalized within ranges [0.1, 1] for fitting in the ML
models [51]. The given below formula was used for normalization:

xn =

(
xi − xmin

xmax − xmin

)
(5)
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where xi is the original data, xn is the normalized values, and xmax and xmin are the
maximum and minimum values, respectively. Denormalised has been done prior to
calculation of performance measures.

3.2. Input Variable Selection

MARS was used as a variable selection method. MARS degree largely influences
the performance of model fitting and forecasting. Hence, we critically examined the
performance of the model on different degrees (df 1, 2 and 3). The performance for the
MARS model of degree 1, 2 and 3 were evaluated. It was found that the model complexity
increased as the MARS degree increased. To compare the model accuracy of these MARS
models, RMSE, MAD, MAPE and ME were computed. Table 3 presents the RMSE, MAD,
MAPE and ME of the three MARS models. It was found that the MARS model with
interaction terms tended to perform better than the model without interaction (MARS
model with degree 1). The MARS model with degree of 3 had smaller RMSE, MAD
and MAPE values compared to the MARS model with degree of 1 and 2. Moreover, the
performance of the MARS model with degree of 3 followed all the assumptions of model
adequacy, while the other two models failed to satisfy those assumptions. Therefore, the
MARS model with degree of 3 was selected for the model fitting. The selected equation of
the MARS model is:

Y(YPP) = 1.85 − 8.43 × BF1 − 0.15 × BF2 + 0.03 × BF3 + 0.29 × BF4 + 4.06 × BF5 + 0.04 × BF6
−0.01 × BF7 + 0.01 × BF8 − 0.001 × BF9 + 0.002 × BF10 − 0.21 × BF11 − 0.0002 × BF12

(6)

Table 3. Performance measures for different MARS models.

Degree RMSE MAD MAPE

1 0.5972 0.5134 0.1792
2 0.4492 0.4866 0.1566
3 0.4356 0.4842 0.1565

On the basis of generalized cross-validation (GCV) and residual sum of squares (RSS),
a MARS model of order 3 was built to extract the significant variables. In Table 4, the MARS
model’s chosen variables are listed. The dependent variables were then predicted using the
seven variables that were chosen.

Table 4. Predictor importance for MARS with degree of 3.

Variable GCV RSS

PPP 100 100
SW 46.5 48.6
Ph 31.2 33.9

BYP 31.1 33.9
PHLP 25.5 28

PB 18.4 20.1
DF 6.6 7.9

3.3. ANN Model Development

For model-building purposes, we varied our model architecture with 1 to 5 hidden
nodes with a single hidden layer. The resilient backpropagation method was used for
model training. In the present study, neural network models were fitted with rep = 1 to
3, stepmax = 1 × 105 to 1 × 108 and threshold = 0.01. The schematic representation of the
fitted ANN model with weights is shown in Figure 3. Table 5 summarizes the error rate
and performance measures of fitted ANN with a different number of hidden nodes. The
ANN model with 1, 2, 3 and 5 hidden nodes had the same performance. However, the
ANN model with 4 hidden nodes gave the best result. Thus, the best-fitted replication in
the ANN model with 4 hidden nodes was used for yield forecasting.
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Table 5. Performance measures for different number of nodes in ANN models.

No. of Nodes in
Hidden Layer RMSE MAD MAPE

1 1.6134 1.2169 0.4612
2 1.6134 1.2169 0.4612
3 1.6134 1.2169 0.4612
4 0.9627 0.6288 0.1828
5 1.1512 1.0191 0.3521

3.4. SVR Model Development

The SVR model was fitted using different types of kernel functions such as linear,
radial basis, sigmoid and polynomial, although the most often used and recommended
function is radial basis. However, it is recommended to select the appropriate kernel
function for the given dataset. Therefore, SVR was fitted using the four different kernel
basis functions, and the best model was selected on the basis of performance measures.
Other significant hyperparameters in the SVR model, such as the epsilon factor, cross-
validation and type of regression, also have a significant impact on the model’s performance.
In Table 1, the values of these parameters that were used are reported. Tenfold cross-
validation was used to validate the resulting model. Further, we focused our attention
on selection of the appropriate kernel function. The support vectors produced using
RBF, linear and polynomial were 323, 321 and 329, respectively. In the training phase,
performance measures such as RMSE, MAD, MAPE and ME were computed for choosing
the best forecasting model. From Table 6, it was observed that the SVR model with radial
basis kernel function provided the best result on the basis of parsimonious representation.
Hence, the SVR model with radial basis kernel function was employed for yield prediction.
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Table 6. Performance measures for different kernel function in SVM.

Kernel Function RMSE MAD

Radial basis 0.6474 0.3602
Linear 0.8599 0.5231

Polynomial 0.827 0.5253
Sigmoid 0.8269 0.5253

Fit statistics values were used to examine the effectiveness of fitted models for both
in-sample and out-of-sample predictions. In order to verify the model’s suitability, the
specifics of the derived residuals were also examined. The value of the statistic of fitted
models is shown in Table 7. It was found that MARS performed the best among the
individual models, followed by SVR and ANN. To fit a local regression model to each
sub-region, the MARS algorithm partitioned the dataset into a number of sub-regions.
Redundancy of variables may cause overfitting problems in a single ANN (without MARS).
Similar results in ANN were highlighted by researchers [30–32]. It might be the reason
why the ANN performed poorly. The performance of a single SVR model was considerably
affected by the same issues.

