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Abstract: The yield of the crop is a complex function of a number of dependent traits, which
makes yield prediction a statistically difficult task. A number of work on yield prediction using
morphological characters already exists in the literature. Most of the work used statistical techniques
such as linear regression and crop yield models, which assume a linear relationship between yield
and the morphological traits; in actual practice, such a linear relationship is seldom achieved. With
the advancement in the field of machine learning techniques, these methods can provide a viable
alternative for dealing with nonlinear relationships for yield prediction. Globally, apples are the most
consumed fruit. In this paper, attempts have been made to predict the yield of the apple crop using
morphological traits. PCA was used for selection of the significant variables. These variables were
later used as input variables in the ANN model with different hidden layers for predicting crop yield.
The predictive performance of the model was evaluated using standard statistical tests. Sensitivity
analysis was performed to find out the individual effects of each character on the apple yield. The
study contributes to a better understanding of the complex relationships between crop yield and
morphological traits.

Keywords: apple fruit crop; morphological characters; yield prediction; machine learning; principal
component analysis (PCA); artificial neural network (ANN)

1. Introduction

Apple (Malus domestica) is commercially cultivated in the Himachal Pradesh, Jammu
and Kashmir, and Uttarakhand. These states collectively produce 99.43% of the total apple
production (2,734,000 tones) in India [1]. Apple yield is a complex variable that depends
on a number of factors, either directly or indirectly, including vegetative, flowering, and
fruiting characteristics. Identifying a single variable representative of yield may not be
reliable, so researchers are faced with the possibility of separately examining many related
variables [2]. The attempt to perform a series of univariate statistical analysis for each of
the variables does not hold much promise, because it overlooks the correlation among the
variables and occasionally the conclusions may be deceptive. Instead, statistical methods
that consider the interdependence and relative importance of several affecting factors may
yield information that is more informative. Therefore, morphological characters can be
considered together for yield prediction using machine-learning techniques [3–5].

For proper crop management and plan strategies for the efficient marketing of fruits,
yield prediction is very crucial. The earlier the prediction, the more effectively it can be
applied to improve marketing strategies. A wide range of techniques, i.e., statistical tools,
crop model, and algorithms, have been developed and applied for the prediction of yield
in agriculture. Correlation and multiple regression analysis are the most frequently used
techniques for the prediction of yield and for the identification of important variables that
affect crop yield [6–9]. However, the results are not particularly encouraging, because
polynomial and interaction terms, which were not taken into account, exist [10]. Moreover,
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the assumption of linear relationships between crop yield and explanatory variables is
rarely met in reality, and when these relationships are not linear, the results may be
deceptive [10–12]. Furthermore, principal component and factor analyses [7,13,14] can
be used to lessen the issue brought on by interdependent variables, make it easier to
understand complex relationships, and decrease the dimensionality of the dataset by
selecting the most appropriate subset of variables that significantly affect the response
variable [7]. For capturing the nonlinearity and complicated interaction between the
variables, machine learning approaches such as artificial neural networks (ANNs) are
emerging as an alternative to conventional linear models. ANN is a nonlinear data-driven
method that follows a self-adaptive learning approach [15]. By analyzing a large number
of input and output instances, ANNs discover relationships to create a formula that can be
used for predictions. The development of models using ANN does not call for any prior
knowledge of the inputs and outcomes. ANN is also better than any other linear model
because it is also more capable of determining the optimal pattern of variables and offers
less inaccuracy [16]. As a result of these benefits, ANN is very well-liked in a variety of
fields, including hydrology and agriculture [3,12,13,17–20].

The majority of modelling research on crop yield prediction assumes a linear relation-
ship between yield and its contributing characters, and is thus centered on linear regression,
step-wise regression, path analysis, principle component (PCA), and factor analyses, etc.
These techniques would decrease the number of variables, but they would not be sufficient
or thorough enough to capture the highly nonlinear and complicated relationships between
yield and other characteristics. Consequently, artificial neural networks (ANN) would be
appropriate when the variables under consideration have complex and nonlinear relation-
ships. Correlated input causes confusion for the neural network during learning, which is
the key factor affecting a neural network’s performance. In addition, an ANN model with a
large number of input variables may perform poorly in terms of generalization [21,22]. The
principal component analysis and ANN can be used together to address these problems.
The present study was conducted with the aim to build up and evaluate the predictive
performance of PCA-based ANN models to predict the apple yield using morphological
characters as the input variables. PCA was employed for the selection of variables (feature
selection), which were used as input variables in ANN models for the prediction of yield.
The results from the study will help to identify and model the complex relationship between
apple yield and its related morphological characters.

2. Materials and Methods
2.1. Study Area and Data Description

The study was conducted in a commercial farmer’s apple orchard located at an
elevation of 1901 m in Jubbal, Shimla, Himachal Pradesh (31◦10′ N, 77◦66′ E) during
2014–2015. The region is generally cool throughout the year with temperatures ranging
from 15–25 ◦C during the summer and falling below zero degrees during the winter. A
representative sample of trees were selected from the experimental orchard, and four
branches from each of the tree in four directions as per the practice in vogue were selected
for recording the observations on various morphological characters, i.e., plant height,
canopy spread, plant girth, flower density (FD), flower density index (FDI), flowering
intensity (FI), fruit set (FS), crop density (CD), and length diameter ratio (LD ratio) of
variety Royal delicious were recorded. Data on vegetative characteristics were collected
during April month. Data on flowering and fruiting characteristics were collected during
months of May, July, and August. The yield of apple was recorded by collecting the fruit
manually from each tree. Summary statistics of each characters are presented in Table 1.



Horticulturae 2022, 9, 436 3 of 12

Table 1. Summary of plant parameters.

Characters Range Mean Std. Deviation

Plant height (m) 3.05–11.89 7.22 2.21
Canopy spread (m) 1.32–9.48 5.57 2.03

Plant girth (cm) 0.15–0.91 0.61 0.18
Flower density 1.00–10.82 3.54 1.99

Flower density index 0.10–1.08 0.35 0.18
Flowering intensity 0.35–0.50 0.41 0.03

Fruit set 0.15–0.57 0.31 0.08
Crop density 0.30–4.40 1.09 0.66

Length diameter ratio 6.84–10.28 8.22 0.68

The selection of appropriate input variables for the development of MLR and ANN
models is very crucial [23,24]. Although much research has employed the simple correlation
as an input selection approach [17,25], this method is unable to reveal the types of direct or
indirect effects between variables. Furthermore, it also reduces the probability of having a
unique solution [26]. Principal component analysis is a data reduction, which can be used
to select the most important uncorrelated variables as the input variables.

2.2. Development of Artificial Neural Network Model

An artificial neural network (ANN) is a type of machine learning model that is a data-
driven nonlinear adaptive learning method [15]. An ANN model network can capture the
representation of complex data patterns, which are difficult to model either with traditional
model-based approaches or knowledge-based expert systems [27]. A typical ANN model
consists of three main layers, i.e., input layer, hidden layer, and output layer (Figure 1).
These layers contain simple processing units that are known neurons or nodes. The nodes
are interconnected to each other through weighted connection, which varies according
to the specified architectures of required ANN model [27]. The number of hidden layers
and its nodes depend on the specific problems of the study. Several studies [16,28,29]
have suggested that the trial and error method is the most common method to find an
optimum number of hidden layers and its nodes. Further details of the ANN model and its
application are given in Haykin (2008) [30]. The output of ANN model can be expressed by
following equation (Equation (1)) [18]:

yt = α0 +
n

∑
j=1

αj f (
m

∑
i=1

βijyt−1 + βoj) + εt (1)

where yt is the output of the neural network model (yield per plant), n is number of hidden
nodes, m is the number of input nodes, f is the net input of the activation function, βij {i = 1,
2, . . . , m; j = 0, 1, . . . , n} are the weights from input to hidden nodes, αj{j = 0, 1, . . . , n} are
the vectors of the weights from the hidden to output nodes, and α0 and β0j are the weights
of arcs leading from bias terms. Activation function is a differentiable function that is used
for smoothing the result of the cross product of the covariates or neurons and the weights.
In the artificial neural networks, the activation function of a node defines the output of that
node given an input or set of inputs.