Table 7. Performance measures for different fitted models.

Model RMSE MAD MAPE ME

In-sample

ANN 0.9827 0.6288 0.1828 8.1055
MARS 0.4356 0.4842 0.1565 4.2157

MARS-ANN 0.0802 0.0607 0.2478 0.3918
MARS-SVR 0.0826 0.0579 0.1834 0.8498

MLR 0.9869 0.6520 0.1840 9.10
SVR 0.6474 0.3602 0.1089 7.1265

Out-sample

ANN 0.8142 0.6435 0.2308 2.4871
MARS 0.9415 0.6147 0.2769 5.3540

MARS-ANN 0.0802 0.0579 0.2214 0.7085
MARS-SVR 0.0658 0.0579 0.1626 0.2206

MLR 0.8520 0.0610 0.2852 3.6302
SVR 0.6853 0.4902 0.2707 2.6435

The out-of-sample performance of these hybrid models further demonstrates their
strong generalizability. The DM test was also used to determine whether the MARS-ANN
and MARS-SVR models were the best. The alternative MARS-ANN model outperformed
the MARS-SVR model in terms of accuracy, which was the null hypothesis of the test. The
significance of the Diebold–Mariano (DM) test is displayed in Table 8. The right-tailed
DM test was used considering the models have equal accuracy. The test demonstrated the
superiority of the MARS-ANN model over the MARS-SVR.

Table 8. Results of DM test of compared models.

Model DM Value p Value Remarks

MARS-ANN vs. MARS-SVR 4.185 <0.01
The accuracy of

MARS-ANN is better
than MARS-SVR.

MARS-ANN vs. ANN 5.304 <0.01
The accuracy of

MARS-ANN is better
than ANN model.

MARS-ANN vs. MARS 5.725 <0.01
The accuracy of

MARS-ANN is better
than MARS model.
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Table 8. Cont.

Model DM Value p Value Remarks

MARS-ANN vs. SVR 5.955 <0.01
The accuracy of

MARS-ANN is better
than SVR model.

MARS-SVR vs. ANN 6.563 <0.01
The accuracy of

MARS-SVR is better
than ANN model.

MARS-SVR vs. SVR 6.823 <0.01
The accuracy of

MARS-SVR is better
than SVR model.

MARS-SVR vs. MARS 6.235 <0.01
The accuracy of

MARS-SVR is better
than MARS model.

4. Discussion

The study revealed the superiority of proposed hybrid models for crop yield pre-
diction. The results indicated that the proposed hybrid model had the power to capture
the nonlinearity among the variables. The generic models such as ANN, SVR and MARS
failed to capture the inherent data patterns and were unable to produce satisfactory pre-
diction results. It is clear that variable selection provided extra advantages to the SVR
and ANN models. Both of the proposed hybrid models outperformed their individual
counterparts. It validated the advancements made by MARS in both the ANN and SVR
models. As previously mentioned, key explanatory variables were retrieved with the aid
of the MARS model in the case of hybrid models, and nonlinear forecasting techniques
such as ANN and SVR were applied. The superior performance of the hybrid models may
be attributable to parsimony and two-stage model construction. Further DM test results
clarified MARS-ANN was the best model among the fitted models.

5. Conclusions

Modelling and forecasting of complex, multifactorial and nonlinear phenomenon
such as crop yield have intrigued researchers for decades. This study is an attempt in the
similar direction to contribute to the vast literature of crop-yield modelling. The study
proposed novel hybrids based on MARS. The feature extraction ability of MARS was
utilized, and efficient forecasting models were developed using ANN and SVR. The utility
of the proposed models was illustrated and compared using a lentil dataset with baseline
models. As these models do not depend on assumptions about functional form, probability
distribution or smoothness and have been proven to be universal approximators.

The novel hybrid model was built in two steps, each performing a specialized task. In
the first step, important input variables were identified using the MARS model instead of
hand-picking variables based on a theoretical framework. In the second step, nonlinear
prediction techniques ANN and SVR were used for yield prediction using the selected
variables. The performance of the models was compared using fit statistics such as RMSE,
MAD, MAPE and ME. The proposed MARS-based hybrid models performed better as
compared to the individual models such as MARS, SVR and ANN. This is largely due to
the enhanced feature extraction capability of the MARS model coupled with the nonlinear
adaptive learning feature of ANN and SVR. This proposed framework can be applied
to a variety of datasets to capture the nonlinear relationship between independent and
dependent variables. The R packages developed in this study have utility in multifactorial
and multivariate experiments such as genomic selection, gene expression analysis, survival
analysis, digital soil mappings, etc. Further, efforts can be directed to propose and evaluate
hybrids of other soft computing techniques.
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