In the present study, multi-layered feed-forward network architecture with a logistic
function was used as an activation function. The Levenberg–Marquardt (LM) learning
algorithm was used to adjust the weights in the multi-layered feed-forward networks.
To obtain the best topology of the ANN model, different numbers of hidden layers (1–6)
and nodes in each hidden layer (1–20) were tested using the trial and error method. The
epoch (iterations) size and mean square error (MSE) threshold values for each run in the
training and cross validation dataset were 100 and 0.01, respectively. The convergence of
the average MSE values during training and cross validation was investigated at an epoch
length of 0 to 100 to avoid model over-fitting and memorization. It was investigated that
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the convergence point was epoch 60 so as to avoid over-fitting (Figure 2). The dataset was
portioned into two subsets, i.e., training set (80%) and testing set (20%) for fitting of ANN
and MLR model.
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Figure 1. Topology of neural network model for Apple yield prediction.
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Figure 2. Convergence of the average MSE value during training and cross validation of ANN model.

2.3. Development of Multiple Linear Regression Model

Crop yield prediction in agriculture has made extensive use of regression-based
models. Multiple linear regression (MLR) attempts to model the relationship between the
regressed and more than one regressor [31,32]. In MLR, an attempt is made to account for
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the variation of the regressors in the regressed synchronically [33]. The model for MLR can
be written as follows:

y = β0 + β1x1 + β2x2 + . . . + βkxk + ε (2)

where y denotes regressed (yield), xi denotes regressors (morphological characters), and ε

is the error term which is normally distributed with zero mean and constant variance.

2.4. Model Performance Measures

The performance of the fitted models were evaluated using four statistical measures,
including root mean square error (RMSE), mean absolute deviation (MAD), mean absolute
percentage error (MAPE), and coefficient of determination (R2) [34]. The functional formula
of these measures were used as follows

RMSE =

√
N
∑

i=1
(yi−ŷi)

2

N MAD =

N
∑

i=1
|yi−ŷi |

N

MAPE =

N
∑

i=1
|yi − ŷi |/yi

N R2 =

N
∑

i=1
(yi−y)(ŷi−ŷ)√

N
∑

i=1
(yi−y)2 N

∑
i=1

(ŷi−ŷ)2

(3)

where yi and ŷi and are the actual value and predicted value of response variable and N is
the number of data.

3. Results
3.1. Selection of Input Variables

The input variables form the model structure, have an impact on the weighted coeffi-
cient, and influence the results of the models; this is why their selection is a key factor in
any modelling method [24,35]. A simple correlation coefficient can be used as the input
variable selection method as it can identify the characters, which have a strong correlation
with the output variables (Figure 3).
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Figure 3. Correlation plot of different input variables.

There is a positive and significant correlation between apple yield and plant height,
canopy spread, plant girth, FDI, and fruit set. Similar findings were reported by other
researchers [19,36–38]. Plant height, canopy spread, plant girth, FDI, and fruit set were
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regarded as the most significant characters based on the correlation analysis, as they have a
significant positive association with yield.

Principal component analysis (PCA) can be used as a more efficient method of input
variable selection than correlation analysis, as a simple correlation coefficient between
characters can be influenced by the positive or negative indirect effect of another vari-
ables [24,26]. The PCA results (Table 2) helped to find the explained variations using
the morphological characters. Together, first and second principal components explained
56.53% of the total variation in the variables. According to these principal components,
plant height, canopy spread, plant girth, FD, FDI, FI, and CD were identified as most appro-
priate input variables. Consequently, a suitable combination of these variables accompanied
by high-performance modelling can result in an effective model to predict yield.

Table 2. Principal component analysis for input variable selection.

Characters PH CS PG FD FDI FI FS CD LDR EV CV

PC1 −0.4223 −0.4222 −0.4178 0.3909 0.2924 0.1073 0.1183 0.4389 0.1108 3.07 34.15
PC2 0.3905 0.3051 0.3672 0.3810 0.4114 0.4333 −0.0969 0.3284 −0.011 2.01 56.53

PH: plant height, CS: canopy spread, PG: plant girth, FD: flowering density, FDI: flowering density index,
FI: flowering intensity, FS: fruit set, CD: crop density, LDR: LD ratio, EV: eigen value, CV: cumulative variance.

3.2. ANN Model Development

In the present study, the analysis of the dataset was carried out in RStudio. The multi-
layered feed-forward network architecture with different functions was used for yield
prediction. Seven plant characters viz. plant height, canopy spread, plant girth, FD, FDI,
FI, and CD were found significant using PCA. These plant characters were used as input
variables based on the variable selection method for ANN model fitting. Based on the sig-
nificant advantage of Levenberg–Marquardt compared with other optimization algorithms,
this algorithm was used in all ANN models. The performance measures, such as RMSE,
MAD, MAPE, and R2, were considered for the evaluation of the model’s performance. The
performance of different activation functions was also tested. It has been observed that
logistic activation outperformed among the others due to its ability to capture nonlinear
variation in the dataset. Ahmadi et al. [39], Hagan et al. [40], and Mansouri et al. [17] also
reported the ability of nonlinear functions to cover nonlinear patterns in a dataset. The
different number of hidden layers with a different number of nodes were fitted to obtain
the best topology for the neural network model (Table 3). The results indicated that the
ANN model with two hidden layers (5-5), i.e., 7-5-5-1 architecture provide best result. This
ANN model (7-5-5-1) had the lowest RMSE, MAD, and MAPE values with the highest
model accuracy in both the training and testing stages. The schematic diagram of the ANN
structure (7-5-5-1) is presented in Figure 1.

Table 3. The performance of ANN models with different hidden layers in the training and testing set.

Hidden Layer Best Topology RMSE MAD MAPE R2 Accuracy (%) Error Rate

Training

1 731 36.3360 25.7337 0.2306 0.8121 90.36 0.2422
2 7551 24.8300 18.2607 0.1523 0.9430 98.72 0.0736
3 73,331 31.0590 22.3937 0.2053 0.8629 93.59 0.1769
4 733,331 27.4964 21.2744 0.2136 0.8924 92.23 0.1386
5 7,551,551 24.9840 19.8195 0.1556 0.9116 93.10 0.1140
6 73,333,551 34.8300 17.81 0.2426 0.9113 95.10 0.11438

Testing

1 731 63.2026 43.9649 0.3582 0.5622 93.01 0.2422
2 7551 36.6078 28.1045 0.2151 0.8685 95.36 0.0736
3 73,331 52.2906 38.2418 0.2974 0.7129 91.32 0.1769
4 733,331 43.7711 28.2788 0.1900 0.7935 93.49 0.1386
5 7,551,551 40.0703 28.2700 0.2111 0.8239 92.65 0.1140
6 73,333,551 43.2684 32.92371 0.2360 0.8073 89.33 0.1144
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The topology was able to express approximately 94% variability in the training phase
and approximately 86% in the testing phase. The scatter plot of the measured and pre-
dicted yield of the apple in testing is represented in Figure 4a. The results show that the
distribution of the predicted apple yield had a close distribution with the actual apple
yield. Further boxplot (Figure 4b) results showed there was no outlier in the predicted data,
which was an indication of proper model fitting. Balas et al. [41] suggested PCA, as variable
selection (data pre-processing) reduced the chance of over-fitting. The application of ANN
with PCA (PCA-ANN) increased the forecasting ability of the ANN model compared with
a single ANN model [16].
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Figure 4. (a) Scatter plot of the measured and predicted yield of apple in the testing stage
of ANN; (b) boxplot of measured and predicted apple yield in the testing stage of ANN. Green
dots denote the observations and root mean square error (RMSE), mean absolute deviation
(MAD), mean absolute percentage error (MAPE), and coefficient of determination (R2) are the
performance measures.

3.3. MLR Model Development

Multiple linear regression (MLR) model is a commonly used method for crop yield
prediction. In the present study, the same data variables that were used for the ANN model
were used for MLR model building. The fitted regression model to predict the apple yield
was as:

Yield = −0.347 + 0.186 ∗ Plant height + 0.27 ∗ canopy + 0.441 ∗ FDI (4)

Equation (4) shows that the predicted value of the apple yield is a linear combination
of other significant variables (plant height, canopy spread, and FDI). It also helped to
see how the prediction value of the apple yield changed with the unit change in the
variables (plant height, canopy spread, and FDI). The results also showed that the MLR
model had a low R2 value (70.69%) in Figure 5a. The scatter plot indicated that the MLR
model did not cover all of the data points and most of the data points deviated from
the regression line. Further boxplots (Figure 5b) of the measured and predicted apple
yield in the testing stage of MLR indicate the inefficiency of the MLR model to predict
apple yield.
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Figure 5. (a) Measured and predicted apple yield in testing stage of MLR; (b) boxplot of the measured
and predicted apple yield in the testing stage of MLR. Blue dots denote the observations.

4. Discussion
4.1. Comparison of Fitted Models

The prediction performance of the MLR and ANN models was evaluated for statistical
measures such as RMSE, MAD, MAPE, and R2. The results are presented in Table 4. It has
been observed that the selected ANN model outperformed with an 18.60% increase in R2

and a reduction of 67.31%, 41.33%, and 21.80% in RMSE, MAD, and MAPE compared with
the MLR model.

Besides these measures, a graphical representation (Figure 6) of the actual and pre-
dicted by the ANN and MLR model helped to understand the superiority of the ANN
model over the MLR. The ANN model captured the data pattern more accurately than the
MLR model. The possible reason behind the poor performance of the MLR model is the
nonlinear portion of the relationship between the input variables and apple yield. The MLR
model did not capture this relationship, while the ANN model took this relationship into
account during model building. These results indicate how selection of the proper model
improves the prediction of the dependent variable (yield). ANN models have a high ability
to model nonlinear and complex relationships among the data variables compared with
MLR models. In the literature, similar results have been reported in many studies [16,20,42].
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Figure 6. Predicted values of the fitted models with actual data points.
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Table 4. Prediction performance of the fitted models in the testing stage.

Model RMSE MAD MAPE R2

ANN 36.6078 28.1045 0.2151 0.8685
MLR 61.2501 39.7203 0.2620 0.7069

4.2. Sensitivity Analysis

A sensitivity analysis was performed to find out the individual effects of each of the
input variables on the prediction values of apple yield. The results (Figure 7) indicate how
the performance of the ANN models change with different combinations of input variables
(plant height, canopy spread, plant girth, FD, FDI, FI, and CD) [2].
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Figure 7. Sensitivity analysis of input variables on apple yield in ANN model. A: The best ANN
model without CD; B: The best ANN model without FI; C: The best ANN model without FDI; D: The
best ANN model without FD; E: The best ANN model without plant girth; F: The best ANN model
without canopy spread; G: The best ANN model without plant height; H: The best ANN model (with
plant height, canopy spread, plant girth, FD, FDI, FI, and CD as the input).

The ability of ANN to predict apple yield was significantly decreased when it was run
without FI, FDI, and FD. The models without FD have the lowest R2 and highest RMSE
(79.47), MAD (79.44), and MAPE (23.07). Therefore, FD can be considered as an influential
factor to predict apple yield. In addition to these characteristics, FDI and FI also had a
significant effect on predicting apple yield.

5. Conclusions

Yield prediction of fruit crop based on the morphological characters, is a beneficial
approach. In the present study, primary data on apple crop yield, as well as the morpholog-
ical characters viz. plant height, canopy spread, plant girth, flower density, flower density
index, flowering intensity, fruit set, crop density, and length diameter ratio was collected
from commercial apple growing farmers in Jubbal block, Himachal Pradesh, India. A
simple correlation was run to see the impact of the morphological characters on the yield,
and it was observed that there was a positive and significant correlation between apple
yield and plant height, canopy spread, plant girth, FDI, and fruit set. A PCA was run to
select the significant variables, as the selection of variables is crucial for model building.
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First and second principal components explained 56.53% of the total variation in the vari-
ables, plant height, canopy spread, plant girth, FD, FDI, FI, and CD were identified as the
most appropriate input variables. Hence, a combination of these variables was used as the
input variables for model building. A multi-layered feed-forward network architecture
with different functions was used for model building and yield prediction. Seven plant
characters, i.e., plant height, canopy, tree girth, FD, FDI, FI, and CD were used as input
variables based on the variable selection method for ANN model fitting. The Levenberg–
Marquardt algorithm was used in all of the ANN models. The model performance was
evaluated using standard statistical measures such as RMSE, MAD, MAPE, and R2. The
logistic activation function was found to outperform all other activation functions. This
ANN model (7-5-5-1) had the lowest RMSE, MAD, and MAPE values with the highest
model accuracy in both the training and testing stages. Furthermore, the results show a
close association between the predicted and actual yield of apple. As MLR models are
predominantly used in crop yield prediction, the MLR model was also used for the study
and it was observed that the selected ANN model outperformed the MLR model with
an 18.60% increase in R2 and a reduction of 67.31%, 41.33%, and 21.80% in RMSE, MAD,
and MAPE. All of the computations have been carried out by writing suitable codes in R
software available with the authors.
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